1
|
Song S, Babicheva A, Zhao T, Ayon RJ, Rodriguez M, Rahimi S, Balistrieri F, Harrington A, Shyy JYJ, Thistlethwaite PA, Makino A, Yuan JXJ. Notch enhances Ca 2+ entry by activating calcium-sensing receptors and inhibiting voltage-gated K + channels. Am J Physiol Cell Physiol 2020; 318:C954-C968. [PMID: 32186932 DOI: 10.1152/ajpcell.00487.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.
Collapse
Affiliation(s)
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Ramon J Ayon
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Angela Harrington
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
2
|
Dexras1 is a homeostatic regulator of exercise-dependent proliferation and cell survival in the hippocampal neurogenic niche. Sci Rep 2018; 8:5294. [PMID: 29593295 PMCID: PMC5871767 DOI: 10.1038/s41598-018-23673-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is highly responsive to exercise, which promotes the proliferation of neural progenitor cells and the integration of newborn granule neurons in the dentate gyrus. Here we show that genetic ablation of the small GTPase, Dexras1, suppresses exercise-induced proliferation of neural progenitors, alters survival of mitotic and post-mitotic cells in a stage-specific manner, and increases the number of mature newborn granule neurons. Dexras1 is required for exercise-triggered recruitment of quiescent neural progenitors into the cell cycle. Pharmacological inhibition of NMDA receptors enhances SGZ cell proliferation in wild-type but not dexras1-deficient mice, suggesting that NMDA receptor-mediated signaling is dependent on Dexras1. At the molecular level, the absence of Dexras1 abolishes exercise-dependent activation of ERK/MAPK and CREB, and inhibits the upregulation of NMDA receptor subunit NR2A, bdnf, trkB and vegf-a expression in the dentate gyrus. Our study reveals Dexras1 as an important stage-specific regulator of exercise-induced neurogenesis in the adult hippocampus by enhancing pro-mitogenic signaling to neural progenitor cells and modulating cell survival.
Collapse
|
3
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
4
|
Hahnová K, Pačesová D, Volfová B, Červená K, Kašparová D, Žurmanová J, Bendová Z. Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiol Int 2016; 33:141-50. [DOI: 10.3109/07420528.2015.1120741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Wie J, Kim BJ, Myeong J, Ha K, Jeong SJ, Yang D, Kim E, Jeon JH, So I. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels (Austin) 2015; 9:186-95. [PMID: 26083271 PMCID: PMC4594510 DOI: 10.1080/19336950.2015.1058454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Jinhong Wie
- a Department of Physiology ; Seoul National University College of Medicine ; Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Wie J, Kim J, Ha K, Zhang YH, Jeon JH, So I. Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Arch 2014; 467:2081-91. [PMID: 25502319 DOI: 10.1007/s00424-014-1666-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
Canonical transient receptor potential 4 (TRPC4) channels are calcium-permeable, nonselective cation channels that are widely distributed in mammalian cells. It is generally speculated that TRPC4 channels are activated by Gq/11-PLC pathway or directly activated by Gi/o proteins. Although many mechanistic studies regarding TRPC4 have dealt with heterotrimeric G proteins, here, we first report the functional relationship between TRPC4 and small GTPase, Rasd1. Rasd1 selectively activated TRPC4 channels, and it was the only Ras protein among Ras protein family that can activate TRPC4 channels. For this to occur, it was found that certain population of functional Gαi1 and Gαi3 proteins are essential. Meanwhile, dexamethasone, a synthetic glucocorticoid and anti-inflammatory drug was known to increase messenger RNA (mRNA) level of Rasd1 in pancreatic β-cells. We have found that dexamethasone triggers TRPC4-like cationic current in INS-1 cells via increasing protein expression level of Rasd1. This relationship among dexamethasone, Rasd1, and TRPC4 could suggest a new therapeutic agent for hospitalized diabetes mellitus (DM) patients with prolonged dexamethasone prescription.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Catholic University of Korea, College of Medicine, Seoul, 137-701, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
8
|
White SM, North LM, Haines E, Goldberg M, Sullivan LM, Pressly JD, Weber DS, Park F, Regner KR. G-protein βγ subunit dimers modulate kidney repair after ischemia-reperfusion injury in rats. Mol Pharmacol 2014; 86:369-77. [PMID: 25028481 DOI: 10.1124/mol.114.092346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heterotrimeric G-proteins play a crucial role in the control of renal epithelial cell function during homeostasis and in response to injury. In this report, G-protein βγ subunit (Gβγ) dimer activity was evaluated during the process of tubular repair after renal ischemia-reperfusion injury (IRI) in male Sprague Dawley rats. Rats were treated with a small molecule inhibitor of Gβγ activity, gallein (30 or 100 mg/kg), 1 hour after reperfusion and every 24 hours for 3 additional days. After IRI, renal dysfunction was prolonged after the high-dose gallein treatment in comparison with vehicle treatment during the 7-day recovery period. Renal tubular repair in the outer medulla 7 days after IRI was significantly (P < 0.001) attenuated after treatment with high-dose gallein (100 mg/kg) in comparison with low-dose gallein (30 mg/kg), or the vehicle and fluorescein control groups. Gallein treatment significantly reduced (P < 0.05) the number of proliferating cell nuclear antigen-positive tubular epithelial cells at 24 hours after the ischemia-reperfusion phase in vivo. In vitro application of gallein on normal rat kidney (NRK-52E) proximal tubule cells significantly reduced (P < 0.05) S-phase cell cycle entry compared with vehicle-treated cells as determined by 5'-bromo-2'-deoxyuridine incorporation. Taken together, these data suggest that Gβγ signaling contributes to the maintenance and repair of renal tubular epithelium and may be a novel therapeutic target for the development of drugs to treat acute kidney injury.
Collapse
Affiliation(s)
- Sarah M White
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lauren M North
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Emily Haines
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Megan Goldberg
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lydia M Sullivan
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Jeffrey D Pressly
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - David S Weber
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Frank Park
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Kevin R Regner
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| |
Collapse
|
9
|
Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int J Cell Biol 2014; 2014:308535. [PMID: 24817889 PMCID: PMC3979064 DOI: 10.1155/2014/308535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes.
Collapse
|
10
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2013; 85:388-96. [PMID: 24302560 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
11
|
Jenkins SA, Ellestad LE, Mukherjee M, Narayana J, Cogburn LA, Porter TE. Glucocorticoid-induced changes in gene expression in embryonic anterior pituitary cells. Physiol Genomics 2013; 45:422-33. [DOI: 10.1152/physiolgenomics.00154.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Within the anterior pituitary gland, glucocorticoids such as corticosterone (CORT) provide negative feedback to inhibit adrenocorticotropic hormone secretion and act to regulate production of other hormones including growth hormone (GH). The ontogeny of GH production during chicken embryonic and rat fetal development is controlled by glucocorticoids. The present study was conducted to characterize effects of glucocorticoids on gene expression within embryonic pituitary cells and to identify genes that are rapidly and directly regulated by glucocorticoids. Chicken embryonic pituitary cells were cultured with CORT for 1.5, 3, 6, 12, and 24 h in the absence and presence of cycloheximide (CHX) to inhibit protein synthesis. RNA was analyzed with custom microarrays containing 14,053 chicken cDNAs, and results for selected genes were confirmed by quantitative reverse transcription real-time PCR (qRT-PCR). Levels of GH mRNA were maximally induced by 6 h of CORT treatment, and this response was blocked by CHX. Expression of 396 genes was affected by CORT, and of these, mRNA levels for 46 genes were induced or repressed within 6 h. Pathway analysis of genes regulated by CORT in the absence of CHX revealed networks of genes associated with endocrine system development and cellular development. Eleven genes that were induced within 6 h in the absence and presence of CHX were identified, and eight were confirmed by qRT-PCR. The expression profiles and canonical pathways defined in this study will be useful for future analyses of glucocorticoid action and regulation of pituitary function.
Collapse
Affiliation(s)
- Sultan A. Jenkins
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Laura E. Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Malini Mukherjee
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Jyoti Narayana
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Tom E. Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| |
Collapse
|
12
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
McGrath MF, Ogawa T, de Bold AJ. Ras dexamethasone-induced protein 1 is a modulator of hormone secretion in the volume overloaded heart. Am J Physiol Heart Circ Physiol 2012; 302:H1826-37. [PMID: 22408026 DOI: 10.1152/ajpheart.01085.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Because of the crucial role of the endocrine heart in maintaining homeostasis, considerable effort has been focused on the elucidation of the mechanistic underlying gene expression and secretion of the cardiac hormones atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). However, much remains to be determined regarding specific molecular events involved in cardiocyte secretory function. In this work, we identified genes involved in the transcriptional response of the endocrine heart to volume overload (VO) and signaling pathways involved in its regulation. To this end, the cardiac atrial and ventricular transcriptomes were analyzed in the heart of rats subjected to experimentally induced aorto-caval shunt VO. Pathway analysis revealed unique gene expression profiles in the VO atria for G-protein signaling, notably a significant downregulation of Ras dexamethasone-induced protein 1 (RASD1). In vitro, knockdown of RASD1 in the atrial-derived HL-1 cells, significantly increased ANF secretion. Concurrent knockdown of RASD1 and its effectors Gα(o1) or Gβ(1)γ(2) abrogated the endocrine response, demonstrating a previously unknown negative modulator role for RASD1. RASD1 thus emerges as a tonic inhibitor of ANF secretion and illustrates for the first time the concept of inhibitory protein regulators of ANF release. The novel molecular function identified herein for RASD1 is of considerable importance given its therapeutic implications for cardiovascular disease.
Collapse
Affiliation(s)
- Monica Forero McGrath
- Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Harrison LM, He Y. Rhes and AGS1/Dexras1 affect signaling by dopamine D1 receptors through adenylyl cyclase. J Neurosci Res 2011; 89:874-82. [PMID: 21374700 DOI: 10.1002/jnr.22604] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 12/31/2022]
Abstract
The GTP binding proteins Rhes and AGS1/Dexras1 define a subfamily of the Ras superfamily and have been shown to affect signaling by G-protein-coupled receptors. We tested the effects of both proteins at an early stage of signaling by dopamine receptors, activation of adenylyl cyclase. Rhes decreased dopamine D1 receptor agonist-stimulated cAMP accumulation in a pertussis toxin-sensitive manner. It had no effect on cAMP accumulation in the absence of agonist. AGS1/Dexras1, on the other hand, decreased cAMP accumulation in both vehicle-treated and agonist-treated cells, resulting in a higher percentage of stimulation by agonist or a higher signal-to-noise ratio. The effects of AGS1/Dexras1 on cAMP accumulation were not blocked by pertussis toxin, suggesting that it may produce these effects through interaction with a G(α) i monomer. Both Rhes and AGS1/Dexras1 were associated with GTP-bound G(α) i in pull-down assays. However, Rhes had no effect on the ability of activated D2 receptor to inhibit cAMP. Neither Rhes nor AGS1/Dexras1 interacted with the D1 receptor in pull-down assays. These findings show that, in addition to its well-known effects on signaling through Gi-coupled receptors, AGS1/Dexras1 can affect signaling through a Gs/olf-coupled receptor. Furthermore, the results suggest that Rhes exerts some of its effects by interacting with G(α) i.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| | | |
Collapse
|
15
|
Schwendt M, McGinty JF. Amphetamine up-regulates activator of G-protein signaling 1 mRNA and protein levels in rat frontal cortex: the role of dopamine and glucocorticoid receptors. Neuroscience 2010; 168:96-107. [PMID: 20298760 DOI: 10.1016/j.neuroscience.2010.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/24/2010] [Accepted: 03/06/2010] [Indexed: 11/28/2022]
Abstract
Acute and chronic exposure to psychostimulants results in altered function of G-protein-coupled receptors in the forebrain. It is believed that neuroadaptations in G-protein signaling contribute to behavioral sensitivity to psychostimulants that persists over a prolonged drug-free period. Proteins termed activators of G-protein signaling (AGS) have been characterized as potent modulators of both receptor-dependent and receptor-independent G-protein signaling. Nevertheless, the regulation of AGS gene and protein expression by psychostimulants remains poorly understood. In the present study, we investigated amphetamine (AMPH)-induced changes in expression patterns of several forebrain-enriched AGS proteins. A single exposure to AMPH (2.5 mg/kg i.p.) selectively induced gene expression of AGS1, but not Rhes or AGS3 proteins, in the rat prefrontal cortex (PFC) as measured 3 h later. Induction of AGS1 mRNA in the PFC by acute AMPH was transient and dose-dependent. Even repeated treatment with AMPH for 5 days did not produce lasting changes in AGS1 mRNA and protein levels in the PFC as measured 3 weeks post treatment. However, at this time point, a low dose AMPH challenge (1 mg/kg i.p.) induced a robust behavioral response and upregulated AGS1 expression in the PFC selectively in animals with an AMPH history. The effects of AMPH on AGS1 expression in the PFC were blocked by a D2, but not D1, dopamine receptor antagonist and partially by a glucocorticoid receptor antagonist. Collectively, the present study suggests that (1) AGS1 represents a regulator of G-protein signaling that is rapidly inducible by AMPH in the frontal cortex, (2) AGS1 regulation in the PFC parallels behavioral activation by acute AMPH in drug-naive animals and hypersensitivity to AMPH challenge in sensitized animals, and (3) D2 dopamine and glucocorticoid receptors regulate AMPH effects on AGS1 in the PFC. Changes in AGS1 levels in the PFC may result in abnormal receptor-to-G-protein coupling that alters cortical sensitivity to psychostimulants.
Collapse
Affiliation(s)
- M Schwendt
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
16
|
McGrath MF, de Bold AJ. Transcriptional analysis of the mammalian heart with special reference to its endocrine function. BMC Genomics 2009; 10:254. [PMID: 19486520 PMCID: PMC2694839 DOI: 10.1186/1471-2164-10-254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 06/01/2009] [Indexed: 12/19/2022] Open
Abstract
Background Pharmacological and gene ablation studies have demonstrated the crucial role of the endocrine function of the heart as mediated by the polypeptide hormones ANF and BNP in the maintenance of cardiovascular homeostasis. The importance of these studies lies on the fact that hypertension and chronic congestive heart failure are clinical entities that may be regarded as states of relative deficiency of ANF and BNP. These hormones are produced by the atrial muscle cells (cardiocytes), which display a dual secretory/muscle phenotype. In contrast, ventricular cardiocytes display mainly a muscle phenotype. Comparatively little information is available regarding the genetic background for this important phenotypic difference with particular reference to the endocrine function of the heart. We postulated that comparison of gene expression profiles between atrial and ventricular muscles would help identify gene transcripts that underlie the phenotypic differences associated with the endocrine function of the heart. Results Comparison of gene expression profiles in the rat heart revealed a total of 1415 differentially expressed genes between the atria and ventricles based on a 1.8 fold cut-off. The identification of numerous chamber specific transcripts, such as ANF for the atria and Irx4 for the ventricles among several others, support the soundness of the GeneChip data and demonstrates that the differences in gene expression profiles observed between the atrial and ventricular tissues were not spurious in nature. Pathway analysis revealed unique expression profiles in the atria for G protein signaling that included Gαo1, Gγ2 and Gγ3, AGS1, RGS2, and RGS6 and the related K+ channels GIRK1 and GIRK4. Transcripts involved in vesicle trafficking, hormone secretion as well as mechanosensors (e.g. the potassium channel TREK-1) were identified in relationship to the synthesis, storage and secretion of hormones. Conclusion The data developed in this investigation describes for the first time data on gene expression particularly centred on the secretory function of the heart. This provides for a rational approach in the investigation of determinants of the endocrine of the heart in health and disease.
Collapse
Affiliation(s)
- Monica Forero McGrath
- Department of Cellular Molecular Medicine, Faculty of Medicine, Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
| | | |
Collapse
|
17
|
Harrison LM, Lahoste GJ, Ruskin DN. Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes). Brain Res 2008; 1245:16-25. [PMID: 18929545 PMCID: PMC2615551 DOI: 10.1016/j.brainres.2008.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/12/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
Rhes is one of several signaling molecules preferentially expressed in the striatum. This GTP-binding protein affects dopamine-mediated signaling and behavior. Denervating the striatum of its dopaminergic inputs in adulthood reduces rhes mRNA expression. Here we show that dopamine depletion in adult rats by 6-hydroxydopamine caused a significant decrease in striatal Rhes protein levels as measured by Western blotting. The role of dopamine input on rhes mRNA induction during ontogeny was also examined. Rhes mRNA was measured on postnatal days 4, 6, 8, 10, 15, and 24 with in situ hybridization to determine its normal ontogeny. Signal in striatum was detectable, but very low, on postnatal day 4 and increased gradually to peak levels at days 15 and 24. Outside of the striatum, rhes mRNA was expressed at high levels in hippocampus and cerebellum during the postnatal period. Hippocampal signal was initially highest in CA3 and dentate gyrus, but shifted to higher expression in CA1 by the late postnatal period. Several other nuclei showed low levels of rhes mRNA during ontogeny. Depletion of dopamine by 6-hydroxydopamine injection on postnatal day 4 did not affect the ontogenetic development of rhes mRNA, such that expression did not differ statistically in lesioned versus vehicle-treated animals tested in adulthood. These findings suggest that although dopamine input is not necessary for the ontogenetic development of rhes mRNA expression, changes in both rhes mRNA and Rhes protein are integral components of the response of the adult striatum to dopamine depletion.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
18
|
Thapliyal A, Bannister RA, Hanks C, Adams BA. The monomeric G proteins AGS1 and Rhes selectively influence Galphai-dependent signaling to modulate N-type (CaV2.2) calcium channels. Am J Physiol Cell Physiol 2008; 295:C1417-26. [PMID: 18815223 DOI: 10.1152/ajpcell.00341.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activator of G protein Signaling 1 (AGS1) and Ras homologue enriched in striatum (Rhes) define a new group of Ras-like monomeric G proteins whose signaling properties and physiological roles are just beginning to be understood. Previous results suggest that AGS1 and Rhes exhibit distinct preferences for heterotrimeric G proteins, with AGS1 selectively influencing Galphai and Rhes selectively influencing Galphas. Here, we demonstrate that AGS1 and Rhes trigger nearly identical modulation of N-type Ca(2+) channels (Ca(V)2.2) by selectively altering Galphai-dependent signaling. Whole-cell currents were recorded from HEK293 cells expressing Ca(V)2.2 and Galphai- or Galphas-coupled receptors. AGS1 and Rhes reduced basal current densities and triggered tonic voltage-dependent (VD) inhibition of Ca(V)2.2. Additionally, each protein attenuated agonist-initiated channel inhibition through Galphai-coupled receptors without reducing channel inhibition through a Galphas-coupled receptor. The above effects of AGS1 and Rhes were blocked by pertussis toxin (PTX) or by expression of a Gbetagamma-sequestering peptide (masGRK3ct). Transfection with HRas, KRas2, Rap1A-G12V, Rap2B, Rheb2, or Gem failed to duplicate the effects of AGS1 and Rhes on Ca(V)2.2. Our data provide the first demonstration that AGS1 and Rhes exhibit similar if not identical signaling properties since both trigger tonic Gbetagamma signaling and both attenuate receptor-initiated signaling by the Gbetagamma subunits of PTX-sensitive G proteins. These results are consistent with the possibility that AGS1 and Rhes modulate Ca(2+) influx through Ca(V)2.2 channels under more physiological conditions and thereby influence Ca(2+)-dependent events such as neurosecretion.
Collapse
Affiliation(s)
- Ashish Thapliyal
- Dept. of Biology, Utah State Univ., 5305 Old Main Hill, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
19
|
Li X, Cheng C, Fei M, Gao S, Niu S, Chen M, Liu Y, Guo Z, Wang H, Zhao J, Yu X, Shen A. Spatiotemporal expression of Dexras1 after spinal cord transection in rats. Cell Mol Neurobiol 2008; 28:371-88. [PMID: 18219571 DOI: 10.1007/s10571-007-9253-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/11/2007] [Indexed: 01/27/2023]
Abstract
Dexras1, a brain-enriched member of the Ras subfamily of GTPases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that increased after spinal cord injury (SCI), to specific targets to enhance NO signaling, and is strongly and rapidly induced during treatment with dexamethasone. It is unknown how the central nervous system (CNS) trauma affects the expression of Dexras1. Here we used spinal cord transection (SCT) model to detect expression of Dexras1 at mRNA and protein level in spinal cord homogenates by real-time PCR and Western blot analysis. The results showed that Dexras1 mRNA upregulated at 3 day, 5 day, and 7 day significantly (P < 0.05) that was consistent with the protein level except at 7 day. Immunofluorescence revealed that both neurons and glial cells showed Dexras1 immunoreactivivty (IR) around SCT site, but the proportion is different. Importantly, injury-induced expression of Dexras1 was co-labeled by caspase-3 (apoptotic marker) and Tau-1 (marker for pathological oligodendrocyte). Furthermore, colocalization of Dexras1, carboxy-terminal PSD95/DLG/ZO-1 (PDZ) ligand of nNOS (CAPON) and nNOS was observed in neurons and glial cells, supporting the existence of ternary complexes in this model. Thus, the results that the transient high expression of Dexras1 which localized in apoptotic neurons and pathological oligodendrocytes might provide new insight into the secondary response after SCT.
Collapse
Affiliation(s)
- Xin Li
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-xiu Road, Nantong, Jiangsu 226001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hagemann IS, Narzinski KD, Baranski TJ. E2F8 is a nonreceptor activator of heterotrimeric G proteins. J Mol Signal 2007; 2:3. [PMID: 17394670 PMCID: PMC1852105 DOI: 10.1186/1750-2187-2-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/30/2007] [Indexed: 01/22/2023] Open
Abstract
Background Heterotrimeric G proteins are important for numerous signaling events in eukaryotes, serving primarily to transduce signals that are initiated by G protein-coupled receptors. It has recently become clear that nonreceptor activators can regulate the level of heterotrimeric G protein signaling and, in some cases, drive cycles of receptor-independent G protein activation. In this study, we used a yeast expression cloning strategy to identify novel nonreceptor activators of heterotrimeric G proteins in a human adipocyte cDNA library. Results The human transcription factor E2F8 was found to activate heterotrimeric G proteins, suggesting a specific biological role for this recently described member of the E2F family. Epistasis studies showed that E2F8 acted at the level of G proteins and was specific for Gαi over Gpa1. E2F8 augmented receptor-driven signaling, but also activated G proteins in the absence of a receptor. The GTPase-activating protein RGS4 antagonized the effect of E2F8, showing that E2F8's effect on Gα involved nucleotide turnover. The entire E2F8 protein was required for full activity, but the majority of the signaling activity appeared to reside in the first 200 residues. Conclusion In yeast, E2F8 is a guanine nucleotide exchange factor (GEF) for the α subunit of heterotrimeric G proteins. The molecular mechanism and biological significance of this effect remain to be determined.
Collapse
Affiliation(s)
- Ian S Hagemann
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| | - Kirk D Narzinski
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| | - Thomas J Baranski
- Departments of Medicine and of Molecular Biology & Pharmacology, 660 S. Euclid Ave., Campus Box 8127, St. Louis, Missouri 63110, USA
| |
Collapse
|
21
|
Cheng HYM, Dziema H, Papp J, Mathur DP, Koletar M, Ralph MR, Penninger JM, Obrietan K. The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J Neurosci 2007; 26:12984-95. [PMID: 17167088 PMCID: PMC6674968 DOI: 10.1523/jneurosci.4253-06.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian master clock, located in the suprachiasmatic nucleus (SCN), is exquisitely sensitive to photic timing cues, but the key molecular events that sculpt both the phasing and magnitude of responsiveness are not understood. Here, we show that the Ras-like G-protein Dexras1 is a critical factor in these processes. Dexras1-deficient mice (dexras1-/-) exhibit a restructured nighttime phase response curve and a loss of gating to photic resetting during the day. Dexras1 affects the photic sensitivity by repressing or activating time-of-day-specific signaling pathways that regulate extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). During the late night, Dexras1 limits the capacity of pituitary adenylate cyclase (PAC) activating peptide (PACAP)/PAC1 to affect ERK/MAPK, and in the early night, light-induced phase delays, which are mediated predominantly by NMDA receptors, are reduced as reported previously. Daytime photic phase advances are mediated by a novel signaling pathway that does not affect the SCN core but rather stimulates ERK/MAPK in the SCN shell and triggers downregulation of clock protein expression.
Collapse
Affiliation(s)
- Hai-Ying M Cheng
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Blumer JB, Smrcka AV, Lanier S. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 2006; 113:488-506. [PMID: 17240454 PMCID: PMC1978177 DOI: 10.1016/j.pharmthera.2006.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 01/14/2023]
Abstract
Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY 14642-8711
| | - S.M. Lanier
- ** Corresponding Author, Stephen M. Lanier, Ph.D., Department of Pharmacology, Medical University of South Carolina, Colcock Hall, 2nd Floor, PO Box 250002, 179 Ashley Avenue, Charleston, SC 29425, 843-792-0442, E-mail:
| |
Collapse
|
23
|
Abstract
G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.
Collapse
Affiliation(s)
- Mary J Cismowski
- Department of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, OH, United States.
| |
Collapse
|
24
|
Abstract
Living organisms are endowed with an autonomous timekeeping program that not only maintains circadian rhythms of behaviour and physiology but is reset by cues from the external, cyclic environment. Intracellular signaling events that mediate entrainment of the mammalian circadian clock by photic (light) as well as non-photic inputs are only beginning to be elucidated. Dexras1 is a novel Ras-like G protein that modulates multiple signaling cascades. Genetic ablation of Dexras1 in mice (dexras1(-/-)) results in altered responsiveness of the master circadian clock to photic and non-photic cues. This review will attempt to provide mechanistic insights into the involvement of Dexras1 in biological timing processes based on its role as a modulator of signal transduction.
Collapse
Affiliation(s)
- Hai-Ying Mary Cheng
- Department of Medical Biophysics, The University Health Network, University of Toronto, 610 University Avenue, Toronto, Ont., Canada M5G 2M9.
| | | |
Collapse
|
25
|
Cismowski MJ, Lanier SM. Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:57-80. [PMID: 16041530 DOI: 10.1007/3-540-28217-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterotrimeric G-proteins are key transducers for signal transfer from outside the cell, mediating signals emanating from cell-surface G-protein coupled receptors (GPCR). Many, if not all, subtypes of heterotrimeric G-proteins are also regulated by accessory proteins that influence guanine nucleotide binding, guanosine triphosphate (GTP) hydrolysis, or subunit interactions. One subgroup of such accessory proteins (activators of G-protein signaling; AGS proteins) refer to a functionally defined group of proteins that activate selected G-protein signaring systems in the absence of classical G-protein coupled receptors. AGS and related proteins provide unexpected insights into the regulation of the G-protein activation-deactivation cycle. Different AGS proteins function as guanine nucleotide exchange factors or guanine nucleotide dissociation inhibitors and may also influence subunit interactions by interaction with GBgamma. These proteins play important roles in the generation or positioning of signaling complexes and of the regulation of GPCR signaling, and as alternative binding partners for G-protein subunits. Perhaps of even broader impact is the discovery that AGS proteins provide a foundation for the concept that heterotrimeric G-protein subunits are processing signals within the cell involving intrinsic cues that do not involve the classical signal input from a cell surface GPCR.
Collapse
Affiliation(s)
- M J Cismowski
- Northeastern Ohio Universities College of Medicine, Department of Physiology and Pharmacology, 4209 State Route 44, Rootstown, OH, USA
| | | |
Collapse
|
26
|
Abstract
Accessory proteins involved in signal processing through heterotrimeric G proteins are generally defined as proteins distinct from G protein-coupled receptor (GPCR), G protein, or classical effectors that regulate the strength/efficiency/specificity of signal transfer upon receptor activation or position these entities in the right microenvironment, contributing to the formation of a functional signal transduction complex. A flurry of recent studies have implicated an additional class of accessory proteins for this system that provide signal input to heterotrimeric G proteins in the absence of a cell surface receptor, serve as alternative binding partners for G protein subunits, provide unexpected modes of G protein regulation, and have introduced additional functional roles for G proteins. This group of accessory proteins includes the recently discovered Activators of G protein Signaling (AGS) proteins identified in a functional screen for receptor-independent activators of G protein signaling as well as several proteins identified in protein interaction screens and genetic screens in model organisms. These accessory proteins may influence GDP dissociation and nucleotide exchange at the G(alpha) subunit, alter subunit interactions within heterotrimeric G(alphabetagamma) independent of nucleotide exchange, or form complexes with G(alpha) or G(betagamma) independent of the typical G(alphabetagamma) heterotrimer. AGS and related accessory proteins reveal unexpected diversity in G protein subunits as signal transducers within the cell.
Collapse
Affiliation(s)
- Motohiko Sato
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
27
|
Nguyen CH, Watts VJ. Dexamethasone-induced Ras protein 1 negatively regulates protein kinase C delta: implications for adenylyl cyclase 2 signaling. Mol Pharmacol 2006; 69:1763-71. [PMID: 16489124 DOI: 10.1124/mol.105.019133] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We identified dexamethasone-induced Ras protein 1 (Dexras1) as a negative regulator of protein kinase C (PKC) delta, and the consequences of this regulation have been examined for adenylyl cyclase (EC 4.6.1.1) type 2 (AC2) signaling. Dexras1 expression in human embryonic kidney 293 cells completely abolished dopamine D2 receptor-mediated potentiation of AC2 activity, which is consistent with previous reports of its ability to block receptor-mediated Gbetagamma signaling pathways. In addition, Dexras1 significantly reduced phorbol 12-myristate 13-acetate (PMA)-stimulated AC2 activity but did not alter Galpha(s)-mediated cAMP accumulation. Dexras1 seemed to inhibit PMA stimulation of AC2 by interfering with PKCdelta autophosphorylation. This effect was selective for the delta isoform because Dexras1 did not alter autophosphorylation of PKCalpha or PKCepsilon. Dexras1 disruption of PKCdelta autophosphorylation resulted in a significant blockade of PKC kinase activity as measured by [gamma-32P]ATP incorporation using a PKC-specific substrate. Moreover, Dexras1 and PKCdelta coimmunoprecipitated from whole-cell lysates. Dexras1 did not alter the membrane translocation of PKCdelta; however, the ability of Dexras1 to interfere with PKCdelta autophosphorylation was isoprenylation-dependent as determined using the farnesyltransferase inhibitor methyl {N-[2-phenyl-4-N [2(R)-amino-3-mecaptopropylamino] benzoyl]}-methionate (FTI-277) and a CAAX box-deficient Dexras1 (C277S) mutant. PMA-stimulated AC2 activity was also not affected by Dexras1 C277S. Taken as a whole, these data suggest that Dexras1 functionally interacts with PKCdelta at the cellular membrane through an isoprenylation-dependent mechanism to negatively regulate PKCdelta activity. Moreover our study suggests that Dexras1 acts to modulate the activation of AC2 in an indirect fashion by inhibiting both Gbetagamma- and PKC-stimulated AC2 activity. The current study provides a novel role for Dexras1 in signal transduction.
Collapse
Affiliation(s)
- Chau H Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, RHPH 210, West Lafayette, IN 47907, USA
| | | |
Collapse
|
28
|
Harrison LM, LaHoste GJ. Rhes, the Ras homolog enriched in striatum, is reduced under conditions of dopamine supersensitivity. Neuroscience 2005; 137:483-92. [PMID: 16352400 DOI: 10.1016/j.neuroscience.2005.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/21/2005] [Accepted: 08/01/2005] [Indexed: 12/01/2022]
Abstract
Striatal dopamine receptors become supersensitive when dopaminergic input is removed through either surgical denervation or pharmacological depletion. Although alterations such as increased D2 receptor binding and increased receptor-G protein coupling have been described in supersensitive striatal tissue, their roles in the mechanism of supersensitivity remain uncertain. The Ras Homolog Enriched in Striatum (Rhes) is expressed in brain areas that receive dopaminergic input, and here we test whether alterations in its expression accompany treatments that promote dopamine receptor supersensitivity in rats. Removal of dopamine input to the striatum by surgical denervation with 6-hydroxydopamine resulted in a decrease in rhes mRNA expression throughout striatum, as measured with quantitative in situ hybridization. The decrease was detected as early as two weeks and as late as seven months after surgery. Furthermore, a decrease in rhes mRNA was evident after repeated or acute reserpine treatment. Chronic daily injection of rats with the D2 antagonist eticlopride, which is known to up-regulate D2 receptors without inducing profound receptor supersensitivity, did not alter the expression of rhes mRNA in striatum. Thus, changes in rhes mRNA expression are strictly correlated with receptor supersensitivity, perhaps as a result of continuous removal of dopaminergic input. These findings suggest that rhes mRNA expression is maintained by dopamine and may play a role in determining normal dopamine receptor sensitivity.
Collapse
Affiliation(s)
- L M Harrison
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, LA 70148, USA.
| | | |
Collapse
|
29
|
Hiskens R, Vatish M, Hill C, Davey J, Ladds G. Specific in vivo binding of activator of G protein signalling 1 to the Gbeta1 subunit. Biochem Biophys Res Commun 2005; 337:1038-46. [PMID: 16225846 DOI: 10.1016/j.bbrc.2005.09.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 09/25/2005] [Indexed: 10/25/2022]
Abstract
Activator of G protein signalling 1 (AGS1) is a Ras-like protein that affects signalling through heterotrimeric G proteins. Previous in vitro studies suggest that AGS1 can bind to G(alpha)-GDP subunits and promote nucleotide exchange, leading to activation of intracellular signalling pathways. This model is consistent with in vivo evidence demonstrating that AGS1 activates both G(alpha)- and G(betagamma)-dependent pathways in the absence of ligand. However, it does not easily explain how AGS1 blocks G(betagamma)-dependent, but not G(alpha)-dependent, signalling following receptor activation. We have used yeast two hybrid analysis and co-immunoprecipitation studies in mammalian cells to demonstrate a direct interaction between AGS1 and the G(beta1) subunit of heterotrimeric G proteins. The interaction is specific for G(beta1) and involves the cationic region of AGS1 and the C-terminal region of G(beta1). Possible implications of this novel interaction for the activity of AGS1 are discussed.
Collapse
Affiliation(s)
- Richard Hiskens
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
30
|
Nguyen CH, Watts VJ. Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1. Biochem Biophys Res Commun 2005; 332:913-20. [PMID: 15913563 DOI: 10.1016/j.bbrc.2005.05.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
Dexras1/AGS1/RasD1 is a member of the Ras superfamily of monomeric G proteins and has been suggested to disrupt receptor-G protein signaling. We examined the ability of Dexras1 to modulate dopamine D(2L) receptor regulation of adenylyl cyclase (AC) type 1 in HEK293 cells. Acute D(2L) receptor-mediated inhibition of A23187-stimulated AC1 activity (IC50, 4.0+/-1.4 nM; 50+/-3% inhibition) was not altered in the presence of Dexras1 (IC50, 2.4+/-1.3 nM, 50+/-1% inhibition); however, Dexras1 blocked acute D(2L) receptor-mediated activation of ERK 1/2 by approximately 50%. Heterologous sensitization of AC1 induced by persistent activation of D(2L) receptors was completely blocked by Dexras1 under basal and A23187-stimulated conditions. The block of sensitization was concentration-dependent and was not observed with a nucleotide binding-deficient Dexras1G31V mutant. Sensitization of AC1 was Gbetagamma-dependent as demonstrated using the C-terminus of beta-adrenergic receptor kinase (betaARK-ct). These data suggest that Dexras1 selectively regulates receptor-mediated Gbetagamma signaling pathways.
Collapse
Affiliation(s)
- Chau H Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47909, USA
| | | |
Collapse
|
31
|
Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Kokkola T, Savinainen JR, Mönkkönen KS, Retamal MD, Laitinen JT. S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol 2005; 6:21. [PMID: 15850493 PMCID: PMC1090567 DOI: 10.1186/1471-2121-6-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 04/25/2005] [Indexed: 11/24/2022] Open
Abstract
Background Recent studies indicate that the G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO) and S-nitrosothiols (RSNOs). To gain a broader view into the way that receptor-dependent G protein activation – an early step in signal transduction – might be affected by RSNOs, we have studied several receptors coupling to the Gi family of G proteins in their native cellular environment using the powerful functional approach of [35S]GTPγS autoradiography with brain cryostat sections in combination with classical G protein activation assays. Results We demonstrate that RSNOs, like S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO), can modulate GPCR signaling via reversible, thiol-sensitive mechanisms probably involving S-nitrosylation. RSNOs are capable of very targeted regulation, as they potentiate the signaling of some receptors (exemplified by the M2/M4 muscarinic cholinergic receptors), inhibit others (P2Y12 purinergic, LPA1lysophosphatidic acid, and cannabinoid CB1 receptors), but may only marginally affect signaling of others, such as adenosine A1, μ-opioid, and opiate related receptors. Amplification of M2/M4 muscarinic responses is explained by an accelerated rate of guanine nucleotide exchange, as well as an increased number of high-affinity [35S]GTPγS binding sites available for the agonist-activated receptor. GSNO amplified human M4 receptor signaling also under heterologous expression in CHO cells, but the effect diminished with increasing constitutive receptor activity. RSNOs markedly inhibited P2Y12 receptor signaling in native tissues (rat brain and human platelets), but failed to affect human P2Y12 receptor signaling under heterologous expression in CHO cells, indicating that the native cellular signaling partners, rather than the P2Y12 receptor protein, act as a molecular target for this action. Conclusion These in vitro studies show for the first time in a broader general context that RSNOs are capable of modulating GPCR signaling in a reversible and highly receptor-specific manner. Given that the enzymatic machinery responsible for endogenous NO production is located in close proximity with the GPCR signaling complex, especially with that for several receptors whose signaling is shown here to be modulated by exogenous RSNOs, our data suggest that GPCR signaling in vivo is likely to be subject to substantial, and highly receptor-specific modulation by NO-derived RSNOs.
Collapse
Affiliation(s)
- Tarja Kokkola
- Department of Physiology, University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland
| | - Juha R Savinainen
- Department of Physiology, University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland
- Department of Pharmaceutical Chemistry, University of Kuopio, POB 1627, FIN-70211 Kuopio, Finland
| | - Kati S Mönkkönen
- Department of Physiology, University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland
| | - Montse Durán Retamal
- Department of Physiology, University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland
| | - Jarmo T Laitinen
- Department of Physiology, University of Kuopio, POB 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
33
|
Watts VJ, Neve KA. Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol Ther 2005; 106:405-21. [PMID: 15922020 DOI: 10.1016/j.pharmthera.2004.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 11/23/2022]
Abstract
Activation of receptors coupled to inhibitory G proteins (Galpha i/o) has opposing consequences for cyclic AMP accumulation and the activity of cyclic AMP-dependent protein kinase, depending on the duration of stimulation. Acute activation inhibits the activity of adenylate cyclase, thereby attenuating cyclic AMP accumulation; in contrast, persistent activation of Galpha i/o-coupled receptors produces a paradoxical enhancement of adenylate cyclase activity, thus increasing cyclic AMP accumulation when the action of the inhibitory receptor is terminated. This heterologous sensitization of cyclic AMP signaling, also called superactivation or supersensitization, likely represents a cellular adaptive response, a mechanism by which the cell compensates for chronic inhibitory input. Recent advances in our knowledge of G protein-mediated signaling, regulation of adenylate cyclase, and other cellular signaling mechanisms have extensively increased our insight into the mechanisms and significance of this phenomenon. In particular, recent evidence points to the Galpha(s)-adenylate cyclase interface as a locus for the expression of the sensitized adenylate cyclase response, and to isoform-specific phosphorylation of adenylate cyclase as one mechanism that can produce sensitization. Galpha i/o-coupled receptor-induced heterologous sensitization may contribute to enhanced Galpha(s)-coupled receptor signaling following neurotransmitter elevations induced by the administration of drugs of abuse and during other types of neuronal function or dysfunction. This review will focus on recent advances in our understanding of signaling pathways that are involved in sensitization and describe the potential role of sensitization in neuronal function.
Collapse
Affiliation(s)
- Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
34
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|
35
|
Vaidyanathan G, Cismowski MJ, Wang G, Vincent TS, Brown KD, Lanier SM. The Ras-related protein AGS1/RASD1 suppresses cell growth. Oncogene 2004; 23:5858-63. [PMID: 15184869 DOI: 10.1038/sj.onc.1207774] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AGS1/RASD1 is a Ras-related protein identified as a dexamethasone-inducible cDNA and as a signal regulator in various functional and protein-interaction screens. As an initial approach to define the role of AGS1/RASD1 as a Ras-family member, we determined its influence on cell growth/survival. In clonogenic assays with NIH-3T3 murine fibroblast cells, the MCF-7 human breast cancer cell line and the human lung adenocarcinoma cell line A549, AGS1/RASD1 markedly diminished the number of G418-resistant colonies, whereas the Ras subgroup member K-Ras was without effect. A549 cell infection with adenovirus engineered to express AGS1/RASD1 (Ad.AGS1) inhibited log phase growth in vitro and increased the percentage of cells undergoing apoptosis. The anti-growth action was also observed in vivo as the expression of AGS1/RASD1 inhibited the subcutaneous tumor growth of A549 cells in athymic nude mice. These data indicate that AGS1/RASD1, a member of the Ras superfamily of small G-proteins that often promotes cell growth and tumor expansion, plays an active role in preventing aberrant cell growth.
Collapse
Affiliation(s)
- Govindan Vaidyanathan
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cheng HYM, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM. Dexras1 Potentiates Photic and Suppresses Nonphotic Responses of the Circadian Clock. Neuron 2004; 43:715-28. [PMID: 15339652 DOI: 10.1016/j.neuron.2004.08.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/01/2004] [Accepted: 08/10/2004] [Indexed: 10/25/2022]
Abstract
Circadian rhythms of physiology and behavior are generated by biological clocks that are synchronized to the cyclic environment by photic or nonphotic cues. The interactions and integration of various entrainment pathways to the clock are poorly understood. Here, we show that the Ras-like G protein Dexras1 is a critical modulator of the responsiveness of the master clock to photic and nonphotic inputs. Genetic deletion of Dexras1 reduces photic entrainment by eliminating a pertussis-sensitive circadian response to NMDA. Mechanistically, Dexras1 couples NMDA and light input to Gi/o and ERK activation. In addition, the mutation greatly potentiates nonphotic responses to neuropeptide Y and unmasks a nonphotic response to arousal. Thus, Dexras1 modulates the responses of the master clock to photic and nonphotic stimuli in opposite directions. These results identify a signaling molecule that serves as a differential modulator of the gated photic and nonphotic input pathways to the circadian timekeeping system.
Collapse
Affiliation(s)
- Hai-Ying M Cheng
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3-5, A-1030 Vienna.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee MS, Hanspers K, Barker CS, Korn AP, McCune JM. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol 2004; 16:1109-24. [PMID: 15210650 DOI: 10.1093/intimm/dxh112] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop a comprehensive catalogue of phenotypic and functional parameters of human CD4(+) T cell differentiation stages, we have performed microarray gene expression profiling on subpopulations of human thymocytes and circulating naive CD4(+) T cells, including CD3(-)CD4(+)CD8(-) intrathymic T progenitor cells, CD3(int)CD4(+)CD8(+) 'double positive' thymocytes, CD3(high)CD4(+)CD8(-) 'single positive' thymocytes, CD3(+)CD4(+)CD8(-) CD45RA(+)CD62L(+) naive T cells from cord blood and CD3(+)CD4(+)CD8(-) CD45RA(+)CD62L(+) naive T cells from adult blood. These subpopulations were sort-purified to >98% purity and their expressed RNAs were analyzed on Affymetrix Human Genome U133 arrays. Comparison of gene expression signals between these subpopulations and with early passage fetal thymic stromal cultures identify: (i) transcripts that are preferentially expressed in human CD4(+) T cell subpopulations and not in thymic stromal cells; (ii) major shifts in gene expression as progenitor T cells mature into progeny; (iii) preferential expression of transcripts at the progenitor cell stage with plausible relevance to the regulation of expansion and differentiation of these cells; and (iv) preferential expression of potential markers of recent thymic emigrants in naive-phenotype CD4(+) T cells from cord blood. Further evaluation of these findings may lead to a better definition of human thymopoiesis as well as to improved approaches to monitor and to augment the function of this important organ of T cell production.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Gladstone Institute of Virology and Immunology, University of California at San Francisco, San Francisco, CA 94141, USA
| | | | | | | | | |
Collapse
|
38
|
Vargiu P, De Abajo R, Garcia-Ranea JA, Valencia A, Santisteban P, Crespo P, Bernal J. The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors. Oncogene 2004; 23:559-68. [PMID: 14724584 DOI: 10.1038/sj.onc.1207161] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ras homolog enriched in striatum, Rhes, is the product of a thyroid hormone-regulated gene during brain development. Rhes and the dexamethasone-induced Dexras1 define a novel distinct subfamily of proteins within the Ras family, characterized by an extended variable domain in the carboxyl terminal region. We have carried this study because there is a complete lack of knowledge on Rhes signaling. We show that in PC12 cells, Rhes is targeted to the plasma membrane by farnesylation. We demonstrate that about 30% of the native Rhes protein is bound to GTP and this proportion is unaltered by typical Ras family nucleotide exchange factors. However, Rhes is not transforming in murine fibroblasts. We have also examined the role of Rhes in cell signaling. Rhes does not stimulate the ERK pathway. By contrast, it binds to and activates PI3K. On the other hand, we demonstrate that Rhes impairs the activation of the cAMP/PKA pathway by thyroid-stimulating hormone, and by an activated beta2 adrenergic receptor by a mechanism that suggests uncoupling of the receptor to its cognate heterotrimeric complex. Overall, our results provide the initial insights into the role in signal transduction of this novel Ras family member.
Collapse
Affiliation(s)
- Pierfrancesco Vargiu
- Instituto de Investigaciones Biomédicas Alberto Sols. Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Kemppainen RJ, Cox E, Behrend EN, Brogan MD, Ammons JM. Identification of a glucocorticoid response element in the 3'-flanking region of the human Dexras1 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:85-9. [PMID: 12818426 DOI: 10.1016/s0167-4781(03)00079-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Dexras1 gene responds to glucocorticoids with a rapid and profound induction. A glucocorticoid response element (GRE) was identified in the 3'-flanking region (2.3 kb downstream of poly(A) signal) of the human Dexras1 gene. This element conferred rapid glucocorticoid responsiveness when inserted into a homologous promoter-driven luciferase reporter. A point mutation within the 15-bp GRE abolished this glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, 213 Greene Hall, Auburn, AL 36849, USA.
| | | | | | | | | |
Collapse
|