1
|
Kim YR, Kim HM, Lee B, Baek JI, Lee KY, Park HJ, Kim UK. Identification of novel missense mutation related with non-syndromic sensorineural deafness, DFNA11 in korean family by NGS. Genes Genomics 2023; 45:225-230. [PMID: 36630074 DOI: 10.1007/s13258-022-01357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023]
Abstract
BACKGOUND Hereditary hearing loss is one of the most common genetically heterogeneous defects in human. About 70% of hereditary hearing loss is defined as non-syndromic hearing loss showing loss of hearing ability without any other symptoms. Up to date, the identified genes associated with non-syndromic hearing loss are 128, including 52 genes for DFNA and 76 genes for DFNB. Because of high levels of heterogeneity, it is difficult to identify the causative factors for hearing loss using Sanger sequencing. OBJECTIVE Our aim was to detect causative factors and investigate pathogenic mutations, which co-segregates within the candidate family. METHODS We used Next Generation Sequencing technique to investigate whole-exome sequences of a Korean family with non-syndromic hereditary hearing loss. The family showed autosomal dominant inheritance pattern. RESULTS We identified a novel missense variation, c.1978G > A in MYO7A gene, in the family with the autosomal dominant inheritance pattern. c.1978G > A produced Gly660Arg in the motor head domain of Myosin VIIA disrupt the ATP- and actin-binding motif function. CONCLUSION This study is the first to report pathogenic mutations within MYO7A gene in Korean family and our data would facilitate diagnosing the primary cause of hereditary hearing loss in Korean.
Collapse
Affiliation(s)
- Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Byeonghyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Companion Animal Health, College of Rehabilitation and Health, Deagu Haany University, Gyeongsan, Republic of Korea
| | - Kyu-Yup Lee
- Department of Internal Medicine, Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Boye SE, Durham T, Laster A, Gelfman CM, Sahel JA. Identifying and Overcoming Challenges in Developing Effective Treatments for Usher 1B: A Workshop Report. Transl Vis Sci Technol 2023; 12:2. [PMID: 36723965 PMCID: PMC9904327 DOI: 10.1167/tvst.12.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose To identify challenges and opportunities for the development of treatments for Usher syndrome (USH) type 1B. Methods In September 2021, the Foundation Fighting Blindness hosted a virtual workshop of clinicians, academic and industry researchers, advocates, and affected individuals and their families to discuss the challenges and opportunities for USH1B treatment development. Results The workshop began with insights from individuals affected by USH1B. Presentation topics included myosin VIIA protein function in the ear and eye and its role in disease pathology; challenges with the USH1B mouse model most used in disease research to date; new investigations into alternative disease models that may provide closer analogues to USH1B in the human retina, including retinal organoids and large animal models; and learnings from and limitations of available disease natural history data. Participants discussed the need for an open dialogue between researchers and regulators to design USH1B clinical trials with appropriate outcome measures of vision improvement, along with multimodal imaging of the retina and other testing approaches that can help inform trial designs. The workshop concluded with presentations and a roundtable reviewing emerging treatments, including USH1B-targeted genetic augmentation therapy and gene-agnostic approaches. Conclusions Initiatives like this workshop are important to foster all stakeholders in support of achieving the shared goal of treating and curing USH1B. Translational Relevance Presentations and discussions focused on overcoming disease modeling and clinical trial design challenges to facilitate development, testing, and implementation of effective USH1B treatments.
Collapse
Affiliation(s)
- Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA,Atsena Therapeutics, Inc., Durham, NC, USA
| | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Amy Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Shughoury A, Ciulla TA, Bakall B, Pennesi ME, Kiss S, Cunningham ET. Genes and Gene Therapy in Inherited Retinal Disease. Int Ophthalmol Clin 2021; 61:3-45. [PMID: 34584043 DOI: 10.1097/iio.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
5
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
6
|
Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations. Genes (Basel) 2021; 12:genes12020274. [PMID: 33671976 PMCID: PMC7919343 DOI: 10.3390/genes12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.
Collapse
|
7
|
Pillon M, Doublet P. Myosins, an Underestimated Player in the Infectious Cycle of Pathogenic Bacteria. Int J Mol Sci 2021; 22:ijms22020615. [PMID: 33435466 PMCID: PMC7826972 DOI: 10.3390/ijms22020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Myosins play a key role in many cellular processes such as cell migration, adhesion, intracellular trafficking and internalization processes, making them ideal targets for bacteria. Through selected examples, such as enteropathogenic E. coli (EPEC), Neisseria, Salmonella, Shigella, Listeria or Chlamydia, this review aims to illustrate how bacteria target and hijack host cell myosins in order to adhere to the cell, to enter the cell by triggering their internalization, to evade from the cytosolic autonomous cell defense, to promote the biogenesis of intracellular replicative niche, to disseminate in tissues by cell-to-cell spreading, to exit out the host cell, and also to evade from macrophage phagocytosis. It highlights the diversity and sophistication of the strategy evolved by bacteria to manipulate one of their privileged targets, the actin cytoskeleton.
Collapse
Affiliation(s)
- Margaux Pillon
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, Université de Lyon, 69007 Lyon, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, 69007 Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
8
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
9
|
Li S, Mecca A, Kim J, Caprara GA, Wagner EL, Du TT, Petrov L, Xu W, Cui R, Rebustini IT, Kachar B, Peng AW, Shin JB. Myosin-VIIa is expressed in multiple isoforms and essential for tensioning the hair cell mechanotransduction complex. Nat Commun 2020; 11:2066. [PMID: 32350269 PMCID: PMC7190839 DOI: 10.1038/s41467-020-15936-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
Mutations in myosin-VIIa (MYO7A) cause Usher syndrome type 1, characterized by combined deafness and blindness. MYO7A is proposed to function as a motor that tensions the hair cell mechanotransduction (MET) complex, but conclusive evidence is lacking. Here we report that multiple MYO7A isoforms are expressed in the mouse cochlea. In mice with a specific deletion of the canonical isoform (Myo7a-ΔC mouse), MYO7A is severely diminished in inner hair cells (IHCs), while expression in outer hair cells is affected tonotopically. IHCs of Myo7a-ΔC mice undergo normal development, but exhibit reduced resting open probability and slowed onset of MET currents, consistent with MYO7A's proposed role in tensioning the tip link. Mature IHCs of Myo7a-ΔC mice degenerate over time, giving rise to progressive hearing loss. Taken together, our study reveals an unexpected isoform diversity of MYO7A expression in the cochlea and highlights MYO7A's essential role in tensioning the hair cell MET complex.
Collapse
Affiliation(s)
- Sihan Li
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Andrew Mecca
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeewoo Kim
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Ting-Ting Du
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Leonid Petrov
- Department of Mathematics, University of Virginia, Charlottesville, VA, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) Core, University of Virginia, Charlottesville, VA, USA
| | - Runjia Cui
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Ivan T Rebustini
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Bechara Kachar
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, USA
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA. .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Identification of four novel mutations in MYO7A gene and their association with nonsyndromic deafness and Usher Syndrome 1B. Int J Pediatr Otorhinolaryngol 2019; 120:166-172. [PMID: 30826590 DOI: 10.1016/j.ijporl.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION MYO7A gene has been shown to be associated with Usher syndrome 1B and nonsyndromic deafness. Although a lot of mutations have been reported in MYO7A gene, novel MYO7A mutations are continuously to be identified. METHODS Targeted next generation sequencing was performed on the two unrelated patients with Usher syndrome 1B and nonsyndromic deafness respectively. The identified mutations from targeted next generation sequencing were further validated by Sanger sequencing, and analyzed by bioinformatics tools, like SIFT, Polyphen-2, PyMOL, I-Mutant 2.0 and so on. RESULTS By analyzing the sequencing data of these two patients, four novel MYO7A mutations were revealed: (i) MYO7A p.Tyr560Ser and p.Ala2039Pro were associated with Usher syndrome 1B. (ii) MYO7A c.2187 + 2_+8 delTGAGCAC and p.Leu728Pro were related to nonsyndromic hearing loss. These mutations were further proved to be possibly disease-causing by segregation analysis, conservation analysis and bioinformatics tools. CONCLUSIONS Four novel MYO7A mutations were identified in the present study. These findings provided new evidence for the genetic counseling of Usher syndrome 1B and nonsyndromic deafness.
Collapse
|
11
|
He X, Peng Q, Li S, Zhu P, Wu C, Rao C, Lin J, Lu X. A novel mutation in the MYO7A gene is associated with Usher syndrome type 1 in a Chinese family. Int J Pediatr Otorhinolaryngol 2017; 99:40-43. [PMID: 28688563 DOI: 10.1016/j.ijporl.2017.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We aimed to investigate the genetic causes of hearing loss in a Chinese proband with autosomal recessive congenital deafness. METHODS The targeted capture of 159 known deafness genes and next-generation sequencing were performed to study the genetic causes of hearing loss in the Chinese family. Sanger sequencing was employed to verify the variant mutations in members of this family. RESULTS The proband harbored two mutations in the MYO7A gene in the form of compound heterozygosity. She was found to be heterozygous for a novel insertion mutation c.3847_3848 ins TCTG (p.N1285LfsX24) in exon 30 and for the known mutation c.2239_2240delAG (p.R747S fsX16)in exon 19. The novel mutation was absent in the 1000 Genomes Project. These variants were carried in the heterozygous state by the parents and were therefore co-segregated with the genetic disease. Clinical re-assessment, including detailed audiologic and ocular examinations, revealed congenital deafness and retinitis pigmentosa in the proband. Collectively, the combination of audiometric, ophthalmologic and genetic examinations successfully confirmed the phenotype of Usher syndrome type 1 (USH1). CONCLUSION This study demonstrates that the novel mutation c.3847_3848insTCTG (p. N1285LfsX24) in compound heterozygosity with c.2239_2240delAG in the MYO7A gene is the main cause of USH1 in the proband. Our study expands the mutational spectrum of MYO7A and provides a foundation for further investigations elucidating the MYO7A-related mechanisms of USH1.
Collapse
Affiliation(s)
- Xiaoguang He
- Department of Neonates, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Qi Peng
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Siping Li
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Pengyuan Zhu
- CapitalBio Genomics Co.,Ltd, Dongguan, Guangdong, China
| | - Chunqiu Wu
- CapitalBio Genomics Co.,Ltd, Dongguan, Guangdong, China
| | - Chunbao Rao
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Jingqi Lin
- Department of Otorhinolaryngological, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Xiaomei Lu
- Department of Neonates, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China.
| |
Collapse
|
12
|
Bakhchane A, Charif M, Bousfiha A, Boulouiz R, Nahili H, Rouba H, Charoute H, Lenaers G, Barakat A. Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss. PLoS One 2017; 12:e0176516. [PMID: 28472130 PMCID: PMC5417485 DOI: 10.1371/journal.pone.0176516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
The MYO7A gene encodes a protein belonging to the unconventional myosin super family. Mutations within MYO7A can lead to either non syndromic hearing loss or to the Usher syndrome type 1B (USH1B). Here, we report the results of genetic analyses performed on Moroccan families with autosomal recessive non syndromic hearing loss that identified two families with compound heterozygous MYO7A mutations. Five mutations (c.6025delG, c.6229T>A, c.3500T>A, c.5617C>T and c.4487C>A) were identified in these families, the latter presenting two differently affected branches. Multiple bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. In conclusion, the absence of vestibular and retinal symptom in the affected patients suggests that these families have the isolated non-syndromic hearing loss DFNB2 (nonsyndromic autosomal recessive hearing loss) presentation, instead of USH1B.
Collapse
Affiliation(s)
- Amina Bakhchane
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Equipe MitoLab, INSERM U1083, CNRS 6015, Institut MitoVasc, Université d’Angers, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Amale Bousfiha
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Redouane Boulouiz
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Halima Nahili
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, INSERM U1083, CNRS 6015, Institut MitoVasc, Université d’Angers, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Abdelhamid Barakat
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- * E-mail:
| |
Collapse
|
13
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
14
|
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol 2016; 44:68-78. [PMID: 27836411 DOI: 10.1016/j.ceb.2016.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States.
| |
Collapse
|
15
|
Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A, Liu XZ, Choi D, Müller U, Barr-Gillespie PG. PDZD7-MYO7A complex identified in enriched stereocilia membranes. eLife 2016; 5:e18312. [PMID: 27525485 PMCID: PMC5005036 DOI: 10.7554/elife.18312] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022] Open
Abstract
While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7.
Collapse
Affiliation(s)
- Clive P Morgan
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Bo Zhao
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Shannon Fallen
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| | | | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
- Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ulrich Müller
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
16
|
Ernest S, Rosa FM. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells. Dev Neurobiol 2015; 75:961-83. [PMID: 25556989 DOI: 10.1002/dneu.22263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/17/2014] [Accepted: 12/24/2014] [Indexed: 11/08/2022]
Abstract
MYO7A is an unconventional myosin involved in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations of MYO7A are responsible for abnormal shaping of hair bundles, resulting in human deafness and murine deafness/circling behavior. Myo7aa, expressed in SHCs of the inner ear and lateral line of zebrafish, causes circling behavior and abnormal hair cell function when deficient in mariner mutant. This work identifies a new hair cell-specific enhancer, highly conserved between species, located within Intron 2-3 of zebrafish myosin 7a (myo7aa) gene. This enhancer is contained within a 761-bp DNA fragment that encompasses a newly identified Exon of myo7aa and whose activity does not depend on orientation. Compensation of mariner mutation by expression of mCherry-Myo7aa fusion protein under the control of this 761-bp DNA fragment results in recovery of balance, normal hair bundle shape and restored hair cell function. Two smaller adjacent fragments (344-bp and 431-bp), extracted from the 761-bp fragment, both show hair cell-specific enhancing activity, with apparently reduced intensity and coverage. These data should help understand the role of Myo7aa in sensory hair cell differentiation and function. They provide tools to decipher how myo7aa gene is expressed and regulated in SHCs by allowing the identification of potential transcription factors involved in this process. The discovered enhancer could represent a new target for the identification of deafness-causing mutations affecting human MYO7A.
Collapse
Affiliation(s)
- Sylvain Ernest
- INSERM U 1024, CNRS UMR 8197, IBENS: Institut de Biologie de l'Ecole Normale Supérieure, 75005, Paris, France
| | - Frédéric M Rosa
- INSERM U 1024, CNRS UMR 8197, IBENS: Institut de Biologie de l'Ecole Normale Supérieure, 75005, Paris, France
| |
Collapse
|
17
|
Sakai T, Jung HS, Sato O, Yamada MD, You DJ, Ikebe R, Ikebe M. Structure and Regulation of the Movement of Human Myosin VIIA. J Biol Chem 2015; 290:17587-98. [PMID: 26001786 DOI: 10.1074/jbc.m114.599365] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 11/06/2022] Open
Abstract
Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7AΔTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca(2+). Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca(2+), and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7AΔTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7AΔTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.
Collapse
Affiliation(s)
- Tsuyoshi Sakai
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Hyun Suk Jung
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and the Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 200-701, Korea
| | - Osamu Sato
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Masafumi D Yamada
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dong-Ju You
- the Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 305-333, Korea, and
| | - Reiko Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708
| | - Mitsuo Ikebe
- From the Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, the Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708,
| |
Collapse
|
18
|
Glowinski C, Liu RHS, Chen X, Darabie A, Godt D. Myosin VIIA regulates microvillus morphogenesis and interacts with cadherin Cad99C in Drosophila oogenesis. J Cell Sci 2014; 127:4821-32. [PMID: 25236597 DOI: 10.1242/jcs.099242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microvilli and related actin-based protrusions permit multiple interactions between cells and their environment. How the shape, length and arrangement of microvilli are determined remains largely unclear. To address this issue and explore the cooperation of the two main components of a microvillus, the central F-actin bundle and the enveloping plasma membrane, we investigated the expression and function of Myosin VIIA (Myo7A), which is encoded by crinkled (ck), and its interaction with cadherin Cad99C in the microvilli of the Drosophila follicular epithelium. Myo7A is present in the microvilli and terminal web of follicle cells, and associates with several other F-actin-rich structures in the ovary. Loss of Myo7A caused brush border defects and a reduction in the amount of the microvillus regulator Cad99C. We show that Myo7A and Cad99C form a molecular complex and that the cytoplasmic tail of Cad99C recruits Myo7A to microvilli. Our data indicate that Myo7A regulates the structure and spacing of microvilli, and interacts with Cad99C in vivo. A comparison of the mutant phenotypes suggests that Myo7A and Cad99C have co-dependent and independent functions in microvilli.
Collapse
Affiliation(s)
- Cory Glowinski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Ri-Hua Sandy Liu
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Xi Chen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Audrey Darabie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| |
Collapse
|
19
|
Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. ACTA ACUST UNITED AC 2012; 199:381-99. [PMID: 23045546 PMCID: PMC3471240 DOI: 10.1083/jcb.201202012] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.
Collapse
Affiliation(s)
- Iman Sahly
- Institut de la vision, Syndrome de Usher et autres Atteintes Rétino-Cochléaires, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene. J Neurosci 2012; 32:9485-98. [PMID: 22787034 DOI: 10.1523/jneurosci.0311-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Collapse
|
21
|
Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) 2012; 27:25-42. [PMID: 22311968 DOI: 10.1152/physiol.00037.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Usher syndrome 1 (USH1) is the most common and severe form of hereditary loss of hearing and vision. Genetic, physiological, and cell biological studies, together with recent structural investigations, have not only uncovered the physiological functions of the five USH1 proteins but also provided mechanistic explanations for the hearing and visual deficiencies in humans caused by USH1 mutations. This review focuses on the structural basis of the USH1 protein complex organization.
Collapse
Affiliation(s)
- Lifeng Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
22
|
Maravillas-Montero JL, Santos-Argumedo L. The myosin family: unconventional roles of actin-dependent molecular motors in immune cells. J Leukoc Biol 2011; 91:35-46. [DOI: 10.1189/jlb.0711335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
23
|
Heissler SM, Manstein DJ. Functional characterization of the human myosin-7a motor domain. Cell Mol Life Sci 2011; 69:299-311. [PMID: 21687988 PMCID: PMC3249170 DOI: 10.1007/s00018-011-0749-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 11/26/2022]
Abstract
Myosin-7a participates in auditory and visual processes. Defects in MYO7A, the gene encoding the myosin-7a heavy chain, are causative for Usher syndrome 1B, the most frequent cause of deaf-blindness in humans. In the present study, we performed a detailed kinetic and functional characterization of the isolated human myosin-7a motor domain to elucidate the details of chemomechanical coupling and the regulation of motor function. A rate-limiting, slow ADP release step causes long lifetimes of strong actin-binding intermediates and results in a high duty ratio. Moreover, our results reveal a Mg2+-sensitive regulatory mechanism tuning the kinetic and mechanical properties of the myosin-7a motor domain. We obtained direct evidence that changes in the concentration of free Mg2+ ions affect the motor properties of human myosin-7a using an in vitro motility assay system. Our results suggest that in a cellular environment, compartment-specific fluctuations in free Mg2+ ions can mediate the conditional switching of myosin-7a between cargo moving and tension bearing modes.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
24
|
Lopes VS, Gibbs D, Libby RT, Aleman TS, Welch DL, Lillo C, Jacobson SG, Radu RA, Steel KP, Williams DS. The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65. Hum Mol Genet 2011; 20:2560-70. [PMID: 21493626 PMCID: PMC3110002 DOI: 10.1093/hmg/ddr155] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B. In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place. We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle. We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells. This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light. RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels. Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity. Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction. Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.
Collapse
Affiliation(s)
- Vanda S Lopes
- Jules Stein Eye Institute and Department of Neurobiology, UCLA School of Medicine, University of California-Los Angeles, 200 Stein Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Raviv D, Dror AA, Avraham KB. Hearing loss: a common disorder caused by many rare alleles. Ann N Y Acad Sci 2011; 1214:168-79. [PMID: 21175685 DOI: 10.1111/j.1749-6632.2010.05868.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perception of sound is a fundamental role of the auditory system. Traveling with the force of their mechanical energy, sound waves are captured by the ear and activate the sensory pathway of this complex organ. The hair cells, specialized sensory cells within the inner ear, transmit the mechanical energy into electrical nerve stimuli that reach the brain. A large number of proteins are responsible for the overarching tasks required to maintain the complex mechanism of sound sensation. Many hearing disorders are due to single gene defects inherited in a Mendelian fashion, thus enabling clinical diagnostics. However, at the same time, hearing impairment is genetically heterogeneous, with both common and rare forms occurring due to mutations in over 100 genes. The crosstalk between human and mouse genetics has enabled comprehensive studies on gene identification and protein function, taking advantage of the tools animal models have to offer. The aim of the following review is to provide background and examples of human deafness genes and the discovery of their function in the auditory system.
Collapse
Affiliation(s)
- Dorith Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
26
|
Haithcock J, Billington N, Choi K, Fordham J, Sellers JR, Stafford WF, White H, Forgacs E. The kinetic mechanism of mouse myosin VIIA. J Biol Chem 2011; 286:8819-28. [PMID: 21212272 DOI: 10.1074/jbc.m110.163592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VIIa is crucial in hearing and visual processes. We examined the kinetic and association properties of the baculovirus expressed, truncated mouse myosin VIIa construct containing the head, all 5IQ motifs and the putative coiled coil domain (myosin VIIa-5IQ). The construct appears to be monomeric as determined by analytical ultracentrifugation experiments, and only single headed molecules were detected by negative stain electron microscopy. The relatively high basal steady-state rate of 0.18 s(-1) is activated by actin only by ∼3.5-fold resulting in a V(max) of 0.7 s(-1) and a K(ATPase) of 11.5 μM. There is no single rate-limiting step of the ATP hydrolysis cycle. The ATP hydrolysis step (M·T M·D·P) is slow (12 s(-1)) and the equilibrium constant (K(H)) of 1 suggests significant reversal of hydrolysis. In the presence of actin ADP dissociates with a rate constant of 1.2 s(-1). Phosphate dissociation is relatively fast (>12 s(-1)), but the maximal rate could not be experimentally obtained at actin concentrations ≤ 50 μM because of the weak binding of the myosin VIIa-ADP-P(i) complex to actin. At higher actin concentrations the rate of attached hydrolysis (0.4 s(-1)) becomes significant and partially rate-limiting. Our findings suggest that the myosin VIIa is a "slow", monomeric molecular motor with a duty ratio of 0.6.
Collapse
Affiliation(s)
- Jessica Haithcock
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, England P, Petit C. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 2010; 19:3557-65. [PMID: 20639393 PMCID: PMC2928128 DOI: 10.1093/hmg/ddq271] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cadherin-23 is a component of early transient lateral links of the auditory sensory cells' hair bundle, the mechanoreceptive structure to sound. This protein also makes up the upper part of the tip links that control gating of the mechanoelectrical transduction channels. We addressed the issue of the molecular complex that anchors these links to the hair bundle F-actin core. By using surface plasmon resonance assays, we show that the cytoplasmic regions of the two cadherin-23 isoforms that do or do not contain the exon68-encoded peptide directly interact with harmonin, a submembrane PDZ (post-synaptic density, disc large, zonula occludens) domain-containing protein, with unusually high affinity. This interaction involves the harmonin Nter-PDZ1 supramodule, but not the C-terminal PDZ-binding motif of cadherin-23. We establish that cadherin-23 directly binds to the tail of myosin VIIa. Moreover, cadherin-23, harmonin and myosin VIIa can form a ternary complex, which suggests that myosin VIIa applies tension forces on hair bundle links. We also show that the cadherin-23 cytoplasmic region, harmonin and myosin VIIa interact with phospholipids on synthetic liposomes. Harmonin and the cytoplasmic region of cadherin-23, both independently and as a binary complex, can bind specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which may account for the role of this phospholipid in the adaptation of mechanoelectrical transduction in the hair bundle. The distributions of cadherin-23, harmonin, myosin VIIa and PI(4,5)P2 in the growing and mature auditory hair bundles as well as the abnormal locations of harmonin and myosin VIIa in cadherin-23 null mutant mice strongly support the functional relevance of these interactions.
Collapse
Affiliation(s)
- Amel Bahloul
- Département de Neuroscience, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell Mol Life Sci 2010; 67:1239-54. [PMID: 20107861 DOI: 10.1007/s00018-009-0254-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
Cells build plasma membrane protrusions supported by parallel bundles of F-actin to enable a wide variety of biological functions, ranging from motility to host defense. Filopodia, microvilli and stereocilia are three such protrusions that have been the focus of intense biological and biophysical investigation in recent years. While it is evident that actin dynamics play a significant role in the formation of these organelles, members of the myosin superfamily have also been implicated as key players in the maintenance of protrusion architecture and function. Based on a simple analysis of the physical forces that control protrusion formation and morphology, as well as our review of available data, we propose that myosins play two general roles within these structures: (1) as cargo transporters to move critical regulatory components toward distal tips and (2) as mediators of membrane-cytoskeleton adhesion.
Collapse
|
29
|
Tian G, Zhou Y, Hajkova D, Miyagi M, Dinculescu A, Hauswirth WW, Palczewski K, Geng R, Alagramam KN, Isosomppi J, Sankila EM, Flannery JG, Imanishi Y. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton. J Biol Chem 2009; 284:18980-93. [PMID: 19423712 DOI: 10.1074/jbc.m109.003160] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc Natl Acad Sci U S A 2009; 106:8483-8. [PMID: 19423668 DOI: 10.1073/pnas.0812930106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin VIIA is an unconventional myosin, responsible for human Usher syndrome type 1B, which causes hearing and visual loss. Here, we studied the molecular mechanism of regulation of myosin VIIA, which is currently unknown. Although it was originally thought that myosin VIIA is a dimeric myosin, our electron microscopic (EM) observations revealed that full-length Drosophila myosin VIIA (DM7A) is a monomer. Interestingly, the tail domain markedly inhibits the actin-activated ATPase activity of tailless DM7A at low Ca(2+) but not high Ca(2+). By examining various deletion constructs, we found that deletion of the distal IQ domain, the C-terminal region of the tail, and the N-terminal region of the tail abolishes the tail-induced inhibition of ATPase activity. Single-particle EM analysis of full-length DM7A at low Ca(2+) suggests that the tail folds back on to the head, where it contacts both the motor core domain and the neck domain, forming an inhibited conformation. We concluded that unconventional myosin that may be present a monomer in the cell can be regulated by intramolecular interaction of the tail with the head.
Collapse
|
31
|
Watanabe S, Umeki N, Ikebe R, Ikebe M. Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function. Biochemistry 2008; 47:9505-13. [PMID: 18700726 DOI: 10.1021/bi8007142] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
32
|
Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy. Vision Res 2007; 48:433-41. [PMID: 17936325 DOI: 10.1016/j.visres.2007.08.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 02/07/2023]
Abstract
Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A.
Collapse
|
33
|
Tinevez JY, Jülicher F, Martin P. Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell. Biophys J 2007; 93:4053-67. [PMID: 17704173 PMCID: PMC2084239 DOI: 10.1529/biophysj.107.108498] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dazzling sensitivity and frequency selectivity of the vertebrate ear rely on mechanical amplification of the hair cells' responsiveness to small stimuli. As revealed by spontaneous oscillations and forms of mechanical excitability in response to force steps, the hair bundle that adorns each hair cell is both a mechanosensory antenna and a force generator that might participate in the amplificatory process. To study the various incarnations of active hair-bundle motility, we combined Ca(2+) iontophoresis with mechanical stimulation of single hair bundles from the bullfrog's sacculus. We identified three classes of active hair-bundle movements: a hair bundle could be quiescent but display nonmonotonic twitches in response to either excitatory or inhibitory force steps, or oscillate spontaneously. Extracellular Ca(2+) changes could affect the kinetics of motion and, when large enough, evoke transitions between the three classes of motility. We found that the Ca(2+)-dependent location of a bundle's operating point within its force-displacement relation controlled the type of movement observed. In response to an iontophoretic pulse of Ca(2+) or of a Ca(2+) chelator, a hair bundle displayed a movement whose polarity could be reversed by applying a static bias to the bundle's position at rest. Moreover, such polarity reversal was accompanied by a 10-fold change in the kinetics of the Ca(2+)-evoked hair-bundle movement. A unified theoretical description, in which mechanical activity stems solely from myosin-based adaptation, could account for the fast and slow manifestations of active hair-bundle motility observed in frog, as well as in auditory organs of the turtle and the rat.
Collapse
Affiliation(s)
- Jean-Yves Tinevez
- Laboratoire Physico-Chimie Curie, CNRS, Institut Curie, Paris, France
| | | | | |
Collapse
|
34
|
Reiners J, Wolfrum U. Molecular analysis of the supramolecular usher protein complex in the retina. Harmonin as the key protein of the Usher syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:349-53. [PMID: 17249595 DOI: 10.1007/0-387-32442-9_49] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jan Reiners
- Instiutut für Zoologie, Universität Mainz, 55099 Mainz, Germany
| | | |
Collapse
|
35
|
Etournay R, Zwaenepoel I, Perfettini I, Legrain P, Petit C, El-Amraoui A. Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J Cell Sci 2007; 120:2838-50. [PMID: 17666436 DOI: 10.1242/jcs.002568] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Defects in myosin VIIa lead to developmental anomalies of the auditory and visual sensory cells. We sought proteins interacting with the myosin VIIa tail by using the yeast two-hybrid system. Here, we report on shroom2, a submembranous PDZ domain-containing protein that is associated with the tight junctions in multiple embryonic and adult epithelia. Shroom2 directly interacts with the C-terminal MyTH4-FERM domain of myosin VIIa and with F-actin. In addition, a shroom2 fragment containing the region of interaction with F-actin was able to protect actin filaments from cytochalasin-D-induced disruption in MDCK cells. Transfection experiments in MDCK and LE (L fibroblasts that express E-cadherin) cells led us to conclude that shroom2 is targeted to the cell-cell junctions in the presence of tight junctions only. In Ca(2+)-switch experiments on MDCK cells, ZO-1 (also known as TJP1) preceded GFP-tagged shroom2 at the differentiating tight junctions. ZO-1 directly interacts with the serine- and proline-rich region of shroom2 in vitro. Moreover, the two proteins colocalize in vivo at mature tight junctions, and could be coimmunoprecipitated from brain and cochlear extracts. We suggest that shroom2 and ZO-1 form a tight-junction-associated scaffolding complex, possibly linked to myosin VIIa, that bridges the junctional membrane to the underlying cytoskeleton, thereby contributing to the stabilization of these junctions.
Collapse
Affiliation(s)
- Raphaël Etournay
- INSERM UMRS 587, Unité de Génétique des Déficits Sensoriels, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006; 15 Spec No 2:R262-70. [PMID: 16987892 DOI: 10.1093/hmg/ddl205] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.
Collapse
Affiliation(s)
- Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
O'Connell CB, Tyska MJ, Mooseker MS. Myosin at work: motor adaptations for a variety of cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:615-30. [PMID: 16904206 DOI: 10.1016/j.bbamcr.2006.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/22/2006] [Accepted: 06/30/2006] [Indexed: 12/30/2022]
Abstract
Cells have evolved multiple mechanisms to overcome the effects of entropy and diffusion to create a highly ordered environment. For cells to function properly, some components must be anchored to provide a framework or structure. Others must be rapidly transported over long distances to generate asymmetries in cell morphology and composition. To accomplish long-range transport, cells cannot rely on diffusion alone as many large organelles and macromolecular complexes are essentially immobilized by the dense meshwork of the cytosol. One strategy used by cells to overcome diffusion is to harness the free energy liberated by ATP hydrolysis through molecular motors. Myosins are a family of actin based molecular motors that have evolved a variety of ways to contribute to cellular organization through numerous modifications to the manner they convert that free energy into mechanical work.
Collapse
|
38
|
Futter CE. The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. ACTA ACUST UNITED AC 2006; 19:104-11. [PMID: 16524426 DOI: 10.1111/j.1600-0749.2006.00303.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal pigment epithelial cells contain large numbers of melanosomes that can enter the apical processes extending between the outer segments of the overlying photoreceptors. Every day the distal portion of the photoreceptor outer segment is shed and phagocytosed by the retinal pigment epithelial cell. The phagosome is then transported into the cell body and the contents degraded by lysosomal enzymes. This review focuses on recent progress made in the identification of molecules that regulate the transport of melanosomes into the apical processes and the transport of phagosomes into the cell body. Myosin VIIa is a key player in both processes and, at least in the case of melanosome movement, myosin VIIa is recruited to the melanosome via the GTPase, Rab27a. The possible role played by defects in the transport of melanosomes and phagosomes in the development of retinal degenerative diseases is discussed.
Collapse
Affiliation(s)
- Clare E Futter
- Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
39
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
In the inner ear, sensory hair cells not only detect but also amplify the softest sounds, allowing us to hear over an extraordinarily wide intensity range. This amplification is frequency specific, giving rise to exquisite frequency discrimination. Hair cells detect sounds with their mechanotransduction apparatus, which is only now being dissected molecularly. Signal detection is not the only role of this molecular network; amplification of low-amplitude signals by hair bundles seems to be universal in hair cells. "Fast adaptation," the rapid closure of transduction channels following a mechanical stimulus, appears to be intimately involved in bundle-based amplification.
Collapse
Affiliation(s)
- Meredith LeMasurier
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | |
Collapse
|
41
|
Soni LE, Warren CM, Bucci C, Orten DJ, Hasson T. The unconventional myosin-VIIa associates with lysosomes. ACTA ACUST UNITED AC 2005; 62:13-26. [PMID: 16001398 PMCID: PMC1201382 DOI: 10.1002/cm.20080] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the myosin-VIIa (MYO7a) gene cause human Usher disease, characterized by hearing impairment and progressive retinal degeneration. In the retina, myosin-VIIa is highly expressed in the retinal pigment epithelium, where it plays a role in the positioning of melanosomes and other digestion organelles. Using a human cultured retinal pigmented epithelia cell line, ARPE-19, as a model system, we have found that a population of myosin-VIIa is associated with cathepsin D- and Rab7-positive lysosomes. Association of myosin-VIIa with lysosomes was Rab7 independent, as dominant negative and dominant active versions of Rab7 did not disrupt myosin-VIIa recruitment to lysosomes. Association of myosin-VIIa with lysosomes was also independent of the actin and microtubule cytoskeleton. Myosin-VIIa copurified with lysosomes on density gradients, and fractionation and extraction experiments suggested that it was tightly associated with the lysosome surface. These studies suggest that myosin-VIIa is a lysosome motor.
Collapse
Affiliation(s)
- Lily E. Soni
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Carmen M. Warren
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Cecilia Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita degli Studi di Lecce, 73100 Lecce
| | - Dana J. Orten
- Center for Hereditary Communication Disorders, Boys Town National Research Hospital, 555 N. 30th Street, Omaha, NE 68131-9909
| | - Tama Hasson
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- Address correspondence to: Tama Hasson, Ph.D., University of California at San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, 2129 Bonner Hall, MC 0368, 9500 Gilman Drive, La Jolla, CA 92093-0368, Phone: 858-822-3033; Fax: 858-822-3034,
| |
Collapse
|
42
|
El-Amraoui A, Petit C. Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci 2005; 118:4593-603. [PMID: 16219682 DOI: 10.1242/jcs.02636] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in myosin VIIa, the PDZ-domain-containing protein harmonin, cadherin 23 and protocadherin 15 (two cadherins with large extracellular regions), and the putative scaffolding protein Sans underlie five genetic forms of Usher syndrome type I (USH1), the most frequent cause of hereditary deafness-blindness in humans. All USH1 proteins are localised within growing stereocilia and/or the kinocilium that make up the developing auditory hair bundle, the mechanosensitive structure receptive to sound stimulation. Cadherin 23 has been shown to be a component of fibrous links interconnecting the growing stereocilia as well as the kinocilium and the nearest tall stereocilia. A similar function is anticipated for protocadherin 15. Multiple direct interactions between USH1 proteins have been demonstrated. In particular, harmonin b can bind to the cytoplasmic regions of cadherin 23 and protocadherin 15, and to F-actin, and thus probably anchors these cadherins to the actin filaments filling the stereocilia. Myosin VIIa and Sans are both involved in the sorting and/or targeting of harmonin b to the stereocilia. Together, this suggests that the disorganisation of the hair bundles observed in mice mutants lacking orthologues of USH1 proteins may result from a defect of hair-bundle-link-mediated adhesion forces. Moreover, several recent evidences suggest that some genes defective in Usher type II syndrome also encode interstereocilia links, thus bridging the pathogenic pathways of USH1 and USH2 hearing impairment. Additional functions of USH1 proteins in the inner ear and the retina are evident from other phenotypic abnormalities observed in these mice. In particular, myosin VIIa could act at the interface between microtubule- and actin-based transport.
Collapse
Affiliation(s)
- Aziz El-Amraoui
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
43
|
Henn A, De La Cruz EM. Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J Biol Chem 2005; 280:39665-76. [PMID: 16186105 DOI: 10.1074/jbc.m507667200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.
Collapse
Affiliation(s)
- Arnon Henn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
44
|
Abstract
The myosin family of actin filament-based molecular motors consists of at least 20 structurally and functionally distinct classes. The human genome contains nearly 40 myosin genes, encoding 12 of these classes. Myosins have been implicated in a variety of intracellular functions, including cell migration and adhesion; intracellular transport and localization of organelles and macromolecules; signal transduction; and tumor suppression. In this review, recent insights into the remarkable diversity in the mechanochemical and functional properties associated with this family of molecular motors are discussed.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular Biology, Yale University, New Haven, CN, USA.
| | | |
Collapse
|
45
|
Yang Y, Kovács M, Xu Q, Anderson JB, Sellers JR. Myosin VIIB from Drosophila is a high duty ratio motor. J Biol Chem 2005; 280:32061-8. [PMID: 16055438 DOI: 10.1074/jbc.m506765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VII is an unconventional myosin widely expressed in organisms ranging from amoebae to mammals that has been shown to play vital roles in cell adhesion and phagocytosis. Here we present the first study of the mechanism of action of a myosin VII isoform. We have expressed a truncated single-headed Drosophila myosin VIIB construct in the baculovirus-Sf9 system that bound calmodulin light chains. By using steady-state and transient kinetic methods, we showed that myosin VIIB exhibits a fast release of phosphate and a slower, rate-limiting ADP release from actomyosin. As a result, myosin VIIB will be predominantly strongly bound to actin during steady-state ATP hydrolysis (its duty ratio will be at least 80%). This kinetic pattern is in many respects similar to that of the single-molecule vesicle transporters myosin V and VI. The enzymatic properties of myosin VIIB provide a kinetic basis for processivity upon possible dimerization via the C-terminal domains of the heavy chain. Our experiments also revealed conformational heterogeneity of the actomyosin VIIB complex in the absence of nucleotide.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | | | |
Collapse
|
46
|
Etournay R, El-Amraoui A, Bahloul A, Blanchard S, Roux I, Pézeron G, Michalski N, Daviet L, Hardelin JP, Legrain P, Petit C. PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J Cell Sci 2005; 118:2891-9. [PMID: 15976448 DOI: 10.1242/jcs.02424] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using the yeast two-hybrid technique, we identified a candidate protein ligand of the myosin 1c tail, PHR1, and found that this protein can also bind to the myosin VIIa tail. PHR1 is an integral membrane protein that contains a pleckstrin homology (PH) domain. Myosin 1c and myosin VIIa are two unconventional myosins present in the inner ear sensory cells. We showed that PHR1 immunoprecipitates with either myosin tail by using protein extracts from cotransfected HEK293 cells. In vitro binding assays confirmed that PHR1 directly interacts with these two myosins. In both cases the binding involves the PH domain. In vitro interactions between PHR1 and the myosin tails were not affected by the presence or absence of Ca2+ and calmodulin. Finally, we found that PHR1 is able to dimerise. As PHR1 is expressed in the vestibular and cochlear sensory cells, its direct interactions with the myosin 1c and VIIa tails are likely to play a role in anchoring the actin cytoskeleton to the plasma membrane of these cells. Moreover, as both myosins have been implicated in the mechanotransduction slow adaptation process that takes place in the hair bundles, we propose that PHR1 is also involved in this process.
Collapse
Affiliation(s)
- Raphaël Etournay
- Unité de Génétique des Déficits Sensoriels, INSERM U587, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kiehart DP, Franke JD, Chee MK, Montague RA, Chen TL, Roote J, Ashburner M. Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes fly myosin VIIA. Genetics 2005; 168:1337-52. [PMID: 15579689 PMCID: PMC1448781 DOI: 10.1534/genetics.104.026369] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myosin VIIs provide motor function for a wide range of eukaryotic processes. We demonstrate that mutations in crinkled (ck) disrupt the Drosophila myosin VIIA heavy chain. The ck/myoVIIA protein is present at a low level throughout fly development and at the same level in heads, thoraxes, and abdomens. Severe ck alleles, likely to be molecular nulls, die as embryos or larvae, but all allelic combinations tested thus far yield a small fraction of adult "escapers" that are weak and infertile. Scanning electron microscopy shows that escapers have defects in bristles and hairs, indicating that this motor protein plays a role in the structure of the actin cytoskeleton. We generate a homology model for the structure of the ck/myosin VIIA head that indicates myosin VIIAs, like myosin IIs, have a spectrin-like, SH3 subdomain fronting their N terminus. In addition, we establish that the two myosin VIIA FERM repeats share high sequence similarity with only the first two subdomains of the three-lobed structure that is typical of canonical FERM domains. Nevertheless, the approximately 100 and approximately 75 amino acids that follow the first two lobes of the first and second FERM domains are highly conserved among myosin VIIs, suggesting that they compose a conserved myosin tail homology 7 (MyTH7) domain that may be an integral part of the FERM domain or may function independently of it. Together, our data suggest a key role for ck/myoVIIA in the formation of cellular projections and other actin-based functions required for viability.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Myosin VII (M7) plays a role in adhesion in both Dictyostelium and mammalian cells where it is a component of a complex of proteins that serve to link membrane receptors to the underlying actin cytoskeleton. The nature of this complex is not fully known, prompting a search for M7-binding proteins. Co-immunoprecipitation experiments reveal that Dictyostelium M7 (DdM7) interacts with talinA, an actin-binding protein with a known role in cell-substrate adhesion. No additional proteins are observed in the immunoprecipitate, indicating that the interaction is direct. The N-terminal region of the DdM7 tail that lies between the region of predicted coil and the first MyTH4 domain is found to harbor the talinA binding site. Localization experiments reveal that talinA does not serve as a membrane receptor for DdM7 and vice versa. These findings reveal that talinA is a major DdM7 binding partner and suggest that their interaction induces a conformational change in each that, in combination with membrane receptor binding, promotes the assembly of a high avidity receptor complex essential for adhesion of the cell to substrata.
Collapse
Affiliation(s)
- Richard I Tuxworth
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
49
|
McNeil EL, Tacelosky D, Basciano P, Biallas B, Williams R, Damiani P, Deacon S, Fox C, Stewart B, Petruzzi N, Osborn C, Klinger K, Sellers JR, Smith CK. Actin-dependent motility of melanosomes from fish retinal pigment epithelial (RPE) cells investigated using in vitro motility assays. ACTA ACUST UNITED AC 2005; 58:71-82. [PMID: 15083529 DOI: 10.1002/cm.10179] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Melanosomes (pigment granules) within retinal pigment epithelial (RPE) cells of fish and amphibians undergo massive migrations in response to light conditions to control light flux to the retina. Previous research has shown that melanosome motility within apical projections of dissociated fish RPE cells requires an intact actin cytoskeleton, but the mechanisms and motors involved in melanosome transport in RPE have not been identified. Two in vitro motility assays, the Nitella assay and the sliding filament assay, were used to characterize actin-dependent motor activity of RPE melanosomes. Melanosomes applied to dissected filets of the Characean alga, Nitella, moved along actin cables at a mean rate of 2 microm/min, similar to the rate of melanosome motility in dissociated, cultured RPE cells. Path lengths of motile melanosomes ranged from 9 to 37 microm. Melanosome motility in the sliding filament assay was much more variable, ranging from 0.4-33 microm/min; 70% of velocities ranged from 1-15 microm/min. Latex beads coated with skeletal muscle myosin II and added to Nitella filets moved in the same direction as RPE melanosomes, indicating that the motility is barbed-end directed. Immunoblotting using antibodies against myosin VIIa and rab27a revealed that both proteins are enriched on melanosome membranes, suggesting that they could play a role in melanosome transport within apical projections of fish RPE.
Collapse
Affiliation(s)
- E L McNeil
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sousa S, Cabanes D, El-Amraoui A, Petit C, Lecuit M, Cossart P. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J Cell Sci 2005; 117:2121-30. [PMID: 15090598 DOI: 10.1242/jcs.01066] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen with the capacity to invade non-phagocytic cells. This dynamic process involves coordinated membrane remodelling and actin cytoskeleton rearrangements. Although some of the molecular factors promoting these events have been identified, the driving force allowing internalization is unknown. One of the receptors for L. monocytogenes on epithelial cells is E-cadherin, a transmembrane protein normally involved in homophilic interactions that allow cell-cell contacts at the adherens junctions. E-cadherin has to be connected to the actin cytoskeleton to mediate strong cell-cell adhesion and to trigger Listeria entry; alpha- and beta-catenins play key roles in these processes. We have recently identified an unconventional myosin, myosin VIIa and its ligand vezatin, at the adherens junctions of polarized epithelial cells. Here, we demonstrate by pharmacological and genetic approaches that both myosin VIIa and vezatin are crucial for Listeria internalization. These results provide the first evidence for the role of an unconventional myosin in bacterial internalization and a novel example of the exploitation of mammalian proteins, by a pathogen, to establish a successful infection.
Collapse
Affiliation(s)
- Sandra Sousa
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris CEDEX 15, France
| | | | | | | | | | | |
Collapse
|