1
|
Wu X, Seraia E, Hatch SB, Wan X, Ebner DV, Aroldi F, Jiang Y, Ryan AJ, Bogenrieder T, Weyer-Czernilofsky U, Rieunier G, Macaulay VM. CHK1 inhibition exacerbates replication stress induced by IGF blockade. Oncogene 2022; 41:476-488. [PMID: 34773074 PMCID: PMC8782724 DOI: 10.1038/s41388-021-02080-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.
Collapse
Affiliation(s)
- Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Xiao Wan
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Yanyan Jiang
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- AMAL Therapeutics, c/o Fondation pour Recherches Médicales, 1205 Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | - Guillaume Rieunier
- Department of Oncology, University of Oxford, Oxford, UK.
- Immunocore Ltd, Abingdon, UK.
| | | |
Collapse
|
2
|
Abhinav RP, Williams J, Livingston P, Anjana RM, Mohan V. Burden of diabetes and oral cancer in India. J Diabetes Complications 2020; 34:107670. [PMID: 32651032 DOI: 10.1016/j.jdiacomp.2020.107670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Oral cancer and diabetes are highly prevalent among the Indian population and are part of the top four non-communicable diseases responsible for mortality and morbidity. Their numbers are so great that they pose a unique burden to the socioeconomic growth of the country. In recent years, there has been an increase in the number of studies examining the role of diabetes in oral cancer reporting co-existence of diabetes and cancer. There is also growing evidence of a higher risk for developing a number of cancers among individuals with diabetes, including pancreatic, liver, gynecologic, colorectal, oral and breast cancer, and consequently 'diabetic oncopathy' is emerging as one of the complications of diabetes. Diabetes may lead to the development of cancer through oxidative damage leading to accumulation of DNA mutations and/or through immune dysfunction, which predisposes to viral infection. Cancer and diabetes may co-occur due to shared risk factors such as increased insulin-like growth factor-1 and obesity, but there is no clear biologic link between the two disorders. This literature review aims to review the evidence showing the current burden of two non-communicable diseases, diabetes and oral cancer and their potential association, with particular reference to India.
Collapse
Affiliation(s)
- Rajendra Prabhu Abhinav
- School of Health and Social Development, Deakin University, Geelong, Victoria, Australia; Madras Diabetes Research Foundation, Chennai, India
| | - Joanne Williams
- School of Health and Social Development, Deakin University, Geelong, Victoria, Australia
| | - Patricia Livingston
- School of Nursing and Midwifery, Deakin University, Geelong, Victoria, Australia
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Chennai, India.
| |
Collapse
|
3
|
Development of a Whole Organism Platform for Phenotype-Based Analysis of IGF1R-PI3K-Akt-Tor Action. Sci Rep 2017; 7:1994. [PMID: 28515443 PMCID: PMC5435685 DOI: 10.1038/s41598-017-01687-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Aberrant regulation of the insulin-like growth factor (IGF)/insulin (IIS)-PI3K-AKT-TOR signaling pathway is linked to major human diseases, and key components of this pathway are targets for therapeutic intervention. Current assays are molecular target- or cell culture-based platforms. Due to the great in vivo complexities inherited in this pathway, there is an unmet need for whole organism based assays. Here we report the development of a zebrafish transgenic line, Tg(igfbp5a:GFP), which faithfully reports the mitotic action of IGF1R-PI3K-Akt-Tor signaling in epithelial cells in real-time. This platform is well suited for high-throughput assays and real-time cell cycle analysis. Using this platform, the dynamics of epithelial cell proliferation in response to low [Ca2+] stress and the distinct roles of Torc1 and Torc2 were elucidated. The availability of Tg(igfbp5a:GFP) line provides a whole organism platform for phenotype-based discovery of novel players and inhibitors in the IIS-PI3K-Akt-Tor signaling pathway.
Collapse
|
4
|
Wang SW, Cheung HP, Tong Y, Lu J, Ng TB, Zhang YB, Zhang ZJ, Lee KF, Lam JKW, Sze SCW. Steroidogenic effect of Erxian decoction for relieving menopause via the p-Akt/PKB pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:188-195. [PMID: 27871904 DOI: 10.1016/j.jep.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/30/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erxian decoction (EXD), an empirical Chinese medicine formula, is effectively used in the clinical treatment of menopause-related symptoms in China. Previous data from our group show that EXD has steroidogenic effect on natural menopausal Sprague-Dawley-rats (SD-rats) as an animal model of menopause. However, the mechanistic studies on steroidogenic effects of EXD are still inadequate. Hence, the mechanisms of steroidogenic effects of EXD were studied in vitro and in vivo in this study. MATERIALS AND METHODS Menopause causes a decline of endocrine function and a series of symptoms. In this study, 16-20-month-old female SD rats with a low serum estradiol level were employed. Their endocrine functions after treatment with EXD (4.1g/kg) were assessed by determination of their serum estradiol level. Proteins involved in the steroidogenic pathway including StAR, 17βHSD, 3βHSD, aromatase, and activation of phosphorylated Protein Kinase B (p-Akt/PKB), as well as estradiol receptor proteins (ERα & ERβ) after EXD treatment were analyzed. Kinase inhibition assay was conducted to confirm the mechanism of steroidogenic effects of EXD in vitro. MCF-7 and BT-483 cells were used to investigate whether EXD stimulated breast cancer cell proliferation. RESULTS Results revealed a significantly ameliorated serum estradiol level, and a significantly increased expression of ovarian aromatase and PKB in the EXD-treated rats. EXD attenuated 17β-estradiol stimulated proliferation of breast cancer cells. CONCLUSIONS The results obtained from immunoblotting and measurements of serum estradiol level of the present investigation revealed that EXD may relieve the menopausal syndrome through an upregulation of ovarian aromatase and p-PKB expression without stimulating the growth of breast cancer cells.
Collapse
Affiliation(s)
- Shi Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Ho Pan Cheung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Jia Lu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region.
| | - Yan Bo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Jenny Ka Wing Lam
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Abdel-Rahman O. Insulin-like growth factor pathway aberrations and gastric cancer; evaluation of prognostic significance and assessment of therapeutic potentials. Med Oncol 2014; 32:431. [PMID: 25487446 DOI: 10.1007/s12032-014-0431-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/04/2023]
Abstract
Gastric cancer is a major cause of treatment-related mortality and morbidity worldwide, it ranks as the fourth most common cause of cancer-related death in males and fifth most common cause of cancer-related death in women. The prognosis of advanced cases with gastric cancer looks poor with the majority dying within 1 year of diagnosis of metastatic disease. Thus, intensive search for new innovative treatments has been a major focus of current oncology research. Insulin-like growth factor (IGF) pathway has been evaluated extensively in preclinical settings of gastric cancer. Initially, a number of studies have shown a potential role for aberrant tissue expression of IGFR-related markers in the process of gastric carcinogenesis, and a number of other studies have shown a clear association between IGFR expression and aggressive histopathological subtypes. However, clinical introduction of IGFR inhibitors into gastric cancer treatment has been delayed compared to other solid tumors. This review provides concise evaluation of prognostic significance of IGF pathway-related markers in gastric cancer with assessment of potential therapeutic strategies.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt,
| |
Collapse
|
6
|
Yan Y, Cui H, Guo C, Li J, Huang X, Wei J, Qin Q. An insulin-like growth factor homologue of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral replication. J Gen Virol 2013; 94:2759-2770. [PMID: 24062533 DOI: 10.1099/vir.0.056135-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Insulin-like growth factors (IGFs) play crucial roles in regulating cell differentiation, proliferation and apoptosis. In this study, a novel IGF homologue gene (IGF-like) encoded by Singapore grouper iridovirus (SGIV) ORF062R (termed SGIV–IGF), was cloned and characterized. The coding region of SGIV–IGF is 771 bp in length, with a variable number of tandem repeats (VNTR) locus at the 3′-end. We cloned one isoform of this novel gene, 582 bp in length, containing the predicted IGF domain and 3.6 copy numbers of the 27 bp repeat unit. SGIV–IGF was an early transcribed gene during viral infection, and SGIV–IGF was distributed predominantly in the cytoplasm with a diffused granular appearance. Intriguingly, overexpression of SGIV–IGF was able to promote the growth of grouper embryonic cells (GP cells) by promoting G1/S phase transition, which was at least partially dependent on its 3′-end VNTR locus. Furthermore, viral titre assay and real-time quantitative PCR (RT-qPCR) analysis proved that SGIV–IGF could promote SGIV replication in grouper cells. In addition, overexpression of SGIV–IGF mildly facilitated apoptosis in SGIV-infected non-host fathead minnow (FHM) cells. Together, our study demonstrated a novel functional gene of SGIV which may regulate viral replication and cellular processes through multiple mechanisms that appear to be cell type-dependent.
Collapse
Affiliation(s)
- Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Huachun Cui
- Department of Medicine, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
| | - Chuanyu Guo
- University of Chinese Academy of Sciences, Beijing, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| |
Collapse
|
7
|
The Effect of Elephantopus scaber L. on Liver Regeneration after Partial Hepatectomy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:369180. [PMID: 23365606 PMCID: PMC3556435 DOI: 10.1155/2013/369180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022]
Abstract
Liver regeneration after partial hepatectomy (PHx) is a physiological response for maintaining homeostasis. The aim of this study is to investigate effects of Elephantopus scaber L.- (ESL-) induced liver regeneration on growth factors (HGF and IGF-1), cell cycle regulation, and apoptosis suppressed. In this study, we fed five Chinese medicinal herbs (1 g/kg/day), Codonopsis pilosula (CP, Dangshen), Salvia miltiorrhiza Bunge (SMB, Danshen,), Bupleurum kasi (BK, Chaihu), Elephantopus scaber L. (ESL, Teng-Khia-U), and Silymarin (Sm, 25 mg/kg) for 7 days to male Spraue-Dawley rats. Then surgical 2/3 PHx was conducted and liver regeneration mechanisms were estimated on the following 24 hrs and 72 hrs. The activities of growth factors (HGF and IGF-I) and cell cycle proteins were measured by Western blot and RT-PCR. Histological analysis and apoptosis were detected by H&E stain and TUNEL. The results showed that extraction of Elephantopus scaber L. (ESL) and Silymarin (Sm, positive control) were increased protein expression levels of HGF and IGF-1 which leads into cell cycle. These results suggest that the ESL plays a crucial role in cell cycle-induced liver regeneration and apoptosis. These results suggested that the ESL plays a crucial role in cell cycle-induced liver regeneration and suppressed hepatocytes apoptosis.
Collapse
|
8
|
Abstract
Insulin-like growth factor (IGF) plays an important role in tissue growth and development. Several studies have demonstrated the association between circulating levels of IGF-1 and -2 and cancer risk, and the IGF system has been implicated in the oncogenesis of essentially all solid and hematologic malignancies. The optimal strategy for targeting IGF signaling in patients with cancer is not clear. The modest benefits reported thus far underscore the need for a better understanding of IGF signaling, which would enable clinicians to identify the subset of patients with the greatest likelihood of attaining benefit from this targeted approach.
Collapse
Affiliation(s)
- S John Weroha
- Department of Oncology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA
| | | |
Collapse
|
9
|
Tian J, Berton TR, Shirley SH, Lambertz I, Gimenez-Conti IB, DiGiovanni J, Korach KS, Conti CJ, Fuchs-Young R. Developmental stage determines estrogen receptor alpha expression and non-genomic mechanisms that control IGF-1 signaling and mammary proliferation in mice. J Clin Invest 2011; 122:192-204. [PMID: 22182837 DOI: 10.1172/jci42204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 11/02/2011] [Indexed: 12/31/2022] Open
Abstract
Insulin like growth factor-1 (IGF-1) stimulates increased proliferation and survival of mammary epithelial cells and also promotes mammary tumorigenesis. To study the effects of IGF-1 on the mammary gland in vivo, we used BK5.IGF-1 transgenic (Tg) mice. In these mice, IGF-1 overexpression is controlled by the bovine keratin 5 promoter and recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 that is seen in women. Studies have shown that BK5.IGF-1 Tg mice are more susceptible to mammary tumorigenesis than wild-type littermates. Investigation of the mechanisms underlying increased mammary cancer risk, reported here, revealed that IGF-1 preferentially activated the PI3K/Akt pathway in glands from prepubertal Tg mice, resulting in increased cyclin D1 expression and hyperplasia. However, in glands from postpubertal Tg mice, a pathway switch occurred and activation of the Ras/Raf/MAPK pathway predominated, without increased cyclin D1 expression or proliferation. We further showed that in prepubertal Tg glands, signaling was mediated by formation of an ERα/IRS-1 complex, which activated IRS-1 and directed signaling via the PI3K/Akt pathway. Conversely, in postpubertal Tg glands, reduced ERα expression failed to stimulate formation of the ERα/IRS-1 complex, allowing signaling to proceed via the alternate Ras/Raf/MAPK pathway. These in vivo data demonstrate that changes in ERα expression at different stages of development direct IGF-1 signaling and the resulting tissue responses. As ERα levels are elevated during the prepubertal and postmenopausal stages, these may represent windows of susceptibility during which increased IGF-1 exposure maximally enhances breast cancer risk.
Collapse
Affiliation(s)
- Jie Tian
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nowakowska-Zajdel E, Mazurek U, Ziółko E, Niedworok E, Fatyga E, Kokot T, Muc-Wierzgoń M. Analysis of Expression Profile of Gene Encoding Proteins of Signal Cascades Activated by Insulin-like Growth Factors in Colorectal Cancer. Int J Immunopathol Pharmacol 2011; 24:781-7. [DOI: 10.1177/039463201102400324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study is to analyse gene typing with the use of the microarray technique (HG-U133A, Affymetrix), differentiating colorectal cancer tissues from tissues assessed histopathologically as healthy ones among a panel of 93 mRNA of gene encoding proteins involved in the activation of cellular signal transduction pathways by insulin-like growth factors. The study was conducted on a group of 8 colorectal cancer patients. Frozen tumor and healthy specimens from the patients were used in molecular tests. Transcript IGF2 differentiated cancer from healthy tissue. Among the genes participating in the cascade of signal transfer in cells activated by IGF, GRB10, PIK3R3, PIK3R1, and IRSI were qualified as differentiating transcripts. IRSI indicated over-expression in tumour. Transcript SMAD2 showed a significant changed in tumour samples (increased expression).
Collapse
Affiliation(s)
| | - U. Mazurek
- Department of Molecular Biology, Silesian Medical University, Sosnowiec
| | - E. Ziółko
- Department of Internal Medicine, Silesian Medical University, Bytom
| | - E. Niedworok
- Department of Human Nutrition, Silesian Medical University, Bytom, Poland
| | - E. Fatyga
- Department of Internal Medicine, Silesian Medical University, Bytom
| | - T. Kokot
- Department of Internal Medicine, Silesian Medical University, Bytom
| | - M. Muc-Wierzgoń
- Department of Internal Medicine, Silesian Medical University, Bytom
| |
Collapse
|
11
|
Vishwamitra D, Shi P, Wilson D, Manshouri R, Vega F, Schlette EJ, Amin HM. Expression and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle cell lymphoma. Haematologica 2011; 96:871-80. [PMID: 21330319 DOI: 10.3324/haematol.2010.031567] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase induces significant oncogenic effects. Strategies to block IGF-IR signaling are being tested in clinical trials that include patients with aggressive solid malignancies. Mantle cell lymphoma is a B-cell neoplasm with poor prognosis and a tendency to develop resistance. The expression and potential significance of IGF-IR in mantle cell lymphoma are not known. DESIGN AND METHODS We used reverse transcriptase polymerase chain reaction, quantitative real-time polymerase chain reaction, immunoprecipitation, western blotting, flow cytometry, and immunohistochemistry to analyze the expression of IGF-IR mRNA, and IGF-IR and pIGF-IR proteins in mantle cell lymphoma cell lines and patients' specimens. Selective and specific blockade of IGF-IR was achieved using picropodophyllin and short-interfering RNA, respectively. Cell viability, apoptosis, cell cycle, cellular morphology, cell proliferation, and target proteins were then analyzed. RESULTS We detected the expression of IGF-IR and pIGF-IR in mantle cell lymphoma cell lines. Notably, IGF-IR molecules/cell were markedly increased in mantle cell lymphoma cell lines compared with human B-lymphocytes. IGF-IR and pIGF-IR were also detected in 78% and 74%, respectively, of 23 primary mantle cell lymphoma specimens. Treatment of serum-deprived mantle cell lymphoma cell lines with IGF-I salvaged these cells from apoptosis. Selective inhibition of IGF-IR by picropodophyllin decreased the viability and proliferation of mantle cell lymphoma cell lines, and induced apoptosis and cell cycle arrest. Selective inhibition of IGF-IR was associated with caspase-3, caspase-8, caspase-9, and PARP cleavage, cytochrome c release, up-regulation of cyclin B1, and down-regulation of cyclin D1, pCdc2, pIRS-1, pAkt, and pJnk. Similar results were obtained by using IGF-IR short-interfering RNA. In addition, picropodophyllin decreased the viability and proliferation of primary mantle cell lymphoma cells that expressed IGF-IR. CONCLUSIONS IGF-IR is up-regulated and frequently activated in mantle cell lymphoma. Our data suggest that IGF-IR could be a molecular target for the treatment of mantle cell lymphoma.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, Unit 72, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Senthilkumar K, Elumalai P, Arunkumar R, Banudevi S, Gunadharini ND, Sharmila G, Selvakumar K, Arunakaran J. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol Cell Biochem 2010; 344:173-84. [PMID: 20658310 DOI: 10.1007/s11010-010-0540-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/14/2010] [Indexed: 01/02/2023]
Abstract
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.
Collapse
Affiliation(s)
- Kalimuthu Senthilkumar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamilnadu, India.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo S, Holzle D, Luchini DN, Blond SY, Billadeau DD, Kozikowski AP. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem 2009; 52:1853-63. [PMID: 19338355 DOI: 10.1021/jm801317h] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have demonstrated that glycogen synthase kinase 3beta (GSK-3beta) is overexpressed in human colon and pancreatic carcinomas, contributing to cancer cell proliferation and survival. Here, we report the design, synthesis, and biological evaluation of benzofuran-3-yl-(indol-3-yl)maleimides, potent GSK-3beta inhibitors. Some of these compounds show picomolar inhibitory activity toward GSK-3beta and an enhanced selectivity against cyclin-dependent kinase 2 (CDK-2). Selected GSK-3beta inhibitors were tested in the pancreatic cancer cell lines MiaPaCa-2, BXPC-3, and HupT3. We determined that some of these compounds, namely compounds 5, 6, 11, 20, and 26, demonstrate antiproliferative activity against some or all of the pancreatic cancer cells at low micromolar to nanomolar concentrations. We found that the treatment of pancreatic cancer cells with GSK-3beta inhibitors 5 and 26 resulted in suppression of GSK-3beta activity and a distinct decrease of the X-linked inhibitor of apoptosis (XIAP) expression, leading to significant apoptosis. The present data suggest a possible role for GSK-3beta inhibitors in cancer therapy, in addition to their more prominent applications in CNS disorders.
Collapse
Affiliation(s)
- Irina N Gaisina
- Department of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Weroha SJ, Haluska P. IGF-1 receptor inhibitors in clinical trials--early lessons. J Mammary Gland Biol Neoplasia 2008; 13:471-83. [PMID: 19023648 PMCID: PMC2728362 DOI: 10.1007/s10911-008-9104-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/05/2008] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor pathway plays a major role in cancer cell proliferation, survival and resistance to anti-cancer therapies in many human malignancies, including breast cancer. As a key signaling component of IGF system, the IGF-1 receptor is the target of several investigational agents in clinical and pre-clinical development. This review will focus on the rationale for targeting the IGF-1 receptor and other components of the IGF-1 system. In addition, we will examine the role of IGF-1 signaling in resistance to clinically important breast cancer therapies, including cytotoxic chemotherapy, hormonal therapy and erbB targeted agents. We will also review the completed and ongoing clinical investigations with IGF-1 receptors inhibitors to date and the utility of these early data in designing future breast cancer studies with IGF-1 signaling inhibition strategies.
Collapse
Affiliation(s)
- S John Weroha
- Department of Oncology, Mayo Clinic, 200 First St. SW., Rochester, MN 55905, USA
| | | |
Collapse
|
17
|
de Ostrovich KK, Lambertz I, Colby JKL, Tian J, Rundhaug JE, Johnston D, Conti CJ, DiGiovanni J, Fuchs-Young R. Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:824-34. [PMID: 18688034 PMCID: PMC2527085 DOI: 10.2353/ajpath.2008.071005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/27/2008] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) stimulates proliferation, regulates tissue development, protects against apoptosis, and promotes the malignant phenotype in the breast and other organs. Some epidemiological studies have linked high circulating levels of IGF-1 with an increased risk of breast cancer. To study the role of IGF-1 in mammary tumorigenesis in vivo, we used transgenic mice in which overexpression of IGF-1 is under the control of the bovine keratin 5 (BK5) promoter and is directed to either the myoepithelial or basal cells in a variety of organs, including the mammary gland. This model closely recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 seen in women. Histologically, mammary glands from transgenic mice were hyperplastic and highly vascularized. Mammary glands from prepubertal transgenic mice had significantly increased ductal proliferation compared with wild-type tissues, although this difference was not maintained after puberty. Transgenic mice also had increased susceptibility to mammary carcinogenesis, and 74% of the BK5.IGF-1 mice treated with 7,12-dimethylbenz[a]anthracene (20 microg/day) developed mammary tumors compared with 29% of the wild-type mice. Interestingly, 31% of the vehicle-treated BK5.IGF-1 animals, but none of the wild-type animals, spontaneously developed mammary cancer. The mammary tumors were moderately differentiated adenocarcinomas that expressed functional, nuclear estrogen receptor at both the protein and mRNA levels. These data support the hypothesis that tissue overexpression of IGF-1 stimulates mammary tumorigenesis.
Collapse
|
18
|
Wang JS, Wang CL, Wen JF, Wang YJ, Hu YB, Ren HZ. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G 2/M cell cycle arrest. World J Gastroenterol 2008; 14:3982-9. [PMID: 18609681 PMCID: PMC2725336 DOI: 10.3748/wjg.14.3982] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of lithium on proliferation of esophageal cancer (EC) cells and its preliminary mechanisms.
METHODS: Eca-109 cells were treated with lithium chloride, a highly selective inhibitor of glycogen synthase kinase 3β (GSK-3β), at different concen-trations (2-30 mmol/L) and time points (0, 2, 4, 6 and 24 h). Cell proliferative ability was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distribution was examined by flow cytometry. Expressions of p-GSK-3β, β-catenin, cyclin B1, cdc2 and cyclin D1 protein were detected by Western blotting, and the subcellular localization of β-catenin was determined by immunofluorescence. The mRNA level of cyclin B1 was detected by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: Lithium could inhibit the proliferation of Eca-109 cells. Lithium at a concentration of 20 mmol/L lithium for 24 h produced obvious changes in the distribution of cell cycle, and increased the number of cells in G2/M phase (P < 0.05 vs control group). Western blotting showed that lithium inhibited GSK-3β by Ser-9 phosphorylation and stabilized free β-catenin in the cytoplasm. Immunofluorescence further confirmed that free β-catenin actively translocated to the nucleus. Moreover, lithium slightly elevated cyclin D1 protein expression, whereas lowered the cyclin B1 expression after 24 h lithium exposure and no obvious change was observed for cdc2 protein.
CONCLUSION: Lithium can inhibit the proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest, which is mainly mediated through the inhibition of lithium-sensitive molecule, GSK-3β, and reduction of cyclin B1 expression.
Collapse
|
19
|
Categorization of Mammographic Density for Breast Cancer. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Borowiec AS, Hague F, Harir N, Guénin S, Guerineau F, Gouilleux F, Roudbaraki M, Lassoued K, Ouadid-Ahidouch H. IGF-1 activates hEAG K(+) channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol 2007; 212:690-701. [PMID: 17520698 DOI: 10.1002/jcp.21065] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work from our laboratory has shown that human ether à go-go (hEAG) K(+) channels are crucial for breast cancer cell proliferation and cell cycle progression. In this study, we investigated the regulation of hEAG channels by an insulin-like growth factor-1 (IGF-1), which is known to stimulate cell proliferation. Acute applications of IGF-1 increased K(+) current-density and hyperpolarized MCF-7 cells. The effects of IGF-1 were inhibited by hEAG inhibitors. Moreover, IGF-1 increased mRNA expression of hEAG in a time-dependent manner in parallel with an enhancement of cell proliferation. The MCF-7 cell proliferation induced by IGF-1 is inhibited pharmacologically by Astemizole or Quinidine or more specifically using siRNA against hEAG channel. Either mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K) are known to mediate IGF-1 cell proliferative signals through the activation of extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, respectively. In MCF-7 cells, IGF-1 rapidly stimulated Akt phosphorylation, whereas IGF-1 had little stimulating effect on Erk 1/2 which seems to be constitutively activated. The application of wortmannin was found to block the effects of IGF-1 on K(+) current. Moreover, the inhibition of Akt phosphorylation by the application of wortmannin or by a specific reduction of Akt kinase activity reduced the hEAG mRNA levels. Taken together, our results show, for the first time, that IGF-1 increases both the activity and the expression of hEAG channels through an Akt-dependent pathway. Since a hEAG channel is necessary for cell proliferation, its regulation by IGF-1 may thus play an important role in IGF-1 signaling to promote a mitogenic effect in breast cancer cells.
Collapse
Affiliation(s)
- Anne-Sophie Borowiec
- Laboratoire de Physiologie Cellulaire, EA 2086, Faculté des Sciences, Université de Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, Kawakami K, Minamoto T. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci 2007; 98:1388-93. [PMID: 17640304 PMCID: PMC11159717 DOI: 10.1111/j.1349-7006.2007.00545.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/02/2007] [Accepted: 05/09/2007] [Indexed: 11/26/2022] Open
Abstract
The authors' recent discovery that glycogen synthase kinase-3beta (GSK-3beta) participates in colon cancer cells' survival and proliferation prompted us to investigate whether GSK-3beta inhibition alters proliferation of colon cancer cells in vivo. Groups of four or five athymic mice (Balb/c, nu/nu) with subcutaneous xenografts of SW480 human colon cancer cells were treated with dimethyl sulfoxide (DMSO) or different doses (1, 2 and 5 mg/kg body weight) of either small-molecule GSK-3beta inhibitor (SB-216763 and AR-A014418) by intraperitoneal injection three times per week for 5 weeks. Compared with DMSO (a diluent of the GSK-3beta inhibitors) as a control, either GSK-3beta inhibitor significantly inhibited proliferation of cancer cell xenografts in the rodents in a dose-dependent manner. Histochemical and immunohistochemical analysis of tumor xenografts demonstrated a significant, dose-dependent decrease in fractions of proliferating cells and an increase in the incidence of apoptosis of cancer cells in mice treated with either GSK-3beta inhibitor. No adverse events or effects were observed in the rodents during the course of treatment, except for rare lethal accidents due to intraperitoneal injection. Morphological examination showed no apparent pathologic changes in major organs including the lungs, liver, pancreas, kidneys, spleen and large bowel of rodents treated with DMSO and the GSK-3beta inhibitors. The results indicate that the GSK-3beta inhibitors would be a novel class of therapeutic agent for colon cancer.
Collapse
Affiliation(s)
- Abbas Shakoori
- Division of Translational and Clinical Oncology, Molecular and Cellular Targeting Translational Oncology Center, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28:20-47. [PMID: 16931767 DOI: 10.1210/er.2006-0001] [Citation(s) in RCA: 730] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IGF-I receptor (IGF-IR) signaling and functions are mediated through the activities of a complex molecular network of positive (e.g., type I IGF) and negative (e.g., the type II IGF receptor, IGF-IIR) effectors. Under normal physiological conditions, the balance between the expression and activities of these molecules is tightly controlled. Changes in this delicate balance (e.g., overexpression of one effector) may trigger a cascade of molecular events that can ultimately lead to malignancy. In recent years, evidence has been mounting that the IGF axis may be involved in human cancer progression and can be targeted for therapeutic intervention. Here we review old and more recent evidence on the role the IGF system in malignancy and highlight experimental and clinical studies that provide novel insights into the complex mechanisms that contribute to its oncogenic potential. Controversies arising from conflicting evidence on the relevance of IGF-IR and its ligands to human cancer are discussed. Our review highlights the importance of viewing the IGF axis as a complex multifactorial system and shows that changes in the expression levels of any one component of the axis, in a given malignancy, should be interpreted with caution and viewed in a wider context that takes into account the expression levels, state of activation, accessibility, and functionality of other interacting components. Because IGF targeting for anticancer therapy is rapidly becoming a clinical reality, an understanding of this complexity is timely because it is likely to have an impact on the design, mode of action, and clinical outcomes of newly developed drugs.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Room H6.25687, Pine Avenue West, Montreal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
23
|
Cascio S, Bartella V, Garofalo C, Russo A, Giordano A, Surmacz E. Insulin-like growth factor 1 differentially regulates estrogen receptor-dependent transcription at estrogen response element and AP-1 sites in breast cancer cells. J Biol Chem 2006; 282:3498-506. [PMID: 17166846 DOI: 10.1074/jbc.m606244200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-talk between insulin-like growth factor 1 (IGF-1) and estrogen receptor alpha (ER) regulates gene expression in breast cancer cells, but the underlying mechanisms remain unclear. Here, we studied how 17-beta-estradiol (E2) and IGF-1 affect ER transcriptional machinery in MCF-7 cells. E2 treatment stimulated ER loading on the estrogen response element (ERE) in the pS2 promoter and on the AP-1 motif in the cyclin D1 promoter. On ERE, similar amounts of liganded ER were found at 1-24-h time points, whereas on AP-1, ER binding fluctuated over time. At 1 h, liganded ER was recruited to ERE together with histone acetyltransferases SRC-1 and p300, ubiquitin ligase E6-AP, histone methyltransferase Carm1 (Carm), and polymerase (pol) II. This coincided with increased histone H3 acetylation and up-regulation of pS2 mRNA levels. At the same time, E2 moderately increased cyclin D1 expression, which was associated with the recruitment of liganded ER, SRC-1, p300, ubiquitin ligase E6-AP (E6L), Mdm2, and pol II, but not other regulatory proteins, to AP-1. In contrast, at 1 h, IGF-1 increased the recruitment of the ER.SRC-1.p300.E6L.Mdm2.Carm.pol II complex on AP-1, but not on ERE, and induced cyclin D1, but not pS2, mRNA expression. Notably, ER knockdown reduced the association of ER, E6L, Mdm2, Carm, and pol II with AP-1 and resulted in down-regulation of cyclin D1 expression. IGF-1 potentiated the effects of E2 on ERE but not to AP-1 and increased E2-dependent pS2, but not cyclin D1, mRNA expression. In conclusion, E2 and IGF-1 differentially regulate ER transcription at ERE and AP-1 sites.
Collapse
Affiliation(s)
- Sandra Cascio
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia Pennsylvania 19122, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wang Q, Zhou Y, Evers BM. Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia 2006; 8:781-7. [PMID: 16984735 PMCID: PMC1584301 DOI: 10.1593/neo.06259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotensin (NT), a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR)] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3) regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3alpha/beta in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3beta phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCalpha and PKCbeta1) or downregulation of endogenous PKCalpha or PKCbeta1 blocked NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation. Moreover, a selective PKCbeta inhibitor, LY379196, reduced NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation, suggesting a role for PKCbeta1 in the NT-mediated phosphorylation of GSK-3beta and an undefined kinase in the NT-mediated phosphorylation of GSK-3alpha. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
25
|
Singh LP, Jiang Y, Cheng DW. Proteomic identification of 14-3-3zeta as an adapter for IGF-1 and Akt/GSK-3beta signaling and survival of renal mesangial cells. Int J Biol Sci 2006; 3:27-39. [PMID: 17200689 PMCID: PMC1657082 DOI: 10.7150/ijbs.3.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 10/25/2006] [Indexed: 01/18/2023] Open
Abstract
Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3beta) signaling pathway in the regulation of fibronectin and cyclin D1 expression and survival of renal mesangial cells. A proteomic approach is also employed to identify protein targets of IGF-1 signaling via GSK-3beta inhibition in mesangial cells. We show that IGF-1 (100 ng/ml) significantly increases the protein kinase Akt/PKB activity (1.5-2-fold, p<0.05) within 1-5 minutes, which is completely blocked by the presence of 100 nM Wortmannin (phosphatidyl-inositol 3-kinase inhibitor). Akt activation is coupled with Ser9 phosphorylation and inactivation of its down-stream target GSK-3beta. IGF-1 increases the cyclic AMP-responsive element (CRE) binding transcription factor CREB phosphorylation at Ser 133 and CRE-binding activity in mesangial cells, which parallels cyclin D1 and fibronectin expressions. Both proteins are known to have CRE-sequences in their promoter regions upstream of the transcription start site. Suppression of GSK-3beta by SB216763 (100 nM) increases CREB phosphorylation, cyclin D1 and fibronectin levels. Two dimensional gel electrophoresis followed by MALDI-TOF mass spectrometric analysis of mesangial proteins reveals that IGF-1 treatment or an inhibition of GSK-3beta increases the expression of the phosphorylated Ser/Thr binding signal adapter protein 14-3-3zeta. Immuno-precipitation of 14-3-3zeta followed by Western blotting validates the association of phosphorylated GSK-3beta with 14-3-3zeta in renal mesangial cells. Stable expression of a constitutively active GSK-3beta(Ser9Ala) induces cell death while overexpression of HA-tagged 14-3-3zeta increases cell viability as measured by MTT assays. These results indicate that the Akt/GSK-3beta pathway and the adapter protein 14-3-3zeta may play an important role in IGF-1 signaling and survival of mesangial cells in diabetic nephropathy.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
26
|
Desbois-Mouthon C, Wendum D, Cadoret A, Rey C, Leneuve P, Blaise A, Housset C, Tronche F, Le Bouc Y, Holzenberger M. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J 2006; 20:773-5. [PMID: 16484330 DOI: 10.1096/fj.05-4704fje] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent evidence indicates that growth hormone (GH) is involved in liver regeneration. To test whether insulin-like growth factor I (IGF-I) mediates this effect, we studied liver regeneration induced by partial hepatectomy in liver-specific IGF type 1 receptor knockout (LIGFREKO) mice. The absence of IGF-1R caused a significant decrease in hepatocyte proliferation in males (-52%), but not in females, as assessed by Ki67 immunohistochemistry. Cyclin D1 and cyclin A protein levels in the livers of LIGFREKO males were only half those in controls, indicating that cyclin induction during liver regeneration is dependent on IGF-1R signaling. Analyzing the signaling cascade initiated by IGF-1R, we observed a lack of IRS-1 induction in LIGFREKO livers. In contrast, the induction of IRS-2 synthesis was similar in LIGFREKO and control groups, suggesting the existence of differential regulation of IRS synthesis during liver regeneration. Regenerating livers from LIGFREKO animals also showed significantly less activated ERKs than controls. Our findings demonstrate that IGF-1R makes a significant contribution to liver regeneration. Using the LIGFREKO model, we provide new evidence that IGF-1R/IRS-1/ERK signaling may be the intracellular pathway controlling the cell cycle via cyclin D1 and cyclin A in the regenerating liver.
Collapse
|
27
|
Zecevic M, Amos CI, Gu X, Campos IM, Jones JS, Lynch PM, Rodriguez-Bigas MA, Frazier ML. IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 2006; 98:139-43. [PMID: 16418517 DOI: 10.1093/jnci/djj016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disorder caused by germline mutations in DNA mismatch repair (MMR) genes. Insulin-like growth factor-I (IGF-I) is involved in colorectal carcinogenesis, and elevated plasma IGF-I levels are associated with sporadic colorectal cancer (CRC) risk. We investigated the relationship between IGF1 promoter cytosine-adenine (CA) dinucleotide-repeat polymorphism length and CRC risk in 121 MMR gene mutation carriers using Cox regression and Kaplan-Meier analysis. All statistical tests were two-sided. Time to onset for CRC increased for each decrease in CA-repeat number (median = 19 repeats, range = 12-22 repeats; hazard ratio [HR] = 1.17, 95% confidence interval [CI] = 1.05 to 1.31; P = .006). Patients carrying a CA(< or = 17) repeat allele had a statistically significantly higher CRC risk (HR = 2.36; 95% CI = 1.28 to 4.36; P = .006) than all others and were younger at onset (44 years versus 56.5 years; P = .023). These findings indicate a statistically significant association between shorter IGF1 CA-repeat lengths and increased risk for CRC in HNPCC. This is the first report, to our knowledge, to show that IGF1 variant genotypes modify risk of a hereditary form of cancer.
Collapse
Affiliation(s)
- Maja Zecevic
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Haluska P, Carboni JM, Loegering DA, Lee FY, Wittman M, Saulnier MG, Frennesson DB, Kalli KR, Conover CA, Attar RM, Kaufmann SH, Gottardis M, Erlichman C. In vitro and In vivo Antitumor Effects of the Dual Insulin-Like Growth Factor-I/Insulin Receptor Inhibitor, BMS-554417. Cancer Res 2006; 66:362-71. [PMID: 16397250 DOI: 10.1158/0008-5472.can-05-1107] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-like growth factor receptor (IGF-IR) and insulin receptor are either overactivated and/or overexpressed in a wide range of tumor types and contribute to tumorigenicity, proliferation, metastasis, and drug resistance. Here, we show that BMS-554417, a novel small molecule developed as an inhibitor of IGF-IR, inhibits IGF-IR and insulin receptor kinase activity and proliferation in vitro, and reduces tumor xenograft size in vivo. In a series of carcinoma cell lines, the IC50 for proliferation ranged from 120 nmol/L (Colo205) to >8.5 micromol/L (OV202). The addition of stimulatory ligands was unnecessary for the antiproliferative effect in MCF-7 and OV202 cells. BMS-554417 treatment inhibited IGF-IR and insulin receptor signaling through extracellular signal-related kinase as well as the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased Akt phosphorylation at Ser473. At doses that inhibited proliferation, the compound also caused a G0-G1 arrest and prevented nuclear accumulation of cyclin D1 in response to LR3 IGF-I. In Jurkat T-cell leukemia cells, this agent triggered apoptotic cell death via the mitochondrial pathway. BMS-554417 was orally bioavailable and significantly inhibited the growth of IGF1R-Sal tumor xenografts in vivo. BMS-554417 is a member of a novel class of IGF-IR/insulin receptor inhibitors that have potential clinical applications because of their antiproliferative and proapoptotic activity in vitro and in vivo.
Collapse
Affiliation(s)
- Paul Haluska
- Division of Medical Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen B, Pan H, Zhu L, Deng Y, Pollard JW. Progesterone Inhibits the Estrogen-Induced Phosphoinositide 3-Kinase→AKT→GSK-3β→Cyclin D1→pRB Pathway to Block Uterine Epithelial Cell Proliferation. Mol Endocrinol 2005; 19:1978-90. [PMID: 15845746 DOI: 10.1210/me.2004-0274] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractThe mammalian cell cycle is regulated by the cyclin/cyclin-dependent kinase (CDK) phosphorylation of the retinoblastoma (pRB) family of proteins. Cyclin D1 with its CDK4/6 partners initiates the cell cycle and acts as the link between extracellular signals and the cell cycle machinery. Estradiol-17β (E2) stimulates uterine epithelial cell proliferation, a process that is completely inhibited by pretreatment with progesterone (P4). Previously, we identified cyclin D1 localization as a key point of regulation in these cells with E2 causing its nuclear accumulation and P4 retaining it in the cytoplasm with the resultant inhibition of pRB phosphorylation. Here we show that E2 stimulates phosphoinositide 3-kinase to activate phosphokinase B/AKT to effect an inhibitory phosphorylation of glycogen synthase kinase (GSK-3β). This pathway is suppressed by P4. Inhibition of the GSK-3β activity in P4-treated uteri by the specific inhibitor, LiCl, reversed the nuclear accumulation of cyclin D1 and in doing so, caused pRB phosphorylation and the induction of downstream genes, proliferating cell nuclear antigen and Ki67. Conversely, inhibition of phosphoinositide 3 kinase by LY294002 or Wortmanin reversed the E2-induced GSK-3β Ser9 inhibitory phosphorylation and blocked nuclear accumulation of cyclin D1. These data show the reciprocal actions of E2 and P4 on the phosphoinositide 3-kinase through to the GSK-3β pathway that in turn regulates cyclin D1 localization and cell cycle progression. These data reveal a novel signaling pathway that links E2 and P4 action to growth factor-mediated signaling in the uterus.
Collapse
Affiliation(s)
- Bo Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Malignant melanoma is similar to the other types of cancer in terms that the pathogenesis of this lethal disease includes abnormal activation of proteins that mediate oncogenic signaling as well as inhibition of anti-proliferative and pro-apoptotic protein regulators. Activity of both types of cellular regulators is often dependent on their abundance and is determined by the rate of proteolysis via the ubiquitin pathway. Aberrations in ubiquitin-dependent degradation of regulatory proteins frequently occur in human cancers including malignant melanoma. Melanoma cells that re-program ubiquitin-dependent proteolysis toward accelerated degradation of protein regulators of tumor suppression and abnormal stabilization of oncogenic proteins are likely to gain an advantage in growth and survival. Specific characteristics of melanoma biology include rapid metastasizing and resistance to conventional anticancer therapy. Exploration of these traits should place an emphasis on a subset of the signal transduction pathways that are governed by a number of key protein regulators whose stability and activity becomes deregulated during progression of malignant melanoma. Targeting the ubiquitination and degradation of these pivotal proteins may provide a promising new therapeutic approach to treatment of this disease.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
31
|
Mawson A, Lai A, Carroll JS, Sergio CM, Mitchell CJ, Sarcevic B. Estrogen and insulin/IGF-1 cooperatively stimulate cell cycle progression in MCF-7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Mol Cell Endocrinol 2005; 229:161-73. [PMID: 15607540 DOI: 10.1016/j.mce.2004.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/14/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
Estrogen and insulin/insulin-like growth factor-I (IGF-I) are major mitogens for breast epithelial cells and when co-administered, synergistically induce G(1)-S phase cell cycle progression. We investigated this cooperativity by evaluating if the key cell cycle regulators, c-Myc and cyclin D1, represent points of convergence in the action of these mitogens in MCF-7 breast cancer cells. These studies demonstrated that estrogen significantly increased both c-Myc and cyclin D1 protein, while insulin predominantly increased cyclin D1 levels. This cumulative increase in c-Myc and cyclin D1 contributes to the cooperativity of these mitogens, since ectopic expression of c-Myc or cyclin D1 cooperates with either the estrogen or insulin signaling pathways to increase cell cycle progression. Inhibition of the MAPK or PI3-kinase pathways significantly reduced c-Myc and cyclin D1 protein levels and cell cycle progression. Ectopic expression of cyclin D1 partially overcame this inhibition, while ectopic expression of c-Myc partially overcame MAPK but not PI3-kinase inhibition. Therefore, estrogen and insulin/IGF-1 differentially regulate c-Myc and cyclin D1 to cooperatively stimulate breast cancer cell proliferation.
Collapse
Affiliation(s)
- Amanda Mawson
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Shen WH, Jackson ST, Broussard SR, McCusker RH, Strle K, Freund GG, Johnson RW, Dantzer R, Kelley KW. IL-1β Suppresses Prolonged Akt Activation and Expression of E2F-1 and Cyclin A in Breast Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:7272-81. [PMID: 15187102 DOI: 10.4049/jimmunol.172.12.7272] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells. In this study, we extend this juxtamembrane cross-talk between cytokine and growth factor receptors to downstream cell cycle machinery. IL-1beta reduces the ability of IGF-I to activate Cdk2 and to induce E2F-1, cyclin A, and cyclin A-dependent phosphorylation of a retinoblastoma tumor suppressor substrate. Long-term activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, but not the mammalian target of rapamycin or mitogen-activated protein kinase pathways, is required for IGF-I to hyperphosphorylate retinoblastoma and to cause accumulation of E2F-1 and cyclin A. In the absence of IGF-I to induce Akt activation and cell cycle progression, IL-1beta has no effect. IL-1beta induces p21(Cip1/Waf1), which may contribute to its inhibition of IGF-I-activated Cdk2. Collectively, these data establish a novel mechanism by which prolonged Akt phosphorylation serves as a convergent target for both IGF-I and IL-1beta; stimulation by growth factors such as IGF-I promotes G(1)-S phase progression, whereas IL-1beta antagonizes IGF-I-induced Akt phosphorylation to induce cytostasis. In this manner, Akt serves as a critical bridge that links proximal receptor signaling events to more distal cell cycle machinery.
Collapse
Affiliation(s)
- Wen Hong Shen
- Laboratory of Immunophysiology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stull MA, Rowzee AM, Loladze AV, Wood TL. Growth factor regulation of cell cycle progression in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2004; 9:15-26. [PMID: 15082915 DOI: 10.1023/b:jomg.0000023585.95430.f4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factors are among the critical positive and negative regulators of cell proliferation for normal mammary/breast epithelial cells and for breast cancer cells. The mechanisms by which specific growth factors regulate the cell cycle in mammary/breast epithelial cells is beginning to be understood for several growth factor families, including the epidermal growth factor, insulin-like growth factor, and transforming growth factor-beta families. A critical issue for understanding how growth factors regulate the cell cycle in vivo is how individual factors interact with other growth factors or hormones to enhance or inhibit specific molecular targets in the cell cycle machinery. This review addresses what is currently known about how growth factors regulate the cell cycle in mammary/breast epithelial cells both individually and in coordination with other growth regulators.
Collapse
Affiliation(s)
- Malinda A Stull
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
34
|
Chen W, Wu R, Wang X, Li Y, Hao T. Effect of lithium on cell cycle progression of pig airway epithelial cells. Curr Med Sci 2004; 24:318-21. [PMID: 15587388 DOI: 10.1007/bf02861857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Indexed: 10/19/2022]
Abstract
To investigate the effect of lithium on cell cycle progression of airway epithelial cells, primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.
Collapse
Affiliation(s)
- Wenshu Chen
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, and Pulmonary Disease Laboratory, Ministry of Health of China, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
35
|
Shen WH, Yin Y, Broussard SR, McCusker RH, Freund GG, Dantzer R, Kelley KW. Tumor necrosis factor alpha inhibits cyclin A expression and retinoblastoma hyperphosphorylation triggered by insulin-like growth factor-I induction of new E2F-1 synthesis. J Biol Chem 2003; 279:7438-46. [PMID: 14681231 DOI: 10.1074/jbc.m310264200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin A is required for cell cycle S phase entry, and its overexpression contributes to tumorigenesis. Release of pre-existing E2Fs from inactive complexes of E2F and hypophosphorylated retinoblastoma (RB) is the prevailing dogma for E2F transcriptional activation of target genes such as cyclin A. Here we explored the hypothesis that new synthesis of E2F-1 is required for insulin-like growth factor-I (IGF-I) to induce cyclin A accumulation and RB hyperphosphorylation, events that are targeted by tumor necrosis factor alpha (TNFalpha) to arrest cell cycle progression. We first established that IGF-I increases expression of cyclin A, causes hyperphosphorylation of RB, and augments the mass of E2F-1 in a time-dependent manner. As expected, E2F-1 small interfering RNA blocks the ability of IGF-I to increase synthesis of E2F-1. Most important, this E2F-1 small interfering RNA also blocks the ability of IGF-I to increase cyclin A accumulation and to hyperphosphorylate RB. We next established that TNFalpha dose-dependently inhibits IGF-I-induced phosphorylation of both RB and histone H1 by cyclin A-dependent cyclin-dependent kinases. Cyclin-dependent kinase 2 (Cdk2) mediates this suppression because co-immunoprecipitation experiments revealed that TNFalpha reduces the amount of IGF-I-induced cyclin A that binds Cdk2, leading to a reduction in Cdk2 enzymatic activity. TNFalpha antagonizes the ability of IGF-I to increase mass of both E2F-1 and cyclin A but not cyclin E or D1. The cytostatic property of TNFalpha is also shown by its ability to block IGF-I-stimulated luciferase activity of a cyclin A promoter reporter. Deletion of an E2F recognition site from this reporter eliminates the regulatory effects of both IGF-I and TNFalpha on cyclin A transcription, indicating the essential role of E2F-1 in mediating their cross-talk. Collectively, these results establish that TNFalpha targets IGF-I-induced E2F-1 synthesis, leading to inhibition of the subsequent accumulation in cyclin A, formation of cyclin A-Cdk2 complexes, hyperphosphorylation of RB, and cell cycle arrest.
Collapse
Affiliation(s)
- Wen Hong Shen
- Laboratory of Immunophysiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rider V, Thomson E, Seifert C. Transit of rat uterine stromal cells through G1 phase of the cell cycle requires temporal and cell-specific hormone-dependent changes on cell cycle regulators. Endocrinology 2003; 144:5450-8. [PMID: 12960012 DOI: 10.1210/en.2003-0890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone pretreatment increases the number of synchronously proliferating stromal cells in the ovariectomized rat uterus, but estrogen is necessary to stimulate reentry into the cell cycle. To investigate the mechanisms underlying differential hormone actions, sexually mature ovariectomized rats were injected with progesterone (2 mg) for three consecutive days. Estradiol 17-beta (0.6 microg) was administered to initiate cell proliferation. Uterine samples were collected at timed intervals. Cell entry into DNA replication was monitored by injecting 5-bromo-2'-deoxyuridine (1 mg/100 g body weight) 2 h before necropsy. Demicolchicine (400 microg) was injected 30 min before necropsy to assess transit into M phase. Temporal progress through G1 was determined by spatial changes in cyclin D1/D3 proteins. Total cyclin D1/D3 protein and mRNA was measured by Western and Northern blotting. Estrogen increased the number of 5-bromo-2'-deoxyuridine-positive stromal cells (P < 0.05), compared with the number in rats treated with progesterone alone. An increase (P < 0.05) in the number of M-phase cells occurred at 12 h post estrogen. There was no evidence for epithelial cell proliferation in response to steroid treatments. Cyclin D1/D3 mRNA was expressed in the uteri of ovariectomized and hormone treated rats. The D-type cyclin proteins, however, were not evident in stromal cells without estrogen treatment. Progesterone pretreatment inhibited estrogen-dependent epithelial cell proliferation while redirecting D-type cyclin expression to the uterine stroma. Stromal cell transit through G1 required nongenomic steroid-dependent action on signal transduction pathways that control the nuclear localization and cell type-specific expression of the D-type cyclin proteins.
Collapse
Affiliation(s)
- Virginia Rider
- Department of Biology, Pttsburg State University, Pittsburg, Kansas 66762, USA.
| | | | | |
Collapse
|
37
|
Tsutsumi S, Yanagawa T, Shimura T, Fukumori T, Hogan V, Kuwano H, Raz A. Regulation of cell proliferation by autocrine motility factor/phosphoglucose isomerase signaling. J Biol Chem 2003; 278:32165-72. [PMID: 12783864 DOI: 10.1074/jbc.m304537200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autocrine motility factor (AMF)/phosphoglucose isomerase (PGI; EC 5.3.1.9) is a housekeeping cytosolic enzyme that plays a key role in both glycolysis and gluconeogenesis pathways. AMF/PGI is also a multifunctional protein that displays cytokine properties, eliciting mitogenic, motogenic, and differentiation activities, and has been implicated in tumor progression and metastasis. Because little is known about AMF/PGI-dependent signaling in general and during tumorigenesis in particular, we sought to study its effect on the cell cycle. To elucidate the functional role of PGI, we stably transfected its cDNA into NIH/3T3 and BALB/c 3T3-A31 fibroblasts. Ectopic overexpression of PGI results in the acquisition of a transformed phenotype associated with an acceleration of G1 to S cell cycle transition. These were manifested by up-regulation of cyclin D1 expression and cyclin-dependent kinase activity and down-regulation of the cyclin-dependent kinase inhibitor p27Kip1. The reduced p27Kip1 protein expression level in PGI-overexpressing cells could be restored to control levels by treatment with proteasome inhibitor. PGI-overexpressing cells also exhibited elevated expression of Skp2 involved in p27Kip1 ubiquitination and elevation in the levels of retinoblastoma protein hyperphosphorylation. Thus, we may conclude that the overexpression of AMF/PGI enhances cell proliferation together with up-regulation of cyclin/cyclin-dependent kinase activities and down-regulation of p27Kip1, whereas the induction of 3T3 fibroblast transformation by PGI is regulated by the retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Soichi Tsutsumi
- Tumor Progression and Metastasis, Karmanos Cancer Institute, The Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hamelers IHL, van Schaik RFMA, Sussenbach JS, Steenbergh PH. 17beta-Estradiol responsiveness of MCF-7 laboratory strains is dependent on an autocrine signal activating the IGF type I receptor. Cancer Cell Int 2003; 3:10. [PMID: 12890289 PMCID: PMC169177 DOI: 10.1186/1475-2867-3-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 07/11/2003] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND: Human MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17beta-estradiol (E2). However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains. RESULTS: The MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER) are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains. CONCLUSIONS: The results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.
Collapse
Affiliation(s)
- Irene HL Hamelers
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Richard FMA van Schaik
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - John S Sussenbach
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Paul H Steenbergh
- Utrecht Graduate School of Developmental Biology, Department of Physiological Chemistry, University Medical Center Utrecht, P. O. Box 85060, 3508 AB Utrecht, The Netherlands
| |
Collapse
|