1
|
Gahmberg CG, Grönholm M, Madhavan S. Regulation of Dynamic Cell Adhesion by Integrin-Integrin Crosstalk. Cells 2022; 11:cells11101685. [PMID: 35626722 PMCID: PMC9140058 DOI: 10.3390/cells11101685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Most cells express several integrins. The integrins are able to respond to various cellular functions and needs by modifying their own activation state, but in addition by their ability to regulate each other by activation or inhibition. This crosstalk or transdominant regulation is strictly controlled. The mechanisms resulting in integrin crosstalk are incompletely understood, but they often involve intracellular signalling routes also used by other cell surface receptors. Several studies show that the integrin cytoplasmic tails bind to a number of cytoskeletal and adaptor molecules in a regulated manner. Recent work has shown that phosphorylations of integrins and key intracellular molecules are of pivotal importance in integrin-cytoplasmic interactions, and these in turn affect integrin activity and crosstalk. The integrin β-chains play a central role in regulating crosstalk. In addition to Integrin-integrin crosstalk, crosstalk may also occur between integrins and related receptors, including other adhesion receptors, growth factor and SARS-CoV-2 receptors.
Collapse
Affiliation(s)
- Carl G. Gahmberg
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Correspondence: ; Tel.: +358-50-539-9439
| | - Mikaela Grönholm
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland
| | - Sudarrshan Madhavan
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9 C, 00014 Helsinki, Finland; (M.G.); (S.M.)
| |
Collapse
|
2
|
Park EJ, Myint PK, Ito A, Appiah MG, Darkwah S, Kawamoto E, Shimaoka M. Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Front Cell Dev Biol 2020; 8:588066. [PMID: 33195249 PMCID: PMC7649757 DOI: 10.3389/fcell.2020.588066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Integrins are transmembrane proteins that mediate cellular adhesion and migration to neighboring cells or the extracellular matrix, which is essential for cells to undertake diverse physiological and pathological pathways. For integrin activation and ligand binding, bidirectional signaling across the cell membrane is needed. Integrins aberrantly activated under pathologic conditions facilitate cellular infiltration into tissues, thereby causing inflammatory or tumorigenic progressions. Thus, integrins have emerged to the forefront as promising targets for developing therapeutics to treat autoimmune and cancer diseases. In contrast, it remains a fact that integrin-ligand interactions are beneficial for improving the health status of different tissues. Among these ligands, irisin, a myokine produced mainly by skeletal muscles in an exercise-dependent manner, has been shown to bind to integrin αVβ5, alleviating symptoms under unfavorable conditions. These findings may provide insights into some of the underlying mechanisms by which exercise improves quality of life. This review will discuss the current understanding of integrin-ligand interactions in both health and disease. Likewise, we not only explain how diverse ligands play different roles in mediating cellular functions under both conditions via their interactions with integrins, but also specifically highlight the potential roles of the emerging ligand irisin in inflammation, cancer, and metabolic disease.
Collapse
Affiliation(s)
- Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs 2020; 34:435-462. [PMID: 32301049 PMCID: PMC7391400 DOI: 10.1007/s40259-020-00419-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rina M Ötjengerdes
- Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain TumorImmunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Mejias
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea L J Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Brunswick, Germany.
| |
Collapse
|
5
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
6
|
αvβ3 Integrin Is Required for Efficient Infection of Epithelial Cells with Human Adenovirus Type 26. J Virol 2018; 93:JVI.01474-18. [PMID: 30333171 DOI: 10.1128/jvi.01474-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) are being explored as vectors for gene transfer and vaccination. Human adenovirus type 26 (HAdV26), which belongs to the largest subgroup of adenoviruses, species D, has a short fiber and a so-far-unknown natural tropism. Due to its low seroprevalence, HAdV26 has been considered a promising vector for the development of vaccines. Despite the fact that the in vivo safety and immunogenicity of HAdV26 have been extensively studied, the basic biology of the virus with regard to receptor use, cell attachment, internalization, and intracellular trafficking is poorly understood. In this work, we investigated the roles of the coxsackievirus and adenovirus receptor (CAR), CD46, and αv integrins in HAdV26 infection of human epithelial cell lines. By performing different gain- and loss-of-function studies, we found that αvβ3 integrin is required for efficient infection of epithelial cells by HAdV26, while CAR and CD46 did not increase the transduction efficiency of HAdV26. By studying intracellular trafficking of fluorescently labeled HAdV26 in A549 cells and A549-derived cell clones with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and that increased αvβ3 integrin enhances internalization of HAdV26. Thus, we conclude that HAdV26 uses αvβ3 integrin as a receptor for infecting epithelial cells. These results give us new insight into the HAdV26 infection pathway and will be helpful in further defining HAdV-based vector manufacturing and vaccination strategies.IMPORTANCE Adenovirus-based vectors are used today for gene transfer and vaccination. HAdV26 has emerged as a promising candidate vector for development of vaccines due to its relatively low seroprevalence and its ability to induce potent immune responses against inserted transgenes. However, data regarding the basic biology of the virus, like receptor usage or intracellular trafficking, are limited. In this work, we found that efficient infection of human epithelial cell lines by HAdV26 requires the expression of the αvβ3 integrin. By studying intracellular trafficking of fluorescently labeled HAdV26 in a cell clone with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and confirmed that αvβ3 integrin expression facilitates efficient HAdV26 internalization. These results will allow further improvement of HAdV26-based vectors for gene transfer and vaccination.
Collapse
|
7
|
Stojanović N, Dekanić A, Paradžik M, Majhen D, Ferenčak K, Ruščić J, Bardak I, Supina C, Tomicic MT, Christmann M, Osmak M, Ambriović-Ristov A. Differential Effects of Integrin αv Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. Mol Pharmacol 2018; 94:1334-1351. [DOI: 10.1124/mol.118.113027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023] Open
|
8
|
Merilahti P, Tauriainen S, Susi P. Human Parechovirus 1 Infection Occurs via αVβ1 Integrin. PLoS One 2016; 11:e0154769. [PMID: 27128974 PMCID: PMC4851366 DOI: 10.1371/journal.pone.0154769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/19/2016] [Indexed: 12/01/2022] Open
Abstract
Human parechovirus 1 (HPeV-1) (family Picornaviridae) is a global cause of pediatric respiratory and CNS infections for which there is no treatment. Although biochemical and in vitro studies have suggested that HPeV-1 binds to αVβ1, αVβ3 and αVβ6 integrin receptor(s), the actual cellular receptors required for infectious entry of HPeV-1 remain unknown. In this paper we analyzed the expression profiles of αVβ1, αVβ3, αVβ6 and α5β1 in susceptible cell lines (A549, HeLa and SW480) to identify which integrin receptors support HPeV-1 internalization and/or replication cycle. We demonstrate by antibody blocking assay, immunofluorescence microscopy and RT-qPCR that HPeV-1 internalizes and replicates in cell lines that express αVβ1 integrin but not αVβ3 or αVβ6 integrins. To further study the role of β1 integrin, we used a mouse cell line, GE11-KO, which is deficient in β1 expression, and its derivate GE11-β1 in which human integrin β1 subunit is overexpressed. HPeV-1 (Harris strain) and three clinical HPeV-1 isolates did not internalize into GE11-KO whereas GE11-β1 supported the internalization process. An integrin β1-activating antibody, TS2/16, enhanced HPeV-1 infectivity, but infection occurred in the absence of visible receptor clustering. HPeV-1 also co-localized with β1 integrin on the cell surface, and HPeV-1 and β1 integrin co-endocytosed into the cells. In conclusion, our results demonstrate that in some cell lines the cellular entry of HPeV-1 is primarily mediated by the active form of αVβ1 integrin without visible receptor clustering.
Collapse
Affiliation(s)
| | | | - Petri Susi
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Ramos CJ, Gutierrez DA, Aranda AS, Koshlaychuk MA, Carrillo DA, Medrano R, McBride TD, U A, Medina SM, Lombardo MC, Lucena SE, Sanchez EE, Soto JG. Functional characterization of six aspartate (D) recombinant mojastin mutants (r-Moj): A second aspartate amino acid carboxyl to the RGD in r-Moj-D_ peptides is not sufficient to induce apoptosis of SK-Mel-28 cells. Toxicon 2016; 118:36-42. [PMID: 27105671 DOI: 10.1016/j.toxicon.2016.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Disintegrins are small peptides produced in viper venom that act as integrin antagonists. When bound to integrins, disintegrins induce altered cellular behaviors, such as apoptotic induction. Disintegrins with RGDDL or RGDDM motifs induce apoptosis of normal and cancer cells. We hypothesized that a second aspartate (D) carboxyl to the RGD is sufficient to induce apoptosis. Five recombinant mojastin D mutants were produced by site-directed mutagenesis (r-Moj-DA, r-Moj-DG, r-Moj-DL, r-Moj-DN, and r-Moj-DV). Stable αv integrin knockdown and shRNA scrambled control SK-Mel-28 cell lines were produced to test a second hypothesis: r-Moj-D_ peptides bind to αv integrin. Only r-Moj-DL, r-Moj-DM, and r-Moj-DN induced apoptosis of SK-Mel-28 cells (at 29.4%, 25.6%, and 36.2%, respectively). Apoptotic induction was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown (to 2%, 17%, and 2%, respectively), but not in SK-Mel-28 cells with a stable scrambled shRNA. All six r-Moj-D_ peptides inhibited cell proliferation; ranging from 49.56% (r-Moj-DN) to 75.6% (r-Moj-DA). Cell proliferation inhibition by r-Moj-D_ peptides was significantly reduced in SK-Mel-28 cells with a stable αv integrin knockdown. All six r-Moj-D_ peptides inhibited SK-Mel-28 cell migration at high levels (69%-100%). As a consequence, rac-1 mRNA expression levels were significantly reduced as early as 1 h after treatment, suggesting that rac-1 is involved in the cell migration activity of SK-Mel-28.
Collapse
Affiliation(s)
- Carla J Ramos
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Daniel A Gutierrez
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Ana S Aranda
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Melissa A Koshlaychuk
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - David A Carrillo
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Rafael Medrano
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Terri D McBride
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Andrew U
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Stephanie M Medina
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Melissa C Lombardo
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Sara E Lucena
- National Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center, Texas A&M University, Kingsville, TX 78363, USA
| | - Julio G Soto
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA.
| |
Collapse
|
10
|
Recent Advances with ER Targeted Intrabodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:77-93. [DOI: 10.1007/978-3-319-32805-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Cantor DI, Cheruku HR, Nice EC, Baker MS. Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 2015; 34:715-34. [DOI: 10.1007/s10555-015-9591-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Marschall ALJ, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7:1010-35. [PMID: 26252565 PMCID: PMC4966517 DOI: 10.1080/19420862.2015.1076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/02/2023] Open
Abstract
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.
Collapse
Affiliation(s)
- Andrea LJ Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics; Braunschweig, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Recombinant Protein Expression/Intrabody Unit, Helmholtz Centre for Infection Research; Braunschweig, Germany
| |
Collapse
|
13
|
Switch from αvβ5 to αvβ6 integrin is required for CD9-regulated keratinocyte migration and MMP-9 activation. FEBS Lett 2014; 588:4044-52. [PMID: 25265322 DOI: 10.1016/j.febslet.2014.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase-9 (MMP-9) activation. However, little is known about the mechanisms involved in CD9-regulated keratinocyte migration and MMP-9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing-induced keratinocyte migration and MMP-9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9-regulated cell migration and MMP-9 activation in keratinocytes.
Collapse
|
14
|
RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis. Cancers (Basel) 2012; 4:1106-45. [PMID: 24213501 PMCID: PMC3712721 DOI: 10.3390/cancers4041106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment.
Collapse
|
15
|
Abstract
Although much is known about how osteoclasts are formed, we know little about how they are activated, or how they recognize bone as the substrate appropriate for resorption. Bone mineral is considered to be essential to this recognition process, but a "mineral receptor" has never been identified. Recently, we found that resorptive behavior, as judged by the formation of ruffled borders and actin rings, occurs on ordinary tissue culture substrates if they are first coated with vitronectin. Similarly, vitronectin-coated substrates induce osteoclasts to secrete tartrate-resistant acid phosphatase and to form podosome belts, and to make resorption trails in the protein that coat the substrate. The same applies to bone mineral, which only induces resorptive behavior if coated with vitronectin. In contrast, fibronectin has none of these effects, despite inducing adhesion and spreading. It appears that osteoclasts recognize bone as the substrate appropriate for resorption through the high affinity of vitronectin-receptor ligands for bone mineral.
Collapse
Affiliation(s)
- T J Chambers
- Department of Cellular Pathology, St George's University of London, London, United Kingdom.
| | | |
Collapse
|
16
|
Welser-Alves JV, Boroujerdi A, Tigges U, Milner R. Microglia use multiple mechanisms to mediate interactions with vitronectin; non-essential roles for the highly-expressed αvβ3 and αvβ5 integrins. J Neuroinflammation 2011; 8:157. [PMID: 22074485 PMCID: PMC3239846 DOI: 10.1186/1742-2094-8-157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background As the primary resident immune cells, microglia play a central role in regulating inflammatory processes in the CNS. The extracellular matrix (ECM) protein vitronectin promotes microglial activation, switching microglia into an activated phenotype. We have shown previously that microglia express two vitronectin receptors, αvβ3 and αvβ5 integrins. As these integrins have well-defined roles in activation and phagocytic processes in other cell types, the purpose of the current study was to investigate the contribution of these two integrins in microglial activation. Methods Microglial cells were prepared from wild-type, β3 integrin knockout (KO), β5 integrin KO or β3/β5 integrin DKO mice, and their interactions and activation responses to vitronectin examined in a battery of assays, including adhesion, expression of activation markers, MMP-9 expression, and phagocytosis. Expression of other αv integrins was examined by flow cytometry and immunoprecipitation. Results Surprisingly, when cultured on vitronectin, microglia from the different knockout strains showed no obvious defects in adhesion, activation marker expression, MMP-9 induction, or phagocytosis of vitronectin-coated beads. To investigate the reason for this lack of effect, we examined the expression of other αv integrins. Flow cytometry showed that β3/β5 integrin DKO microglia expressed residual αv integrin at the cell surface, and immunoprecipitation confirmed this finding by revealing the presence of low levels of the αvβ1 and αvβ8 integrins. β1 integrin blockade had no impact on adhesion of β3/β5 integrin DKO microglia to vitronectin, suggesting that in addition to αvβ1, αvβ3, and αvβ5, αvβ8 also serves as a functional vitronectin receptor on microglia. Conclusions Taken together, this demonstrates that the αvβ3 and αvβ5 integrins are not essential for mediating microglial activation responses to vitronectin, but that microglia use multiple redundant receptors to mediate interactions with this ECM protein.
Collapse
Affiliation(s)
- Jennifer V Welser-Alves
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Vascular endothelial growth factor (VEGF) acting through VEGF receptor 2 (VEGFR2) on endothelial cells (ECs) is a key regulator of angiogenesis, a process essential for wound healing and tumor metastasis. Rap1a and Rap1b, 2 highly homologous small G proteins, are both required for angiogenesis in vivo and for normal EC responses to VEGF. Here we sought to determine the mechanism through which Rap1 promotes VEGF-mediated angiogenesis. Using lineage-restricted Rap1-knockout mice we show that Rap1-deficiency in endothelium leads to defective angiogenesis in vivo, in a dose-dependent manner. Using ECs obtained from Rap1-deficient mice we demonstrate that Rap1b promotes VEGF-VEGFR2 kinase activation and regulates integrin activation. Importantly, the Rap1b-dependent VEGF-VEGFR2 activation is in part mediated via integrin α(v)β(3). Furthermore, in an in vivo model of zebrafish angiogenesis, we demonstrate that Rap1b is essential for the sprouting of intersomitic vessels, a process known to be dependent on VEGF signaling. Using 2 distinct pharmacologic VEGFR2 inhibitors we show that Rap1b and VEGFR2 act additively to control angiogenesis in vivo. We conclude that Rap1b promotes VEGF-mediated angiogenesis by promoting VEGFR2 activation in ECs via integrin α(v)β(3). These results provide a novel insight into the role of Rap1 in VEGF signaling in ECs.
Collapse
|
18
|
Desiderio UV, Zhu X, Evans JP. ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9) integrins: implications for integrin-based adhesion and fertilization. PLoS One 2010; 5:e13744. [PMID: 21060781 PMCID: PMC2966413 DOI: 10.1371/journal.pone.0013744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Integrins are heterodimeric cell adhesion molecules, with 18 α (ITGA) and eight β (ITGB) subunits forming 24 heterodimers classified into five families. Certain integrins, especially the α(4)/α(9) (ITGA4/ITGA9) family, interact with members of the ADAM (a disintegrin and metalloprotease) family. ADAM2 is among the better characterized and also of interest because of its role in sperm function. Having shown that ITGA9 on mouse eggs participates in mouse sperm-egg interactions, we sought to characterize ITGA4/ITGA9-ADAM2 interactions. METHODOLOGY/PRINCIPAL FINDINGS An anti-β(1)/ITGB1 function-blocking antibody that reduces sperm-egg binding significantly inhibited ADAM2 binding to mouse eggs. Analysis of integrin subunit expression indicates that mouse eggs could express at least ten different integrins, five in the RGD-binding family, two in the laminin-binding family, two in the collagen-binding family, and ITGA9-ITGB1. Adhesion assays to characterize ADAM2 interactions with ITGA4/ITGA9 family members produced the surprising result that RPMI 8866 cell adhesion to ADAM2 was inhibited by an anti-ITGA9 antibody, noteworthy because ITGA9 has only been reported to dimerize with ITGB1, and RPMI 8866 cells lack detectable ITGB1. Antibody and siRNA studies demonstrate that ITGB7 is the β subunit contributing to RPMI 8866 adhesion to ADAM2. CONCLUSIONS/SIGNIFICANCE These data indicate that a novel integrin α-β combination, ITGA9-ITGB7 (α(9)β(7)), in RPMI 8866 cells functions as a binding partner for ADAM2. ITGA9 had previously only been reported to dimerize with ITGB1. Although ITGA9-ITGB7 is unlikely to be a widely expressed integrin and appears to be the result of "compensatory dimerization" occurring in the context of little/no ITGB1 expression, the data indicate that ITGA9-ITGB7 functions as an ADAM binding partner in certain cellular contexts, with implications for mammalian fertilization and integrin function.
Collapse
Affiliation(s)
- Ulyana V. Desiderio
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiaoling Zhu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janice P. Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 2009; 19:165-78. [PMID: 19367611 DOI: 10.1002/rmv.612] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenoviruses (Ads) are the most frequently used viral vectors in gene therapy and cancer therapy. Obstacles to successful clinical application include accumulation of vector and transduction in liver cells, coupled with poor transduction of target cells and tissues such as tumours. Many host molecules, including coagulation factor X, have been identified and suggested to serve as mediators of Ad liver tropism. This review summarises current knowledge concerning these molecules and the mechanisms used by Ads to bind to target cells, and considers the prospects of designing vectors that have been detargeted from the liver and retargeted to cells and tissues of interest in the context of gene therapy and cancer therapy.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, SE-901 85, Sweden.
| |
Collapse
|
20
|
Abstract
Human metapneumovirus (hMPV) is a recently described paramyxovirus that causes lower respiratory infections in children and adults worldwide. The hMPV fusion (F) protein is a membrane-anchored glycoprotein and major protective antigen. All hMPV F protein sequences determined to date contain an Arg-Gly-Asp (RGD) sequence, suggesting that F engages RGD-binding integrins to mediate cell entry. The divalent cation chelator EDTA, which disrupts heterodimeric integrin interactions, inhibits infectivity of hMPV but not the closely related respiratory syncytial virus (RSV), which lacks an RGD motif. Function-blocking antibodies specific for alphavbeta1 integrin inhibit infectivity of hMPV but not RSV. Transfection of nonpermissive cells with alphav or beta1 cDNAs confers hMPV infectivity, whereas reduction of alphav and beta1 integrin expression by siRNA inhibits hMPV infection. Recombinant hMPV F protein binds to cells, whereas Arg-Gly-Glu (RGE)-mutant F protein does not. These data suggest that alphavbeta1 integrin is a functional receptor for hMPV.
Collapse
|
21
|
Vjugina U, Zhu X, Oh E, Bracero NJ, Evans JP. Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg's ability to support sperm-egg binding and fusion. Biol Reprod 2009; 80:833-41. [PMID: 19129508 DOI: 10.1095/biolreprod.108.075275] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The involvement of egg integrins in mammalian sperm-egg interactions has been controversial, with data from integrin inhibitor studies contrasting with evidence from knockouts showing that specific integrin subunits are not essential for fertility. An alpha(4)/alpha(9) (ITGA4/ITGA9) integrin subfamily member has been implicated in fertilization but not extensively examined, so we tested the following three hypotheses: 1) an ITGA4/ITGA9 integrin participates in sperm-egg interactions, 2) short-term acute knockdown by RNA interference of integrin subunits would result in a fertilization phenotype differing from that of chronic depletion via knockout, and 3) detection of a fertilization phenotype is sensitive to in vitro fertilization (IVF) assay conditions. We show that mouse and human eggs express the alpha(9) integrin subunit (ITGA9). RNA interference-mediated knockdown resulted in reduced levels of Itga9 mRNA and surface protein in mouse eggs. RNA interference attempts to knockdown ITGA9's likely beta partner, beta(1) (ITGB1), resulted in reduced Itgb1 mRNA but no reduction in ITGB1 surface protein. Therefore, studies using a function-blocking anti-ITGB1 antibody tested the hypothesis that ITGB1 participates in gamete interactions. Analyses of sperm-egg interactions with Itga9-knockdown eggs and anti-ITGB1 antibody-treated eggs in IVF assays using specific sperm:egg ratios revealed the following: 1) a reduction, but not complete loss, of sperm-egg binding and fusion was observed and 2) the reduction of sperm-egg binding and fusion was not detected in inseminations with high sperm:egg ratios. These data demonstrate that ITGA9 and ITGB1 participate in sperm-egg interactions but clearly are not the only molecules involved. This also shows that careful design of IVF parameters allows detection of deficiencies in gamete interactions.
Collapse
Affiliation(s)
- Ulyana Vjugina
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
22
|
Cell adhesion through alphaV-containing integrins is required for efficient HIV-1 infection in macrophages. Blood 2008; 113:1278-86. [PMID: 18840709 DOI: 10.1182/blood-2008-06-161869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Monocytes and macrophages are an important reservoir of human immunodeficiency virus (HIV) and may represent the largest reservoir of this virus in tissues. Differentiation of monocytes into macrophages leads to cell attachment and susceptibility to infection and replication of HIV. Among other cell-surface molecules, integrins are overexpressed during monocyte-macrophage differentiation and may play a role in the replication cycle of envelope viruses including HIV. Here, we show that inhibition of alphaV integrin in monocyte-derived macrophages, by RNA interference or their inhibition by a selective small heterocyclic RGD-mimetic nonpeptide compound, inhibited the replication of HIV in the absence of cytotoxicity. Interference or inhibition of alphaV integrins triggered a signal transduction pathway, leading to down-regulation of nuclear factor-kappaB-dependent HIV-1 transcription. Such inhibition was mediated by a MAP-kinase signaling cascade, probably involving ERK1/2, p38-mitogen-activated protein kinases, and HSP27. In conclusion, our results reveal a significant role of integrin alphaV-mediated adhesion in HIV-1 infection of macrophages.
Collapse
|
23
|
Abstract
The pluripotent nature of mesenchymal stem cells (MSC) widens their potential for tissue regeneration and as vehicles for cell therapy in molecular medicine. Although the MSC are relatively easier to obtain and propagate in culture, a major impediment remains in their engraftment to target tissues on autologous transfer. We report here that transient, ectopic expression of alpha4 integrin (CD49d) on MSC greatly increases bone homing in an immunocompetent mouse model. Heterodimerization of the alpha4 integrin with endogenous beta1 integrin (CD29) was confirmed to influence this targeting. In addition to retaining their stem cell property, the engrafted MSC were also found to form osteoblasts and osteocytes in the growth plate of recipient mouse limb bones (femur/tibia) in vivo. These findings provide evidence for a novel strategy to achieve bone homing of genetically engineered MSC, which may broadly benefit in targeted therapies for osteopenic bone defects and cancer bone metastasis.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | | |
Collapse
|
24
|
Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med 2007; 11:54-70. [PMID: 17367501 PMCID: PMC4401220 DOI: 10.1111/j.1582-4934.2007.00002.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation,Braunschweig, Germany.
| |
Collapse
|
25
|
Lee I, Skinner MA, Guo HB, Sujan A, Pierce M. Expression of the Vacuolar H+-ATPase 16-kDa Subunit Results in the Triton X-100-insoluble Aggregation of β1 Integrin and Reduction of Its Cell Surface Expression. J Biol Chem 2004; 279:53007-14. [PMID: 15466867 DOI: 10.1074/jbc.m405717200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.
Collapse
Affiliation(s)
- Intaek Lee
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
26
|
Janes SM, Watt FM. Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. ACTA ACUST UNITED AC 2004; 166:419-31. [PMID: 15289499 PMCID: PMC2172256 DOI: 10.1083/jcb.200312074] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stratified squamous epithelia express the alphavbeta5 integrin, but in squamous cell carcinomas (SCCs) there is down-regulation of alphavbeta5 and up-regulation of alphavbeta6. To investigate the significance of this finding, we transduced an alphav-negative human SCC line with retroviral vectors encoding alphav integrins. alphavbeta5-expressing cells underwent suspension-induced apoptosis (anoikis), whereas alphav-negative cells and cells expressing alphavbeta6 did not. Resistance to anoikis correlated with PKB/Akt activation in suspension, but not with changes in PTEN or p110alpha PI3 kinase levels. Anoikis was induced in parental and alphavbeta6-expressing cells by inhibiting PI3 kinase. Conversely, activation of Akt or inhibition of caspases in alphavbeta5-expressing cells suppressed anoikis. Caspase inhibition resulted in increased phosphoAkt, placing caspase activation upstream of decreased Akt activation. Anoikis required the cytoplasmic domain of beta5 and was independent of the death receptor pathway. These results suggest that down-regulation of alphavbeta5 through up-regulation of alphavbeta6 may protect SCCs from anoikis by activating an Akt survival signal.
Collapse
Affiliation(s)
- Sam M Janes
- Keratinocyte Laboratory, CR-UK London Research Institute, 44 Lincoln's Inn Fields, WC2A 3PX, England
| | | |
Collapse
|
27
|
Silletti S, Yebra M, Perez B, Cirulli V, McMahon M, Montgomery AMP. Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J Biol Chem 2004; 279:28880-8. [PMID: 15128735 DOI: 10.1074/jbc.m404075200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell adhesion molecule L1 has been implicated in a variety of motile processes, including neurite extension, cerebellar cell migration, extravasation, and metastasis. Homophilic or heterophilic L1 binding and concomitant signaling have been shown to promote cell motility in the short term. In this report, L1 is also shown to induce and maintain a motile and invasive phenotype by promoting gene transcription. In the presence of serum or platelet-derived growth factor, L1 promotes heightened and sustained activation of the extracellular signal-regulated kinase pathway. Activation of this pathway then induces the expression of motility- and invasion-associated gene products, including the beta(3)-integrin subunit, small GTPases, and the cysteine proteases cathepsin-L and -B. Induction of integrin alpha(v)beta(3) and rac-1 is shown to contribute directly to L1-dependent haptotaxis, whereas induction of cathepsins-L and -B promotes matrix invasion. This study provides a novel translational mechanism to account for the association between L1 expression and motile processes involved in metastasis and development.
Collapse
Affiliation(s)
- Steve Silletti
- Department of Pediatrics, The Whittier Institute, and Moores Comprehensive Cancer Center, University of California at San Diego, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
28
|
Häkkinen L, Koivisto L, Gardner H, Saarialho-Kere U, Carroll JM, Lakso M, Rauvala H, Laato M, Heino J, Larjava H. Increased expression of beta6-integrin in skin leads to spontaneous development of chronic wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:229-42. [PMID: 14695336 PMCID: PMC1602209 DOI: 10.1016/s0002-9440(10)63113-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integrin alphavbeta6 is an epithelial cell-specific receptor that is not normally expressed by resting epithelium but its expression is induced during wound healing. The function of alphavbeta6-integrin in wound repair is not clear. In the present study, we showed that beta6-integrin expression was strongly up-regulated in the epidermis in human chronic wounds but not in different forms of skin fibrosis. To test whether increased beta6-integrin expression plays a role in abnormal wound healing we developed four homozygous transgenic mouse lines that constitutively expressed human beta6-integrin in the epithelium. The mice developed normally and did not show any histological abnormalities in the skin. The rate of experimental skin wound closure was unaltered and the wounds healed without significant scar formation. However, during breeding program 16.1 to 27.0% of transgenic mice developed spontaneous, progressing fibrotic chronic ulcers. None of the wild-type animals developed these lesions. The chronic lesions had areas with severe fibrosis and numerous activated macrophages and fibroblasts expressing transforming growth factor (TGF)-beta. The level of TGF-beta1 was significantly increased in the lesions as compared with normal skin. The findings suggest that increased alphavbeta6-integrin in keratinocytes plays an active part in abnormal wound healing possibly through a mechanism involving increased activation of TGF-beta.
Collapse
Affiliation(s)
- Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kaido T, Perez B, Yebra M, Hill J, Cirulli V, Hayek A, Montgomery AM. Alphav-integrin utilization in human beta-cell adhesion, spreading, and motility. J Biol Chem 2004; 279:17731-7. [PMID: 14766759 DOI: 10.1074/jbc.m308425200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of individual integrins in human beta-cell development and function is largely unknown. This study describes the contribution of alpha(v)-integrins to human beta-cell adhesion, spreading, and motility. Developmental differences in alpha(v)-integrin utilization are addressed by comparing the responses of adult and fetal beta-cells, and vitronectin is used as a substrate based on its unique pattern of expression in the developing pancreas. Fetal and adult beta-cells attached equally to vitronectin and integrin alpha(v)beta(5) was found to support the adhesion of both mature and immature beta-cell populations. Fetal beta-cells were also observed to spread and migrate on vitronectin, and integrin alpha(v)beta(1) was found to be essential for these responses. In contrast to their fetal counterparts, adult beta-cells failed to either spread or migrate and this deficit was associated with a marked down-regulation of alpha(v)beta(1) expression in adult islet preparations. The integrin alpha(v)beta(3) was not found to support significant beta-cell attachment or migration. Based on our findings, we conclude that integrins alpha(v)beta(5) and alpha(v)beta(1) are important mediators of human beta-cell adhesion and motility, respectively. By supporting fetal beta-cell migration, alpha(v)beta(1) could play an important role in early motile processes required for islet neogenesis.
Collapse
Affiliation(s)
- Thomas Kaido
- Islet Research Laboratory at The Whittier Institute for Diabetes, Department of Pediatrics, The University of California at San Diego, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Grodzki ACG, Pástor MVD, Sousa JF, Oliver C, Jamur MC. Differential expression of integrin subunits on adherent and nonadherent mast cells. Braz J Med Biol Res 2003; 36:1101-9. [PMID: 12886465 DOI: 10.1590/s0100-879x2003000800017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mast cell progenitors arise in bone marrow and then migrate to peripheral tissues where they mature. It is presumed that integrin receptors are involved in their migration and homing. In the present study, the expression of various integrin subunits was investigated in three systems of adherent and nonadherent mast cells. Mesentery mast cells, freshly isolated bone marrow-derived mast cells (BMMC) and RBL-2H3 cells grown attached to tissue culture flasks are all adherent mast cells and peritoneal mast cells, and cultured BMMC and RBL-2H3 cells grown in suspension represent nonadherent mast cell populations. Pure populations of mast cells were immunomagnetically isolated from bone marrow, mesentery and peritoneal lavage using the mast cell-specific monoclonal antibody AA4. By immunomicroscopy, we could demonstrate that all of these mast cells expressed alpha 4, alpha 5, alpha 6, beta 1 and beta 7 integrin subunits. The expression of the alpha 4 integrin subunit was 25% higher in freshly isolated mesentery mast cells and BMMC. Consistent with the results obtained by immunomicroscopy, mesentery mast cells expressed 65% more mRNA for the alpha 4 integrin subunit than peritoneal mast cells. In vitro studies were also conducted using the rat mast cell line RBL-2H3. RBL-2H3 cells grown attached to the tissue culture flasks or as suspension cultures expressed the same integrin subunits identified in bone marrow, mesenteric and peritoneal mast cells ex vivo. Similarly, the expression of alpha 4 integrin was higher in adherent cells. Therefore, alpha 4 integrins may play a critical role in the anchorage of mast cells to the extracellular matrix in bone marrow and in peripheral tissues.
Collapse
Affiliation(s)
- A C G Grodzki
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|