1
|
Azam M, Jastrzebska B. Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies. Cells 2025; 14:49. [PMID: 39791750 PMCID: PMC11720364 DOI: 10.3390/cells14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP. Among them, mutations in the rhodopsin gene (RHO) are the most common cause of this condition. Due to the involvement of numerous genes and multiple mutations in a single gene, RP is a highly heterogeneous disease making the development of effective treatments particularly challenging. The progression of this disease involves complex cellular responses to restore cellular homeostasis, including the unfolded protein response (UPR) signaling, autophagy, and various cell death pathways. These mechanisms, however, often fail to prevent photoreceptor cell degradation and instead contribute to cell death under certain conditions. Current research focuses on the pharmacological modulation of the components of these pathways and the direct stabilization of mutated receptors as potential treatment strategies. Despite these efforts, the intricate interplay between these mechanisms and the diverse causative mutations involved has hindered the development of effective treatments. Advancing our understanding of the interactions between photoreceptor cell death mechanisms and the specific genetic mutations driving RP is critical to accelerate the discovery and development of therapeutic strategies for this currently incurable disease.
Collapse
Affiliation(s)
- Maria Azam
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Méndez-Luna D, Guzmán-Velázquez S, Padilla-Martínez II, García-Sánchez JR, Bello M, García-Vázquez JB, Mendoza-Figueroa HL, Correa-Basurto J. GPER binding site detection and description: A flavonoid-based docking and molecular dynamics simulations study. J Steroid Biochem Mol Biol 2024; 239:106474. [PMID: 38307214 DOI: 10.1016/j.jsbmb.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Flavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease. GPER, an estrogen receptor on the cell surface, has been postulated as a probable orchestrator of the beneficial effects of several flavonoids through modulation/inhibition of various mechanisms that lead to cancer progression. Therefore, applying pocket and cavity protein detection and docking and molecular dynamics simulations (MD), we generate, from a cluster composed of 39 flavonoids, crucial insights into the potential role as GPER ligands, of Puerarin, Isoquercetin, Kaempferol 3-O-glucoside and Petunidin 3-O-glucoside, aglycones whose sugar moiety delimits a new described sugar-acceptor sub-cavity into the cavity binding site on the receptor, as well as of the probable activation mechanism of the receptor and the pivotal residues involved in it. Altogether, our results shed light on the potential use of the aforementioned flavonoids as GPER ligands and for further evaluations in in vitro and in vivo assays to elucidate their probable anti-cancer activity.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Itzia-Irene Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Alcaldía Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico.
| | - José-Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Juan-Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Humberto-Lubriel Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| |
Collapse
|
3
|
Palecanda S, Madrid E, Porter ML. Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins. J Mol Evol 2023; 91:806-818. [PMID: 37940679 DOI: 10.1007/s00239-023-10137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Elizabeth Madrid
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
4
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Nicoli A, Dunkel A, Giorgino T, de Graaf C, Di Pizio A. Classification Model for the Second Extracellular Loop of Class A GPCRs. J Chem Inf Model 2022; 62:511-522. [PMID: 35113559 DOI: 10.1021/acs.jcim.1c01056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extracellular loop 2 (ECL2) is the longest and the most diverse loop among class A G protein-coupled receptors (GPCRs). It connects the transmembrane (TM) helices 4 and 5 and contains a highly conserved cysteine through which it is bridged with TM3. In this paper, experimental ECL2 structures were analyzed based on their sequences, shapes, and intramolecular contacts. To take into account the flexibility, we incorporated into our analyses information from the molecular dynamics trajectories available on the GPCRmd website. Despite the high sequence variability, shapes of the analyzed structures, defined by the backbone volume overlaps, can be clustered into seven main groups. Conformational differences within the clusters can be then identified by intramolecular interactions with other GPCR structural domains. Overall, our work provides a reorganization of the structural information of the ECL2 of class A GPCR subfamilies, highlighting differences and similarities on sequence and conformation levels.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Toni Giorgino
- Biophysics Institute, National Research Council (CNR-IBF), 20133 Milan, Italy
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
6
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Abstract
Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.
Collapse
|
8
|
Sancho-Pelluz J, Cui X, Lee W, Tsai YT, Wu WH, Justus S, Washington I, Hsu CW, Park KS, Koch S, Velez G, Bassuk AG, Mahajan VB, Lin CS, Tsang SH. Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho D190N mutation. Cell Mol Life Sci 2019; 76:3657-3665. [PMID: 30976840 PMCID: PMC7144803 DOI: 10.1007/s00018-019-03090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Abstract
D190N, a missense mutation in rhodopsin, causes photoreceptor degeneration in patients with autosomal dominant retinitis pigmentosa (adRP). Two competing hypotheses have been developed to explain why D190N rod photoreceptors degenerate: (a) defective rhodopsin trafficking prevents proteins from correctly exiting the endoplasmic reticulum, leading to their accumulation, with deleterious effects or (b) elevated mutant rhodopsin expression and unabated signaling causes excitotoxicity. A knock-in D190N mouse model was engineered to delineate the mechanism of pathogenesis. Wild type (wt) and mutant rhodopsin appeared correctly localized in rod outer segments of D190N heterozygotes. Moreover, the rhodopsin glycosylation state in the mutants appeared similar to that in wt mice. Thus, it seems plausible that the injurious effect of the heterozygous mutation is not related to mistrafficking of the protein, but rather from constitutive rhodopsin activity and a greater propensity for chromophore isomerization even in the absence of light.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Tianjin Medical University Eye Hospital, The College of Optometry, Tianjin Medical University Eye Institute, Tianjin, China
| | - Winston Lee
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sally Justus
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilyas Washington
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Chun-Wei Hsu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Karen Sophia Park
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Susanne Koch
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA.
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
10
|
Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2019; 257:725-731. [PMID: 30635721 DOI: 10.1007/s00417-018-04234-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To evaluate the progression of retinitis pigmentosa (RP) due to mutations in rhodopsin (RHO) by measuring the short-wavelength autofluorescence (SW-AF) increased autofluorescence ring and ellipsoid zone (EZ)-line width. METHODS Fundus autofluorescence (FAF) and spectral domain optical coherence tomography (SD-OCT) images were obtained from 10 patients with autosomal dominant RP due to mutations in the RHO gene. Measurements of ring area on FAF images, as well as the EZ line width on SD-OCT images and horizontal, vertical diameter, were performed by two independent masked graders. RESULTS The ring area decreased by a rate of 0.6 ± 0.2 mm2 per year. We observed that the EZ line width decreased by an average of 152 ± 37 μm per year, while the horizontal and vertical diameters decreased by 106 ± 35 μm and 125 ± 29 μm per year, respectively. Progression rates were similar between eyes. CONCLUSIONS We observed SW-AF ring constriction and a progressive loss of EZ line width over time.
Collapse
|
11
|
Katayama K, Furutani Y, Iwaki M, Fukuda T, Imai H, Kandori H. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys Chem Chem Phys 2018; 20:3381-3387. [DOI: 10.1039/c7cp07277e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tetsuya Fukuda
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hiroo Imai
- Primate Research Institute
- Kyoto University
- Inuyama 484-8506
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBio Technology Research Center
| |
Collapse
|
12
|
Woods KN, Pfeffer J, Klein-Seetharaman J. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways. Front Mol Biosci 2017; 4:85. [PMID: 29312953 PMCID: PMC5733091 DOI: 10.3389/fmolb.2017.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs.
Collapse
Affiliation(s)
- Kristina N. Woods
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität, München, Germany
- *Correspondence: Kristina N. Woods
| | - Jürgen Pfeffer
- Bavarian School of Public Policy, Technical University of Munich, München, Germany
| | | |
Collapse
|
13
|
Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa. Sci Rep 2017; 7:11167. [PMID: 28894166 PMCID: PMC5593859 DOI: 10.1038/s41598-017-11391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
Dietary flavonoids exhibit many biologically-relevant functions and can potentially have beneficial effects in the treatment of pathological conditions. In spite of its well known antioxidant properties, scarce structural information is available on the interaction of flavonoids with membrane receptors. Advances in the structural biology of a specific class of membrane receptors, the G protein-coupled receptors, have significantly increased our understanding of drug action and paved the way for developing improved therapeutic approaches. We have analyzed the effect of the flavonoid quercetin on the conformation, stability and function of the G protein-coupled receptor rhodopsin, and the G90V mutant associated with the retinal degenerative disease retinitis pigmentosa. By using a combination of experimental and computational methods, we suggest that quercetin can act as an allosteric modulator of opsin regenerated with 9-cis-retinal and more importantly, that this binding has a positive effect on the stability and conformational properties of the G90V mutant associated with retinitis pigmentosa. These results open new possibilities to use quercetin and other flavonoids, in combination with specific retinoids like 9-cis-retinal, for the treatment of retinal degeneration associated with retinitis pigmentosa. Moreover, the use of flavonoids as allosteric modulators may also be applicable to other members of the G protein-coupled receptors superfamily.
Collapse
|
14
|
Abstract
High-altitude environments present a range of biochemical and physiological challenges for organisms through decreases in oxygen, pressure, and temperature relative to lowland habitats. Protein-level adaptations to hypoxic high-altitude conditions have been identified in multiple terrestrial endotherms; however, comparable adaptations in aquatic ectotherms, such as fishes, have not been as extensively characterized. In enzyme proteins, cold adaptation is attained through functional trade-offs between stability and activity, often mediated by substitutions outside the active site. Little is known whether signaling proteins [e.g., G protein-coupled receptors (GPCRs)] exhibit natural variation in response to cold temperatures. Rhodopsin (RH1), the temperature-sensitive visual pigment mediating dim-light vision, offers an opportunity to enhance our understanding of thermal adaptation in a model GPCR. Here, we investigate the evolution of rhodopsin function in an Andean mountain catfish system spanning a range of elevations. Using molecular evolutionary analyses and site-directed mutagenesis experiments, we provide evidence for cold adaptation in RH1. We find that unique amino acid substitutions occur at sites under positive selection in high-altitude catfishes, located at opposite ends of the RH1 intramolecular hydrogen-bonding network. Natural high-altitude variants introduced into these sites via mutagenesis have limited effects on spectral tuning, yet decrease the stability of dark-state and light-activated rhodopsin, accelerating the decay of ligand-bound forms. As found in cold-adapted enzymes, this phenotype likely compensates for a cold-induced decrease in kinetic rates-properties of rhodopsin that mediate rod sensitivity and visual performance. Our results support a role for natural variation in enhancing the performance of GPCRs in response to cold temperatures.
Collapse
|
15
|
Guo Y, Hendrickson HP, Videla PE, Chen YN, Ho J, Sekharan S, Batista VS, Tully JC, Yan ECY. Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants. J Chem Phys 2017; 146:215104. [DOI: 10.1063/1.4984818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ying Guo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Heidi P. Hendrickson
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Pablo E. Videla
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Ya-Na Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Junming Ho
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - John C. Tully
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
16
|
van Hazel I, Dungan SZ, Hauser FE, Morrow JM, Endler JA, Chang BSW. A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics. Protein Sci 2016; 25:1308-18. [PMID: 26889650 DOI: 10.1002/pro.2902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the visual pigment responsible for initiating the phototransduction cascade in vertebrate rod photoreceptors. Although well-characterized in a few model systems, comparative studies of rhodopsin function, particularly for nonmammalian vertebrates are comparatively lacking. Bowerbirds are rare among passerines in possessing a key substitution, D83N, at a site that is otherwise highly conserved among G protein-coupled receptors. While this substitution is present in some dim-light adapted vertebrates, often accompanying another unusual substitution, A292S, its functional relevance in birds is uncertain. To investigate functional effects associated with these two substitutions, we use the rhodopsin gene from the great bowerbird (Ptilonorhynchus nuchalis) as a background for site-directed mutagenesis, in vitro expression and functional characterization. We also mutated these sites in two additional rhodopsins that do not naturally possess N83, chicken and bovine, for comparison. Both sites were found to contribute to spectral blue-shifts, but had opposing effects on kinetic rates. Substitutions at site 83 were found to primarily affect the kinetics of light-activated rhodopsin, while substitutions at site 292 had a larger impact on spectral tuning. The contribution of substitutions at site 83 to spectral tuning in particular depended on genetic background, but overall, the effects of substitutions were otherwise surprisingly additive, and the magnitudes of functional shifts were roughly similar across all three genetic backgrounds. By employing a comparative approach with multiple species, our study provides new insight into the joint impact of sites 83 and 292 on rhodopsin structure-function as well as their evolutionary significance for dim-light vision across vertebrates.
Collapse
Affiliation(s)
- Ilke van Hazel
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - John A Endler
- Centre for Integrative Ecology, Deakin University, Australia
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|
17
|
Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Vis Neurosci 2016; 33:e002. [DOI: 10.1017/s0952523815000322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRetinitis pigmentosa (RP) comprises several heritable diseases that involve photoreceptor, and ultimately retinal, degeneration. Currently, mutations in over 50 genes have known links to RP. Despite advances in clinical characterization, molecular characterization of RP remains challenging due to the heterogeneous nature of causal genes, mutations, and clinical phenotypes. In this study, we compiled large datasets of two important visual genes associated with RP: rhodopsin, which initiates the phototransduction cascade, and the retinoid isomerase RPE65, which regenerates the visual cycle. We used a comparative evolutionary approach to investigate the relationship between interspecific sequence variation and pathogenic mutations that lead to degenerative retinal disease. Using codon-based likelihood methods, we estimated evolutionary rates (dN/dS) across both genes in a phylogenetic context to investigate differences between pathogenic and nonpathogenic amino acid sites. In both genes, disease-associated sites showed significantly lower evolutionary rates compared to nondisease sites, and were more likely to occur in functionally critical areas of the proteins. The nature of the dataset (e.g., vertebrate or mammalian sequences), as well as selection of pathogenic sites, affected the differences observed between pathogenic and nonpathogenic sites. Our results illustrate that these methods can serve as an intermediate step in understanding protein structure and function in a clinical context, particularly in predicting the relative pathogenicity (i.e., functional impact) of point mutations and their downstream phenotypic effects. Extensions of this approach may also contribute to current methods for predicting the deleterious effects of candidate mutations and to the identification of protein regions under strong constraint where we expect pathogenic mutations to occur.
Collapse
|
18
|
Tsukamoto H, Kubo Y, Farrens DL, Koyanagi M, Terakita A, Furutani Y. Retinal Attachment Instability Is Diversified among Mammalian Melanopsins. J Biol Chem 2015; 290:27176-27187. [PMID: 26416885 DOI: 10.1074/jbc.m115.666305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, 444-8585, Japan,; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan,.
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan,; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, 444-8585, Japan,; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
19
|
Dong X, Ramon E, Herrera-Hernández MG, Garriga P. Phospholipid Bicelles Improve the Conformational Stability of Rhodopsin Mutants Associated with Retinitis Pigmentosa. Biochemistry 2015; 54:4795-804. [PMID: 26181234 DOI: 10.1021/acs.biochem.5b00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutations in the visual photoreceptor rhodopsin are the cause of the retinal degenerative disease retinitis pigmentosa. Some naturally occurring mutations can lead to protein conformational instability. Two such mutations, N55K and G90V, in the first and second transmembrane helices of the receptor, have been associated with sector and classical retinitis pigmentosa, respectively, and showed enhanced thermal sensitivity. We have carefully analyzed the effect of phospholipid bicelles on the stability and ligand binding properties of these two mutants and compared it with those of the detergent-solubilized samples. We have used a phospholipid bilayer consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). We find that DMPC/DHPC bicelles dramatically increase the thermal stability of the rhodopsin mutants G90V and N55K. The chromophore stability and regeneration of the mutants were also increased in bicelles when compared to their behavior in a dodecyl maltoside detergent solution. The retinal release process was slowed in bicelles, and chromophore entry, after illumination, was improved for the G90V mutant but not for N55K. Furthermore, fluorescence spectroscopy measurements showed that bicelles allowed more exogenous retinal binding to the photoactivated G90V mutant than in a detergent solution. In contrast, N55K could not reposition any chromophore either in the detergent or in bicelles. The results demonstrate that DMPC/DHPC bicelles can counteract the destabilizing effect of the disease-causing mutations and can modulate the structural changes in the ensuing receptor photoactivation in a distinct specific manner for different retinitis pigmentosa mutant phenotypes.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - María Guadalupe Herrera-Hernández
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| |
Collapse
|
20
|
Morrow JM, Chang BSW. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy. Biochemistry 2015; 54:4507-18. [PMID: 26098991 DOI: 10.1021/bi501377b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.
Collapse
|
21
|
Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 2014; 31:1149-65. [PMID: 24509690 DOI: 10.1093/molbev/msu064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 804] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
23
|
Park PSH. Constitutively active rhodopsin and retinal disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:1-36. [PMID: 24931191 DOI: 10.1016/b978-0-12-417197-8.00001-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells of the retina that initiates scotopic vision. In the dark, rhodopsin is bound to the chromophore 11-cis retinal, which locks the receptor in an inactive state. The maintenance of an inactive rhodopsin in the dark is critical for rod photoreceptor cells to remain highly sensitive. Perturbations by mutation or the absence of 11-cis retinal can cause rhodopsin to become constitutively active, which leads to the desensitization of photoreceptor cells and, in some instances, retinal degeneration. Constitutive activity can arise in rhodopsin by various mechanisms and can cause a variety of inherited retinal diseases including Leber congenital amaurosis, congenital night blindness, and retinitis pigmentosa. In this review, the molecular and structural properties of different constitutively active forms of rhodopsin are overviewed, and the possibility that constitutive activity can arise from different active-state conformations is discussed.
Collapse
Affiliation(s)
- Paul Shin-Hyun Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
24
|
Opefi CA, South K, Reynolds CA, Smith SO, Reeves PJ. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function. J Biol Chem 2013; 288:33912-33926. [PMID: 24106275 DOI: 10.1074/jbc.m113.483032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.
Collapse
Affiliation(s)
- Chikwado A Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, United Kingdom.
| |
Collapse
|
25
|
Liu MY, Liu J, Mehrotra D, Liu Y, Guo Y, Baldera-Aguayo PA, Mooney VL, Nour AM, Yan ECY. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants. J Biol Chem 2013; 288:17698-712. [PMID: 23625926 DOI: 10.1074/jbc.m112.397257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1-2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients.
Collapse
Affiliation(s)
- Monica Yun Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Feldman T, Ostrovsky M, Kholmurodov K, Yasuoka K. Model of Abnormal Chromophore-Protein Interaction for Е181К Rhodopsin Mutation: Computer Molecular Dynamics Study. Open Biochem J 2012; 6:94-102. [PMID: 22930661 PMCID: PMC3428635 DOI: 10.2174/1874091x01206010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 11/23/2022] Open
Abstract
The interaction of the 11-cis-retinal chromophore with the surrounding amino acid residues in the chromophore center of the rhodopsin protein has been investigated for the Е181К mutant form using molecular dynamics simulation. A comparative analysis of the arrangement of the amino acid residues in the chromophore center has been performed for both wild (native) and mutant rhodopsins. It is shown that for the Е181К mutant rhodopsin there is no proper binding of 11-cis-retinal with the surrounding amino acid residues. The distortion of the conformation states in the mutant rhodopsin molecule takes place in both the chromophore center and cytoplasmic domain. Our simulations suggest that a stable covalent linkage of 11-cis-retinal with the protein part (viz. opsin) of the rhodopsin molecule will not form. This, on the other hand, implies that the protein's active site in the cytoplasmic domain, which is responsible for the G-protein binding (so-called transducin), may not be completely blocked.Based on our molecular simulation data, we discuss the possible correlation between retinitis pigmentosa pathogenesis and the structural and functional properties of the rhodopsin protein.
Collapse
Affiliation(s)
- Tatyana Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, Moscow, 119334 Russia
- Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
- Moscow State Lomonosov University, Department of Biology, Leninskie Gory, 1, Moscow, 119234 Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, Moscow, 119334 Russia
- Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
- Moscow State Lomonosov University, Department of Biology, Leninskie Gory, 1, Moscow, 119234 Russia
| | - Kholmirzo Kholmurodov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 Russia
- Dubna International University, Department of Chemistry,Dubna, Moscow Region, 119234 Russia
| | - Kenji Yasuoka
- Keio University, Department of Mechanical Engineering,3-14-1 Hiyoshi, Yokohama, 223-8522 Japan
| |
Collapse
|
27
|
Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 2012; 165:1688-1703. [PMID: 21864311 DOI: 10.1111/j.1476-5381.2011.01629.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
GPCRs exhibit a common architecture of seven transmembrane helices (TMs) linked by intracellular loops and extracellular loops (ECLs). Given their peripheral location to the site of G-protein interaction, it might be assumed that ECL segments merely link the important TMs within the helical bundle of the receptor. However, compelling evidence has emerged in recent years revealing a critical role for ECLs in many fundamental aspects of GPCR function, which supported by recent GPCR crystal structures has provided mechanistic insights. This review will present current understanding of the key roles of ECLs in ligand binding, activation and regulation of both family A and family B GPCRs.
Collapse
Affiliation(s)
- M Wheatley
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D Wootten
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - M T Conner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Simms
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R Kendrick
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R T Logan
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D R Poyner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Barwell
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
28
|
Sancho-Pelluz J, Tosi J, Hsu CW, Lee F, Wolpert K, Tabacaru MR, Greenberg JP, Tsang SH, Lin CS. Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Mol Med 2012; 18:549-55. [PMID: 22252712 DOI: 10.2119/molmed.2011.00475] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/10/2012] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin is the G protein-coupled receptor in charge of initiating signal transduction in rod photoreceptor cells upon the arrival of the photon. D190N (Rho(D190n)), a missense mutation in rhodopsin, causes autosomal-dominant retinitis pigmentosa (adRP) in humans. Affected patients present hyperfluorescent retinal rings and progressive rod photoreceptor degeneration. Studies in humans cannot reveal the molecular processes causing the earliest stages of the condition, thus necessitating the creation of an appropriate animal model. A knock-in mouse model with the D190N mutation was engineered to study the pathogenesis of the disease. Electrophysiological and histological findings in the mouse were similar to those observed in human patients, and the hyperfluorescence pattern was analogous to that seen in humans, confirming that the D190N mouse is an accurate model for the study of adRP.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen MH, Kuemmel C, Birge RR, Knox BE. Rapid release of retinal from a cone visual pigment following photoactivation. Biochemistry 2012; 51:4117-25. [PMID: 22217337 DOI: 10.1021/bi201522h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated release of retinal from a short-wavelength-sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t(1/2)) of release of retinal from VCOP was 7.1 s, 250-fold faster than that of rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t(1/2) decreasing from 23 to 4 s with the pH decreasing from 4.1 to 8, respectively. However, the Arrhenius activation energy (E(a)) for VCOP derived from kinetic measurements between 4 and 20 °C was 17.4 kcal/mol, similar to the value of 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D(2)O) effect in VCOP, but this effect was smaller than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOP(D108A)) produced a pigment with an unprotonated chromophore (λ(max) = 360 nm) and dramatically slowed (t(1/2) ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D and D108A) was designed to move the counterion one α-helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (λ(max) = 420 nm). Moreover, the VCOP(S85D/D108A) mutant had retinal release kinetics (t(1/2) = 7 s) and an E(a) (18 kcal/mol) similar to those of the native pigment exhibiting no pH dependence. By contrast, the single mutant VCOP(S85D) had an ~3-fold decreased retinal release rate compared to that of the native pigment. Photoactivated VCOP(D108A) had kinetics comparable to those of a rhodopsin counterion mutant, Rho(E113Q), both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from inherent differences in the rate of Schiff base hydrolysis but rather from differences in the properties of noncovalent binding of the retinal chromophore to the protein.
Collapse
Affiliation(s)
- Min-Hsuan Chen
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Rhodopsin is the first G-protein-coupled receptor (GPCR) with its three-dimensional structure solved by X-ray crystallography. The crystal structure of rhodopsin has revealed the molecular mechanism of photoreception and signal transduction in the visual system. Although several other GPCR crystal structures have been reported over the past few years, the rhodopsin structure remains an important model for understanding the structural and functional characteristics of other GPCRs. This review summarizes the structural features, the photoactivation, and the G protein signal transduction of rhodopsin.
Collapse
|
31
|
Lomonosova E, Kolesnikov AV, Kefalov VJ, Kisselev OG. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex. Invest Ophthalmol Vis Sci 2012; 53:1225-33. [PMID: 22266510 DOI: 10.1167/iovs.11-9350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the possible role of transducin Gtβγ-complex in modulating the signaling properties of photoactivated rhodopsin and its lifetime in rod disc membranes and intact rods. METHODS Rhodopsin photolysis was studied using UV-visible spectroscopy and rapid scanning spectroscopy in the presence of hydroxylamine in highly purified wild-type and Gtγ-deficient mouse rod disc membranes. Complex formation between photoactivated rhodopsin and transducin was measured by extra-metarhodopsin (meta) II assay. Recovery of dark current and flash sensitivity in individual intact wild-type and Gtγ-deficient mouse rods was measured by single-cell suction recordings. RESULTS Photoconversion of rhodopsin to meta I/meta II equilibrium proceeds normally after elimination of the Gtβγ-complex. The meta I/meta II ratio, the rate of meta II decay, the reactivity of meta II toward hydroxylamine, and the rate of meta III formation in Gtγ-deficient rod disc membranes were identical with those observed in wild-type samples. Under low-intensity illumination, the amount of extra-meta II in Gtγ-deficient discs was significantly reduced. The initial rate of dark current recovery after 12% rhodopsin bleach was three times faster in Gtγ-deficient rods, whereas the rate of the late current recovery was largely unchanged. Mutant rods also exhibited faster postbleach recovery of flash sensitivity. CONCLUSIONS Photoactivation and thermal decay of rhodopsin proceed similarly in wild-type and Gtγ-deficient mouse rods, but the complex formation between photoactivated rhodopsin and transducin is severely compromised in the absence of Gtβγ. The resultant lower transduction activation contributes to faster photoresponse recovery after a moderate pigment bleach in Gtγ-deficient rods.
Collapse
Affiliation(s)
- Elena Lomonosova
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | | | | | |
Collapse
|
32
|
Hernández-Rodríguez EW, Sánchez-García E, Crespo-Otero R, Montero-Alejo AL, Montero LA, Thiel W. Understanding Rhodopsin Mutations Linked to the Retinitis pigmentosa Disease: a QM/MM and DFT/MRCI Study. J Phys Chem B 2012; 116:1060-76. [DOI: 10.1021/jp2037334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Erix Wiliam Hernández-Rodríguez
- Departamento de Bioquímica, Instituto de Ciencias Básicas y Preclínicas “Victoria de Girón”, 11600 Havana City, Cuba, and Charité Centrum für Innere Medizin und Dermatologie, Biomedizinisches Forschungszentrum, Campus Virchow, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | | | | | - Ana Lilian Montero-Alejo
- Laboratorio de Química Computacional y Teórica, Departamento de Química Física, Universidad de La Habana, 10400 Havana City, Cuba
| | - Luis Alberto Montero
- Laboratorio de Química Computacional y Teórica, Departamento de Química Física, Universidad de La Habana, 10400 Havana City, Cuba
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, 45470 Germany
| |
Collapse
|
33
|
Liu J, Liu MY, Fu L, Zhu GA, Yan ECY. Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base. J Biol Chem 2011; 286:38408-38416. [PMID: 21921035 PMCID: PMC3207414 DOI: 10.1074/jbc.m111.280602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/07/2011] [Indexed: 11/06/2022] Open
Abstract
The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H(2)O and D(2)O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Monica Yun Liu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Li Fu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Gefei Alex Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520.
| |
Collapse
|
34
|
Toledo D, Ramon E, Aguilà M, Cordomí A, Pérez JJ, Mendes HF, Cheetham ME, Garriga P. Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin. J Biol Chem 2011; 286:39993-40001. [PMID: 21940625 DOI: 10.1074/jbc.m110.201517] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different mutations at Gly-90 in the second transmembrane helix of the photoreceptor protein rhodopsin have been proposed to lead to different phenotypes. G90D has been classically associated with congenital night blindness, whereas the newly reported G90V substitution was linked to a retinitis pigmentosa phenotype. Here, we used Val/Asp replacements of the native Gly at position 90 to unravel the structure/function divergences caused by these mutations and the potential molecular mechanisms of inherited retinal disease. The G90V and G90D mutants have a similar conformation around the Schiff base linkage region in the dark state and same regeneration kinetics with 11-cis-retinal, but G90V has dramatically reduced thermal stability when compared with the G90D mutant rhodopsin. The G90V mutant also shows, like G90D, an altered photobleaching pattern and capacity to activate Gt in the opsin state. Furthermore, the regeneration of the G90V mutant with 9-cis-retinal was improved, achieving the same A(280)/A(500) as wild type isorhodopsin. Hydroxylamine resistance was also recovered, indicating a compact structure around the Schiff base linkage, and the thermal stability was substantially improved when compared with the 11-cis-regenerated mutant. These results support the role of thermal instability and/or abnormal photoproduct formation in eliciting a retinitis pigmentosa phenotype. The improved stability and more compact structure of the G90V mutant when it was regenerated with 9-cis-retinal brings about the possibility that this isomer or other modified retinoid analogues might be used in potential treatment strategies for mutants showing the same structural features.
Collapse
Affiliation(s)
- Darwin Toledo
- Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY. Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision. J Biol Chem 2011; 286:27622-9. [PMID: 21659526 PMCID: PMC3149353 DOI: 10.1074/jbc.m111.233312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/23/2011] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin has developed mechanisms to optimize its sensitivity to light by suppressing dark noise and enhancing quantum yield. We propose that an intramolecular hydrogen-bonding network formed by ∼20 water molecules, the hydrophilic residues, and peptide backbones in the transmembrane region is essential to restrain thermal isomerization, the source of dark noise. We studied the thermal stability of rhodopsin at 55 °C with single point mutations (E181Q and S186A) that perturb the hydrogen-bonding network at the active site. We found that the rate of thermal isomerization increased by 1-2 orders of magnitude in the mutants. Our results illustrate the importance of the intact hydrogen-bonding network for dim-light detection, revealing the functional roles of water molecules in rhodopsin. We also show that thermal isomerization of 11-cis-retinal in solution can be catalyzed by wild-type opsin and that this catalytic property is not affected by the mutations. We characterize the catalytic effect and propose that it is due to steric interactions in the retinal-binding site and increases quantum yield by predetermining the trajectory of photoisomerization. Thus, our studies reveal a balancing act between dark noise and quantum yield, which have opposite effects on the thermal isomerization rate. The acquisition of the hydrogen-bonding network and the tuning of the steric interactions at the retinal-binding site are two important factors in the development of dim-light vision.
Collapse
Affiliation(s)
- Jian Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Monica Yun Liu
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Jennifer B. Nguyen
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Aditi Bhagat
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Victoria Mooney
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Elsa C. Y. Yan
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
36
|
Piechnick R, Heck M, Sommer ME. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin. Biochemistry 2011; 50:7168-76. [PMID: 21766795 DOI: 10.1021/bi200675y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Besides Lys-296 in the binding pocket of opsin, all-trans-retinal forms adducts with peripheral lysine residues and phospholipids, thereby mimicking the spectral and chemical properties of metarhodopsin species. These pseudophotoproducts composed of nonspecific retinylidene Schiff bases have long plagued the investigation of rhodopsin deactivation and identification of decay products. We discovered that, while hydroxylamine can enter the retinal binding pocket of light-activated rhodopsin, the modified hydroxylamine compounds o-methylhydroxylamine (mHA), o-ethylhydroxylamine (eHA), o-tert-butylhydroxylamine (t-bHA), and o-(carboxymethyl)hydroxylamine (cmHA) are excluded. However, the alkylated hydroxylamines react quickly and efficiently with exposed retinylidene Schiff bases to form their respective retinal oximes. We further investigated how t-bHA affects light-activated rhodopsin and its interaction with binding partners. We found that both metarhodopsin II (Meta II) and Meta III are resistant to t-bHA, and neither arrestin nor transducin binding is affected by t-bHA. This discovery suggests that the hypothetical solvent channel that opens in light-activated rhodopsin is extremely stringent with regard to size and/or polarity. We believe that alkylated hydroxylamines will prove to be extremely useful reagents for the investigation of rhodopsin activation and decay mechanisms. Furthermore, the use of alkylated hydroxylamines should not be limited to in vitro studies and could help elucidate visual signal transduction mechanisms in the living cells of the retina.
Collapse
Affiliation(s)
- Ronny Piechnick
- Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
37
|
Sommer ME, Hofmann KP, Heck M. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 2010; 286:7359-69. [PMID: 21169358 DOI: 10.1074/jbc.m110.204941] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.
Collapse
Affiliation(s)
- Martha E Sommer
- Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
38
|
Abstract
Rhodopsin is a specialized G protein-coupled receptor (GPCR) found in vertebrate rod cells. Absorption of light by its 11-cis retinal chromophore leads to rapid photochemical isomerization and receptor activation. Recent results from protein crystallography and NMR spectroscopy show how structural changes on the extracellular side of rhodopsin induced by retinal isomerization are coupled to the motion of membrane-spanning helices to create a G protein binding pocket on the intracellular side of the receptor. The signaling pathway provides a comprehensive explanation for the conservation of specific amino acids and structural motifs across the class A family of GPCRs, as well as for the conservation of selected residues within the visual receptor subfamily. The emerging model of activation indicates that, rather than being unique, the visual receptors provide a basis for understanding the common structural and dynamic elements in the class A GPCRs.
Collapse
Affiliation(s)
- Steven O Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.
| |
Collapse
|
39
|
Gleim S, Stojanovic A, Arehart E, Byington D, Hwa J. Conserved rhodopsin intradiscal structural motifs mediate stabilization: effects of zinc. Biochemistry 2010; 48:1793-800. [PMID: 19206210 DOI: 10.1021/bi800968w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinitis pigmentosa (RP), a neurodegenerative disorder, can arise from single point mutations in rhodopsin, leading to a cascade of protein instability, misfolding, aggregation, rod cell death, retinal degeneration, and ultimately blindness. Divalent cations, such as zinc and copper, have allosteric effects on misfolded aggregates of comparable neurodegenerative disorders including Alzheimer disease, prion diseases, and ALS. We report that two structurally conserved low-affinity zinc coordination motifs, located among a cluster of RP mutations in the intradiscal loop region, mediate dose-dependent rhodopsin destabilization. Disruption of native interactions involving histidines 100 and 195, through site-directed mutagenesis or exogenous zinc coordination, results in significant loss of receptor stability. Furthermore, chelation with EDTA stabilizes the structure of both wild-type rhodopsin and the most prevalent rhodopsin RP mutation, P(23)H. These interactions suggest that homeostatic regulation of trace metal concentrations in the rod outer segment of the retina may be important both physiologically and for an important cluster of RP mutations. Furthermore, with a growing awareness of allosteric zinc binding domains on a diverse range of GPCRs, such principles may apply to many other receptors and their associated diseases.
Collapse
Affiliation(s)
- Scott Gleim
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
40
|
Fanelli F, Seeber M. Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J 2010; 24:3196-209. [DOI: 10.1096/fj.09-151084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Michele Seeber
- Dulbecco Telethon InstituteDepartment of Chemistry Modena Italy
| |
Collapse
|
41
|
Sakai K, Imamoto Y, Yamashita T, Shichida Y. Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants. Photochem Photobiol Sci 2010; 9:1490-7. [DOI: 10.1039/c0pp00183j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bondarenko VA, Hayashi F, Usukura J, Yamazaki A. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases. Mol Cell Biochem 2009; 334:125-39. [PMID: 19941040 DOI: 10.1007/s11010-009-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
Abstract
Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.
Collapse
|
43
|
Krebs MP, Holden DC, Joshi P, Clark CL, Lee AH, Kaushal S. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. J Mol Biol 2009; 395:1063-78. [PMID: 19913029 DOI: 10.1016/j.jmb.2009.11.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.
Collapse
Affiliation(s)
- Mark P Krebs
- Department of Ophthalmology and the Charlie Mack Overstreet Laboratories for Retinal Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
44
|
A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 2009; 34:540-52. [PMID: 19836958 DOI: 10.1016/j.tibs.2009.07.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitous signal transducers in cell membranes, as well as important drug targets. Interaction with extracellular agonists turns the seven transmembrane helix (7TM) scaffold of a GPCR into a catalyst for GDP and GTP exchange in heterotrimeric Galphabetagamma proteins. Activation of the model GPCR, rhodopsin, is triggered by photoisomerization of its retinal ligand. From the augmentation of biochemical and biophysical studies by recent high-resolution 3D structures, its activation intermediates can now be interpreted as the stepwise engagement of protein domains. Rearrangement of TM5-TM6 opens a crevice at the cytoplasmic side of the receptor into which the C terminus of the Galpha subunit can bind. The Galpha C-terminal helix is used as a transmission rod to the nucleotide binding site. The mechanism relies on dynamic interactions between conserved residues and could therefore be common to other GPCRs.
Collapse
|
45
|
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY. Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base. J Am Chem Soc 2009; 131:8750-1. [PMID: 19505100 DOI: 10.1021/ja903154u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although thermal stability of the G protein-coupled receptor rhodopsin is directly related to its extremely low dark noise level and has recently generated considerable interest, the chemistry behind the thermal decay process of rhodopsin has remained unclear. Using UV-vis spectroscopy and HPLC analysis, we have demonstrated that the thermal decay of rhodopsin involves both hydrolysis of the protonated Schiff base and thermal isomerization of 11-cis to all-trans retinal. Examining the unfolding of rhodopsin by circular dichroism spectroscopy and measuring the rate of thermal isomerization of 11-cis retinal in solution, we conclude that the observed thermal isomerization of 11-cis to all-trans retinal happens when 11-cis retinal is in the binding pocket of rhodopsin. Furthermore, we demonstrate that solvent deuterium isotope effects are involved in the thermal decay process by decreasing the rates of thermal isomerization and hydrolysis, suggesting that the rate-determining step of these processes involves breaking hydrogen bonds. These results provide insight into understanding the critical role of an extensive hydrogen-bonding network on stabilizing the inactive state of rhodopsin and contribute to our current understanding of the low dark noise level of rhodopsin, which enables this specialized protein to function as an extremely sensitive biological light detector. Because similar hydrogen-bonding networks have also been suggested by structural analysis of two other GPCRs, beta1 and beta2 adrenergic receptors, our results could reveal a general role of hydrogen bonds in facilitating GPCR function.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
46
|
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J. Conformational changes of channelrhodopsin-2. J Am Chem Soc 2009; 131:7313-9. [PMID: 19422231 DOI: 10.1021/ja8084274] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelrhodopsin-2 (ChR2) is a member of the new class of light-gated ion channels which serve as phototaxis receptors in the green alga Chlamydomonas reinhardtii. The protein is employed in optogenetics where neural circuits are optically stimulated under high spatiotemporal control. Despite its rapidly growing use in physiological experiments, the reaction mechanism of ChR2 is poorly understood. Here, we applied vibrational spectroscopy to trace structural changes of ChR2 after light-excitation of the retinal chromophore. FT-IR difference spectra of the various photocycle intermediates revealed that stages of the photoreaction preceding (P(1) state) and succeeding (P(4)) the conductive state of the channel (P(3)) are associated with large conformational changes of the protein backbone as indicate by strong differences in the amide I bands. Critical hydrogen-bonding changes of protonated carboxylic amino acid side chains (D156, E90) were detected and discussed with regard to the functional mechanism. We used the C128T mutant where the lifetime of P(3) is prolonged and applied FT-IR and resonance Raman spectroscopy to study the conductive P(3) state of ChR2. Finally, a mechanistic model is proposed that links the observed structural changes of ChR2 to the changes in the channel's conductance.
Collapse
Affiliation(s)
- Ionela Radu
- Bielefeld University, Biophysical Chemistry, 33615 Bielefeld
| | | | | | | | | | | |
Collapse
|
47
|
Felline A, Seeber M, Rao F, Fanelli F. Computational Screening of Rhodopsin Mutations Associated with Retinitis Pigmentosa. J Chem Theory Comput 2009; 5:2472-85. [DOI: 10.1021/ct900145u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Angelo Felline
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Michele Seeber
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Francesco Rao
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| | - Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, via Campi 183, 41100 Modena, Italy, and Laboratoire de Chimie Biophysique/ISIS 8, Universitè Louis Pasteur, allee Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
48
|
Hildebrand PW, Scheerer P, Park JH, Choe HW, Piechnick R, Ernst OP, Hofmann KP, Heck M. A ligand channel through the G protein coupled receptor opsin. PLoS One 2009; 4:e4382. [PMID: 19194506 PMCID: PMC2632885 DOI: 10.1371/journal.pone.0004382] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
Abstract
The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM) structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7), and B (between TM5 and 6), respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through B.
Collapse
Affiliation(s)
- Peter W Hildebrand
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA, Hirshfeld A, Ziliox M, Sakmar TP, Sheves M, Reeves PJ, Smith SO, Eilers M. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat Struct Mol Biol 2009; 16:168-75. [PMID: 19182802 PMCID: PMC2705779 DOI: 10.1038/nsmb.1549] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 01/02/2009] [Indexed: 11/30/2022]
Abstract
The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A critical question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The retina of vertebrates contains two kinds of photoreceptor cells, rods and cones, which contain their specific visual pigments that are responsible for scotopic and photopic vision, respectively. In cone photoreceptor cells, there are three types of color pigments: blue, green and red, each with a distinctive absorption maximum. The goal of this investigation was to identify optimal conditions under which these pigments could be obtained and isolated in a stable form, thereby facilitating structural studies using high-resolution approaches. For this purpose, all three human cone opsins were initially expressed in mammalian cells, reconstituted with 11-cis retinal, detergent solubilized, purified and their stability compared with rod rhodopsin. As all three pigments showed dramatically reduced stability relative to rhodopsin, site-directed mutagenesis was used in an attempt to engineer stability into the green cone pigment. The mutations introduced some structural motifs and sites of posttranslational modification present in rhodopsin, as well as amino acid substitutions that have been found to stabilize the rod opsin apo-protein. We also modified the hydrophobic environment of the green cone pigment by varying the detergent and detergent/lipid composition used during solubilization and purification, and compared them with the retinal reconstituted pigment in membranes. Our results show that these changes do not significantly improve the inherent instability of the human cone pigments, and in some cases, lead to a decrease in stability and protein aggregation. We conclude that further efforts are required to stabilize the human cone pigments in a form suitable for high-resolution structural studies.
Collapse
Affiliation(s)
- Eva Ramon
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center-Houston, Houston, TX, USA
| | | | | |
Collapse
|