1
|
Choi JW, Shin J, Zhou Z, Song HJ, Bae GS, Kim MS, Park SJ. Myricetin ameliorates the severity of pancreatitis in mice by regulating cathepsin B activity and inflammatory cytokine production. Int Immunopharmacol 2024; 136:112284. [PMID: 38823179 DOI: 10.1016/j.intimp.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/β-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Joonyeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| |
Collapse
|
2
|
Yu XQ, Deng HB, Liu Y, Qu C, Duan ZH, Tong ZH, Liu YX, Li WQ. Serum magnesium level as a predictor of acute kidney injury in patients with acute pancreatitis. World J Clin Cases 2021; 9:10899-10908. [PMID: 35047600 PMCID: PMC8678854 DOI: 10.12998/wjcc.v9.i35.10899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Decreased serum magnesium (Mg2+) is commonly seen in critically ill patients. Hypomagnesemia is significantly more frequent in patients with severe acute pancreatitis. Acute kidney injury (AKI) in patients with acute pancreatitis (AP) is associated with an extremely high mortality. The association underlying serum Mg2+ and AKI in AP has not been elucidated.
AIM To explore the association between serum Mg2+ on admission and AKI in patients with AP.
METHODS A retrospective observational study was conducted in a cohort of patients (n = 233) with AP without any renal injury before admission to our center from August 2015 to February 2019. Demographic characteristics on admission, severity score, laboratory values and in-hospital mortality were compared between patients with and without AKI.
RESULTS A total of 233 patients were included for analysis, including 85 with AKI. Compared to patients without AKI, serum Mg2+ level was significantly lower in patients with AKI at admission [OR = 6.070, 95%CI: 3.374-10.921, P < 0.001]. Multivariate logistic analysis showed that lower serum Mg2+ was an independent risk factor for AKI [OR = 8.47, 95%CI: 3.02-23.72, P < 0.001].
CONCLUSION Our analysis indicates that serum Mg2+ level at admission is independently associated with the development of AKI in patients with AP and may be a potential prognostic factor.
Collapse
Affiliation(s)
- Xian-Qiang Yu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hong-Bin Deng
- Department of Critical Care Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China
| | - Yang Liu
- Department of Critical Care Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Cheng Qu
- Department of Critical Care Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ze-Hua Duan
- Department of Critical Care Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhi-Hui Tong
- Department of Critical Care Medicine, General Hospital of Eastern Theater Command, Nanjing 210002, Jiangsu Province, China
| | - Yu-Xiu Liu
- Department of Critical Care Medicine, General Hospital of Eastern Theater Command, Nanjing 210002, Jiangsu Province, China
| | - Wei-Qin Li
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Critical Care Medicine, General Hospital of Eastern Theater Command, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
3
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Gorelick F, Nathanson MH. TRPV4 helps Piezo1 put the squeeze on pancreatic acinar cells. J Clin Invest 2021; 130:2199-2201. [PMID: 32281947 DOI: 10.1172/jci136525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alterations in calcium signaling in pancreatic acinar cells can result in pancreatitis. Although pressure changes in the pancreas can elevate cytosolic calcium (Ca2+) levels, it is not known how transient pressure-activated elevations in calcium can cause prolonged calcium changes and consequent pancreatitis. In this issue of the JCI, Swain et al. describe roles for the mechanically activated plasma membrane calcium channels Piezo1 and transient receptor potential vanilloid subfamily 4 (TRPV4) in acinar cells. The authors used genetic deletion models and cell culture systems to investigate calcium signaling. Notably, activation of the Piezo1-dependent TRPV4 pathway was independent of the cholecystokinin (CCK) stimulation pathway. These results elegantly resolve an apparent discrepancy in calcium signaling and the pathogenesis of pancreatitis in pancreatic acinar cells.
Collapse
Affiliation(s)
- Fred Gorelick
- Section of Digestive Diseases, Department of Internal Medicine, and.,Department of Cell Biology, Yale University School of Medicine and VA HealthCare, New Haven, Connecticut, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, and.,Department of Cell Biology, Yale University School of Medicine and VA HealthCare, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Weiss FU, Laemmerhirt F, Lerch MM. Acute Pancreatitis: Genetic Risk and Clinical Implications. J Clin Med 2021; 10:E190. [PMID: 33430357 PMCID: PMC7825757 DOI: 10.3390/jcm10020190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological indications for emergency admittance and hospitalization. Gallstones, alcohol consumption or the presence of additional initiating factors give rise to a disease with a diverse clinical appearance and a hard-to predict course of progression. One major challenge in the treatment of AP patients is the early identification of patients at risk for the development of systemic complications and organ failure. In addition, 20%-30% of patients with a first episode of AP later experience progress to recurrent or chronic disease. Complex gene-environment interactions have been identified to play a role in the pathogenesis of pancreatitis, but so far no predictive genetic biomarkers could be implemented into the routine clinical care of AP patients. The current review explains common and rare etiologies of acute pancreatitis with emphasis on underlying genetic aberrations and ensuing clinical management.
Collapse
Affiliation(s)
- Frank U. Weiss
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany; (F.L.); (M.M.L.)
| | | | | |
Collapse
|
6
|
Tran QT, Tran VH, Sendler M, Doller J, Wiese M, Bolsmann R, Wilden A, Glaubitz J, Modenbach JM, Thiel FG, de Freitas Chama LL, Weiss FU, Lerch MM, Aghdassi AA. Role of Bile Acids and Bile Salts in Acute Pancreatitis: From the Experimental to Clinical Studies. Pancreas 2021; 50:3-11. [PMID: 33370017 PMCID: PMC7748038 DOI: 10.1097/mpa.0000000000001706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT Acute pancreatitis (AP) is one of the most common gastroenterological disorders leading to hospitalization. It has long been debated whether biliary AP, about 30% to 50% of all cases, is induced by bile acids (BAs) when they reach the pancreas via reflux or via the systemic blood circulation.Besides their classical function in digestion, BAs have become an attractive research target because of their recently discovered property as signaling molecules. The underlying mechanisms of BAs have been investigated in various studies. Bile acids are internalized into acinar cells through specific G-protein-coupled BA receptor 1 and various transporters. They can further act via different receptors: the farnesoid X, ryanodine, and inositol triphosphate receptor. Bile acids induce a sustained Ca2+ influx from the endoplasmic reticulum and release of Ca2+ from acidic stores into the cytosol of acinar cells. The overload of intracellular Ca2+ results in mitochondrial depolarization and subsequent acinar cell necrosis. In addition, BAs have a biphasic effect on pancreatic ductal cells. A more detailed characterization of the mechanisms through which BAs contribute to the disease pathogenesis and severity will greatly improve our understanding of the underlying pathophysiology and may allow for the development of therapeutic and preventive strategies for gallstone-inducedAP.
Collapse
Affiliation(s)
- Quang Trung Tran
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
- Department of Internal Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Van Huy Tran
- Department of Internal Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Doller
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Mats Wiese
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Robert Bolsmann
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Anika Wilden
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | - Frank Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M. Lerch
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ali A. Aghdassi
- From the Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Lerch MM, Aghdassi AA, Sendler M. Cell Signaling of Pancreatic Duct Pressure and Its Role in the Onset of Pancreatitis. Gastroenterology 2020; 159:827-831. [PMID: 32693183 DOI: 10.1053/j.gastro.2020.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany.
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
AL-Saffar FJ, Nasif RH. Morphological Study of The Pancreas and Duodenum in Adult Guinea Pigs (Cavia porcellus). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to investigate the morphological features of the pancreas and duodenum of the adult males and females guinea pigs. Eight animals of each sex were collected to conduct this project. The selected organs were photographed in situ and macro morphometric measurements were conducted on them. Gross findings revealed that the pancreas of guinea pig was of compact type, of two lobes (right and left) connected by large central part (body). The organ drains the pancreatic secretion toward the last part of the ascending duodenum via minor pancreatic duct with absence of major pancreatic duct. The duodenum of the guinea pig was very short and V-shaped. The beginning of the duodenum contains duodenal papilla in which found central orifice for the exit of bile secretions of the common bile duct. In conclusions, the present findings showed the presence of only one minor pancreatic duct and such result was significantly different than most rodents by having major pancreatic duct. The duodenum in the studied guinea pigs was characteristically very short and V-shaped differently to other animals that have U-shaped and long duodenum.
Collapse
|
10
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
11
|
Swain SM, Romac JMJ, Shahid RA, Pandol SJ, Liedtke W, Vigna SR, Liddle RA. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 2020; 130:2527-2541. [PMID: 31999644 PMCID: PMC7190979 DOI: 10.1172/jci134111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Collapse
Affiliation(s)
- Sandip M. Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Rafiq A. Shahid
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Steven R. Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
12
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
13
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
14
|
Luaces-Regueira M, Castiñeira-Alvariño M, Castro-Manzanares M, Campos-Toimil M, Domínguez-Muñoz JE. Pathophysiological Events Associated With Pancreatitis in Response to Tobacco: An In Vitro Comparative Study With Ethanol in Primary Acinar Cell Culture. Pancreas 2019; 47:1304-1311. [PMID: 30286014 DOI: 10.1097/mpa.0000000000001180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to comparatively analyze the effects of different concentrations of cigarette smoke condensate (CSC, a standardized tobacco extract) and ethanol on intracellular enzyme activation, cell necrosis, alteration of cytosolic calcium concentration ([Ca]c), and amylase secretion in pancreatic acinar cells. METHODS The effects of CSC (1 μg/mL to 0.4 mg/mL) and ethanol (10-100 mM) on intracellular enzyme activity, cell necrosis, and [Ca]c were measured by fluorescence assays in isolated pancreatic acinar cells. Amylase secretion was evaluated by spectrophotometry. Supramaximal concentrations of cholecystokinin (10-100 nM) were used as positive control. RESULTS Neither CSC nor ethanol induced trypsin or elastase activation. Both CSC (0.1-0.4 mg/mL) and ethanol (10-75 mM) significantly increased [Ca]c. Amylase secretion was increased only in CSC-treated cells (0.3 and 0.4 mg/mL). After 60 minutes, CSC (0.3 and 0.4 mg/mL) significantly increased acinar cell necrosis at a similar percentage to that induced by cholecystokinin. Ethanol did not induce any significant cell necrosis. CONCLUSIONS Cigarette smoke condensate induces acinar cell injury and increases [Ca]c and amylase secretion, independently of intracellular enzyme activation, suggesting that tobacco could induce several main early events of pancreatitis in pancreatic acinar cells. However, ethanol only induces increases [Ca]c, having no effect on cell injury, amylase secretion, or intracellular enzyme activation.
Collapse
Affiliation(s)
| | | | - María Castro-Manzanares
- CD Pharma, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- CD Pharma, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
15
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2019; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
16
|
Wen L, Javed TA, Yimlamai D, Mukherjee A, Xiao X, Husain SZ. Transient High Pressure in Pancreatic Ducts Promotes Inflammation and Alters Tight Junctions via Calcineurin Signaling in Mice. Gastroenterology 2018; 155:1250-1263.e5. [PMID: 29928898 PMCID: PMC6174093 DOI: 10.1053/j.gastro.2018.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Pancreatitis after endoscopic retrograde cholangiopancreatography (PEP) is thought to be provoked by pancreatic ductal hypertension, via unknown mechanisms. We investigated the effects of hydrostatic pressures on the development of pancreatitis in mice. METHODS We performed studies with Swiss Webster mice, B6129 mice (controls), and B6129 mice with disruption of the protein phosphatase 3, catalytic subunit, βisoform gene (Cnab-/- mice). Acute pancreatitis was induced in mice by retrograde biliopancreatic ductal or intraductal infusion of saline with a constant hydrostatic pressure while the proximal common bile duct was clamped -these mice were used as a model of PEP. Some mice were given pancreatic infusions of adeno-associated virus 6-nuclear factor of activated T-cells-luciferase to monitor calcineurin activity or the calcineurin inhibitor FK506. Blood samples and pancreas were collected at 6 and 24 hours and analyzed by enzyme-linked immunosorbent assay, histology, immunohistochemistry, or fluorescence microscopy. Ca2+ signaling and mitochondrial permeability were measured in pancreatic acinar cells isolated 15 minutes after PEP induction. Ca2+-activated phosphatase calcineurin within the pancreas was tracked in vivo over 24 hours. RESULTS Intraductal pressures of up to 130 mm Hg were observed in the previously reported model of PEP; we found that application of hydrostatic pressures of 100 and 150 mm Hg for 10 minutes consistently induced pancreatitis. Pancreatic tissues had markers of inflammation (increased levels of interleukin [IL] 6, IL1B, and tumor necrosis factor), activation of signal transducer and activator of transcription 3, increased serum amylase and IL6, and loss of tight junction integrity. Transiently high pressures dysregulated Ca2+ processing (reduced Ca2+ oscillations and an increased peak plateau Ca2+ signal) and reduced the mitochondrial membrane potential. We observed activation of pancreatic calcineurin in the pancreas in mice. Cnab-/- mice, which lack the catalytic subunit of calcineurin, and mice given FK506 did not develop pressure-induced pancreatic inflammation, edema, or loss of tight junction integrity. CONCLUSIONS Transient high ductal pressure produces pancreatic inflammation and loss of tight junction integrity in a mouse model of PEP. These processes require calcineurin signaling. Calcineurin inhibitors might be used to prevent acute pancreatitis that results from obstruction.
Collapse
Affiliation(s)
- Li Wen
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Tanveer A Javed
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Dean Yimlamai
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Amitava Mukherjee
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Sohail Z Husain
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Wang L, Wagner LE, Alzayady KJ, Yule DI. Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 2018; 293:13112-13124. [PMID: 29970616 DOI: 10.1074/jbc.ra118.003421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Fine-tuning of the activity of inositol 1,4,5-trisphosphate receptors (IP3R) by a diverse array of regulatory inputs results in intracellular Ca2+ signals with distinct characteristics. These events allow the activation of specific downstream effectors. We reported previously that region-specific proteolysis represents a novel regulatory event for type 1 IP3R (R1). Specifically, caspase-fragmented R1 display a marked increase in single-channel open probability. More importantly, the distinct characteristics of the Ca2+ signals elicited via fragmented R1 can activate alternate downstream effectors. In this report, we expand these studies to investigate whether all IP3R subtypes are regulated by proteolysis. We now show that type 2 and type 3 IP3R (R2 and R3, respectively) are proteolytically cleaved in rodent models of acute pancreatitis. Surprisingly, fragmented IP3R retained tetrameric architecture, remained embedded in endoplasmic reticulum membranes and were not functionally disabled. Proteolysis was associated with a marked attenuation of the frequency of Ca2+ signals in pancreatic lobules. Consistent with these data, expression of DNAs encoding complementary R2 and R3 peptides mimicking fragmented receptors at particular sites, resulted in a significant decrease in the frequency of agonist-stimulated Ca2+ oscillations. Further, proteolysis of R2 resulted in a marked decrease in single-channel open probability. Taken together, proteolytic fragmentation modulates R2 and R3 activity in a region-specific manner, and this event may contribute to the altered Ca2+ signals in pancreatic acinar cells during acute pancreatitis.
Collapse
Affiliation(s)
- Liwei Wang
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
18
|
The shaping, making and baking of a pancreatologist. Pancreatology 2018; 18:347-353. [PMID: 29699868 DOI: 10.1016/j.pan.2018.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
The European Pancreatic Club Lifetime Achievement award is a distinction awarded for research on the pancreas. It comes with the obligation to submit a review article to the society's journal, Pancreatology. Since the research topics of my group have recently been covered in reviews and book chapters I want to use this opportunity to appraise the stations of my clinical and research education, the projects that I pursued and abandoned, the lessons I have learned from them, and the women and men who influenced my training and development as a physician scientist. Some crossed my path, some become collaborators and friends, and some turned into role models and had a lasting impact on my life.
Collapse
|
19
|
Gorelick FS, Lerch MM. Do Animal Models of Acute Pancreatitis Reproduce Human Disease? Cell Mol Gastroenterol Hepatol 2017; 4:251-262. [PMID: 28752114 PMCID: PMC5518169 DOI: 10.1016/j.jcmgh.2017.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/26/2017] [Indexed: 12/10/2022]
Abstract
Acute pancreatitis is currently the most common cause of hospital admission among all nonmalignant gastrointestinal diseases. To understand the pathophysiology of the disease and as a potential step toward developing targeted therapies, attempts to induce the disease experimentally began more than 100 years ago. Recent decades have seen progress in developing new experimental pancreatitis models as well as elucidating many underlying cell biological and pathophysiological disease mechanisms. Some models have been developed to reflect specific causes of acute pancreatitis in human beings. However, the paucity of data relating to the molecular mechanisms of human disease, the likelihood that multiple genetic and environmental factors affect the risk of disease development and its severity, and the limited information regarding the natural history of disease in human beings make it difficult to evaluate the value of disease models. Here, we provide an overview of key models and discuss our views on their strengths for characterizing cell biological disease mechanisms or for identifying potential therapeutic targets. We also acknowledge their limitations.
Collapse
Affiliation(s)
- Fred S. Gorelick
- Yale University Medical School and Veterans Affairs Medical Center, West Haven, Connecticut
- Correspondence Address correspondence to: Fred S. Gorelick, MD, VA Connecticut Healthcare System/Yale University Medical School, 950 Campbell Avenue, West Haven, Connecticut 06516. fax: (203) 937-3852.VA Connecticut Healthcare System/Yale University Medical School950 Campbell AvenueWest HavenConnecticut 06516
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Peng T, Peng X, Huang M, Cui J, Zhang Y, Wu H, Wang C. Serum calcium as an indicator of persistent organ failure in acute pancreatitis. Am J Emerg Med 2017; 35:978-982. [PMID: 28291705 DOI: 10.1016/j.ajem.2017.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
AIM Decreased level of serum calcium was commonly seen in critical illness. Hypocalcemia was significantly more frequent in patients with severe form of acute pancreatitis (AP), and a negative correlation was observed between endotoxemia and serum calcium in AP. AP patients with persistent organ failure (POF) show an extremely high mortality. The association underlying calcium and POF in AP has not been characterized. METHODS We conducted a retrospective cohort study of adult patients who presented within 72hours from symptom onset of AP at our center between January 2014 and May 2015. Demographic parameters on admission, organ failure assessment, laboratory data and in-hospital mortality were compared between patients with and without POF. Uni-and multi-variate logistic regression analyses were utilized to evaluated the predictive ability of serum calcium. RESULTS A total of 128 consecutive AP patients, including 29 with POF, were included. Compared to patients without POF, patients with POF showed a significantly lower value of serum calcium on admission (2.11±0.46 vs. 1.55±0.36mmol/L, P<0.001). After multivariate logistic analysis, serum calcium remained an independent risk factor for POF (Hazard ratio 0.21, 95% confident interval: 0.08-0.58; P=0.002). A calcium value of 1.97mmol/L predicted POF with an area under the curve (AUC) of 0.888, a sensitivity with 89.7% and specificity with 74.8%, respectively. CONCLUSION Our results indicate that serum calcium on admission is independently associated with POF in AP and may serve as a potential prognostic factor.
Collapse
Affiliation(s)
- Tao Peng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Xin Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Min Huang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Jing Cui
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Yushun Zhang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China.
| | - Heshui Wu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Chunyou Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| |
Collapse
|
21
|
Huang W, Cane MC, Mukherjee R, Szatmary P, Zhang X, Elliott V, Ouyang Y, Chvanov M, Latawiec D, Wen L, Booth DM, Haynes AC, Petersen OH, Tepikin AV, Criddle DN, Sutton R. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release. Gut 2017; 66:301-313. [PMID: 26642860 PMCID: PMC5284483 DOI: 10.1136/gutjnl-2015-309363] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. DESIGN Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. RESULTS Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. CONCLUSIONS Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry.
Collapse
Affiliation(s)
- Wei Huang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Matthew C Cane
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajarshi Mukherjee
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Peter Szatmary
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Xiaoying Zhang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Victoria Elliott
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - Yulin Ouyang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael Chvanov
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Diane Latawiec
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - Li Wen
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David M Booth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea C Haynes
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David N Criddle
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
23
|
Sendler M, Maertin S, John D, Persike M, Weiss FU, Krüger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. J Biol Chem 2016; 291:14717-31. [PMID: 27226576 DOI: 10.1074/jbc.m116.718999] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.
Collapse
Affiliation(s)
- Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandrina Maertin
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Daniel John
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Maria Persike
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - F Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Burkhard Krüger
- the Division of Medical Biology, University of Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | - Preshit Wagh
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Walter Halangk
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | | | - Julia Mayerle
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Markus M Lerch
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany,
| |
Collapse
|
24
|
Jin Y, Bai Y, Li Q, Bhugul PA, Huang X, Liu L, Pan L, Ni H, Chen B, Sun H, Zhang Q, Hehir M, Zhou M. Reduced Pancreatic Exocrine Function and Organellar Disarray in a Canine Model of Acute Pancreatitis. PLoS One 2016; 11:e0148458. [PMID: 26895040 PMCID: PMC4760769 DOI: 10.1371/journal.pone.0148458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the pancreatic exocrine function in a canine model and to analyze the changes in organelles of pancreatic acinar cells during the early stage of acute pancreatitis (AP). AP was induced by retrograde injection of 5% sodium taurocholate (0.5 ml/kg) into the main pancreatic duct of dogs. The induction of AP resulted in serum hyperamylasemia and a marked reduction of amylase activity in the pancreatic fluid (PF). The pancreatic exocrine function was markedly decreased in subjects with AP compared with the control group. After the induction of AP, histological examination showed acinar cell edema, cytoplasmic vacuolization, fibroblasts infiltration, and inflammatory cell infiltration in the interstitium. Electron micrographs after the induction of AP revealed that most of the rough endoplasmic reticulum (RER) were dilated and that some of the ribosomes were no longer located on the RER. The mitochondria were swollen, with shortened and broken cristae. The present study demonstrated, in a canine model, a reduced volume of PF secretion with decreased enzyme secretion during the early stage of AP. Injury of mitochondria and dilatation and degranulation of RER may be responsible for the reduced exocrine function in AP. Furthermore, the present model and results may be useful for researching novel therapeutic measures in AP.
Collapse
Affiliation(s)
- Yuepeng Jin
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yongyu Bai
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiang Li
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | | | - Xince Huang
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lewei Liu
- YueQing Affiliated Hospital of Wenzhou Medical University, YueQing People’s Hospital, Yueqing, Zhejiang Province, China
| | - Liangliang Pan
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haizhen Ni
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Zhejiang Provincial Top Key Discipline in surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiyu Zhang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Michael Hehir
- Ningbo University Medical School, Ningbo, Zhejiang Province, China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
25
|
Schick V, Scheiber JA, Mooren FC, Turi S, Ceyhan GO, Schnekenburger J, Sendler M, Schwaiger T, Omercevic A, Brandt CVD, Fluhr G, Domschke W, Krüger B, Mayerle J, Lerch MM. Effect of magnesium supplementation and depletion on the onset and course of acute experimental pancreatitis. Gut 2014; 63:1469-80. [PMID: 24277728 DOI: 10.1136/gutjnl-2012-304274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE High calcium concentrations are an established risk factor for pancreatitis. We have investigated whether increasing magnesium concentrations affect pathological calcium signals and premature protease activation in pancreatic acini, and whether dietary or intraperitoneal magnesium administration affects the onset and course of experimental pancreatitis. METHODS Pancreatic acini were incubated with up to 10 mM magnesium; [Ca(2+)](i) (fura-2AM) and intracellular protease activation (fluorogenic substrates) were determined over 60 min. Wistar rats received chow either supplemented or depleted for magnesium (<300 ppm to 30 000 ppm) over two weeks before pancreatitis induction (intravenous caerulein 10 µg/kg/h/4 h); controls received 1 µg/kg/h caerulein or saline. C57BL6/J mice received four intraperitoneal doses of magnesium (NaCl, Mg(2+) 55 192 or 384 mg/kg bodyweight) over 72 h, then pancreatitis was induced by up to eight hourly supramaximal caerulein applications. Pancreatic enzyme activities, protease activation, morphological changes and the immune response were investigated. RESULTS Increasing extracellular Mg(2+) concentration significantly reduced [Ca(2+)](i) peaks and frequency of [Ca(2+)](i) oscillations as well as intracellular trypsin and elastase activity. Magnesium administration reduced pancreatic enzyme activities, oedema, tissue necrosis and inflammation and somewhat increased Foxp3-positiv T-cells during experimental pancreatitis. Protease activation was found in animals fed magnesium-deficient chow-even with low caerulein concentrations that normally cause no damage. CONCLUSIONS Magnesium supplementation significantly reduces premature protease activation and the severity of pancreatitis, and antagonises pathological [Ca(2+)](i) signals. Nutritional magnesium deficiency increases the susceptibility of the pancreas towards pathological stimuli. These data have prompted two clinical trials on the use of magnesium in patients at risk for pancreatitis.
Collapse
Affiliation(s)
- Verena Schick
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jonas A Scheiber
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank C Mooren
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany Department of Sports Medicine, Justus-Liebig-Universität, Giessen, Germany
| | - Stefan Turi
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Güralp O Ceyhan
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany Department of Surgery, Klinikum Rechts der Isar, Technische Universität, München, Germany
| | | | - Matthias Sendler
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Theresa Schwaiger
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Armin Omercevic
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | - Gabriele Fluhr
- Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Wolfram Domschke
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany
| | - Burkhard Krüger
- Division of Medical Biology, Universität Rostock, Rostock, Germany
| | - Julia Mayerle
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine B, Westfälische Wilhelms-Universität, Münster, Germany Department of Medicine A, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Hypothermia slows sequential and parallel steps initiated during caerulein pancreatitis. Pancreatology 2014; 14:459-64. [PMID: 25459565 DOI: 10.1016/j.pan.2014.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple deleterious signaling cascades are simultaneously activated in acute pancreatitis (AP), which may limit the success of pharmacologic approaches targeting a single step. We explored whether cooling acinar cells slows distinct steps initiated from a stimulus causing pancreatitis simultaneously, and the temperature range over which inhibition of such deleterious signaling occurs. METHODS Caerulein (100 nM) induced trypsinogen activation (TGA), CXCL1, CXCL2 mRNA levels, cell injury were studied at 37 °C, 34 °C, 31 °C, 29 °C and 25 °C in acinar cells. Trypsin, cathepsin B activities and cathepsin B mediated TGA were studied at 37 °C, 23 °C and 4 °C. RESULTS There was >80% reduction in TGA, CXCL1 and CXCL2 mRNA levels at 29 °C, and in cell injury at 34 °C, compared to those at 37 °C. Trypsin activity, cathepsin B activity and cathepsin B mediated TGA at 23 °C were respectively, 53%, 64% and 26% of that at 37 °C. Acinar cooling to 31 °C reduced LDH leakage even when cooling was initiated an hour after caerulein stimulation at 37 °C. CONCLUSIONS Hypothermia synergistically and simultaneously slows parallel and distinct signaling steps initiated by caerulein, thereby reducing TGA, upregulation of inflammatory mediators and acinar injury.
Collapse
|
27
|
Hammer HF. An update on pancreatic pathophysiology (do we have to rewrite pancreatic pathophysiology?). Wien Med Wochenschr 2014; 164:57-62. [PMID: 24468827 DOI: 10.1007/s10354-013-0260-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/25/2013] [Indexed: 12/13/2022]
Abstract
This review focuses on seven aspects of physiology and pathophysiology of the exocrine pancreas that have been intensively discussed and studied within the past few years: (1) the role of neurohormonal mechanisms like melatonin, leptin, or ghrelin in the stimulation of pancreatic enzyme secretion; (2) the initiation processes of acute pancreatitis, like fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen by the lysosomal enzyme cathepsin B, or autoactivation of trypsinogen; (3) the role of genes in the pathogenesis of acute pancreatitis; (4) the role of alcohol and constituents of alcoholic beverages in the pathogenesis of acute pancreatitis; (5) the role of pancreatic hypertension, neuropathy, and central mechanisms for the pathogenesis of pain in chronic pancreatitis; (6) the relation between exocrine pancreatic function and diabetes mellitus; and (7) pathophysiology, diagnosis and treatment of pancreatic steatorrhea.
Collapse
Affiliation(s)
- Heinz F Hammer
- Klinische Abteilung für Gastroenterologie und Hepatologie, Medizinische Universitätsklinik, Auenbruggerplatz 15, 8036, Graz, Austria,
| |
Collapse
|
28
|
Smith JP, Solomon TE. Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol Gastrointest Liver Physiol 2014; 306:G91-G101. [PMID: 24177032 PMCID: PMC4073990 DOI: 10.1152/ajpgi.00301.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal peptide cholecystokinin (CCK) causes the release of pancreatic digestive enzymes and growth of the normal pancreas. Exogenous CCK administration has been used in animal models to study pancreatitis and also as a promoter of carcinogen-induced or Kras-driven pancreatic cancer. Defining CCK receptors in normal human pancreas has been problematic because of its retroperitoneal location, high concentrations of pancreatic proteases, and endogenous RNase. Most studies indicate that the predominant receptor in human pancreas is the CCK-B type, and CCK-A is the predominant form in rodent pancreas. In pancreatic cancer cells and tumors, the role of CCK is better established because receptors are often overexpressed by these cancer cells and stimulation of such receptors promotes growth. Furthermore, in established cancer, endogenous production of CCK and/or gastrin occurs and their actions stimulate the synthesis of more receptors plus growth by an autocrine mechanism. Initially it was thought that the mechanism by which CCK served to potentiate carcinogenesis was by interplay with inflammation in the pancreatic microenvironment. But with the recent findings of CCK receptors on early PanIN (pancreatic intraepithelial neoplasia) lesions and on stellate cells, the question has been raised that perhaps CCK actions are not the result of cancer but an early driving promoter of cancer. This review will summarize what is known regarding CCK, its receptors, and pancreatic cancer, and also what is unknown and requires further investigation to determine which comes first, the chicken or the egg, "CCK or the cancer."
Collapse
Affiliation(s)
- Jill P. Smith
- 1Clinical and Translational Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Travis E. Solomon
- 2Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
29
|
Orabi AI, Muili KA, Javed TA, Jin S, Jayaraman T, Lund FE, Husain SZ. Cluster of differentiation 38 (CD38) mediates bile acid-induced acinar cell injury and pancreatitis through cyclic ADP-ribose and intracellular calcium release. J Biol Chem 2013; 288:27128-27137. [PMID: 23940051 DOI: 10.1074/jbc.m113.494534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant Ca(2+) signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca(2+) signals due to bile acid exposure is the intracellular Ca(2+) channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca(2+) signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38(-/-)). Cytosolic Ca(2+) signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 μM). To focus on intracellular Ca(2+) release and to specifically exclude Ca(2+) influx, cells were perifused in Ca(2+)-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mM) or the cADPR antagonist 8-Br-cADPR (30 μM) abrogated TLCS-induced Ca(2+) signals and cell injury. TLCS-induced Ca(2+) release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca(2+) signaling.
Collapse
Affiliation(s)
| | | | | | | | - Thottala Jayaraman
- Departments of Internal Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35213
| | | |
Collapse
|
30
|
Mishra V, Cline R, Noel P, Karlsson J, Baty CJ, Orlichenko L, Patel K, Trivedi RN, Husain SZ, Acharya C, Durgampudi C, Stolz DB, Navina S, Singh VP. Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium. PLoS One 2013; 8:e66471. [PMID: 23824669 PMCID: PMC3688910 DOI: 10.1371/journal.pone.0066471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored.
Collapse
Affiliation(s)
- Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Cline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pawan Noel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny Karlsson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine J. Baty
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lidiya Orlichenko
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Krutika Patel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ram Narayan Trivedi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Chathur Acharya
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay P. Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144:1180-93. [PMID: 23622127 DOI: 10.1053/j.gastro.2012.12.043] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022]
Abstract
Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.
Collapse
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.
| | | |
Collapse
|
32
|
Ma B, Wu L, Lu M, Gao B, Qiao X, Sun B, Xue D, Zhang W. Differentially expressed kinase genes associated with trypsinogen activation in rat pancreatic acinar cells treated with taurolithocholic acid 3-sulfate. Mol Med Rep 2013; 7:1591-6. [PMID: 23467886 DOI: 10.3892/mmr.2013.1355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/27/2013] [Indexed: 11/05/2022] Open
Abstract
Trypsinogen activation is the initial factor involved in the development of all types of acute pancreatitis (AP) and has been suggested to be regulated by protein kinases. In the present study, AR42J rat pancreatic acinar cells were treated with taurolithocholic acid 3-sulfate (TLC-S), and trypsinogen activation was detected with bis-(CBZ-L-isoleucyl-L-prolyl-L-arginine amide) dihydrochloride (BZiPAR) staining and flow cytometry. Differentially expressed protein kinase genes were screened by Gene Chip analysis, and the functions of these kinases were analyzed. A significantly increased activation of trypsinogen in AR42J cells following treatment with TLC-S was observed. A total of 22 differentially expressed protein kinase genes were found in the TLC-S group, among which 19 genes were upregulated and 3 were downregulated. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, kinase genes of the same KEGG pathways were connected to create a network through signaling pathways, and 10 nodes of kinases were identified, which were mitogen-activated protein kinase (Mapk)8, Mapk14, Map2k4, interleukin-1 receptor-associated kinase 3 (Irak3), ribosomal protein S6 kinase, 90 kDa, polypeptide 2 (Rps6ka2), protein kinase C, alpha (Prkca), v-yes-1 Yamaguchi sarcoma viral related oncogene homolog (Lyn), protein tyrosine kinase 2 beta (Ptk2b), p21 protein (Cdc42/Rac)-activated kinase 4 (Pak4) and FYN oncogene related to SRC, FGR, YES (Fyn). The interactions between signaling pathways were further analyzed and a network was created. MAPK and calcium signaling pathways were found to be located at the center of the network. Thus, protein kinases constitute potential drug targets for AP treatment.
Collapse
Affiliation(s)
- Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lerch MM, Halangk W, Mayerle J. Preventing pancreatitis by protecting the mitochondrial permeability transition pore. Gastroenterology 2013; 144:265-269. [PMID: 23260493 DOI: 10.1053/j.gastro.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, Greifswald University Medicine, Greifswald, Germany.
| | - Walter Halangk
- Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia Mayerle
- Department of Medicine A, Greifswald University Medicine, Greifswald, Germany
| |
Collapse
|
34
|
Maléth J, Rakonczay Z, Venglovecz V, Dolman NJ, Hegyi P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 2013; 207:226-35. [PMID: 23167280 DOI: 10.1111/apha.12037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is an inflammatory disease with no specific treatment. One of the main reasons behind the lack of specific therapy is that the pathogenesis of acute pancreatitis is poorly understood. During the development of acute pancreatitis, the disease-inducing factors can damage both cell types of the exocrine pancreas, namely the acinar and ductal cells. Because damage of either of the cell types can contribute to the inflammation, it is crucial to find common intracellular mechanisms that can be targeted by pharmacological therapies. Despite the many differences, recent studies revealed that the most common factors that induce pancreatitis cause mitochondrial damage with the consequent breakdown of bioenergetics, that is, ATP depletion in both cell types. In this review, we summarize our knowledge of mitochondrial function and damage within both pancreatic acinar and ductal cells. We also suggest that colloidal ATP delivery systems for pancreatic energy supply may be able to protect acinar and ductal cells from cellular damage in the early phase of the disease. An effective energy delivery system combined with the prevention of further mitochondrial damage may, for the first time, open up the possibility of pharmacological therapy for acute pancreatitis, leading to reduced disease severity and mortality.
Collapse
Affiliation(s)
- J. Maléth
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - Z. Rakonczay
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - V. Venglovecz
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged; Hungary
| | - N. J. Dolman
- Molecular Probes Labelling and Detection Technologies; Life Technologies Corporation; Eugene; OR; USA
| | - P. Hegyi
- First Department of Medicine; University of Szeged; Szeged; Hungary
| |
Collapse
|
35
|
Fluhr G, Mayerle J, Weber E, Aghdassi A, Simon P, Gress T, Seufferlein T, Mössner J, Stallmach A, Rösch T, Müller M, Siegmund B, Büchner-Steudel P, Zuber-Jerger I, Kantowski M, Hoffmeister A, Rosendahl J, Linhart T, Maul J, Czakó L, Hegyi P, Kraft M, Engel G, Kohlmann T, Glitsch A, Pickartz T, Budde C, Nitsche C, Storck K, Lerch MM. Pre-study protocol MagPEP: a multicentre randomized controlled trial of magnesium sulphate in the prevention of post-ERCP pancreatitis. BMC Gastroenterol 2013; 13:11. [PMID: 23320650 PMCID: PMC3599317 DOI: 10.1186/1471-230x-13-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Acute pancreatitis is the most common complication of diagnostic and therapeutic endoscopic retrograde cholangiopancreatography (ERCP). In spite of continuing research, no pharmacologic agent capable of effectively reducing the incidence of ERCP-induced pancreatitis has found its way into clinical practise. A number of experimental studies suggest that intrapancreatic calcium concentrations play an important role in the initiation of intracellular protease activation, an initiating step in the course of acute pancreatitis. Magnesium can act as a calcium-antagonist and counteracts effects in calcium signalling. It can thereby attenuate the intracellular activation of proteolytic digestive enzymes in the pancreas and reduces the severity of experimental pancreatitis when administered either intravenously or as a food supplement. Methods We designed a randomized, double-blind, placebo-controlled phase III study to test whether the administration of intravenous magnesium sulphate before and after ERCP reduces the incidence and the severity of post-ERCP pancreatitis. A total of 502 adult patients with a medical indication for ERCP are to be randomized to receive either 4930 mg magnesium sulphate (= 20 mmol magnesium) or placebo 60 min before and 6 hours after ERCP. The incidence of clinical post-ERCP pancreatitis, hyperlipasemia, pain levels, use of analgetics and length of hospital stay will be evaluated. Conclusions If magnesium sulphate is found to be effective in preventing post-ERCP pancreatitis, this inexpensive agent with limited adverse effects could be used as a routine pharmacological prophylaxis. Trial registration Current Controlled Trials
ISRCTN46556454
Collapse
Affiliation(s)
- Gabriele Fluhr
- Central Endoscopy and Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, 17475, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
4-Phenylbutyric acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Pancreas 2013; 42:92-101. [PMID: 22889983 DOI: 10.1097/mpa.0b013e318259f6ca] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Endoplasmic reticulum (ER) stress leads to misfolded proteins inside the ER and initiates unfolded protein response (UPR). Unfolded protein response components are involved in pancreatic function and activated during pancreatitis. However, the exact role of ER stress in the exocrine pancreas is unclear. The present study examined the effects of 4-phenylbutyric acid (4-PBA), an ER chaperone, on acini and UPR components. METHODS Rat acini were stimulated with cholecystokinin (10 pmol/L to 10 nmol/L) with or without preincubation of 4-PBA. The UPR components were analyzed, including chaperone-binding protein, protein kinaselike ER kinase, X-box-binding protein 1, c-Jun NH(2)-terminal kinase, CCAAT/enhancer-binding protein homologous protein, caspase 3, and apoptosis. Effects of 4-PBA were measured on secretion, calcium, and trypsin activation. RESULTS 4-Phenylbutyric acid led to an increase of secretion, whereas trypsin activation with supraphysiological cholecystokinin was significantly reduced. 4-Phenylbutyric acid prevented chaperone-binding protein up-regulation, diminished protein kinaselike ER kinase, and c-Jun NH2-terminal kinase phosphorylation, prohibited X-box-binding protein 1 splicing and CCAAT/enhancer-binding protein homologous protein expression, caspase 3 activation, and apoptosis caused by supraphysiological cholecystokinin. CONCLUSION By incubation with 4-PBA, beneficial in urea cycle deficiency, it was possible to enhance enzyme secretion to suppress trypsin activation, UPR activation, and proapoptotic pathways. The data hint new perspectives for the use of chemical chaperones in pancreatic diseases.
Collapse
|
37
|
Frick TW. The role of calcium in acute pancreatitis. Surgery 2012; 152:S157-63. [PMID: 22906890 DOI: 10.1016/j.surg.2012.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023]
Abstract
Until recently, it was unclear whether calcium is more than a bystander in the development of acute pancreatitis. Now important evidence has been accumulated supporting a pivotal role of intracellular levels of calcium in the early pathogenesis of the disease. A sustained increase of cytosolic calcium concentrations, as observed in various models of acute pancreatitis, was identified as sabotaging crucial cellular defense mechanisms and initiating premature trypsinogen activation. These processes lead the acinar cell to necrosis, with spillage of activated proteases into the interstitial space, affecting surrounding acinar cells and initiating a vicious circle that ends in macroscopic acute pancreatitis and systemic inflammatory response syndrome. Comprehensive knowledge of the pathobiology of cytosolic calcium in the pancreatic acinar cell is leading to the understanding of coherent molecular pathways of early events in the pathogenesis of acute pancreatitis and is opening horizons for research into directly targeted therapeutic agents.
Collapse
Affiliation(s)
- Thomas W Frick
- Department of Surgery, University of Zürich, Wilhofstrasse, Zollikerberg, Switzerland.
| |
Collapse
|
38
|
Bai HX, Giefer M, Patel M, Orabi AI, Husain SZ. The association of primary hyperparathyroidism with pancreatitis. J Clin Gastroenterol 2012; 46:656-61. [PMID: 22874807 PMCID: PMC4428665 DOI: 10.1097/mcg.0b013e31825c446c] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The association between primary hyperparathyroidism (PHPT) and acute or chronic pancreatitis is controversial. For this reason, we conducted a review of the literature over the past 30 years to explore the relationship between these 2 disorders. Ten retrospective studies each with >50 patients diagnosed with PHPT were identified. With the notable exception of 2 studies, the rate of pancreatitis among patients with PHPT was higher than that reported in general among hospitalized patients without PHPT. A higher serum calcium level may contribute to pancreatitis in these cases, along with additional genetic or environmental insults. Hypercalcemia may predispose the pancreatic acinar cell to abnormal, sustained calcium levels, lead to premature pancreatic protease activation, and pancreatitis. Although there was only short-term follow-up, most reports cited that definitive treatment of PHPT by parathyroidectomy led to the resolution of pancreatitis attacks. The published cohorts of patients with PHPT and pancreatitis are subject to bias, because serum calcium screening was not universally performed among all control nonpancreatitis patients to evaluate for PHPT. However, the pooled clinical and experimental data suggest an association between PHPT and pancreatitis and implicate hypercalcemia. For clinicians, it is important to recognize pancreatitis in patients with PHPT and, conversely, to consider PHPT by checking serum calcium levels in patients, who present with an unexplained pancreatitis.
Collapse
Affiliation(s)
- Harrison X. Bai
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT
| | | | - Mohini Patel
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT
| | | | | |
Collapse
|
39
|
Mansfield C. Pathophysiology of acute pancreatitis: potential application from experimental models and human medicine to dogs. J Vet Intern Med 2012; 26:875-87. [PMID: 22676262 DOI: 10.1111/j.1939-1676.2012.00949.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
The cellular events leading to pancreatitis have been studied extensively in experimental models. Understanding the cellular events and inciting causes of the multisystem inflammatory cascades that are activated with this disease is of vital importance to advance diagnosis and treatment of this condition. Unfortunately, the pathophysiology of pancreatitis in dogs is not well understood, and extrapolation from experimental and human medicine is necessary. The interplay of the inflammatory cascades (kinin, complement, cytokine) is extremely complex in both initiating leukocyte migration and perpetuating disease. Recently, nitric oxide (NO) and altered microcirculation of the pancreas have been proposed as major initiators of inflammation. In addition, the role of the gut is becoming increasingly explored as a cause of oxidative stress and potentiation of systemic inflammation in pancreatitis.
Collapse
Affiliation(s)
- Caroline Mansfield
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Vic., Australia.
| |
Collapse
|
40
|
Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology 2012; 12:257-63. [PMID: 22687382 DOI: 10.1016/j.pan.2012.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aims to investigate the relationship between the protective effects of melatonin in pancreas and the expression of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+)/Ca(2+) exchanger (NCX) in rats with acute necrotizing pancreatitis (ANP), to verify whether melatonin ameliorates ANP by alleviating calcium overload. METHODS Ninety-six male Sprague-Dawley rats were randomly divided into four groups (sham operation group, ANP group, melatonin treatment group, melatonin contrast group). ANP was induced by the retrograde injection of 4% taurocholate (1 ml/kg body weight) into the biliopancreatic duct. Melatonin (50 mg/kg body weight) was administered 30 min before the induction of ANP in the melatonin treatment group. Rats in each group were euthanized at 1, 4, and 8 h after ANP induction. Pancreatic tissues were removed to measure SERCA and NCX levels and cytosolic calcium ion (Ca(2+)) concentration ([Ca(2+)](i)). RESULTS At each time point, SERCA and NCX levels in the melatonin treatment group were significantly higher than that in the ANP group, and lower than that in the sham group and the melatonin contrast group. These levels did not differ between the 4- and 8-h time points in the ANP group. [Ca(2+)](i) in pancreatic acinar cells was higher in the melatonin treatment group than in the sham group and the melatonin contrast group, but lower than in the ANP group, at each time point. CONCLUSION Melatonin can reduce pancreatic damage via the up-regulation of SERCA and NCX expression, which can alleviate calcium overload in pancreatic acinar cells.
Collapse
Affiliation(s)
- Jiaping Huai
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000 Zhejiang, China
| | | | | | | | | | | |
Collapse
|
41
|
Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. FIBROGENESIS & TISSUE REPAIR 2011; 4:26. [PMID: 22133269 PMCID: PMC3274456 DOI: 10.1186/1755-1536-4-26] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023]
Abstract
Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.
Collapse
Affiliation(s)
- Alexander A Aghdassi
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVES Ramon y Cajal discovered interstitial cells in the pancreas associated with intrinsic nerves. It was our aim to provide evidence for or against the hypothesis that the pancreatic duct harbors interstitial cells of Cajal (ICCs) that may function as pacemakers for duct motility. METHODS We used immunohistochemistry using c-Kit as the ICC marker and protein gene product 9.5 for nerves. Electron microscopy further characterized the cells and their interrelationships. RESULTS c-Kit-positive cells were associated with smooth muscle cells and nerve fibers of the duct wall and were rich in mitochondria, rough endoplasmic reticulum, and intermediate filaments; they possessed occasional caveolae and had a discontinuous basal lamina. They were connected by small gap junctions to each other and to smooth muscle cells. c-Kit-positive cells around large blood vessels were similar. c-Kit-positive cells within acini were similar in structure but were not associated with smooth muscle cells. CONCLUSIONS The c-Kit-positive cells around the main duct were identified as ICCs and have the morphological criteria to likely function as pacemaker cells for the previously observed spontaneous rhythmic pancreatic duct contractions. Interstitial cells of Cajal around the large blood vessels likely affect vessel wall rhythmicity.
Collapse
|
43
|
Xue P, Deng LH, Zhang ZD, Yang XN, Xia Q, Xiang DK, Huang L, Wan MH, Zhang HY. [Chaiqin Chengqi Decoction decreases pancreatic acinar cell calcium overload in rats with acute pancreatitis]. ACTA ACUST UNITED AC 2010; 6:1054-8. [PMID: 18847542 DOI: 10.3736/jcim20081013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the mechanism of Chaiqin Chengqi Decoction (CQCQD), a compound of traditional Chinese herbal medicine, acting on the pancreatic acinar cell calcium overload in rats with acute pancreatitis (AP). METHODS A total of 30 SD rats were randomly divided into normal control group, untreated group and CQCQD group (n=10, respectively). AP was induced in rats by caerulein (5x50 mug/kg) intraperitoneal injection within 4 h. The pancreatic tissue SERCA1 and SERCA2 mRNA expressions were detected by fluorescent quantization polymerase chain reaction method; intracellular calcium fluorescence intensity (FI) of pancreatic acinar cells and the pancreatic pathological score were measured by laser scanning confocal microscopy and light microscopy respectively. RESULTS There were no SERCA1 mRNA expressions in pancreatic acinar cells of rats in the normal control group and the untreated group. The expression of pancreatic SERCA2 mRNA in the untreated group was down-regulated compared with that in the normal control group (expression ratio=0.536; P=0.001); the expression of pancreatic SERCA2 mRNA in the CQCQD group was up-regulated compared with that in the untreated group (expression ratio=2.00; P=0.012). The pancreatic pathological score in the CQCQD group was lower than that in the untreated group and the FI of Ca(2+) was also lower. CONCLUSION CQCQD can up-regulate the expression of pancreatic SERCA2 mRNA, release the calcium overload, and hence reduce the pathological changes in pancreatic tissue.
Collapse
Affiliation(s)
- Ping Xue
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Malo A, Krüger B, Seyhun E, Schäfer C, Hoffmann RT, Göke B, Kubisch CH. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2010; 299:G877-86. [PMID: 20671193 DOI: 10.1152/ajpgi.00423.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress leads to accumulation of un- or misfolded proteins inside the ER and initiates the unfolded protein response (UPR). Several UPR components are physiologically involved in pancreatic development and are pathophysiologically activated during acute pancreatitis. However, the exact role of ER stress in exocrine pancreatic acini is mainly unclear. The present study examined the effects of tauroursodeoxycholic acid (TUDCA), a known ER chaperone, on acinar function and UPR components. Isolated rat pancreatic acini were stimulated by increasing concentrations of cholecystokinin (CCK-8) with or without preincubation of TUDCA. UPR components were analyzed, including chaperone binding protein (BiP), protein kinase-like ER kinase (PERK), X-box binding protein (XBP)-1, c-Jun NH(2)-terminal kinase (JNK), CCAAT/enhancer binding protein homologues protein (CHOP), caspase 3 activation, and apoptosis. In addition, TUDCA effects were measured on amylase secretion, calcium signaling, trypsin, and cathepsin B activation. TUDCA preincubation led to a significant increase in amylase secretion after CCK-8 stimulation, a 50% reduction of intracellular trypsin activation, and reduced cathepsin B activity, although the effects for cathepsin B were not statistical significant. Furthermore, TUDCA prevented the CCK-8-induced BiP upregulation, diminished PERK and JNK phosphorylation, and prohibited the expression of CHOP, caspase 3 activation and apoptosis. XBP-1 splicing was not altered. ER stress response mechanisms are activated in pancreatic inflammation. Chemical chaperones enhance enzyme secretion of pancreatic acini, reduce ER stress responses, and attenuate ER stress-associated apoptosis. These data hint new perspectives for an employment of chemical chaperones in the therapy of acute pancreatitis.
Collapse
Affiliation(s)
- A Malo
- Dept. of Internal Medicine, University of Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen P, Hu B, Tan Q, Liu L, Li D, Jiang C, Wu H, Li J, Tang C. Role of neurocrine somatostatin on sphincter of Oddi contractility and intestinal ischemia reperfusion-induced acute pancreatitis in macaques. Neurogastroenterol Motil 2010; 22:935-41, e240. [PMID: 20497509 DOI: 10.1111/j.1365-2982.2010.01506.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (IIR) is implicated in the pathogenesis of severe acute pancreatitis (SAP). This study investigates the impact of neurocrine somatostatin (SST) on the contraction of sphincter of Oddi (SO) during IIR. METHODS Intestinal ischemia-reperfusion model in macaques was induced by occluding the superior mesenteric artery. Pancreatitis was confirmed by pancreatic histology and serum levels of amylase and lipase. SST and its receptors (SSTRs) in SO were visualized by immunohistochemistry. Effects of SST on the contraction of the isolated SO were recorded in vitro. KEY RESULTS Inflammatory scores of the pancreas and serum levels of amylase or lipase in the macaques that underwent IIR were significantly higher than those in the control group. The frequency and amplitude of phasic contraction of the circular muscle in SO was increased by SST in a concentration-dependent manner. Compared with the control group, SST innervation or SSTR2 expression in SO of macaques treated with IIR was increased 5.2 fold or 5.6 fold respectively. Prophylactic infusion of SST before IIR significantly reduced SST immunoreactive fibers in SO as compared to those in the IIR group and remarkably alleviated the pathophysiologic changes due to IIR. CONCLUSIONS & INFERENCES Increased SST innervation in SO during the early phase of IIR associated with the contraction of circular muscle of SO, which might be one of the promoting factors associated with the development of SAP. Prevention of IIR or intervention of SO contraction after occurrence of acute pancreatitis might be beneficial for preventing SAP.
Collapse
Affiliation(s)
- P Chen
- Department of Gastroenterology, West China Hospital, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Orabi AI, Shah AU, Ahmad MU, Choo-Wing R, Parness J, Jain D, Bhandari V, Husain SZ. Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G196-204. [PMID: 20448143 PMCID: PMC2904115 DOI: 10.1152/ajpgi.00498.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a painful, inflammatory disorder for which adequate treatments are lacking. An early, critical step in its development is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. This Ca(2+) release is modulated by the intracellular Ca(2+) channel the ryanodine receptor (RYR). We have previously shown that RYR inhibition reduces pathological intra-acinar protease activation, an early marker of pancreatitis. In this study, we examined whether pretreatment with the RYR inhibitor dantrolene attenuates the severity of caerulein-induced pancreatitis in mice. Immunofluorescent labeling for RYR from mouse pancreatic sections showed localization to the basolateral region of the acinar cell. After 1 h of caerulein hyperstimulation in vivo, dantrolene 1) reduced pancreatic trypsin activity by 59% (P < 0.05) and 2) mitigated early ultrastructural derangements within the acinar cell. Eight hours after pancreatitis induction, dantrolene reduced pancreatic trypsin activity and serum amylase by 61 and 32%, respectively (P < 0.05). At this later time point, overall histological severity of pancreatitis was reduced by 63% with dantrolene pretreatment (P < 0.05). TUNEL-positive cells were reduced by 58% (P < 0.05). These data suggest that the RYR plays an important role in mediating early acinar cell events during in vivo pancreatitis and contributes to disease severity. Blockade of Ca(2+) signals and particularly RYR-Ca(2+) may be useful as prophylactic treatment for this disease in high-risk settings for pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Parness
- 2Department of Anesthesiology, Children's Hospital of Pittsburgh/University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dhanpat Jain
- 3Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | | |
Collapse
|
47
|
García M, Calvo JJ. Cardiocirculatory pathophysiological mechanisms in severe acute pancreatitis. World J Gastrointest Pharmacol Ther 2010; 1:9-14. [PMID: 21577289 PMCID: PMC3091142 DOI: 10.4292/wjgpt.v1.i1.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/25/2009] [Accepted: 01/01/2010] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common and potentially lethal acute inflammatory process. Although the majority of patients have a mild episode of AP, 10%-20% develop a severe acute pancreatitis (SAP) and suffer systemic inflammatory response syndrome (SIRS) and/or pancreatic necrosis. The main aim of this article is to review the set of events, first localized in the pancreas, that lead to pancreatic inflammation and to the spread to other organs contributing to multiorganic shock. The early pathogenic mechanisms in SAP are not completely understood but both premature activation of enzymes inside the pancreas, related to an impaired cytosolic Ca2+ homeostasis, as well as release of pancreatic enzymes into the bloodstream are considered important events in the onset of pancreatitis disease. Moreover, afferent fibers within the pancreas release neurotransmitters in response to tissue damage. The vasodilator effects of these neurotransmitters and the activation of pro-inflammatory substances play a crucial role in amplifying the inflammatory response, which leads to systemic manifestation of AP. Damage extension to other organs leads to SIRS, which is usually associated with cardiocirculatory physiology impairment and a hypotensive state. Hypotension is a risk factor for death and is associated with a significant hyporesponsiveness to vasoconstrictors. This indicates that stabilization of the patient, once this pathological situation has been established, would be a very difficult task. Therefore, it seems particularly necessary to understand the pathological mechanisms involved in the first phases of AP to avoid damage beyond the pancreas. Moreover, efforts must also be directed to identify those patients who are at risk of developing SAP.
Collapse
Affiliation(s)
- Mónica García
- Mónica García, José Julián Calvo, Department of Physiology and Pharmacology, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
48
|
|
49
|
Diagnostic workup of patients with pancreatic diseases. Eur Surg 2009. [DOI: 10.1007/s10353-009-0500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Shah AU, Sarwar A, Orabi AI, Gautam S, Grant WM, Park AJ, Shah AU, Liu J, Mistry PK, Jain D, Husain SZ. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. Am J Physiol Gastrointest Liver Physiol 2009; 297:G967-73. [PMID: 20501444 PMCID: PMC2777459 DOI: 10.1152/ajpgi.00181.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The premature activation of digestive proenzymes, specifically proteases, within the pancreatic acinar cell is an early and critical event during acute pancreatitis. Our previous studies demonstrate that this activation requires a distinct pathological rise in cytosolic Ca(2+). Furthermore, we have shown that a target of aberrant Ca(2+) in acinar cells is the Ca(2+)/calmodulin-dependent phosphatase calcineurin (PP2B). In this study, we hypothesized that PP2B mediates in vivo protease activation and pancreatitis severity. To test this, pancreatitis was induced in mice over 8 h by administering hourly intraperitoneal injections of the cholecystokinin analog caerulein (50 microg/kg). Treatment with the PP2B inhibitor FK506 at 1 and 8 h after pancreatitis induction reduced trypsin activities by greater than 50% (P < 0.005). Serum amylase and IL-6 was reduced by 86 and 84% relative to baseline (P < 0.0005) at 8 h, respectively. Histological severity of pancreatitis, graded on the basis of pancreatic edema, acinar cell vacuolization, inflammation, and apoptosis, was reduced early in the course of pancreatitis. Myeloperoxidase activity from both pancreas and lung was reduced by 93 and 83% relative to baseline, respectively (P < 0.05). These data suggest that PP2B is an important target of the aberrant acinar cell Ca(2+) rise associated with pathological protease activation and pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Liu
- Departments of 1Pediatrics and
| | | | - Dhanpat Jain
- 2Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|