1
|
Tam KP, Xie J, Au-Yeung RKH, Chiang AKS. Combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines. PLoS Pathog 2024; 20:e1012250. [PMID: 39325843 PMCID: PMC11481030 DOI: 10.1371/journal.ppat.1012250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Epstein-Barr virus (EBV) manipulates the ubiquitin-proteasome system and regulators of Bcl-2 family to enable the persistence of the virus and survival of the host cells through the expression of viral proteins in distinct latency patterns. We postulate that the combination of bortezomib (proteasome inhibitor) and venetoclax (Bcl-2 inhibitor) [bort/venetoclax] will cause synergistic killing of post-transplant lymphoproliferative disorder (PTLD) through targeting the pro-survival function of latent viral proteins such as latent membrane protein-1 (LMP-1) and EBV nuclear antigen-3C (EBNA-3C). Bort/venetoclax could synergistically kill spontaneous lymphoblastoid cell lines (sLCLs) derived from patients with PTLD and EBV-associated hemophagocytic lymphohistiocytosis by inducing DNA damage response, apoptosis and G1-S cell cycle arrest in a ROS-dependent manner. Bortezomib potently induced the expression of Noxa, a pro-apoptotic initiator and when combined with venetoclax, inhibited Mcl-1 and Bcl-2 simultaneously. Bortezomib prevented LMP-1 induced proteasomal degradation of IκBα leading to the suppression of the NF-κB signaling pathway. Bortezomib also rescued Bcl-6 from EBNA-3C mediated proteasomal degradation thus maintaining the repression of cyclin D1 and Bcl-2 causing G1-S arrest and apoptosis. Concurrently, venetoclax inhibited Bcl-2 upregulated by either LMP-1 or EBNA-3C. Bort/venetoclax decreased the expression of phosphorylated p65 and Bcl-2 at serine 70 thereby suppressing the NF-κB signaling pathway and promoting apoptosis, respectively. These data corroborated the marked suppression of the growth of xenograft of sLCL in SCID mice (p<0.001). Taken together, the combination of bortezomib and venetoclax targets the pro-survival function of LMP-1 and EBNA-3C of Epstein-Barr virus in spontaneous lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kam Pui Tam
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia Xie
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rex Kwok Him Au-Yeung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan K. S. Chiang
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Necker-Brown A, Kooi C, Thorne AJ, Bansal A, Mostafa MM, Chandramohan P, Gao A, Kalyanaraman K, Milani A, Gill S, Georgescu A, Sasse SK, Gerber AN, Leigh R, Newton R. Inducible gene expression of IκB-kinase ε is dependent on nuclear factor-κB in human pulmonary epithelial cells. Biochem J 2024; 481:959-980. [PMID: 38941070 DOI: 10.1042/bcj20230461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1β and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1β- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1β- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1β may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.
Collapse
Affiliation(s)
- Amandah Necker-Brown
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Cora Kooi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Thorne
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Akanksha Bansal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Priyanka Chandramohan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alex Gao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arya Milani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sachman Gill
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Andrei Georgescu
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Richard Leigh
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Al-Odat OS, Nelson E, Budak-Alpdogan T, Jonnalagadda SC, Desai D, Pandey MK. Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients. Cancers (Basel) 2024; 16:2381. [PMID: 39001443 PMCID: PMC11240591 DOI: 10.3390/cancers16132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Emily Nelson
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | | | - Dhimant Desai
- Department of Pharmacology, Penn State Neuroscience Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
| |
Collapse
|
4
|
You Q, Chen L, Li S, Liu M, Tian M, Cheng Y, Xia L, Li W, Yao Y, Li Y, Zhou Y, Ma Y, Lv D, Zhao L, Wang H, Wu Z, Hu J, Ju J, Jia C, Xu N, Luo J, Zhang S. Topical JAK inhibition ameliorates EGFR inhibitor-induced rash in rodents and humans. Sci Transl Med 2024; 16:eabq7074. [PMID: 38896602 DOI: 10.1126/scitranslmed.abq7074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Epidermal growth factor receptor inhibitors (EGFRis) are used to treat many cancers, but their use is complicated by the development of a skin rash that may be severe, limiting their use and adversely affecting patient quality of life. Most studies of EGFRi-induced rash have focused on the fully developed stage of this skin disorder, and early pathological changes remain unclear. We analyzed high-throughput transcriptome sequencing of skin samples from rats exposed to the EGFRi afatinib and identified that keratinocyte activation is an early pathological alteration in EGFRi-induced rash. Mechanistically, the induction of S100 calcium-binding protein A9 (S100A9) occurred before skin barrier disruption and led to keratinocyte activation, resulting in expression of specific cytokines, chemokines, and surface molecules such as interleukin 6 (Il6) and C-C motif chemokine ligand 2 (CCL2) to recruit and activate monocytes through activation of the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, further recruiting more immune cells. Topical JAK inhibition suppressed the recruitment of immune cells and ameliorated the severity of skin rash in afatinib-treated rats and mice with epidermal deletion of EGFR, while having no effect on EGFRi efficacy in tumor-bearing mice. In a pilot clinical trial (NCT05120362), 11 patients with EGFRi-induced rash were treated with delgocitinib ointment, resulting in improvement in rash severity by at least one grade in 10 of them according to the MASCC EGFR inhibitor skin toxicity tool (MESTT) criteria. These findings provide a better understanding of the early pathophysiology of EGFRi-induced rash and suggest a strategy to manage this condition.
Collapse
Affiliation(s)
- Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxi Li
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Yang Yao
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Yinan Li
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhao Lv
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longfei Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hejie Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoyu Wu
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juegang Ju
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Götz MG, Godwin K, Price R, Dorn R, Merrill-Steskal G, Klemmer W, Hansen H, Produturi G, Rocha M, Palmer M, Molacek L, Strater Z, Groll M. Macrocyclic Oxindole Peptide Epoxyketones-A Comparative Study of Macrocyclic Inhibitors of the 20S Proteasome. ACS Med Chem Lett 2024; 15:533-539. [PMID: 38628795 PMCID: PMC11017298 DOI: 10.1021/acsmedchemlett.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Peptide macrocycles have recently gained attention as protease inhibitors due to their metabolic stability and specificity. However, the development of peptide macrocycles with improved binding potency has so far been challenging. Here we present macrocyclic peptides derived from the clinically applied proteasome inhibitor carfilzomib with an oxindole group that mimics the natural product TMC-95A. Fluorescence kinetic activity assays reveal a high potency of the oxindole group (IC50 = 0.19 μM) compared with agents lacking this motif. X-ray structures of the ligands with the β5-subunit of the yeast 20S proteasome illustrate that the installed macrocycle forces strong hydrogen bonding of the oxindole group with β5-Gly23NH. Thus, the binding of our designed oxindole epoxyketones is entropically and enthalpically favored in contrast to more flexible proteasome inhibitors such as carfilzomib.
Collapse
Affiliation(s)
- Marion G. Götz
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Kacey Godwin
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Rachel Price
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Robert Dorn
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | | | - William Klemmer
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Hunter Hansen
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Gautam Produturi
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Megan Rocha
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Mathias Palmer
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Lea Molacek
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Zack Strater
- Department
of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Michael Groll
- Technical
University of Munich, TUM School of Natural
Sciences, Department of Bioscience, Center for Protein Assemblies
(CPA), Ernst-Otto-Fischer
Strasse 8, 85748 Garching, Germany
| |
Collapse
|
6
|
Gao J, Zhou J, Zhang M, Zhang Y, Zeng Y, Li S, Xu K, Yao R. A novel 2-iminobenzimidazole compound, XYA1353, displays in vitro and in vivo anti-myeloma activity via targeting NF-κB signaling. Mol Cell Biochem 2024; 479:843-857. [PMID: 37204666 DOI: 10.1007/s11010-023-04764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Multiple myeloma (MM) is an accumulated disease of malignant plasma cells, which is still incurably owing to therapeutic resistance and disease relapse. Herein, we synthesized a novel 2-iminobenzimidazole compound, XYA1353, showing a potent anti-myeloma activity both in vitro and in vivo. Compound XYA1353 dose-dependently promoted MM cell apoptosis via activating caspase-dependent endogenous pathways. Moreover, compound XYA1353 could enhance bortezomib (BTZ)-mediated DNA damage via elevating γH2AX expression levels. Notably, compound XYA1353 interacted synergistically with BTZ and overcame drug resistance. RNA sequencing analysis and experiments confirmed that compound XYA1353 inhibited primary tumor growth and myeloma distal infiltration by disturbing canonical NF-κB signaling pathway via decreasing expression of P65/P50 and p-IκBα phosphorylation level. Due to its importance in regulating MM progression, compound XYA1353 alone or combined with BTZ may potentially exert therapeutic effects on multiple myeloma by suppressing canonical NF-κB signaling.
Collapse
Affiliation(s)
- Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Menghui Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yindi Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ruosi Yao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Xuzhou Ruihu Health Management and Consulting Co., Ltd, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
8
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
9
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
11
|
Poos AM, Prokoph N, Przybilla MJ, Mallm JP, Steiger S, Seufert I, John L, Tirier SM, Bauer K, Baumann A, Rohleder J, Munawar U, Rasche L, Kortüm KM, Giesen N, Reichert P, Huhn S, Müller-Tidow C, Goldschmidt H, Stegle O, Raab MS, Rippe K, Weinhold N. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis. Blood 2023; 142:1633-1646. [PMID: 37390336 PMCID: PMC10733835 DOI: 10.1182/blood.2023019758] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the multifactorial nature of therapy resistance and relate it to the parallel occurrence of different mechanisms: (1) preexisting epigenetic profiles of subclones associated with survival advantages, (2) converging phenotypic adaptation of genetically distinct subclones, and (3) subclone-specific interactions of myeloma and bone marrow microenvironment cells. Our study showcases how an integrative multiomics analysis can be applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular targets against them.
Collapse
Affiliation(s)
- Alexandra M. Poos
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Nina Prokoph
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Moritz J. Przybilla
- Division Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jan-Philipp Mallm
- Single Cell Open Lab, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Simon Steiger
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Isabelle Seufert
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Stephan M. Tirier
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Katharina Bauer
- Single Cell Open Lab, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Anja Baumann
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Jennifer Rohleder
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Umair Munawar
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - K. Martin Kortüm
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Nicola Giesen
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Reichert
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Huhn
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, GMMG-Study Group at University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Stegle
- Division Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc S. Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
13
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
14
|
Li Z, Wang Y, Hou X, Guo L, Li Y, Ma Y, Ma Y. High expression of HOXC6 predicts a poor prognosis and induces proliferation and inflammation in multiple myeloma cells. Genes Genomics 2023; 45:945-955. [PMID: 37202556 DOI: 10.1007/s13258-023-01397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a common blood system malignance accompanied by monoclonal plasma cell hyperplasia. Homeobox C6 (HOXC6) acts as an oncogene in various cancers, but its function on MM is elusive. OBJECTIVE The role of HOXC6 on MM development was clarified in this study. METHODS HOXC6 expression and its clinical significance were determined in the peripheral blood samples collected from forty MM patients and thirty healthy adult volunteers. The overall survival was evaluated by Kaplan-Meier analysis with the log-rank test. Cell viability, proliferation and apoptosis were measured by CCK-8, EdU assay and Flow cytometry in U266 and MM.1R cells. Tumor growth was estimated by a xenograft assay. The apoptosis of tumor tissues was evaluated using TUNEL staining. The protein level in tissues was tested by immunohistochemistry. RESULTS The HOXC6 expression was elevated in MM and high HOXC6 level was associated with the poor overall survival of MM. Besides, the HOXC6 expression was associated with hemoglobin level and ISS stage. Furthermore, silencing HOXC6 suppressed cell proliferation, induced cell apoptosis, and restrained the secretion of inflammatory factors (TNF-α, IL-6, and IL-8) in MM cells through inactivating the NF-κB pathway. Moreover, silencing HOXC6 suppressed the tumor growth of MM, the inflammatory factors levels, and the activation of NF-κB pathway but enhanced apoptosis in vivo. CONCLUSION HOXC6 was elevated in MM and associated with poor survival. Knockdown of HOXC6 suppressed proliferation, inflammation and tumorigenicity of MM cells via inactivating the NF-κB pathway. HOXC6 may be a meaningful target for MM therapy.
Collapse
Affiliation(s)
- Zhihua Li
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yaru Wang
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Xiaoxu Hou
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Luyao Guo
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanling Li
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanping Ma
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China
| | - Yanping Ma
- Department of hematology, Second Hospital of Shanxi Medical University, 0300001, NO382,Wuyi Road, Taiyuan, shanxi, province, Taiyuan, 0300001, shanxi, province, China.
| |
Collapse
|
15
|
Thorne A, Bansal A, Necker-Brown A, Mostafa MM, Gao A, Georgescu A, Kooi C, Leigh R, Newton R. Differential regulation of BIRC2 and BIRC3 expression by inflammatory cytokines and glucocorticoids in pulmonary epithelial cells. PLoS One 2023; 18:e0286783. [PMID: 37289679 PMCID: PMC10249814 DOI: 10.1371/journal.pone.0286783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Roles for the baculoviral inhibitor of apoptosis repeat-containing (BIRC) genes, BIRC2 and BIRC3, may include signaling to the inflammatory transcription factor, nuclear factor-κB (NF-κB) and protection from cell death. However, distinct functions for each BIRC are not well-delineated. Given roles for the epithelium in barrier function and host defence, BIRC2 and BIRC3 expression was characterized in pulmonary epithelial cell lines and primary human bronchial epithelial cells (pHBECs) grown as undifferentiated cells in submersion culture (SC) or as highly differentiated cells at air-liquid interface (ALI). In A549 cells, interleukin-1β (IL1B) and tumor necrosis factor α (TNF) induced BIRC3 mRNA (~20-50-fold), with maximal protein expression from 6-24 h. Similar effects occurred in BEAS-2B and Calu-3 cells, as well as SC and ALI pHBECs. BIRC2 protein was readily detected in unstimulated cells, but was not markedly modulated by IL1B or TNF. Glucocorticoids (dexamethasone, budesonide) modestly increased BIRC3 mRNA and protein, but showed little effect on BIRC2 expression. In A549 cells, BIRC3 mRNA induced by IL1B was unchanged by glucocorticoids and showed supra-additivity with TNF-plus-glucocorticoid. Supra-additivity was also evident for IL1B-plus-budesonide induced-BIRC3 in SC and ALI pHBECs. Using A549 cells, IL1B- and TNF-induced BIRC3 expression, and to a lesser extent, BIRC2, was prevented by NF-κB inhibition. Glucocorticoid-induced BIRC3 expression was prevented by silencing and antagonism of the glucocorticoid receptor. Whereas TNF, but not IL1B, induced degradation of basal BIRC2 and BIRC3 protein, IL1B- and TNF-induced BIRC3 protein remained stable. Differential regulation by cytokines and glucocorticoids shows BIRC2 protein expression to be consistent with roles in rapid signaling events, whereas cytokine-induced BIRC3 may be more important in later effects. While TNF-induced degradation of both BIRCs may restrict their activity, cytokine-enhanced BIRC3 expression could prime for its function. Finally, shielding from glucocorticoid repression, or further enhancement by glucocorticoid, may indicate a key protective role for BIRC3.
Collapse
Affiliation(s)
- Andrew Thorne
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M. Mostafa
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Gao
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrei Georgescu
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Neri P, Nijhof I. Evidence-based mechanisms of synergy with IMiD agent-based combinations in multiple myeloma. Crit Rev Oncol Hematol 2023:104041. [PMID: 37268176 DOI: 10.1016/j.critrevonc.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Treatment of multiple myeloma (MM) has seen great advances in recent years, and a key contributor to this change has been the effective use of combination therapies, which have improved both the depth and duration of patient responses. IMiD agents (lenalidomide and pomalidomide) have both tumoricidal and immunostimulatory functions, and due to their multiple mechanisms of action have become the backbone of numerous combination treatments in the newly diagnosed and relapsed/refractory settings. Although IMiD agent-based combination regimens provide improved clinical outcomes for patients with MM, the mechanisms underpinning these combinations are not well understood. In this review we describe the potential mechanisms of synergy leading to the enhanced activity observed when IMiD agents and other drug classes are used in combination through interrogation of the current knowledge surrounding their mechanism of actions.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - Inger Nijhof
- Department of Hematology, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine and Department of Hematology, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435CM, Nieuwegein, the Netherlands
| |
Collapse
|
17
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
18
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
19
|
Evaluation of Genes and Molecular Pathways Involved in the Progression of Monoclonal Gammopathy of Undetermined Significance (MGUS) to Multiple Myeloma: A Systems Biology Approach. Mol Biotechnol 2022:10.1007/s12033-022-00634-6. [DOI: 10.1007/s12033-022-00634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
20
|
Oksuzoglu E, Dursun B. Patterns of the Expression of Cyclin Genes in Bortezomib-Sensitive and Resistant Cells of Multiple Myeloma. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
McCurdy A, Louzada M, Venner CP, Visram A, Masih‐Khan E, Kardjadj M, Jimenez‐Zepeda VH, LeBlanc R, Sebag M, Song K, White D, Mian H, Stakiw J, Reiman A, Aslam M, Kotb R, Gul E, Reece D. Carfilzomib usage patterns and outcomes in patients with relapsed multiple myeloma: A multi-institutional report from the Canadian Myeloma Research Group (CMRG) Database. EJHAEM 2022; 3:1252-1261. [PMID: 36467802 PMCID: PMC9713064 DOI: 10.1002/jha2.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/22/2022] [Accepted: 08/16/2022] [Indexed: 06/17/2023]
Abstract
Carfilzomib is an active and commonly used treatment in patients with multiple myeloma (MM). Using the Canadian Myeloma Research Group Database, we performed a retrospective observational study of patients treated with carfilzomib for relapse of MM in a real-world setting in Canada between years 2007 and 2020. A total of 445 patients were included in this study: the doublet (Kd/p, n = 218) and triplets (KCd, n = 88; KRd, n = 99; KPd/p, n = 40). One hundred and twenty-two (27%) received carfilzomib-based treatment in line 2, 133 (30%) in line 3, 90 (20%) in line 4, and 100 (23%) in line 5 or higher. Carfilzomib was dosed weekly in 40% of patients and twice weekly in 60%. The overall response rate of the entire cohort was 57.7%, with 33.6% of patients achieving very good partial response or better. Median progression-free survival for the overall cohort was 6.3 months with overall survival 19.7 months. This study provides a benchmark for carfilzomib-based regimens in the real world, demonstrating that these regimens are effective in treating patients with relapsed MM.
Collapse
Affiliation(s)
| | | | | | | | - Esther Masih‐Khan
- Princess Margaret Cancer CentreTorontoOntarioCanada
- Canadian Myeloma Research GroupVaughanOntarioCanada
| | | | | | - Richard LeBlanc
- Maisonneuve‐Rosemont Hospital Research CentreUniversity of MontrealMontrealQuebecCanada
| | | | - Kevin Song
- BC Cancer AgencyVancouver General HospitalVancouverBritish ColumbiaCanada
| | - Darrell White
- Queen Elizabeth II Health Sciences CentreDalhousie UniversityHalifaxNova ScotiaCanada
| | - Hira Mian
- Juravinski Cancer CenterHamiltonOntarioCanada
| | - Julie Stakiw
- Saskatoon Cancer CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Anthony Reiman
- Saint John Regional HospitalSaint JohnNew BrunswickCanada
| | | | - Rami Kotb
- Cancer Care ManitobaWinnipegManitobaCanada
| | - Engin Gul
- Canadian Myeloma Research GroupVaughanOntarioCanada
| | - Donna Reece
- Princess Margaret Cancer CentreTorontoOntarioCanada
- Canadian Myeloma Research GroupVaughanOntarioCanada
| |
Collapse
|
22
|
Melaccio A, Reale A, Saltarella I, Desantis V, Lamanuzzi A, Cicco S, Frassanito MA, Vacca A, Ria R. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance. J Clin Med 2022; 11:jcm11216491. [PMID: 36362718 PMCID: PMC9658666 DOI: 10.3390/jcm11216491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs’ survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called “osteoblastic and vascular niches”, thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs–BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs’ proliferation and survival, PCs–BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.
Collapse
Affiliation(s)
- Assunta Melaccio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| | - Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne 3004, Australia
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Maria Antonia Frassanito
- General Pathology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine “G. Baccelli”, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.M.); (R.R.); Tel.: +39-320-55-17-232 (A.M.)
| |
Collapse
|
23
|
Solimando AG, Malerba E, Leone P, Prete M, Terragna C, Cavo M, Racanelli V. Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Front Oncol 2022; 12:973836. [PMID: 36212502 PMCID: PMC9533079 DOI: 10.3389/fonc.2022.973836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable disease, despite considerable improvements in treatment strategies, as resistance to most currently available agents is not uncommon. In this study, data on drug resistance in MM were analyzed and led to the following conclusions: resistance occurs via intrinsic and extrinsic mechanisms, including intraclonal heterogeneity, drug efflux pumps, alterations of drug targets, the inhibition of apoptosis, increased DNA repair and interactions with the bone marrow (BM) microenvironment, cell adhesion, and the release of soluble factors. Since MM involves the BM, interactions in the MM-BM microenvironment were examined as well, with a focus on the cross-talk between BM stromal cells (BMSCs), adipocytes, osteoclasts, osteoblasts, endothelial cells, and immune cells. Given the complex mechanisms that drive MM, next-generation treatment strategies that avoid drug resistance must target both the neoplastic clone and its non-malignant environment. Possible approaches based on recent evidence include: (i) proteasome and histone deacetylases inhibitors that not only target MM but also act on BMSCs and osteoclasts; (ii) novel peptide drug conjugates that target both the MM malignant clone and angiogenesis to unleash an effective anti-MM immune response. Finally, the role of cancer stem cells in MM is unknown but given their roles in the development of solid and hematological malignancies, cancer relapse, and drug resistance, their identification and description are of paramount importance for MM management.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’ of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Carolina Terragna
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Michele Cavo
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
24
|
Long-Term Treatment with Bortezomib Induces Specific Methylation Changes in Differentiated Neuronal Cells. Cancers (Basel) 2022; 14:cancers14143402. [PMID: 35884461 PMCID: PMC9319119 DOI: 10.3390/cancers14143402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary We exposed LUHMES cells, differentiated into mature neurons, to bortezomib (BTZ) in two treatment cycles and analyzed the methylomes of these cells after each cycle, controlling the analysis for the methylation changes potentially induced by the long-term culture. Our results show that BTZ induces methylation changes that may affect cell morphogenesis, neurogenesis, and neurotransmission. These changes are specifically enriched within transcription factor binding sites of EBF, PAX, DLX, LHX, and HNF family members, which have been shown to regulate neurogenesis and neuronal differentiation. We further show that the observed methylation changes are not present in the SH-SY5Y cells that we used to study mechanisms of development of BTZ resistance. Altogether, our results show that BTZ treatment induces very specific changes in the methylomes of neuronal cells. Abstract Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.
Collapse
|
25
|
Carrà G, Avalle L, Seclì L, Brancaccio M, Morotti A. Shedding Light on NF-κB Functions in Cellular Organelles. Front Cell Dev Biol 2022; 10:841646. [PMID: 35620053 PMCID: PMC9127296 DOI: 10.3389/fcell.2022.841646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
NF-κB is diffusely recognized as a transcriptional factor able to modulate the expression of various genes involved in a broad spectrum of cellular functions, including proliferation, survival and migration. NF-κB is, however, also acting outside the nucleus and beyond its ability to binds to DNA. NF-κB is indeed found to localize inside different cellular organelles, such as mitochondria, endoplasmic reticulum, Golgi and nucleoli, where it acts through different partners in mediating various biological functions. Here, we discuss the relationship linking NF-κB to the cellular organelles, and how this crosstalk between cellular organelles and NF-κB signalling may be evaluated for anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
26
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells. J Nutr Biochem 2022; 104:108975. [PMID: 35245652 DOI: 10.1016/j.jnutbio.2022.108975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/02/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.
Collapse
|
28
|
Bansal A, Mostafa MM, Kooi C, Sasse SK, Michi AN, Shah SV, Leigh R, Gerber AN, Newton R. Interplay between nuclear factor-κB, p38 MAPK and glucocorticoid receptor signaling synergistically induces functional TLR2 in lung epithelial cells. J Biol Chem 2022; 298:101747. [PMID: 35189144 PMCID: PMC8942839 DOI: 10.1016/j.jbc.2022.101747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/05/2022] Open
Abstract
While glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to reduce the expression of many inflammatory genes, repression is not an invariable outcome. Here, we explore synergy occurring between synthetic glucocorticoids (dexamethasone and budesonide) and proinflammatory cytokines (IL1B and TNF) on the expression of the toll-like receptor 2 (TLR2). This effect is observed in epithelial cell lines and both undifferentiated and differentiated primary human bronchial epithelial cells (pHBECs). In A549 cells, IL1B-plus-glucocorticoid–induced TLR2 expression required nuclear factor (NF)-κB and GR. Likewise, in A549 cells, BEAS-2B cells, and pHBECs, chromatin immunoprecipitation identified GR- and NF-κB/p65-binding regions ∼32 kb (R1) and ∼7.3 kb (R2) upstream of the TLR2 gene. Treatment of BEAS-2B cells with TNF or/and dexamethasone followed by global run-on sequencing confirmed transcriptional activity at these regions. Furthermore, cloning R1 or R2 into luciferase reporters revealed transcriptional activation by budesonide or IL1B, respectively, while R1+R2 juxtaposition enabled synergistic activation by IL1B and budesonide. In addition, small-molecule inhibitors and siRNA knockdown showed p38α MAPK to negatively regulate both IL1B-induced TLR2 expression and R1+R2 reporter activity. Finally, agonism of IL1B-plus-dexamethasone–induced TLR2 in A549 cells and pHBECs stimulated NF-κB- and interferon regulatory factor-dependent reporter activity and chemokine release. We conclude that glucocorticoid-plus-cytokine-driven synergy at TLR2 involves GR and NF-κB acting via specific enhancer regions, which combined with the inhibition of p38α MAPK promotes TLR2 expression. Subsequent inflammatory effects that occur following TLR2 agonism may be pertinent in severe neutrophilic asthma or chronic obstructive pulmonary disease, where glucocorticoid-based therapies are less efficacious.
Collapse
Affiliation(s)
- Akanksha Bansal
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suharsh V Shah
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA; Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Newton
- Department of Physiology & Pharmacology and Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
30
|
Sin CF, Man PHM. The Role of Proteasome Inhibitors in Treating Acute Lymphoblastic Leukaemia. Front Oncol 2022; 11:802832. [PMID: 35004327 PMCID: PMC8733464 DOI: 10.3389/fonc.2021.802832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematolymphoid malignancy. The prognosis of ALL is excellent in paediatric population, however the outcome of relapse/refractory disease is dismal. Adult ALL has less favourable prognosis and relapse/refractory disease is not uncommonly encountered. Bortezomib is the first generation proteasome inhibitor licensed to treat plasma cell myeloma and mantle cell lymphoma with favourable side effect profile. Efficacy of bortezomib had been proven in other solid tumors. Clinical studies showed promising response for proteasome inhibitors in treating relapse/refractory ALL. Thus, proteasome inhibitors are attractive alternative agents for research in treating ALL. In the review article, we will introduce different proteasome inhibitors and their difference in pharmacological properties. Moreover, the mechanism of action of proteasome inhibitors on ALL will be highlighted. Finally, results of various clinical studies on proteasome inhibitors in both paediatric and adult ALL will be discussed. This review article provides the insights on the use of proteasome inhibitors in treating ALL with a summary of mechanism of action in ALL which facilitates future research on its use to improve the outcome of ALL.
Collapse
Affiliation(s)
- Chun-Fung Sin
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pui-Hei Marcus Man
- Department of Pathology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
The Role of Chaperone-Mediated Autophagy in Bortezomib Resistant Multiple Myeloma. Cells 2021; 10:cells10123464. [PMID: 34943972 PMCID: PMC8700264 DOI: 10.3390/cells10123464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Multiple myeloma (MM) remains incurable despite high-dose chemotherapy, autologous stem cell transplants and novel agents. Even with the improved survival of MM patients treated with novel agents, including bortezomib (Bz), the therapeutic options in relapsed/refractory MM remain limited. The majority of MM patients eventually develop resistance to Bz, although the mechanisms of the resistance are poorly understood. Methods: Lysosomal associated membrane protein 2A (LAMP2A) mRNA and protein expression levels were assessed in ex vivo patient samples and a Bz-resistant MM cell line model by in real-rime PCR, western blotting and immunohistochemistry. In vitro modelling of chaperone-mediated autophagy (CMA) activity in response to ER stress were assessed by western blotting and confocal microscopy. The effects of CMA inhibition on MM cell viability and Bz sensitivity in MM cells were assessed by Annexin V/7AAD apoptosis assays using flow cytometry. Results: In this study, there is evidence that CMA, a chaperone-mediated protein degradation pathway, is upregulated in Bz-resistant MM and the inhibition of CMA sensitises resistant cells to Bz. The protein levels of LAMP2A, the rate-limiting factor of the CMA pathway, are significantly increased in MM patients resistant to Bz and within our Bz-resistant cell line model. Bz-resistant cell lines also possessed higher basal CMA activity than the Bz-sensitive parent cell line. In MM cell lines, CMA activity was upregulated in response to ER stress induced by Bz. The inhibition of CMA sensitises Bz-resistant cells to Bz and the combination of CMA inhibition and Bz in vitro had a more cytotoxic effect on myeloma cells than Bz alone. Conclusion: In summary, the upregulation of CMA is a potential mechanism of resistance to Bz and a novel target to overcome Bz-resistant MM.
Collapse
|
32
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
33
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
35
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
36
|
Liu J, Hideshima T, Xing L, Wang S, Zhou W, Samur MK, Sewastianik T, Ogiya D, An G, Gao S, Yang L, Ji T, Bianchi G, Wen K, Tai YT, Munshi N, Richardson P, Carrasco R, Cang Y, Anderson KC. ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. SCIENCE ADVANCES 2021; 7:7/23/eabg2697. [PMID: 34088671 PMCID: PMC8177702 DOI: 10.1126/sciadv.abg2697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Immunomodulatory drugs (IMiDs) have markedly improved patient outcome in multiple myeloma (MM); however, resistance to IMiDs commonly underlies relapse of disease. Here, we identify that tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) knockdown (KD)/knockout (KO) in MM cells mediates IMiD resistance via activation of noncanonical nuclear factor κB (NF-κB) and extracellular signal-regulated kinase (ERK) signaling. Within MM bone marrow (BM) stromal cell supernatants, TNF-α induces proteasomal degradation of TRAF2, noncanonical NF-κB, and downstream ERK signaling in MM cells, whereas interleukin-6 directly triggers ERK activation. RNA sequencing of MM patient samples shows nearly universal ERK pathway activation at relapse on lenalidomide maintenance therapy, confirming its clinical relevance. Combination MEK inhibitor treatment restores IMiD sensitivity of TRAF2 KO cells both in vitro and in vivo. Our studies provide the framework for clinical trials of MEK inhibitors to overcome IMiD resistance in the BM microenvironment and improve patient outcome in MM.
Collapse
Affiliation(s)
- Jiye Liu
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Su Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenrong Zhou
- Oncology and Immunology Unit, Research Service Division, WuXi AppTec (Shanghai) Co., Ltd., Shanghai 200131, China
| | - Mehmet K Samur
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Biostatistics and Computational Biology, Harvard T.H. Chan School of Public Health, Boston, 02115 MA, USA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw 02776, Poland
| | - Daisuke Ogiya
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Shaobing Gao
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Li Yang
- Multiple Myeloma Treatment Center and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Giada Bianchi
- Division of Hematology, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Paul Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ruben Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Napoleon JV, Singh S, Rana S, Bendjennat M, Kumar V, Kizhake S, Palermo NY, Ouellette MM, Huxford T, Natarajan A. Small molecule binding to inhibitor of nuclear factor kappa-B kinase subunit beta in an ATP non-competitive manner. Chem Commun (Camb) 2021; 57:4678-4681. [PMID: 33977973 PMCID: PMC8162871 DOI: 10.1039/d1cc01245b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is a key regulator of the cannonical NF-κB pathway. IKKβ has been validated as a drug target for pathological conditions, which include chronic inflammatory diseases and cancer. Pharmacological studies revealed that chronic administration of ATP-competitive IKKβ inhibitors resulted in unexpected toxicity. We previously reported the discovery of 13-197 as a non-toxic IKKβ inhibitor that reduced tumor growth. Here, we show that 13-197 inhibits IKKβ in a ATP non-competitive manner and an allosteric pocket at the interface of the kinase and ubiquitin like domains was identified as the potential binding site.
Collapse
Affiliation(s)
- John V Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Mourad Bendjennat
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, UNMC, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA.
| | - Nicholas Y Palermo
- Mass Spectrometry and Proteomics Core Facility, UNMC, USA and Computational Chemistry Core Facility, UNMC, USA
| | - Michel M Ouellette
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UNMC, USA and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68022, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, USA. and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68022, USA and Department of Pharmaceutical Sciences and Department of Genetics, Cell Biology and Anatomy, UNMC, USA
| |
Collapse
|
38
|
Lewis T, Corcoran DB, Thurston DE, Giles PJ, Ashelford K, Walsby EJ, Fegan CD, Pepper AGS, Miraz Rahman K, Pepper C. Novel pyrrolobenzodiazepine benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers. Haematologica 2021; 106:958-967. [PMID: 32381576 PMCID: PMC8018133 DOI: 10.3324/haematol.2019.238584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and multiple myeloma are incurable hematologic malignancies that are pathologically linked with aberrant nuclear factor-kappa B (NF-κB) activation. In this study, we identified a group of novel C8-linked benzofused pyrrolo[2,1- c][1,4]benzodiazepine monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD50 values in CLL (n=46) and multiple myeloma cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4 h of exposure, demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits. In primary CLL cells, sensitivity to DC-1-192 was inversely correlated with RelA subunit expression (r2=0.2) and samples with BIRC3 or NOTCH1 mutations showed increased sensitivity (P=0.001). RNAsequencing and gene set enrichment analysis confirmed the over-representation of NF-κB regulated genes in the downregulated gene list. Furthermore, in vivo efficacy studies in NOD/SCID mice, using a systemic RPMI 8226 human multiple myeloma xenograft model, showed that DC- 1-192 significantly prolonged survival (P=0.017). In addition, DC1-192 showed synergy with bortezomib and ibrutinib; synergy with ibrutinib was enhanced when CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the cytoprotective lymph node microenvironment (P=0.01). Given that NF-κB plays a role in both bortezomib and ibrutinib resistance mechanisms, these data provide a strong rationale for the use of DC-1-192 in the treatment of NF-κB-driven cancers, particularly in the context of relapsed/refractory disease.
Collapse
Affiliation(s)
- Thomas Lewis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David B Corcoran
- School of Cancer and Pharmaceutical Science, King College London, UK
| | - David E Thurston
- School of Cancer and Pharmaceutical Science, King College London, UK
| | - Peter J Giles
- Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Kevin Ashelford
- Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Elisabeth J Walsby
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Christopher D Fegan
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Andrea G S Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
39
|
Delforge M, Vlayen S, Kint N. Immunomodulators in newly diagnosed multiple myeloma: current and future concepts. Expert Rev Hematol 2021; 14:365-376. [PMID: 33733978 DOI: 10.1080/17474086.2021.1905513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Impressive therapeutic progress is being made in the management of multiple myeloma (MM). his progress is related to the introduction of several new classes of therapeutic agents including proteasome inhibitors, immunomodulatory drugs (IMiDs) and monoclonal antibodies (MoAbs).Areas covered: In this manuscript, the role of the IMiDs thalidomide and lenalidomide in the management of newly diagnosed MM is discussed. The mode of action of IMiDs and their role in the management of newly diagnosed MM patients is highlighted. In addition, clinical data on how MoAbs such as the anti-CD38 antibody daratumumab can further increase the efficacy of IMiD-based first-line anti-myeloma regimens are provided. A database search in PubMed was carried out.Expert Opinion: Immunomodulation has become an indispensable part of successful anti-myeloma regimens both at relapse and at diagnosis. The combination of lenalidomide plus dexamethasone with an anti-CD38 MoAb such as daratumumab and a proteasome inhibitor such as bortezomib is currently one of the most potent first-line treatment regimens for MM. A better understanding on how IMiDs synergize with existing and new anti-myeloma treatments can further improve the outcome for patients. Optimal first-line therapy will continue to benefit the long-term outcome of a growing population of young and elderly MM patients.
Collapse
Affiliation(s)
- Michel Delforge
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sophie Vlayen
- Department of Regeneration and Development, University of Leuven, Leuven, Belgium
| | - Nicolas Kint
- Department of Hematology, University of Leuven and Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
40
|
Yu X, Bao J, Cui X, DU F, Wang Y, Bi L, Sun J, Li L. Pyrrolidinedithiocarbamic Acid Ammonium Salt Inhibits Apoptosis and Phenotypic Transformation of Co-Culture of Myeloma Cells and Renal Tubular Epithelial Cells by Reducing the Secretion of Light Chain Protein. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 49:2078-2086. [PMID: 33708728 PMCID: PMC7917491 DOI: 10.18502/ijph.v49i11.4723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: We investigate the effects of NFϰB inhibitor pyrrolidinedithiocarbamic acid ammonium salt (PDTC) on the viability, apoptosis and cell phenotype of HK-2 cells in the co-culture system of myeloma cells in renal tubular epithelial cells. Methods: This study was performed in Qiqihar Medical University, Qiqihar, China from Jun 2018 to Jan 2019. RPMI-8226 cells and HK-2 cells were inoculated in the co-culture chamber and cultured to establish the co-culture system. An immunoturbidimetric assay was performed to detect ϰ light chain and λ light chain in RPMI-8226 cells. The effect of PDTC on the secretion of ϰ light chain and λ light chain of RPMI-8226 cells was detected by immunoturbidimetry and the ratio was calculated. Results: PDTC significantly increased the viability of HK-2 cells. PDTC reduced the apoptosis of renal tubular epithelial cells. After PDTC treatment, the expression of cell surface marker E-cadherin decreased, and the expression of α-SMA increased, which induced the renal interstitial fibrosis. The secretion of ϰ light chain and λ light chain of RPMI-8226 cells was significantly decreased after the addition of PDTC, but the ratio was not changed. Conclusion: PDTC can inhibit the cell activity, promote apoptosis, and reduce the secretion of secretion of ϰ light chain and λ light chain through inhibiting the NF-ϰB pathway activation of myeloma cell RPMI-8226.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Nephrology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| | - Jie Bao
- Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| | - Xinyu Cui
- Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| | - Fengxia DU
- Department of Pathogenic Biology, Qiqihar Medical University, Qiqihar161006, P.R. China
| | - Yuefei Wang
- Department of Physiology, Qiqihar Medical University, Qiqihar161006, P.R. China
| | - Lili Bi
- Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| | - Jun Sun
- Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| | - Ling Li
- Department of Hematopathology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar161000, P.R. China
| |
Collapse
|
41
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
42
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
43
|
|
44
|
HDAC6-Selective Inhibitor Overcomes Bortezomib Resistance in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22031341. [PMID: 33572814 PMCID: PMC7866276 DOI: 10.3390/ijms22031341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Although multiple myeloma (MM) patients benefit from standard bortezomib (BTZ) chemotherapy, they develop drug resistance, resulting in relapse. We investigated whether histone deacetylase 6 (HDAC6) inhibitor A452 overcomes bortezomib resistance in MM. We show that HDAC6-selective inhibitor A452 significantly decreases the activation of BTZ-resistant markers, such as extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NF-κB), in acquired BTZ-resistant MM cells. Combination treatment of A452 and BTZ or carfilzomib (CFZ) synergistically reduces BTZ-resistant markers. Additionally, A452 synergizes with BTZ or CFZ to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3), resulting in decreased expressions of low-molecular-mass polypeptide 2 (LMP2) and LMP7. Furthermore, combining A452 with BTZ or CFZ leads to synergistic cancer cell growth inhibition, viability decreases, and apoptosis induction in the BTZ-resistant MM cells. Overall, the synergistic effect of A452 with CFZ is more potent than that of A452 with BTZ in BTZ-resistant U266 cells. Thus, our findings reveal the HDAC6-selective inhibitor as a promising therapy for BTZ-chemoresistant MM.
Collapse
|
45
|
Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers (Basel) 2021; 13:cancers13020216. [PMID: 33435632 PMCID: PMC7827005 DOI: 10.3390/cancers13020216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The bone marrow (BM) microenvironment plays a crucial role in pathogenesis of multiple myeloma (MM), and delineation of the intracellular signaling pathways activated in the BM microenvironment in MM cells is essential to develop novel therapeutic strategies to improve patient outcome. Abstract The multiple myeloma (MM) bone marrow (BM) microenvironment consists of different types of accessory cells. Both soluble factors (i.e., cytokines) secreted from these cells and adhesion of MM cells to these cells play crucial roles in activation of intracellular signaling pathways mediating MM cell growth, survival, migration, and drug resistance. Importantly, there is crosstalk between the signaling pathways, increasing the complexity of signal transduction networks in MM cells in the BM microenvironment, highlighting the requirement for combination treatment strategies to blocking multiple signaling pathways.
Collapse
|
46
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
47
|
Zhou H, Lei M, Wang W, Guo M, Wang J, Zhang H, Qiao L, Feng H, Liu Z, Chen L, Hou J, Wang X, Gu C, Zhao B, Izumchenko E, Yang Y, Zhu Y. In vitro and in vivo efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging (Albany NY) 2020; 12:22949-22974. [PMID: 33203800 PMCID: PMC7746380 DOI: 10.18632/aging.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/15/2020] [Indexed: 01/14/2023]
Abstract
Proteasome inhibition demonstrates highly effective impact on multiple myeloma (MM) treatment. Here, we aimed to examine anti-tumor efficiency and underlying mechanisms of a novel well tolerated orally applicable proteasome inhibitor NNU546 and its hydrolyzed pharmacologically active form NNU219. NNU219 showed more selective inhibition to proteasome catalytic subunits and less off-target effect than bortezomib ex vivo. Moreover, intravenous and oral administration of either NNU219 or NNU546 led to more sustained pharmacodynamic inhibitions of proteasome activities compared with bortezomib. Importantly, NNU219 exhibited potential anti-MM activity in both MM cell lines and primary samples in vitro. The anti-MM activity of NNU219 was associated with induction of G2/M-phase arrest and apoptosis via activation of the caspase cascade and endoplasmic reticulum stress response. Significant growth-inhibitory effects of NNU219 and NNU546 were observed in 3 different human MM xenograft mouse models. Furthermore, such observation was even found in the presence of a bone marrow microenvironment. Taken together, these findings provided the basis for clinical trial of NNU546 to determine its potential as a candidate for MM treatment.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wang Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengjie Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Haoyang Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Li Qiao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huayun Feng
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| | - Lijuan Chen
- The 1st Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Jianhao Hou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Chenxi Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Bo Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.,The 3rd Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.,Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing 210046, PR China
| |
Collapse
|
48
|
Sherbenou DW, Su Y, Behrens CR, Aftab BT, Perez de Acha O, Murnane M, Bearrows SC, Hann BC, Wolf JL, Martin TG, Liu B. Potent Activity of an Anti-ICAM1 Antibody-Drug Conjugate against Multiple Myeloma. Clin Cancer Res 2020; 26:6028-6038. [PMID: 32917735 PMCID: PMC7669584 DOI: 10.1158/1078-0432.ccr-20-0400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE New therapies have changed the outlook for patients with multiple myeloma, but novel agents are needed for patients who are refractory or relapsed on currently approved drug classes. Novel targets other than CD38 and BCMA are needed for new immunotherapy development, as resistance to daratumumab and emerging anti-BCMA approaches appears inevitable. One potential target of interest in myeloma is ICAM1. Naked anti-ICAM1 antibodies were active in preclinical models of myeloma and safe in patients, but showed limited clinical efficacy. Here, we sought to achieve improved targeting of multiple myeloma with an anti-ICAM1 antibody-drug conjugate (ADC). EXPERIMENTAL DESIGN Our anti-ICAM1 human mAb was conjugated to an auristatin derivative, and tested against multiple myeloma cell lines in vitro, orthotopic xenografts in vivo, and patient samples ex vivo. The expression of ICAM1 was also measured by quantitative flow cytometry in patients spanning from diagnosis to the daratumumab-refractory state. RESULTS The anti-ICAM1 ADC displayed potent anti-myeloma cytotoxicity in vitro and in vivo. In addition, we have verified that ICAM1 is highly expressed on myeloma cells and shown that its expression is further accentuated by the presence of bone marrow microenvironmental factors. In primary samples, ICAM1 is differentially overexpressed on multiple myeloma cells compared with normal cells, including daratumumab-refractory patients with decreased CD38. In addition, ICAM1-ADC showed selective cytotoxicity in multiple myeloma primary samples. CONCLUSIONS We propose that anti-ICAM1 ADC should be further studied for toxicity, and if safe, tested for clinical efficacy in patients with relapsed or refractory multiple myeloma.
Collapse
Affiliation(s)
- Daniel W Sherbenou
- Department of Medicine, University of California at San Francisco, California
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Yang Su
- Department of Anesthesia, University of California at San Francisco, California
| | | | - Blake T Aftab
- Department of Medicine, University of California at San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Olivia Perez de Acha
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Murnane
- Department of Medicine, University of California at San Francisco, California
| | - Shelby C Bearrows
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Byron C Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jeffery L Wolf
- Department of Medicine, University of California at San Francisco, California
| | - Thomas G Martin
- Department of Medicine, University of California at San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California at San Francisco, California.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| |
Collapse
|
49
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
50
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|