1
|
Srinivas MA, Pierce LR, Olson MC, Roberston SJ, Sturdevant GL, Best SM, Orchard RC. Trim7 does not have a role in the restriction of murine norovirus infection in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618898. [PMID: 39464121 PMCID: PMC11507913 DOI: 10.1101/2024.10.17.618898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Trim7 is an E3 ubiquitin ligase that was recently identified as a central regulator of host-viral interactions with both pro-viral and anti-viral activity in cell culture. As an inhibitor, Trim7 overexpression ubiquitinates viral proteins by recognizing C-terminal glutamines that are hallmarks of 3C-like protease cleavage events. Here we sought to determine the physiological impact of Trim7 in resolving murine norovirus (MNV) infection of mice as MNV is potently inhibited by Trim7 in vitro. Utilizing two independently derived Trim7 deficient mouse lines we found no changes in the viral burden or tissue distribution of MNV in both an acute and persistent model of infection. Additionally, no changes in cytokine responses were observed after acute MNV infection of Trim7-deficient mice. Furthermore, removal of potentially confounding innate immune responses such as STING and STAT1 did not reveal any role for Trim7 in regulating MNV replication. Taken together, our data fails to find a physiological role for Trim7 in regulating MNV infection outcomes in mice and serves as a caution for defining Trim7 as a broad acting antiviral.
Collapse
Affiliation(s)
| | - Linley R. Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mikayla C. Olson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shelly J. Roberston
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Gail L. Sturdevant
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Sonja M. Best
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton MT, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Gonzalez-Orozco M, Rodriguez-Salazar CA, Giraldo MI. The Dual Role of TRIM7 in Viral Infections. Viruses 2024; 16:1285. [PMID: 39205259 PMCID: PMC11360163 DOI: 10.3390/v16081285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The E3 ubiquitin ligase TRIM7 is known to have dual roles during viral infections. Like other TRIM proteins, TRIM7 can regulate the IFN pathway via the regulation of the cytosolic receptors RIG-I or MDA-5, which promote the production of type I interferons (IFN-I) and antiviral immune responses. Alternatively, under certain infectious conditions, TRIM7 can negatively regulate IFN-I signaling, resulting in increased virus replication. A growing body of evidence has also shown that TRIM7 can, in some cases, ubiquitinate viral proteins to promote viral replication and pathogenesis, while in other cases it can promote degradation of viral proteins through the proteasome, reducing virus infection. TRIM7 can also regulate the host inflammatory response and modulate the production of inflammatory cytokines, which can lead to detrimental inflammation. TRIM7 can also protect the host during infection by reducing cellular apoptosis. Here, we discuss the multiple functions of TRIM7 during viral infections and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.G.-O.); (C.A.R.-S.)
| | - Carlos A. Rodriguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.G.-O.); (C.A.R.-S.)
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630003, Colombia
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (M.G.-O.); (C.A.R.-S.)
| |
Collapse
|
3
|
Chen J, Feng X, Zhou X, Li Y. Role of the tripartite motif-containing (TRIM) family of proteins in insulin resistance and related disorders. Diabetes Obes Metab 2024; 26:3-15. [PMID: 37726973 DOI: 10.1111/dom.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.
Collapse
Affiliation(s)
- Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Centre for Endocrine and Metabolic disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Centre for Metabolic disease, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Zhou
- Evidence-based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Li
- Department of Anaesthesiology, Medical Centre of Anaesthesiology and Pain, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Sullender ME, Pierce LR, Annaswamy Srinivas M, Crockett SL, Dunlap BF, Rodgers R, Schriefer LA, Kennedy EA, Stewart BM, Doench JG, Baldridge MT, Orchard RC. Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7. J Virol 2022; 96:e0070722. [PMID: 35972292 PMCID: PMC9472627 DOI: 10.1128/jvi.00707-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are a leading cause of gastroenteritis worldwide, yet the molecular mechanisms of how host antiviral factors restrict norovirus infection are poorly understood. Here, we present a CRISPR activation screen that identifies mouse genes which inhibit murine norovirus (MNV) replication. Detailed analysis of the major hit Trim7 demonstrates a potent inhibition of the early stages of MNV replication. Leveraging in vitro evolution, we identified MNV mutants that escape Trim7 restriction by altering the cleavage of the viral NS6-7 polyprotein precursor. NS6, but not the NS6-7 precursor, directly binds the substrate-binding domain of Trim7. Surprisingly, the selective polyprotein processing that enables Trim7 evasion inflicts a significant evolutionary burden, as viruses with decreased NS6-7 cleavage are strongly attenuated in viral replication and pathogenesis. Our data provide an unappreciated mechanism of viral evasion of cellular antiviral factors through selective polyprotein processing and highlight the evolutionary tradeoffs in acquiring resistance to host restriction factors. IMPORTANCE To maximize a limited genetic capacity, viruses encode polyproteins that can be subsequently separated into individual components by viral proteases. While classically viewed as a means of economy, recent findings have indicated that polyprotein processing can spatially and temporally coordinate the distinct phases of the viral life cycle. Here, we present a function for alternative polyprotein processing centered on immune defense. We discovered that selective polyprotein processing of the murine norovirus polyprotein shields MNV from restriction by the host antiviral protein Trim7. Trim7 can bind the viral protein NS6 but not the viral precursor protein NS6-7. Our findings provide insight into the evolutionary pressures that define patterns of viral polyprotein processing and uncover a trade-off between viral replication and immune evasion.
Collapse
Affiliation(s)
- Meagan E. Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linley R. Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Stacey L. Crockett
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bria F. Dunlap
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brittany M. Stewart
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Wang M, Ling C, Cao J, Yin Y, Chang X, Wu J, Cheng T. Role of Tripartite Motif-Containing 3 Protein (TRIM3) in Rheumatoid Arthritis and Its Mechanism. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim: To discuss TRIM3’s effects and relative mechanisms in RA development. Materials and methods: Using FLS as research object in our study. Present study divided into two steps, first step, discussing TRIM3 depressing effects in normal FLS cell; next, using IL-1β
stimulating to make RA cell model, TRIM3 overexpression in RA model to observe cell biological activities. Measuring IL-6 and TNF-α levels by ELISA kit; evaluating cell proliferation by MTT and EdU assay; relative proteins including TRIM3, TAB2 and NF-κB(p65) proteins
expression using WB method. Results: With TRIM3 knockdown, FLS cell proliferation were significantly increased with IL-6, TNF-α levels significantly up-regulation (P < 0.001, respectively). Meanwhile, TAB2 protein expression significantly depressing and NF-κB(p65)
protein significantly increasing; those were similar as IL-1β stimulating RA cell model in FLS cell line. In RA cell model, transfection TRIM3 in FLS cell, the cell proliferation was significantly depressed with IL-1β, TNF-α levels depressing, and TAB2
protein expression significantly increasing and NF-κB(p65) protein significantly depressing. Conclusion: TRIM3 knockdown might be a result to RA development; with TRIM3 overexpression, RA induced FLS hyperproliferation significantly improved with TAB2 up-regulation and
NF-κB(p65) down-regulation in vitro.
Collapse
Affiliation(s)
- Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Chen Ling
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jing Cao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Yufeng Yin
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Tao Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| |
Collapse
|
6
|
Zhou F, Liu Y, Ai W, Wang Y, Gan M, Jiang Q, Han T, Wang JB. GNIP1 functions both as a scaffold protein and an E3 ubiquitin ligase to regulate autophagy in lung cancer. Cell Commun Signal 2022; 20:133. [PMID: 36042481 PMCID: PMC9426035 DOI: 10.1186/s12964-022-00936-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023] Open
Abstract
Background Glycogen-Interacting Protein 1 (GNIP1), an E3 ligase, is a member of the tripartite motif (TRIM) family proteins. Current studies on GNIP1 mainly focus on glycogen metabolism. However, the function and molecular mechanisms of GNIP1 in regulating autophagy still remains unclear. This study aimed to investigate the regulatory mechanism of GNIP1 in regulating autophagy in non-small cell lung cancer (NSCLC). Methods Crystal violet staining assays were used to evaluate the ability of cell growth and proliferation. Transwell and scratch wound healing assays were used to evaluate the cell migration ability. The protein expressions were measured by western blot and immunohistochemistry. Co-immunoprecipitation assays determined the protein–protein interactions. The in vivo effect of GNIP1 on tumor growth was determined by xenograft assay. Results We found that GNIP1 was overexpressed in tumor tissues and the expression level of GNIP1 was related to the poor prognosis and the survival time of NSCLC patients. In non-small cell lung cancer (NSCLC), GNIP1 increased proliferation and migration of cancer cells by promoting autophagy. Mechanistic studies indicated that GNIP1, as a scaffold protein, recruited BECN1 and LC3B to promote the formation of autophagosomes. Besides, GNIP1 mediated the degradation of 14-3-3ζ, the negative regulator of VPS34 complex, thus promoting autophagy. Overexpressing GNIP1 promoted tumorigenesis and enhanced autophagy in xenograft models. Conclusion GNIP1 promotes proliferation and migration of NSCLC cells through mediating autophagy, which provides theoretical basis for targeting GNIP1 as anti-cancer drugs. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00936-x.
Collapse
Affiliation(s)
- Feifei Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yufeng Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wenqian Ai
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yanan Wang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
7
|
Ru Y, Yan X, Zhang B, Song L, Feng Q, Ye C, Zhou Z, Yang Z, Li Y, Zhang Z, Li Q, Mi W, Dong C. C-terminal glutamine acts as a C-degron targeted by E3 ubiquitin ligase TRIM7. Proc Natl Acad Sci U S A 2022; 119:e2203218119. [PMID: 35867826 PMCID: PMC9335266 DOI: 10.1073/pnas.2203218119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 01/24/2023] Open
Abstract
The exposed N-terminal or C-terminal residues of proteins can act, in cognate sequence contexts, as degradation signals (degrons) that are targeted by specific E3 ubiquitin ligases for proteasome-dependent degradation by N-degron or C-degron pathways. Here, we discovered a distinct C-degron pathway, termed the Gln/C-degron pathway, in which the B30.2 domain of E3 ubiquitin ligase TRIM7 (TRIM7B30.2) mediates the recognition of proteins bearing a C-terminal glutamine. By determining crystal structures of TRIM7B30.2 in complexes with various peptides, we show that TRIM7B30.2 forms a positively charged binding pocket to engage the "U"-shaped Gln/C-degron. The four C-terminal residues of a substrate play an important role in C-degron recognition, with C-terminal glutamine as the principal determinant. In vitro biochemical and cellular experiments were used to further analyze the substrate specificity and selective degradation of the Gln/C-degron by TRIM7.
Collapse
Affiliation(s)
- Yawei Ru
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojie Yan
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lili Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Qiqi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Ye
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhili Zhou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenjian Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Qianqian Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Cheng Dong
- Haihe Laboratory of Cell Ecosystem, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University General Hospital, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
8
|
Luptak J, Mallery DL, Jahun AS, Albecka A, Clift D, Ather O, Slodkowicz G, Goodfellow I, James LC. TRIM7 Restricts Coxsackievirus and Norovirus Infection by Detecting the C-Terminal Glutamine Generated by 3C Protease Processing. Viruses 2022; 14:1610. [PMID: 35893676 PMCID: PMC9394474 DOI: 10.3390/v14081610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.
Collapse
Affiliation(s)
- Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| | - Donna L. Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (A.S.J.); (I.G.)
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| | - Osaid Ather
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| | | | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (A.S.J.); (I.G.)
| | - Leo C. James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; (J.L.); (D.L.M.); (A.A.); (D.C.); (O.A.)
| |
Collapse
|
9
|
Yuan C, Liu J, Liu L, Jia H, Gao Q, Wang X, Zhao J. TRIM7 suppresses cell invasion and migration through inhibiting HIF-1α accumulation in clear cell renal cell carcinoma. Cell Biol Int 2021; 46:554-567. [PMID: 34936717 DOI: 10.1002/cbin.11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 01/14/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one frequent form of urologic malignancy characterized by deregulated hypoxia-inducible factor signaling, genetic and epigenetic alterations. Metastasis is the leading cause of mortality from ccRCC, and understanding the underlying mechanism of this event will provide better strategies for its management. Here, we identify tripartite motif containing 7 (TRIM7) as a tumor suppressor in ccRCC cells, which negatively regulates hypoxia-inducible factor 1α (HIF-1α) signaling through targeting the proto-oncogene Src. We observed the downregulated expression of TRIM7 in clinical ccRCC tissues and its correlation with the poor prognosis. In Caki-1 cells, depletion of TRIM7 increased cell migration and invasion under normoxic and hypoxic conditions. TRIM7 markedly reduced the abundance of Src protein via the ubiquitin-proteasome pathway. Further study showed that TRIM7 affected HIF-1α accumulation through targeting either the Src-triggered PI3K/AKT/mTOR signaling pathway or reactive oxygen species production. Overall, our findings highlight a novel mechanism for negative regulation of HIF-1 signaling pathway by TRIM7 and define a promising therapeutic strategy for ccRCC by modulating TRIM7.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junli Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongying Jia
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Gao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingjie Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Fan W, Mar KB, Sari L, Gaszek IK, Cheng Q, Evers BM, Shelton JM, Wight-Carter M, Siegwart DJ, Lin MM, Schoggins JW. TRIM7 inhibits enterovirus replication and promotes emergence of a viral variant with increased pathogenicity. Cell 2021; 184:3410-3425.e17. [PMID: 34062120 PMCID: PMC8276836 DOI: 10.1016/j.cell.2021.04.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
To control viral infection, vertebrates rely on both inducible interferon responses and less well-characterized cell-intrinsic responses composed of "at the ready" antiviral effector proteins. Here, we show that E3 ubiquitin ligase TRIM7 is a cell-intrinsic antiviral effector that restricts multiple human enteroviruses by targeting viral 2BC, a membrane remodeling protein, for ubiquitination and proteasome-dependent degradation. Selective pressure exerted by TRIM7 results in emergence of a TRIM7-resistant coxsackievirus with a single point mutation in the viral 2C ATPase/helicase. In cultured cells, the mutation helps the virus evade TRIM7 but impairs optimal viral replication, and this correlates with a hyperactive and structurally plastic 2C ATPase. Unexpectedly, the TRIM7-resistant virus has a replication advantage in mice and causes lethal pancreatitis. These findings reveal a unique mechanism for targeting enterovirus replication and provide molecular insight into the benefits and trade-offs of viral evolution imposed by a host restriction factor.
Collapse
Affiliation(s)
- Wenchun Fan
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katrina B Mar
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Levent Sari
- Green Center for Molecular, Computational, and Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilona K Gaszek
- Green Center for Molecular, Computational, and Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, Histo Pathology Core Division, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mary Wight-Carter
- Animal Resource Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milo M Lin
- Green Center for Molecular, Computational, and Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Muñoz Sosa CJ, Issoglio FM, Carrizo ME. Crystal structure and mutational analysis of the human TRIM7 B30.2 domain provide insights into the molecular basis of its binding to glycogenin-1. J Biol Chem 2021; 296:100772. [PMID: 33989636 PMCID: PMC8203840 DOI: 10.1016/j.jbc.2021.100772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/01/2023] Open
Abstract
Tripartite motif (TRIM)7 is an E3 ubiquitin ligase that was first identified through its interaction with glycogenin-1 (GN1), the autoglucosyltransferase that initiates glycogen biosynthesis. A growing body of evidence indicates that TRIM7 plays an important role in cancer development, viral pathogenesis, and atherosclerosis and, thus, represents a potential therapeutic target. TRIM family proteins share a multidomain architecture with a conserved N-terminal TRIM and a variable C-terminal domain. Human TRIM7 contains the canonical TRIM motif and a B30.2 domain at the C terminus. To contribute to the understanding of the mechanism of action of TRIM7, we solved the X-ray crystal structure of its B30.2 domain (TRIM7B30.2) in two crystal forms at resolutions of 1.6 Å and 1.8 Å. TRIM7B30.2 exhibits the typical B30.2 domain fold, consisting of two antiparallel β-sheets of seven and six strands, arranged as a distorted β-sandwich. Furthermore, two long loops partially cover the concave face of the β-sandwich defined by the β-sheet of six strands, thus forming a positively charged cavity. We used sequence conservation and mutational analyses to provide evidence of a putative binding interface for GN1. These studies showed that Leu423, Ser499, and Cys501 of TRIM7B30.2 and the C-terminal 33 amino acids of GN1 are critical for this binding interaction. Molecular dynamics simulations also revealed that hydrogen bond and hydrophobic interactions play a major role in the stability of a modeled TRIM7B30.2-GN1 C-terminal peptide complex. These data provide useful information that could be used to target this interaction for the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Christian J Muñoz Sosa
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) - CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Federico M Issoglio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) - CONICET and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María E Carrizo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) - CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
12
|
Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 2020; 585:414-419. [PMID: 32641828 PMCID: PMC7501154 DOI: 10.1038/s41586-020-2457-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) belongs to the Flaviviridae family and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurologic disorders and replicates efficiently in reproductive tissues1–3,. Here, we show that ZIKV envelope (E) protein is K63-linked polyubiquitinated by the E3-ubiquitin ligase TRIM7. Accordingly, ZIKV replicates less efficiently in brain and reproductive tissues of Trim7−/− mice. Ubiquitinated E is present on infectious Zika virions when released from specific cell types and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the Tim-1 (HAVCR1) receptor, enhancing virus replication in cells and in vivo in brain tissue. Recombinant ZIKV mutants lacking ubiquitination are attenuated in human cells and in a mouse model, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viremia in mice. Collectively, the results demonstrate that ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.
Collapse
|
13
|
Jin J, Lu Z, Wang X, Liu Y, Han T, Wang Y, Wang T, Gan M, Xie C, Wang J, Yu B. E3 ubiquitin ligase TRIM7 negatively regulates NF-kappa B signaling pathway by degrading p65 in lung cancer. Cell Signal 2020; 69:109543. [DOI: 10.1016/j.cellsig.2020.109543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
|
14
|
The E3 ubiquitin ligase TRIM7 suppressed hepatocellular carcinoma progression by directly targeting Src protein. Cell Death Differ 2019; 27:1819-1831. [PMID: 31802035 DOI: 10.1038/s41418-019-0464-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant Src kinase activity is known to be involved in a variety of human malignancies, whereas the regulatory mechanism of Src has not been completely clarified. Here, we demonstrated that tripartite motif containing 7 (TRIM7) directly interacted with Src, induced Lys48-linked polyubiquitination of Src and reduced the abundance of Src protein in hepatocellular carcinoma (HCC) cells. We further identified TRIM7 as a tumor suppressor in HCC cells through its negative modulation of the Src-mTORC1-S6K1 axis in vivo and in vitro in several HCC models. Moreover, we verified the dysregulated expression of TRIM7 in clinical liver cancer tissues and its negative correlation with Src protein in clinical HCC specimens. Overall, we demonstrated that TRIM7 suppressed HCC progression through its direct negative regulation of Src and modulation of the Src-mTORC1-S6K1 axis; thus, we provided a novel insight into the development of HCC and defined a promising therapeutic strategy for cancers with overactive Src by modulating TRIM7.
Collapse
|
15
|
Hu X, Tang Z, Ma S, Yu Y, Chen X, Zang G. Tripartite motif-containing protein 7 regulates hepatocellular carcinoma cell proliferation via the DUSP6/p38 pathway. Biochem Biophys Res Commun 2019; 511:889-895. [DOI: 10.1016/j.bbrc.2019.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
|
16
|
Orchard RC, Sullender ME, Dunlap BF, Balce DR, Doench JG, Virgin HW. Identification of Antinorovirus Genes in Human Cells Using Genome-Wide CRISPR Activation Screening. J Virol 2019; 93:e01324-18. [PMID: 30305350 PMCID: PMC6288323 DOI: 10.1128/jvi.01324-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide, yet host factors that restrict NoV replication are not well understood. Here, we use a CRISPR activation genome-wide screening to identify host genes that can inhibit murine norovirus (MNoV) replication in human cells. Our screens identified with high confidence 49 genes that can inhibit MNoV infection when overexpressed. A significant number of these genes are in interferon and immune regulation signaling networks, but surprisingly, the majority of the genes identified are neither associated with innate or adaptive immunity nor associated with any antiviral activity. Confirmatory studies of eight of the genes validate the initial screening data. Mechanistic studies on TRIM7 demonstrated a conserved role of the molecule in mouse and human cells in restricting MNoV in a step of infection after viral entry. Furthermore, we demonstrate that two isoforms of TRIM7 have differential antiviral activity. Taken together, these data provide a resource for understanding norovirus biology and demonstrate a robust methodology for identifying new antiviral molecules.IMPORTANCE Norovirus is one of the leading causes of food-borne illness worldwide. Despite its prevalence, our understanding of norovirus biology is limited due to the difficulty in growing human norovirus in vitro and a lack of an animal model. Murine norovirus (MNoV) is a model norovirus system because MNoV replicates robustly in cell culture and in mice. To identify host genes that can restrict norovirus replication when overexpressed, we performed genome-wide CRISPR activation screens to induce gene overexpression at the native locus through recruitment of transcriptional activators to individual gene promoters. We found 49 genes that could block murine norovirus replication in human cells. Several of these genes are associated with classical immune signaling pathways, while many of the molecules we identified have not been previously associated with antiviral activity. Our data are a resource for those studying noroviruses, and we provide a robust approach to identify novel antiviral genes.
Collapse
Affiliation(s)
- Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meagan E Sullender
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bria F Dunlap
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Montori-Grau M, Pedreira-Casahuga R, Boyer-Díaz Z, Lassot I, García-Martínez C, Orozco A, Cebrià J, Osorio-Conles O, Chacón MR, Vendrell J, Vázquez-Carrera M, Desagher S, Jiménez-Chillarón JC, Gómez-Foix AM. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle. Metabolism 2018; 83:177-187. [PMID: 29466708 DOI: 10.1016/j.metabol.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.
Collapse
Affiliation(s)
- Marta Montori-Grau
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain.
| | - Robert Pedreira-Casahuga
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Zoé Boyer-Díaz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, UB, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Orozco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Judith Cebrià
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Oscar Osorio-Conles
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Matilde R Chacón
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Manuel Vázquez-Carrera
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Josep Carles Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Anna Ma Gómez-Foix
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain
| |
Collapse
|
18
|
Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, Cai YD. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer 2018; 143:1731-1740. [PMID: 29696646 DOI: 10.1002/ijc.31554] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the third most common cancer in males and second in females. This disease can be caused by genetic and acquired/environmental factors. Microsatellite instability (MSI) is one of the major mechanisms in colorectal cancer. This mechanism is a specific condition of genetic hyper mutability that results from incompetent DNA mismatch repair. MSI has been applied to classify different colorectal cancer subtypes. However, the effects of MSI status on gene expression are largely unknown. In our study, we integrated the gene expression profile and MSI status of all CRC samples from the TCGA database, and then categorized the CRC samples into three subgroups, namely, MSI-stable, MSI-low, and MSI-high, according to the MSI status. We applied a novel computational method based on machine learning and screened the genes specifically expressed for the different colorectal cancer subtypes. The results showed the distinct mechanisms of the different colorectal cancer subtypes with MSI status and provided the genes that may be the optimal standards to further classify the various molecular subtypes of colorectal cancer with distinct MSI status.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands
| | - XiaoHua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, People' Republic of China
| |
Collapse
|
19
|
Chao T, Ji Z, Hou L, Wang J, Zhang C, Wang G, Wang J. Sheep skeletal muscle transcriptome analysis reveals muscle growth regulatory lncRNAs. PeerJ 2018; 6:e4619. [PMID: 29666768 PMCID: PMC5899421 DOI: 10.7717/peerj.4619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/25/2018] [Indexed: 01/06/2023] Open
Abstract
As widely distributed domestic animals, sheep are an important species and the source of mutton. In this study, we aimed to evaluate the regulatory lncRNAs associated with muscle growth and development between high production mutton sheep (Dorper sheep and Qianhua Mutton Merino sheep) and low production mutton sheep (Small-tailed Han sheep). In total, 39 lncRNAs were found to be differentially expressed. Using co-expression analysis and functional annotation, 1,206 co-expression interactions were found between 32 lncRNAs and 369 genes, and 29 of these lncRNAs were found to be associated with muscle development, metabolism, cell proliferation and apoptosis. lncRNA–mRNA interactions revealed 6 lncRNAs as hub lncRNAs. Moreover, three lncRNAs and their associated co-expressed genes were demonstrated by cis-regulatory gene analyses, and we also found a potential regulatory relationship between the pseudogene lncRNA LOC101121401 and its parent gene FTH1. This study provides a genome-wide resolution of lncRNA and mRNA regulation in muscles from mutton sheep.
Collapse
Affiliation(s)
- Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Jin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Chunlan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
20
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of C21orf59 and ATG2A as novel determinants of renal function-related traits in Japanese by exome-wide association studies. Oncotarget 2017; 8:45259-45273. [PMID: 28410202 PMCID: PMC5542184 DOI: 10.18632/oncotarget.16696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have performed exome-wide association studies to identify genetic variants that influence renal function-related traits or confer susceptibility to chronic kidney disease or hyperuricemia in Japanese. Exome-wide association studies for estimated glomerular filtration rate and the serum concentration of creatinine were performed with 12,565 individuals, that for the serum concentration of uric acid with 9934 individuals, and those for chronic kidney disease or hyperuricemia with 5161 individuals (3270 cases, 1891 controls) or 11,686 individuals (2045 cases, 9641 controls), respectively. The relation of genotypes of single nucleotide polymorphisms to estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to chronic kidney disease or hyperuricemia was examined with Fisher's exact test. The exome-wide association studies revealed that 25, seven, and six single nucleotide polymorphisms were significantly (P <1.21 × 10-6) associated with estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid, respectively, and that 49 and 35 polymorphisms were significantly associated with chronic kidney disease or hyperuricemia, respectively. Subsequent multivariable logistic regression analysis with adjustment for covariates revealed that four and three single nucleotide polymorphisms were related (P < 0.05) to chronic kidney disease or hyperuricemia, respectively. Among polymorphisms identified in the present study, rs76974938 [C/T (D67N)] of C21orf59 and rs188780113 [G/A (R478C)] of ATG2A may be novel determinants of estimated glomerular filtration rate and chronic kidney disease or of the serum concentration of uric acid, respectively.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family. J Cell Sci 2016; 129:881-91. [PMID: 26906420 DOI: 10.1242/jcs.163758] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'.
Collapse
Affiliation(s)
- Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michael Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
22
|
Zhan W, Han T, Zhang C, Xie C, Gan M, Deng K, Fu M, Wang JB. TRIM59 Promotes the Proliferation and Migration of Non-Small Cell Lung Cancer Cells by Upregulating Cell Cycle Related Proteins. PLoS One 2015; 10:e0142596. [PMID: 26599082 PMCID: PMC4658198 DOI: 10.1371/journal.pone.0142596] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022] Open
Abstract
TRIM protein family is an evolutionarily conserved gene family implicated in a number of critical processes including inflammation, immunity, antiviral and cancer. In an effort to profile the expression patterns of TRIM superfamily in several non-small cell lung cancer (NSCLC) cell lines, we found that the expression of 10 TRIM genes including TRIM3, TRIM7, TRIM14, TRIM16, TRIM21, TRIM22, TRIM29, TRIM59, TRIM66 and TRIM70 was significantly upregulated in NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line, whereas the expression of 7 other TRIM genes including TRIM4, TRIM9, TRIM36, TRIM46, TRIM54, TRIM67 and TRIM76 was significantly down-regulated in NSCLC cell lines compared with that in HBE cells. As TRIM59 has been reported to act as a proto-oncogene that affects both Ras and RB signal pathways in prostate cancer models, we here focused on the role of TRIM59 in the regulation of NSCLC cell proliferation and migration. We reported that TRIM59 protein was significantly increased in various NSCLC cell lines. SiRNA-induced knocking down of TRIM59 significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in G2 phase. Moreover, TRIM59 knocking down affected the expression of a number of cell cycle proteins including CDC25C and CDK1. Finally, we knocked down TRIM59 and found that p53 protein expression levels did not upregulate, so we proposed that TRIM59 may promote NSCLC cell growth through other pathways but not the p53 signaling pathway.
Collapse
Affiliation(s)
- Weihua Zhan
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Tianyu Han
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Chenfu Zhang
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Caifeng Xie
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Mingxi Gan
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Keyu Deng
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, United States of America
| | - Jian-Bin Wang
- Institute of Translation Medicine, Nanchang University, Nanchang City, Jiangxi, 330031, China
- * E-mail:
| |
Collapse
|
23
|
Chakraborty A, Diefenbacher ME, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun 2015; 6:6782. [PMID: 25851810 PMCID: PMC4395875 DOI: 10.1038/ncomms7782] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/26/2015] [Indexed: 12/19/2022] Open
Abstract
The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterized, the mechanism of activation by Ras was elusive. Here we identify the uncharacterized ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras-Raf-MEK-ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 co-activator RACO-1, leading to RACO-1 protein stabilization. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Mammalian Genetics Laboratory, London Research Institute, Cancer Research UK, Lincoln’s Inn Fields Laboratories, London WC2A 3LY, UK
| | - Markus E. Diefenbacher
- Mammalian Genetics Laboratory, London Research Institute, Cancer Research UK, Lincoln’s Inn Fields Laboratories, London WC2A 3LY, UK
| | - Anastasia Mylona
- Signal Transduction and Transcription Laboratory, London Research Institute, Cancer Research UK, Lincoln’s Inn Fields Laboratories, London WC2A 3LY, UK
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Building 304; room 208A, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Axel Behrens
- Mammalian Genetics Laboratory, London Research Institute, Cancer Research UK, Lincoln’s Inn Fields Laboratories, London WC2A 3LY, UK
- School of Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
24
|
D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 2014; 22:1-10. [PMID: 23139046 DOI: 10.1002/pro.2185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/12/2022]
Abstract
The SPRY domain is a protein interaction module found in 77 murine and ~100 human proteins, and is implicated in important biological pathways, including those that regulate innate and adaptive immunity. The current definition of the SPRY domain is based on a sequence repeat discovered in the splA kinase and ryanodine receptors. The greater SPRY family is divided into the B30.2 (which contains a PRY extension at the N-terminus) and "SPRY-only" sub-families. In this brief review, we examine the current structural and biochemical literature on SPRY/B30.2 domain involvement in key immune processes and highlight a PRY-like 60 amino acid region in the N-terminus of "SPRY-only" proteins. Phylogenetic, structural, and functional analyses suggest that this N-terminal region is related to the PRY region of B30.2 and should be characterized as part of an extended SPRY domain. Greater understanding of the functional importance of the N-terminal region in "SPRY only" proteins will enhance our ability to interrogate SPRY interactions with their respective binding partners.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
25
|
D'Hulst C, Mérida A. The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. THE NEW PHYTOLOGIST 2010; 188:13-21. [PMID: 20618917 DOI: 10.1111/j.1469-8137.2010.03361.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Starch is the main polymer in which carbon and energy are stored in land plants, algae and some cyanobacteria. It plays a crucial role in the physiology of these organisms and also represents an important polymer for humans, in terms of both diet and nonfood industry uses. Recent efforts have elucidated most of the steps involved in the synthesis of starch. However, the process that initiates the synthesis of the starch granule remains unclear. Here, we outline the similarities between the synthesis of starch and the synthesis of glycogen, the other widespread and abundant glucose-based polymer in living cells. We place special emphasis on the mechanisms of initiation of the glycogen granule and current knowledge concerning the initiation of the starch granule. We also discuss recent discoveries regarding the function of starch synthases in the priming of the starch granule and possible interactions with other elements of the starch synthesis machinery.
Collapse
Affiliation(s)
- Christophe D'Hulst
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
26
|
Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf) 2010; 199:489-98. [PMID: 20353490 DOI: 10.1111/j.1748-1716.2010.02131.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite decades of studying muscle glycogen in many metabolic situations, surprisingly little is known regarding its regulation. Glycogen is a dynamic and vital metabolic fuel that has very limited energetic capacity. Thus its regulation is highly complex and multifaceted. The stores in muscle are not homogeneous and there appear to be various metabolic pools. Each granule is capable of independent regulation and fundamental aspects of the regulation appear to be associated with a complex set of proteins (some are enzymes and others serve scaffolding roles) that associate both with the granule and with each other in a dynamic fashion. The regulation includes altered phosphorylation status and often translocation as well. The understanding of the roles and the regulation of glycogenin, protein phosphatase 1, glycogen targeting proteins, laforin and malin are in their infancy. These various processes appear to be the mechanisms that give the glycogen granule precise, yet dynamic regulation.
Collapse
Affiliation(s)
- T E Graham
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | |
Collapse
|
27
|
Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 2006; 27:1147-57. [PMID: 16237670 DOI: 10.1002/bies.20304] [Citation(s) in RCA: 550] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM/RBCC proteins are defined by the presence of the tripartite motif composed of a RING domain, one or two B-box motifs and a coiled-coil region. These proteins are involved in a plethora of cellular processes such as apoptosis, cell cycle regulation and viral response. Consistently, their alteration results in many diverse pathological conditions. The highly conserved modular structure of these proteins suggests that a common biochemical function may underlie their assorted cellular roles. Here, we review recent data indicating that some TRIM/RBCC proteins are implicated in ubiquitination and propose that this large protein family represents a novel class of 'single protein RING finger' ubiquitin E3 ligases.
Collapse
Affiliation(s)
- Germana Meroni
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
28
|
Skurat AV, Dietrich AD, Roach PJ. Interaction between glycogenin and glycogen synthase. Arch Biochem Biophys 2006; 456:93-7. [PMID: 17055998 PMCID: PMC1769445 DOI: 10.1016/j.abb.2006.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA.
| | | | | |
Collapse
|
29
|
de Paula RM, Wilson WA, Roach PJ, Terenzi HF, Bertolini MC. Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis. FEBS Lett 2005; 579:2208-14. [PMID: 15811343 DOI: 10.1016/j.febslet.2005.02.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/01/2005] [Accepted: 02/21/2005] [Indexed: 11/27/2022]
Abstract
Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K(m) (4.41 microM) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN.
Collapse
Affiliation(s)
- Renato M de Paula
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, R. Professor Francisco Degni, s/n, 14800-900 Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
de Paula RM, Wilson WA, Terenzi HF, Roach PJ, Bertolini MC. GNN is a self-glucosylating protein involved in the initiation step of glycogen biosynthesis in Neurospora crassa. Arch Biochem Biophys 2005; 435:112-24. [PMID: 15680913 DOI: 10.1016/j.abb.2004.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/02/2004] [Indexed: 10/26/2022]
Abstract
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation.
Collapse
Affiliation(s)
- Renato Magalhães de Paula
- Instituto de Química, UNESP, Departamento de Bioquímica e Tecnologia Química, 14800-900 Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Albrecht T, Haebel S, Koch A, Krause U, Eckermann N, Steup M. Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosine residues but results in a reduced bacterial glycogen accumulation. ACTA ACUST UNITED AC 2005; 271:3978-89. [PMID: 15479227 DOI: 10.1111/j.1432-1033.2004.04333.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His6) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis.
Collapse
Affiliation(s)
- Tanja Albrecht
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Type 2 diabetes is a complex disorder with diminished insulin secretion and insulin action contributing to the hyperglycemia and wide range of metabolic defects that underlie the disease. The contribution of glucose metabolic pathways per se in the pathogenesis of the disease remains unclear. The cellular fate of glucose begins with glucose transport and phosphorylation. Subsequent pathways of glucose utilization include aerobic and anaerobic glycolysis, glycogen formation, and conversion to other intermediates in the hexose phosphate or hexosamine biosynthesis pathways. Abnormalities in each pathway may occur in diabetic subjects; however, it is unclear whether perturbations in these may lead to diabetes or are a consequence of the multiple metabolic abnormalities found in the disease. This review is focused on the cellular fate of glucose and relevance to human type 2 diabetes.
Collapse
Affiliation(s)
- Clara Bouché
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
33
|
Shearer J, Graham TE. Novel Aspects of Skeletal Muscle Glycogen and Its Regulation During Rest and Exercise. Exerc Sport Sci Rev 2004; 32:120-6. [PMID: 15243208 DOI: 10.1097/00003677-200407000-00008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is often viewed as a homogenous substrate, glycogen is comprised of individual granules or 'glycosomes' that vary in their composition, subcellular localization, and metabolism. These differences result in additional levels of regulation allowing granules to be regulated individually or regionally within the cell during both rest and exercise.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
34
|
Kozlov G, Elias D, Cygler M, Gehring K. Structure of GlgS from Escherichia coli suggests a role in protein-protein interactions. BMC Biol 2004; 2:10. [PMID: 15161493 PMCID: PMC420497 DOI: 10.1186/1741-7007-2-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 05/25/2004] [Indexed: 11/26/2022] Open
Abstract
Background The Escherichia coli protein GlgS is up-regulated in response to starvation stress and its overexpression was shown to stimulate glycogen synthesis. Results We solved the structure of GlgS from E. coli, a member of an enterobacterial protein family. The protein structure represents a bundle of three α-helices with a short hydrophobic helix sandwiched between two long amphipathic helices. Conclusion GlgS shows structural homology to Huntingtin, elongation factor 3, protein phosphatase 2A, TOR1 motif domains and tetratricopeptide repeats, suggesting a possible role in protein–protein interactions.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Demetra Elias
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Miroslaw Cygler
- Macromolecular Structure Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
35
|
Zhai L, Dietrich A, Skurat AV, Roach PJ. Structure-function analysis of GNIP, the glycogenin-interacting protein. Arch Biochem Biophys 2004; 421:236-42. [PMID: 14984203 DOI: 10.1016/j.abb.2003.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glycogenin is a self-glucosylating protein that initiates glycogen biosynthesis. We recently identified a family of proteins, GNIPs, that interact with glycogenin and stimulate its self-glucosylating activity [J. Biol. Chem. 277 (2002) 19331]. The GNIP gene (also called TRIM7) encodes at least four distinct isoforms of GNIP, three of which (GNIP1, GNIP2, and GNIP3) have in common a COOH-terminal B30.2 domain and predicted coiled-coil regions. Based on Western blot analysis, the GNIP1 protein is widely distributed in tissues. From analysis of a series of deletion mutants of GNIP2 using the yeast two-hybrid system, the B30.2 domain was found to be responsible for the interaction with glycogenin. A truncated form of recombinant GNIP2, lacking the NH2-terminal coiled-coil region, was cross-linked to glycogenin by glutaraldehyde treatment, supporting the idea that the B30.2 domain was sufficient for the interaction. In the course of this study, GNIP2 was also found to interact with itself, via the coiled-coil domain. Heterologous interactions between GNIP1 and GNIP2 were also detected. Since glycogenin is also a dimer, higher order multimeric complexes between glycogenin and GNIPs would be possible.
Collapse
Affiliation(s)
- Lanmin Zhai
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA
| | | | | | | |
Collapse
|
36
|
Parnis S, Nicoletti C, Ollendorff V, Massey-Harroche D. Enterocytin: A new specific enterocyte marker bearing a B30.2-like domain. J Cell Physiol 2004; 198:441-51. [PMID: 14755549 DOI: 10.1002/jcp.10418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity.
Collapse
Affiliation(s)
- Stéphane Parnis
- Institut Méditerranéen de Recherche en Nutrition, Faculté des Sciences de Saint Jérôme, Avenue Escadrille Normandie-Niemen, Marseille cedex, France
| | | | | | | |
Collapse
|
37
|
Tavridou A, Agius L. Phosphorylase regulates the association of glycogen synthase with a proteoglycogen substrate in hepatocytes. FEBS Lett 2003; 551:87-91. [PMID: 12965209 DOI: 10.1016/s0014-5793(03)00902-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the glucosylation state of the glycogen primer, glycogenin, or its association with glycogen synthase are potential sites for regulation of glycogen synthesis. In this study we found no evidence for hormonal control of the glucosylation state of glycogenin in hepatocytes. However, using a modified glycogen synthase assay that separates the product into acid-soluble (glycogen) and acid-insoluble (proteoglycogen) fractions we found that insulin and glucagon increase and decrease, respectively, the association of glycogen synthase with an acid-insoluble substrate. The latter fraction had a higher affinity for UDP-glucose and accounted for between 5 and 21% of total activity depending on hormonal conditions. Phosphorylase overexpression mimicked the effect of glucagon. It is concluded that phosphorylase activation or overexpression causes dissociation of glycogen synthase from proteoglycogen causing inhibition of initiation of glycogen synthesis.
Collapse
Affiliation(s)
- Anna Tavridou
- School of Clinical Medical Sciences-Diabetes, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
38
|
Nielsen JN, Richter EA. Regulation of glycogen synthase in skeletal muscle during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:309-19. [PMID: 12864735 DOI: 10.1046/j.1365-201x.2003.01165.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycogen synthase (GS) catalyses the incorporation of uridine diphosphate-glucose into glycogen in skeletal muscle. In concert with the glucose transport step, GS activity is thought to be rate-limiting in the disposal of glucose as muscle glycogen. Glycogen synthase is regulated by both allosteric factors (primarily glucose 6-phosphate) and covalent modification by reversible phosphorylation and dephosphorylation leading to inactivation and activation of GS, respectively. Exercise activates both stimulatory and inhibitory regulators of GS and it is thought that the resultant activity of GS during exercise depends on the relative strength of opposing signals. However, the mechanisms by which exercise regulates GS activity are not fully understood. Glycogen breakdown, the GM-protein phosphatase 1 complex and possibly cellular relocalization of GS may be considered important factors involved in the stimulation of GS activity during exercise, while adenosine monophosphate-activated protein kinase and plasma adrenaline (via protein kinase A) can be considered as essential for the exercise-induced inhibitory signals to GS.
Collapse
Affiliation(s)
- J N Nielsen
- Department of Human Physiology, Copenhagen Muscle Research Centre, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|