1
|
Li D, Du J, Gao M, He C. Identification of AtALKBH1A and AtALKBH1D as DNA N 6-adenine demethylases in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112055. [PMID: 38432357 DOI: 10.1016/j.plantsci.2024.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA N6-methyladenine (6 mA) has recently been discovered as a novel DNA modification in animals and plants. In mammals, AlkB homolog 1 (ALKBH1) has been identified as a DNA 6 mA demethylase. ALKBH1 tightly controls the DNA 6 mA methylation level of mammalian genomes and plays important role in regulating gene expression. DNA 6 mA methylation has also been reported to exist in plant genomes, however, the plant DNA 6 mA demethylases and their function remain largely unknown. Here we identify homologs of ALKBH1 as DNA 6 mA demethylases in Arabidopsis. We discover that there are four homologs of ALKBH1, AtALKBH1A, AtALKBH1B, AtALKBH1C and AtALKBH1D, in Arabidopsis. In vitro enzymatic activity studies reveal that AtALKBH1A and 1D can efficiently erase DNA 6 mA methylation. Loss of function of AtALKBH1A and AtALKBH1D causes elevated DNA 6 mA methylation levels in vivo. atalkbh1a/1d mutant displays delayed seed gemination. Based on our RNA-seq data, we find some regulators of seed gemination are dysregulated in atalkbh1a/1d, and the dysregulation is correlated with changes of DNA 6 mA methylation levels. This study identifies plant DNA 6 mA demethylases and reports the function of DNA 6 mA methylation in regulating seed germination.
Collapse
Affiliation(s)
- Donghao Li
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Juan Du
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Min Gao
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chongsheng He
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
2
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
3
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
4
|
DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Int J Mol Sci 2021; 22:ijms221910540. [PMID: 34638881 PMCID: PMC8508711 DOI: 10.3390/ijms221910540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Site-specific DNA methylation plays an important role in epigenetic regulation of gene expression. Chemical methylation of DNA, including the formation of various methylated nitrogenous bases, leads to the formation of genotoxic modifications that impair DNA functions. Despite the fact that different pathways give rise to methyl groups in DNA, the main pathway for their removal is oxidative demethylation, which is catalyzed by nonheme Fe(II)/α-ketoglutarate–dependent DNA dioxygenases. DNA dioxygenases share a common catalytic mechanism of the oxidation of the alkyl groups on nitrogenous bases in nucleic acids. This review presents generalized data on the catalytic mechanism of action of DNA dioxygenases and on the participation of typical representatives of this superfamily, such as prokaryotic enzyme AlkB and eukaryotic enzymes ALKBH1–8 and TET1–3, in both processes of direct repair of alkylated DNA adducts and in the removal of an epigenetic mark (5-methylcytosine).
Collapse
|
5
|
Zhang Y, Wang C. Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases. Mol Biol Rep 2021; 48:4747-4756. [PMID: 34046849 DOI: 10.1007/s11033-021-06421-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
AlkBH1 is a member of the AlkB superfamily which are kinds of Fe (II) and α-ketoglutarate (α-KG)-dependent dioxygenases. At present, only demethyltransferases FTO and AlkBH5 have relatively clear substrate studies among these members, the types and mechanisms of substrates catalysis of other members are not clear, especially the demethyltransferase AlkBH1. AlkBH1, as a demethylase, has important functions of reversing DNA methylation and repairing DNA damage. And it has become a promising target for the treatment of many cancers, the regulation of neurological and genetic related diseases. Many scholars have made important discoveries in the diversity of AlkBH1 substrates, but there is no comprehensive summary, which affects the design inhibitor target of AlkBH1. Herein, We are absorbed in the latest progress in the study of AlkBH1 substrate diversity and its relationship with human diseases. Besides, we also discuss future research directions and suggest other studies to reveal the specific catalytic effect of AlkBH1 on cancer substrates.
Collapse
Affiliation(s)
- Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Nigam R, Raveendra Babu K, Ghosh T, Kumari B, Das P, Anindya R, Ahmed Khan F. Synthesis of 2-Chloro-3-amino indenone derivatives and their evaluation as inhibitors of DNA dealkylation repair. Chem Biol Drug Des 2021; 97:1170-1184. [PMID: 33764683 DOI: 10.1111/cbdd.13839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/30/2021] [Accepted: 03/07/2021] [Indexed: 12/24/2022]
Abstract
DNA alkylation damage, emanating from the exposure to environmental alkylating agents or produced by certain endogenous metabolic processes, affects cell viability and genomic stability. Fe(II)/2-oxoglutarate-dependent dioxygenase enzymes, such as Escherichia coli AlkB, are involved in protecting DNA from alkylation damage. Inspired by the natural product indenone derivatives reported to inhibit this class of enzymes, and a set of 2-chloro-3-amino indenone derivatives was synthesized and screened for their inhibitory properties against AlkB. The synthesis of 2-chloro-3-amino indenone derivatives was achieved from 2,3-dichloro indenones through addition-elimination method using alkyl/aryl amines under catalyst-free conditions. Using an in vitro reconstituted DNA repair assay, we have identified a 2-chloro-3-amino indenone compound 3o to be an inhibitor of AlkB. We have determined the binding affinity, mode of interaction, and kinetic parameters of inhibition of 3o and tested its ability to sensitize cells to methyl methanesulfonate that mainly produce DNA alkylation damage. This study established the potential of indenone-derived compounds as inhibitors of Fe(II)/2-oxoglutarate-dependent dioxygenase AlkB.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Kaki Raveendra Babu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Topi Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
8
|
Latifi R, Minnick JL, Quesne MG, de Visser SP, Tahsini L. Computational studies of DNA base repair mechanisms by nonheme iron dioxygenases: selective epoxidation and hydroxylation pathways. Dalton Trans 2020; 49:4266-4276. [PMID: 32141456 DOI: 10.1039/d0dt00007h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA base repair mechanisms of alkylated DNA bases is an important reaction in chemical biology and particularly in the human body. It is typically catalyzed by an α-ketoglutarate-dependent nonheme iron dioxygenase named the AlkB repair enzyme. In this work we report a detailed computational study into the structure and reactivity of AlkB repair enzymes with alkylated DNA bases. In particular, we investigate the aliphatic hydroxylation and C[double bond, length as m-dash]C epoxidation mechanisms of alkylated DNA bases by a high-valent iron(iv)-oxo intermediate. Our computational studies use quantum mechanics/molecular mechanics methods on full enzymatic structures as well as cluster models on active site systems. The work shows that the iron(iv)-oxo species is rapidly formed after dioxygen binding to an iron(ii) center and passes a bicyclic ring structure as intermediate. Subsequent cluster models explore the mechanism of substrate hydroxylation and epoxidation of alkylated DNA bases. The work shows low energy barriers for substrate activation and consequently energetically feasible pathways are predicted. Overall, the work shows that a high-valent iron(iv)-oxo species can efficiently dealkylate alkylated DNA bases and return them into their original form.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| | - Matthew G Quesne
- Cardiff University, School of Chemistry, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxon, OX110FA, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, 131 Princess Street, Manchester M1 7DN, UK.
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, 107 Physical Science Building, Stillwater, Oklahoma 74078, USA.
| |
Collapse
|
9
|
Khan A, Schofield CJ, Claridge TDW. Reducing Agent-Mediated Nonenzymatic Conversion of 2-Oxoglutarate to Succinate: Implications for Oxygenase Assays. Chembiochem 2020; 21:2898-2902. [PMID: 32478965 PMCID: PMC7693218 DOI: 10.1002/cbic.202000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Indexed: 11/06/2022]
Abstract
l-Ascorbate (l-Asc) is often added to assays with isolated FeII - and 2-oxoglutarate (2OG)-dependent oxygenases to enhance activity. l-Asc is proposed to be important in catalysis by some 2OG oxygenases in vivo. We report observations on the nonenzymatic conversion of 2OG to succinate, which is mediated by hydrogen peroxide generated by the reaction of l-Asc and dioxygen. Slow nonenzymatic oxidation of 2OG to succinate occurs with some, but not all, other reducing agents commonly used in 2OG oxygenase assays. We intend these observations will help in the robust assignment of substrates and inhibitors for 2OG oxygenases.
Collapse
Affiliation(s)
- Amjad Khan
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | | |
Collapse
|
10
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
11
|
Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P. Epigenetic Metalloenzymes. Curr Med Chem 2019; 26:2748-2785. [PMID: 29984644 DOI: 10.2174/0929867325666180706105903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.
Collapse
Affiliation(s)
- Christophe Blanquart
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Camille Linot
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Philippe Bertrand
- Réseau Epigénétique du Cancéropôle Grand Ouest, France.,Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B27, 86073, Poitiers cedex 09, France
| |
Collapse
|
12
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
13
|
Mohan M, Pandya V, Anindya R. Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by Molecular Dynamics Simulation. J Mol Graph Model 2018; 84:29-35. [DOI: 10.1016/j.jmgm.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
|
14
|
Nigam R, Babu KR, Ghosh T, Kumari B, Akula D, Rath SN, Das P, Anindya R, Khan FA. Indenone derivatives as inhibitor of human DNA dealkylation repair enzyme AlkBH3. Bioorg Med Chem 2018; 26:4100-4112. [PMID: 30041948 DOI: 10.1016/j.bmc.2018.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity. An efficient synthesis of 2,3-diaryl indenones from 2,3-dibromo indenones was achieved via Suzuki-Miyaura cross-coupling. Using a robust quantitative assay, we have obtained an AlkBH3 inhibitor that display specific binding and competitive mode of inhibition against DNA substrate. Finally, we established that this compound could prevent the proliferation of lung cancer cell line and enhance sensitivity to DNA damaging alkylating agent.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Kaki Raveendra Babu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Topi Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, Patna 801106, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
15
|
Nigam R, Anindya R. Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair. Biochem Biophys Res Commun 2018; 496:274-279. [PMID: 29326044 DOI: 10.1016/j.bbrc.2018.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 11/17/2022]
Abstract
Repair of alkylation damage in DNA is essential for maintaining genome integrity. Escherichia coli (E.coli) protein AlkB removes various alkyl DNA adducts including N1-methyladenine (N1meA) and N3-methylcytosine (N3meC) by oxidative demethylation. Previous studies showed that AlkB preferentially removes N1meA and N3meC from single-stranded DNA (ssDNA). It can also remove N1meA and N3meC from double-stranded DNA by base-flipping. Notably, ssDNA produced during DNA replication and recombination, remains bound to E. coli single-stranded DNA binding protein SSB and it is not known whether AlkB can repair methyl adduct present in SSB-coated DNA. Here we have studied AlkB-mediated DNA repair using SSB-bound DNA as substrate. In vitro repair reaction revealed that AlkB could efficiently remove N3meC adducts inasmuch as DNA length is shorter than 20 nucleotides. However, when longer N3meC-containing oligonuleotides were used as the substrate, efficiency of AlkB catalyzed reaction was abated compared to SSB-bound DNA substrate of identical length. Truncated SSB containing only the DNA binding domain could also support the stimulation of AlkB activity, suggesting the importance of SSB-DNA interaction for AlkB function. Using 70-mer oligonucleotide containing single N3meC we demonstrate that SSB-AlkB interaction promotes faster repair of the methyl DNA adducts.
Collapse
Affiliation(s)
- Richa Nigam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad 502285, Telangana, India.
| |
Collapse
|
16
|
Beloborodov SS, Bao J, Krylova SM, Shala-Lawrence A, Johnson PE, Krylov SN. Aptamer facilitated purification of functional proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:201-206. [PMID: 29287247 DOI: 10.1016/j.jchromb.2017.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies.
Collapse
Affiliation(s)
- Stanislav S Beloborodov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jiayin Bao
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Agnesa Shala-Lawrence
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
17
|
Chaplin VD, Valliere MA, Hangasky JA, Knapp MJ. Investigations on the role of a solvent tunnel in the α-ketoglutarate dependent oxygenase factor inhibiting HIF (FIH). J Inorg Biochem 2017; 178:63-69. [PMID: 29078149 DOI: 10.1016/j.jinorgbio.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
Non-heme Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze a wide array of reactions through coupling oxidative decarboxylation of αKG to substrate oxygenation. This class of enzymes follows a sequential mechanism in which O2 reacts only after binding primary substrate, raising questions over how protein structure tailors molecular access to the Fe(II) cofactor. The enzyme "factor inhibiting hypoxia inducible factor" (FIH) senses pO2 in human cells by hydroxylating the C-terminal transactivation domain (CTAD), suggesting that structural elements limiting molecular access to the active site may limit the pO2 response. In this study, we tested the impact of a solvent-accessible tunnel in FIH on molecular access to the active site in FIH. The size of the tunnel was increased through alanine point mutagenesis (Y93A, E105A, and Q147A), followed by a suite of mechanistic and spectroscopic probes. Steady-state kinetics varying O2 or CTAD indicated that O2 passage through the tunnel was not affected by Ala substitutions, allowing us to conclude that this narrow tunnel did not impact pO2 sensing by FIH. Steady-state kinetics with varied αKG concentrations revealed increased substrate inhibition for the Ala variants, suggesting that a second αKG molecule may bind near the active site of FIH. If this solvent-accessible tunnel is the O2 entry tunnel, it may be narrow in order to permit O2 access while preventing metabolic intermediates, such as αKG, from inhibiting FIH under physiological conditions.
Collapse
Affiliation(s)
- Vanessa D Chaplin
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Meaghan A Valliere
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - John A Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Michael J Knapp
- Department of Chemistry, University of Massachusetts, Amherst, United States.
| |
Collapse
|
18
|
Li Q, Huang Y, Liu X, Gan J, Chen H, Yang CG. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage. J Biol Chem 2016; 291:11083-93. [PMID: 27015802 PMCID: PMC4900258 DOI: 10.1074/jbc.m115.711895] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/07/2023] Open
Abstract
The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Qi Li
- From the Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Huang
- From the Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xichun Liu
- the Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Jianhua Gan
- the School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Chen
- the Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Cai-Guang Yang
- From the Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, , To whom correspondence should be addressed. Tel.: 86-21-50806029; Fax: 86-21-50807088; E-mail:
| |
Collapse
|
19
|
Ueda Y, Kitae K, Ooshio I, Fusamae Y, Kawaguchi M, Jingushi K, Harada K, Hirata K, Tsujikawa K. A real-time PCR-based quantitative assay for 3-methylcytosine demethylase activity of ALKBH3. Biochem Biophys Rep 2016; 5:476-481. [PMID: 28955855 PMCID: PMC5600452 DOI: 10.1016/j.bbrep.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/27/2022] Open
Abstract
Human AlkB homolog 3 (ALKBH3), a homolog of the Escherichia coli protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference in vitro and in vivo indicate that ALKBH3 is a promising molecular target for the treatment of prostate, pancreatic, and non-small cell lung cancer. Therefore, an inhibitor for ALKBH3 demethylase is expected to be a first-in-class molecular-targeted drug for cancer treatment. Here, we report the development of a novel, quantitative real-time PCR-based assay for ALKBH3 demethylase activity against 3-meC by highly active recombinant ALKBH3 protein using a silkworm expression system. This assay enables us to screen for inhibitors of ALKBH3 demethylase, which may result in the development of a novel molecular-targeted drug for cancer therapy.
Collapse
Key Words
- 1-meA, 1-methyladenine
- 2OG, 2-oxoglutarate
- 3-meC, 3-methylcytosine
- 3-methylcytosine
- ALKBH, AlkB homolog
- ALKBH3
- AlkB
- CRPC, castrate resistant prostate cancer
- Demethylation
- FTO, fat mass and obesity-associated
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- NACLC, non-small cell lung cancer
- RT-PCR
- ds, double-stranded
- ss, single-stranded
Collapse
Affiliation(s)
- Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikumi Ooshio
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Fusamae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Megumi Kawaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Müller TA, Hausinger RP. AlkB and Its Homologues – DNA Repair and Beyond. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AlkB is an Fe(ii)/2-oxoglutarate-dependent dioxygenase that is part of the adaptive response to alkylating agents in Escherichia coli. AlkB hydroxylates a wide variety of alkylated DNA bases producing unstable intermediates which decompose to restore the non-alkylated bases. Homologues exist in other bacteria, metazoa (e.g. nine in humans), plants and viruses, but not in archaea, with many catalysing the same oxidative demethylation reactions as for AlkB. The mammalian enzymes Alkbh2 and Alkbh3 catalyse direct DNA repair, Alkbh5 and FTO (Alkbh9) are RNA demethylases, and Alkbh8 is used to synthesize a tRNA, while the remaining mammalian homologues have alternative functions. Alkbh1 is an apurinic/apyrimidinic lyase in addition to exhibiting demethylase activities, but no clear role for the Alkbh1 protein has emerged. Alkbh4 is involved in cell division and potentially demethylates actin, whereas the mitochondrial homologue Alkbh7 has a role in obesity; however, no enzymatic activity has been linked to Alkbh4 or Alkbh7. Here, we discuss AlkB as the ‘archetype’ of this class of hydroxylases, compare it to Alkbh2 and Alkbh3, and then briefly review the diverse (and largely unknown) functions of Alkbh1, Alkbh4, Alkbh6 and Alkbh7. Alkbh5, Alkbh8 and Alkbh9 (FTO) are described separately.
Collapse
Affiliation(s)
- Tina A. Müller
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
21
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
22
|
Yufa R, Krylova SM, Bruce C, Bagg EA, Schofield CJ, Krylov SN. Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein. Anal Chem 2014; 87:1411-9. [PMID: 25495441 DOI: 10.1021/ac5044187] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), a homogeneous approach to select DNA aptamers, is among the most efficient partitioning techniques. In contrast with surface-based systematic evolution of ligands by exponential enrichment (SELEX) approaches, the ability of NECEEM to select aptamers to unmodified proteins in solution is preferable for identifying aptamers for eventual in vivo use. The high stringency and low sample volumes of NECEEM, although generally beneficial, can result in binding of very few aptamers, requiring highly efficient amplification to propagate them. When amplified with standard PCR, detectable library enrichment can fail due to the fast conversion of the aptamers into byproducts and preferential amplification of nonbinders. As an alternative, we proposed the use of emulsion PCR (ePCR), which is known to reduce byproduct formation, as a PCR mode for coupling with NECEEM partitioning. For the first time, we tested the advantages of ePCR in NECEEM-based aptamer selection to a medically relevant DNA repair enzyme, ABH2. We report that the combination of ePCR with NECEEM allowed for the selection of aptamers in the first three rounds of SELEX, while SELEX with conventional PCR failed in a number of attempts. Selected aptamers to an unmodified ABH2 protein have potential use in diagnostics and as leads for anticancer cotherapies, used as enhancements of alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Roman Yufa
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1416-32. [PMID: 24859458 PMCID: PMC4316176 DOI: 10.1016/j.bbagrm.2014.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
Abstract
N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(ε)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives.
Collapse
Affiliation(s)
- Cyrille C Thinnes
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Akane Kawamura
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
24
|
Lu L, Zhu C, Xia B, Yi C. Oxidative Demethylation of DNA and RNA Mediated by Non-Heme Iron-Dependent Dioxygenases. Chem Asian J 2014; 9:2018-29. [DOI: 10.1002/asia.201402148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/10/2022]
|
25
|
Lou BS, Wu PS, Liu Y, Wang JS. Effects of Acute Systematic Hypoxia on Human Urinary Metabolites Using LC-MS-Based Metabolomics. High Alt Med Biol 2014; 15:192-202. [DOI: 10.1089/ham.2013.1130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Pei-Shan Wu
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Yitong Liu
- Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Jong-Shyan Wang
- Graduate Institute of Rehabilitation Science and Center for Healthy Aging Research, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
26
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Ye Fu
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| | - Chuan He
- Department of Chemistry and
Institute for Biophysical Dynamics, The
University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United
States
| |
Collapse
|
27
|
Affiliation(s)
- Guanqun Zheng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | | | | |
Collapse
|
28
|
Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 2014; 42:4741-54. [PMID: 24489119 PMCID: PMC3985658 DOI: 10.1093/nar/gku085] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ALKBH5 is a 2-oxoglutarate (2OG) and ferrous iron-dependent nucleic acid oxygenase (NAOX) that catalyzes the demethylation of N6-methyladenine in RNA. ALKBH5 is upregulated under hypoxia and plays a role in spermatogenesis. We describe a crystal structure of human ALKBH5 (residues 66–292) to 2.0 Å resolution. ALKBH566–292 has a double-stranded β-helix core fold as observed in other 2OG and iron-dependent oxygenase family members. The active site metal is octahedrally coordinated by an HXD…H motif (comprising residues His204, Asp206 and His266) and three water molecules. ALKBH5 shares a nucleotide recognition lid and conserved active site residues with other NAOXs. A large loop (βIV–V) in ALKBH5 occupies a similar region as the L1 loop of the fat mass and obesity-associated protein that is proposed to confer single-stranded RNA selectivity. Unexpectedly, a small molecule inhibitor, IOX3, was observed covalently attached to the side chain of Cys200 located outside of the active site. Modelling substrate into the active site based on other NAOX–nucleic acid complexes reveals conserved residues important for recognition and demethylation mechanisms. The structural insights will aid in the development of inhibitors selective for NAOXs, for use as functional probes and for therapeutic benefit.
Collapse
Affiliation(s)
- WeiShen Aik
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Quesne MG, Latifi R, Gonzalez-Ovalle LE, Kumar D, de Visser SP. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes. Chemistry 2014; 20:435-46. [PMID: 24339041 PMCID: PMC3994944 DOI: 10.1002/chem.201303282] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 01/09/2023]
Abstract
AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.
Collapse
Affiliation(s)
- Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Reza Latifi
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK)
- Department of Chemistry, Tufts UniversityMedford MA, 02155 (USA)
| | - Luis E Gonzalez-Ovalle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| | - Devesh Kumar
- Department of Applied Physics, School of Physical Sciences, Babasaheb, Bhimrao Ambedkar UniversityVidya Vihar, Rae Bareilly Road, Lucknow 226-025 (India)
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK)
| |
Collapse
|
30
|
Cho EA, Song HK, Lee SH, Chung BH, Lim HM, Lee MK. Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases. J Cell Biochem 2013; 114:864-73. [PMID: 23097160 DOI: 10.1002/jcb.24423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/09/2012] [Indexed: 11/11/2022]
Abstract
Hypoxia inducible factor 1α (HIF-1α), an essential transcriptional factor, is negatively regulated by two different types of oxygen and Fe(2+) -dependent HIF hydroxylases, proline hydroxylase (PHD) and factor inhibiting HIF (FIH), under normoxia. Iron chelators have therefore been used for inducing HIF-1α expression by inhibiting the hydroxylases. In this study, the iron chelators displayed differential effects for PHD and FIH in cells depending on their iron specificity and membrane permeability rather than their in vitro potencies. The membrane permeability of the strict Fe(2+) -chelator potentially inhibited both hydroxylases, whereas the membrane impermeable one showed no inhibitory effect in cells. In contrast, the depletion of the extracellular Fe(3+) ion was mainly correlated to PHD inhibition, and the membrane permeable one elicited low efficacy for both enzymes in cells. The 3'-hydroxyl group of quercetin, a natural flavonoid, was critical for inhibition of intracellular hydroxylases. Since the 3'-methylation of quercetin is induced by catechol-O-methyl transferase, the enzyme may regulate the intracellular activity of quercetin. These data suggest that the multiple factors of iron-chelators may be responsible for regulating the intracellular activity HIF hydroxylases.
Collapse
Affiliation(s)
- Eun A Cho
- Bionanotechnology Research Center, KRIBB, Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Cascella B, Mirica LM. Kinetic analysis of iron-dependent histone demethylases: α-ketoglutarate substrate inhibition and potential relevance to the regulation of histone demethylation in cancer cells. Biochemistry 2012; 51:8699-701. [PMID: 23067339 DOI: 10.1021/bi3012466] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Jumonji C domain-containing histone demethylases (JmjC-HDMs) are α-ketoglutarate (αKG)-dependent, O(2)-activating, non-heme iron enzymes that play an important role in epigenetics. Reported herein is a detailed kinetic analysis of three JmjC-HDMs, including the cancer-relevant JMJD2C, that was achieved by employing three enzyme activity assays. A continuous O(2) consumption assay reveals that HDMs have low affinities for O(2), suggesting that these enzymes can act as oxygen sensors in vivo. An interesting case of αKG substrate inhibition was found, and the kinetic data suggest that αKG inhibits JMJD2C competitively with respect to O(2). JMJD2C displays an optimal activity in vitro at αKG concentrations similar to those found in cancer cells, with implications for the regulation of histone demethylation activity in cancer versus normal cells.
Collapse
Affiliation(s)
- Barbara Cascella
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, United States
| | | |
Collapse
|
32
|
Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, Peng S, Chen K, Wang M, Gong S, Zhang R, Yin J, Li H, Yang Y, Liu H, Zhang J, Zhang H, Zhang A, Jiang H, Luo C, Yang CG. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 2012; 134:17963-71. [PMID: 23045983 DOI: 10.1021/ja3064149] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct nucleic acid repair dioxygenase FTO is an enzyme that demethylates N(6)-methyladenosine (m(6)A) residues in mRNA in vitro and inside cells. FTO is the first RNA demethylase discovered that also serves a major regulatory function in mammals. Together with structure-based virtual screening and biochemical analyses, we report the first identification of several small-molecule inhibitors of human FTO demethylase. The most potent compound, the natural product rhein, which is neither a structural mimic of 2-oxoglutarate nor a chelator of metal ion, competitively binds to the FTO active site in vitro. Rhein also exhibits good inhibitory activity on m(6)A demethylation inside cells. These studies shed light on the development of powerful probes and new therapies for use in RNA biology and drug discovery.
Collapse
Affiliation(s)
- Baoen Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Flagg SC, Giri N, Pektas S, Maroney MJ, Knapp MJ. Inverse solvent isotope effects demonstrate slow aquo release from hypoxia inducible factor-prolyl hydroxylase (PHD2). Biochemistry 2012; 51:6654-66. [PMID: 22747465 PMCID: PMC3525350 DOI: 10.1021/bi300229y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Prolyl hydroxylase domain 2 (PHD2) is deemed a primary oxygen sensor in humans, yet many details of its underlying mechanism are still not fully understood. (Fe(2+) + αKG)PHD2 is 6-coordinate, with a 2His/1Asp facial triad occupying three coordination sites, a bidentate α-ketoglutarate occupying two sites, and an aquo ligand in the final site. Turnover is thought to be initiated upon release of the aquo ligand, creating a site for O(2) to bind at the iron. Herein we show that steady-state turnover is faster under acidic conditions, with k(cat) exhibiting a kinetic pK(a) = 7.22. A variety of spectroscopic probes were employed to identify the active-site acid, through comparison of (Fe(2+) + αKG)PHD2 at pH 6.50 with pH 8.50. The near-UV circular dichroism spectrum was virtually unchanged at elevated pH, indicating that the secondary structure did not change as a function of pH. UV-visible and Fe X-ray absorption spectroscopy indicated that the primary coordination sphere of Fe(2+) changed upon increasing the pH; extended X-ray absorption fine structure analysis found a short Fe-(O/N) bond length of 1.96 Å at pH 8.50, strongly suggesting that the aquo ligand was deprotonated at this pH. Solvent isotope effects were measured during steady-sate turnover over a wide pH-range, with an inverse solvent isotope effect (SIE) of k(cat) observed ((D(2)O)k(cat) = 0.91 ± 0.03) for the acid form; a similar SIE was observed for the basic form of the enzyme ((D(2)O)k(cat) = 0.9 ± 0.1), with an acid equilibrium offset of ΔpK(a) = 0.67 ± 0.04. The inverse SIE indicated that aquo release from the active site Fe(2+) immediately precedes a rate-limiting step, suggesting that turnover in this enzyme may be partially limited by the rate of O(2) binding or activation, and suggesting that aquo release is relatively slow. The unusual kinetic pK(a) further suggested that PHD2 might function physiologically to sense both intracellular pO(2) as well as pH, which could provide for feedback between anaerobic metabolism and hypoxia sensing.
Collapse
Affiliation(s)
- Shannon C. Flagg
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Nitai Giri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Serap Pektas
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| |
Collapse
|
34
|
Krylova SM, Koshkin V, Bagg E, Schofield CJ, Krylov SN. Mechanistic studies on the application of DNA aptamers as inhibitors of 2-oxoglutarate-dependent oxygenases. J Med Chem 2012; 55:3546-52. [PMID: 22471443 PMCID: PMC4681096 DOI: 10.1021/jm300243h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli (E. coli) AlkB protein and its functional human homologues belong to a subfamily of 2-oxoglutarate (2OG) dependent oxygenases (2OG oxygenases for simplicity) that enable the repair of cytotoxic methylation damage in nucleic acids and that catalyze t-RNA oxidations. DNA alkylation is a major mechanism of action for cytotoxic anticancer drugs. Thus, the inhibition of oxidative demethylation, catalyzed by these enzymes, has the potential to improve the efficacy of chemotherapies. Here we report that oligonucleotide aptamers constitute a new class of potent inhibitors of 2OG oxygenases. DNA aptamers can selectively bind to AlkB, with nanomolar affinity, and efficiently inhibit catalysis. The mechanism of inhibition was studied by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. Inhibition constants of the aptamers were determined and shown to correlate well with K(d) values. The results of kinetic analyses imply that the aptamers bind AlkB away from the active site. Our findings should stimulate the development of oligonucleotide aptamers for human homologues of AlkB and further their study as potential enhancers of chemotherapy efficiency.
Collapse
Affiliation(s)
- Svetlana M. Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Eleanor Bagg
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
35
|
Woon ECY, Demetriades M, Bagg EAL, Aik W, Krylova SM, Ma JHY, Chan M, Walport LJ, Wegman DW, Dack KN, McDonough MA, Krylov SN, Schofield CJ. Dynamic combinatorial mass spectrometry leads to inhibitors of a 2-oxoglutarate-dependent nucleic acid demethylase. J Med Chem 2012; 55:2173-84. [PMID: 22263962 DOI: 10.1021/jm201417e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Oxoglutarate-dependent nucleic acid demethylases are of biological interest because of their roles in nucleic acid repair and modification. Although some of these enzymes are linked to physiology, their regulatory roles are unclear. Hence, there is a desire to develop selective inhibitors for them; we report studies on AlkB, which reveal it as being amenable to selective inhibition by small molecules. Dynamic combinatorial chemistry linked to mass spectrometric analyses (DCMS) led to the identification of lead compounds, one of which was analyzed by crystallography. Subsequent structure-guided studies led to the identification of inhibitors of improved potency, some of which were shown to be selective over two other 2OG oxygenases. The work further validates the use of the DCMS method and will help to enable the development of inhibitors of nucleic acid modifying 2OG oxygenases both for use as functional probes and, in the longer term, for potential therapeutic use.
Collapse
Affiliation(s)
- Esther C Y Woon
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lando D, Balmer J, Laue ED, Kouzarides T. The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia. PLoS One 2012; 7:e29765. [PMID: 22235339 PMCID: PMC3250473 DOI: 10.1371/journal.pone.0029765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022] Open
Abstract
Post-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II)-dependent (2-OG-Fe(II)) dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-Fe(II) dioxygenase domain containing protein-2 (Ofd2) is a histone H2A dioxygenase enzyme. Using a combination of peptide screening and alanine scanning substitution analysis, we identify an HxxLR motif in H2A as a substrate for Ofd2 activity. Transcriptional profiling indicates that Ofd2 regulates the repression of oxidative phosphorylation genes during hypoxic stress. We show that Ofd2 is recruited to the 5′ end of oxidative phosphorylation genes specifically during hypoxia and that it uses its dioxygenase activity to regulate their transcription. Together, these data uncover a novel histone H2A modifying activity involved in the regulation of gene expression during hypoxia.
Collapse
Affiliation(s)
- David Lando
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jenny Balmer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Mantri M, Webby CJ, Loik ND, Hamed RB, Nielsen ML, McDonough MA, McCullagh JSO, Böttger A, Schofield CJ, Wolf A. Self-hydroxylation of the splicing factor lysyl hydroxylase, JMJD6. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00225b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysyl hydroxylase, JMJD6 undergoes self-hydroxylation resulting in the 5S-hydroxylysine product.
Collapse
Affiliation(s)
| | | | | | - Refaat B. Hamed
- Chemistry Research Laboratory
- Oxford
- United Kingdom
- Department of Pharmacognosy
- Faculty of Pharmacy
| | - Michael L. Nielsen
- Department of Proteomics
- The Novo Nordisk Foundation Center for Protein Research
- University of Copenhagen
- Faculty of Health Sciences
- Copenhagen
| | | | | | - Angelika Böttger
- Department of Biology II
- Ludwig-Maximilians-University
- Planegg-Martinsried
- Germany
| | | | | |
Collapse
|
38
|
Kanoatov M, Krylov SN. DNA adsorption to the reservoir walls causing irreproducibility in studies of protein-DNA interactions by methods of kinetic capillary electrophoresis. Anal Chem 2011; 83:8041-5. [PMID: 21923122 DOI: 10.1021/ac202048y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methods of kinetic capillary electrophoresis (KCE) facilitate kinetic studies of protein-DNA interactions and highly efficient selection of DNA aptamers for protein targets. Here, we report a previously unnoticed source of error that affects the precision and accuracy of KCE-based measurements. The error manifests itself in cases that require the use of low concentrations of DNA. In such measurements, the reproducibility of the signal generated by the same fluorescently labeled DNA sample can have a relative standard deviation (RSD) as high as 40%. We have investigated the cause of the irreproducibility and found that it is attributed to DNA adsorption to the surface of the sample vials, in which protein-DNA mixtures are prepared prior to a KCE experiment. The use of commercially available "high DNA recovery" sample vials does not resolve the problem. We have found that the problem can be significantly alleviated by the passivation of the vial surface with blocking agents, such as masking DNA or bovine serum albumin (BSA). The described adsorption of DNA to the surface of sample vials may also be important in other procedures that deal with low DNA concentrations, such as aptamer selection and quantitative PCR.
Collapse
Affiliation(s)
- Mirzo Kanoatov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
39
|
Shankaracharya, Das S, Vidyarthi AS. Homology modeling and function prediction of hABH1, involving in repair of alkylation damaged DNA. Interdiscip Sci 2011; 3:175-81. [DOI: 10.1007/s12539-011-0087-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/13/2010] [Accepted: 08/20/2010] [Indexed: 10/17/2022]
|
40
|
Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IKH, Li XS, Woon ECY, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TDW, Ratcliffe PJ, Schofield CJ, Kawamura A. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011; 12:463-9. [PMID: 21460794 PMCID: PMC3090014 DOI: 10.1038/embor.2011.43] [Citation(s) in RCA: 790] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 02/07/2023] Open
Abstract
Mutations in isocitrate dehydrogenases (IDHs) have a gain-of-function effect leading to R(-)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R- and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC(50)) values for the R-form of 2HG varied from approximately 25 μM for the histone N(ɛ)-lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.
Collapse
Affiliation(s)
- Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krylova SM, Karkhanina AA, Musheev MU, Bagg EAL, Schofield CJ, Krylov SN. DNA aptamers for as analytical tools for the quantitative analysis of DNA-dealkylating enzymes. Anal Biochem 2011; 414:261-5. [PMID: 21402046 DOI: 10.1016/j.ab.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/06/2011] [Accepted: 03/08/2011] [Indexed: 11/27/2022]
Abstract
The AlkB family of oxygenases catalyze the removal of alkyl groups from nucleic acid substrates in an iron and 2-oxoglutarate-dependent manner and have roles including in DNA repair. To understand the biological functions of these DNA-dealkylating enzymes it is desirable to measure their expression levels in vitro and in vivo in complex biological matrixes. Quantitative analyses of the enzymes require affinity probes capable of binding AlkB family members selectively and with high affinity. Here we report that DNA aptamers can serve as efficient affinity probes for quantitative detection of such enzymes in vitro. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was applied as a general tool for: (i) selection of DNA aptamers, (ii) characterization of binding parameters for the aptamers, and (iii) quantitative detection of the target in an aptamer-based affinity analysis. The selected aptamers have a range of K(d) values between 20 and 240nM. The aptamers enabled accurate quantitative analysis of AlkB even in the presence of the Escherichia coli cell lysate. Aptamers can likely be developed for other nucleic acid repair enzymes. They may also be developed for use in in vitro and potentially in vivo studies of known nucleic acid-modifying enzymes including for functional analysis.
Collapse
Affiliation(s)
- Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Rose NR, McDonough MA, King ONF, Kawamura A, Schofield CJ. Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 2011; 40:4364-97. [PMID: 21390379 DOI: 10.1039/c0cs00203h] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2-Oxoglutarate (2OG) dependent oxygenases are ubiquitous iron enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. In humans their roles include collagen biosynthesis, fatty acid metabolism, DNA repair, RNA and chromatin modifications, and hypoxic sensing. Commercial applications of 2OG oxygenase inhibitors began with plant growth retardants, and now extend to a clinically used pharmaceutical compound for cardioprotection. Several 2OG oxygenases are now being targeted for therapeutic intervention for diseases including anaemia, inflammation and cancer. In this critical review, we describe studies on the inhibition of 2OG oxygenases, focusing on small molecules, and discuss the potential of 2OG oxygenases as therapeutic targets (295 references).
Collapse
Affiliation(s)
- Nathan R Rose
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | |
Collapse
|
43
|
Saban E, Flagg SC, Knapp MJ. Uncoupled O2-activation in the human HIF-asparaginyl hydroxylase, FIH, does not produce reactive oxygen species. J Inorg Biochem 2011; 105:630-6. [PMID: 21443853 DOI: 10.1016/j.jinorgbio.2011.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/22/2022]
Abstract
The factor inhibiting HIF (FIH) is one of the primary oxygen sensors in human cells, controlling gene expression by hydroxylating the α-subunit of the hypoxia inducible transcription factor (HIF). As FIH is an alpha-ketoglutarate dependent non-heme iron dioxygenase, oxygen activation is thought to precede substrate hydroxylation. The coupling between oxygen activation and substrate hydroxylation was hypothesized to be very tight, in order for FIH to fulfill its function as a regulatory enzyme. Coupling was investigated by looking for reactive oxygen species production during turnover. We used alkylsulfatase (AtsK), a metabolic bacterial enzyme with a related mechanism and similar turnover frequency, for comparison, and tested both FIH and AtsK for H(2)O(2), O(2)(-) and OH formation under steady and substrate-depleted conditions. Coupling ratios were determined by comparing the ratio of substrate consumed to product formed. We found that AtsK reacted with O(2) on the seconds timescale in the absence of prime substrate, and uncoupled during turnover to produce H(2)O(2); neither O(2)(-) nor OH were detected. In contrast, FIH was unreactive toward O(2) on the minutes timescale in the absence of prime substrate, and tightly coupled during steady-state turnover; we were unable to detect any reactive oxygen species produced by FIH. We also investigated the inactivation mechanisms of these enzymes and found that AtsK likely inactivated due to deoligomerizion, whereas FIH inactivated by slow autohydroxylation. Autohydroxylated FIH could not be reactivated by dithiothreitol (DTT) nor ascorbate, suggesting that autohydroxylation is likely to be irreversible under physiological conditions.
Collapse
Affiliation(s)
- Evren Saban
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | | | | |
Collapse
|
44
|
Ansó E, Zuazo A, Irigoyen M, Urdaci MC, Rouzaut A, Martínez-Irujo JJ. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem Pharmacol 2010; 79:1600-9. [PMID: 20153296 DOI: 10.1016/j.bcp.2010.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Flavonoids are a group of polyphenolic dietary compounds that have been proposed to possess chemopreventive properties against lung cancer. In this work we analyzed the effect of a group of 20 structurally related flavonoids, including flavones, flavonols and isoflavones, on the production of vascular endothelial growth factor (VEGF) induced by hypoxia in NCI-H157 cells. VEGF is the main regulator of physiological and pathological angiogenesis and is highly stimulated by hypoxia-inducible factor 1 (HIF-1). We found that apigenin, luteolin, fisetin and quercetin inhibited hypoxia-induced VEGF expression in the low micromolar range. Structure-activity relationships demonstrated that flavone derivatives were the most active compounds and that hydroxylation of the A ring at the positions 5 and 7 and of the B ring at the 4' position were important for this activity. Interestingly, only a group of VEGF inhibitors, including apigenin, flavone and 4',7-dihydroxiflavone, reduced the expression of HIF-1alpha under these conditions, whereas others, such as fisetin, luteolin, galangin or quercetin, induced HIF-1alpha expression while reducing those of VEGF. When cells were exposed to hypoxia in the presence of these flavonoids, HIF-1alpha translocated to the nucleus and interacted with p300/CBP, but this complex was transcriptionally inactive. Taken together these findings indicate that flavonoids impair VEGF transcription by an alternative mechanism that did not depend on nuclear HIF levels. We also found that flavonoids suppressed hypoxia-induced STAT3 tyrosine phosphorylation and that this activity correlated with their potency as VEGF inhibitors, suggesting that inhibition of STAT3 function may play a role in this process.
Collapse
Affiliation(s)
- Elena Ansó
- Department of Biochemistry and Molecular Biology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Sakurai M, Rose NR, Schultz L, Quinn A, Jadhav A, Ng SS, Oppermann U, Schofield CJ, Simeonov A. A miniaturized screen for inhibitors of Jumonji histone demethylases. MOLECULAR BIOSYSTEMS 2010; 6:357-64. [PMID: 20094655 PMCID: PMC3401096 DOI: 10.1039/b912993f] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
2-Oxoglutarate- and Fe(ii)-dependent oxygenases are a major class of N(epsilon)-methyl lysine demethylases that are involved in epigenetic regulation. Assays suitable for implementation in a high-throughput manner have been lacking for these enzymes. Here, we describe the design and implementation of a robust and miniaturized high-throughput kinetic assay for inhibitors of JMJD2E using a formaldehyde dehydrogenase-coupled reaction with real-time fluorescence detection. Reactant compatibility studies resulted in simplification of the assay scheme to the mixing of two reagent solutions, both of which were stable overnight. The assay was miniaturized to a 4 microL volume in 1536-well format and was used to screen the library of pharmacologically active compounds (LOPAC(1280)). Inhibitors identified by the screen were further characterized in secondary assays including FDH counterscreen and demethylation assays that monitored demethylation by MALDI-TOF MS. The assay developed here will enable the screening of large compound libraries against the Jumonji demethylases in a robust and automated fashion.
Collapse
Affiliation(s)
- Masaaki Sakurai
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | - Nathan R. Rose
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, OX1 3TA, University of Oxford, Oxford, UK
| | - Lena Schultz
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | - Amy Quinn
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| | - Stanley S. Ng
- The Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK, and the Botnar Research Centre, Oxford Biomedical Research Unit, Oxford, OX3 7LD, UK
| | - Udo Oppermann
- The Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK, and the Botnar Research Centre, Oxford Biomedical Research Unit, Oxford, OX3 7LD, UK
| | - Christopher J. Schofield
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, OX1 3TA, University of Oxford, Oxford, UK
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3370, USA
| |
Collapse
|
46
|
Karkhanina AA, Mecinović J, Musheev MU, Krylova SM, Petrov AP, Hewitson KS, Flashman E, Schofield CJ, Krylov SN. Direct Analysis of Enzyme-Catalyzed DNA Demethylation. Anal Chem 2009; 81:5871-5. [DOI: 10.1021/ac9010556] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna A. Karkhanina
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Jasmin Mecinović
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Michael U. Musheev
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Svetlana M. Krylova
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Alexander P. Petrov
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Kirsty S. Hewitson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Emily Flashman
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Sergey N. Krylov
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, and Department of Chemistry and the Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
47
|
Simmons JM, Müller TA, Hausinger RP. Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Dalton Trans 2008:5132-42. [PMID: 18813363 PMCID: PMC2907160 DOI: 10.1039/b803512a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe(II)/alpha-ketoglutarate-dependent hydroxylases uniformly possess a double-stranded beta-helix fold with two conserved histidines and one carboxylate coordinating their mononuclear ferrous ions. Oxidative decomposition of the alpha-keto acid is proposed to generate a ferryl-oxo intermediate capable of hydroxylating unactivated carbon atoms in a myriad of substrates. This Perspective focuses on a subgroup of these enzymes that are involved in pyrimidine salvage, purine decomposition, nucleoside and nucleotide hydroxylation, DNA/RNA repair, and chromatin modification. The varied reaction schemes are presented, and selected structural and kinetic information is summarized.
Collapse
Affiliation(s)
- Jana M. Simmons
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Tina A. Müller
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Department of Microbiology and Molecular Genetics, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
- Quantitative Biology Program, 6193 Biomedical Physical Sciences Bldg, Michigan State University, East Lansing, Michigan, USA, 48824-4320
| |
Collapse
|
48
|
Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z, He C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008; 582:3313-9. [PMID: 18775698 DOI: 10.1016/j.febslet.2008.08.019] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 08/24/2008] [Accepted: 08/25/2008] [Indexed: 11/26/2022]
Abstract
The human obesity susceptibility gene, FTO, encodes a protein that is homologous to the DNA repair AlkB protein. The AlkB family proteins utilize iron(II), alpha-ketoglutarate (alpha-KG) and dioxygen to perform oxidative repair of alkylated nucleobases in DNA and RNA. We demonstrate here the oxidative demethylation of 3-methylthymine (3-meT) in single-stranded DNA (ssDNA) and 3-methyluracil (3-meU) in single-stranded RNA (ssRNA) by recombinant human FTO protein in vitro. Both human and mouse FTO proteins preferentially repair 3-meT in ssDNA over other base lesions tested. They showed negligible activities against 3-meT in double-stranded DNA (dsDNA). In addition, these two proteins can catalyze the demethylation of 3-meU in ssRNA with a slightly higher efficiency over that of 3-meT in ssDNA, suggesting that methylated RNAs are the preferred substrates for FTO.
Collapse
Affiliation(s)
- Guifang Jia
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, Falnes PØ. Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res 2008; 36:5451-61. [PMID: 18718927 PMCID: PMC2553587 DOI: 10.1093/nar/gkn519] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial and mammalian AlkB proteins are iron(II)- and 2-oxoglutarate-dependent dioxygenases that reverse methylation damage, such as 1-methyladenine and 3-methylcytosine, in RNA and DNA. An AlkB-domain is encoded by the genome of numerous single-stranded, plant-infecting RNA viruses, the majority of which belong to the Flexiviridae family. Our phylogenetic analysis of AlkB sequences suggests that a single plant virus might have acquired AlkB relatively recently, followed by horizontal dissemination among other viruses via recombination. Here, we describe the first functional characterization of AlkB proteins from three plant viruses. The viral AlkB proteins efficiently reactivated methylated bacteriophage genomes when expressed in Escherichia coli, and also displayed robust, iron(II)- and 2-oxoglutarate-dependent demethylase activity in vitro. Viral AlkB proteins preferred RNA over DNA substrates, and thus represent the first AlkBs with such substrate specificity. Our results suggest a role for viral AlkBs in maintaining the integrity of the viral RNA genome through repair of deleterious methylation damage, and support the notion that AlkB-mediated RNA repair is biologically relevant.
Collapse
Affiliation(s)
- Erwin van den Born
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
50
|
Westbye MP, Feyzi E, Aas PA, Vågbø CB, Talstad VA, Kavli B, Hagen L, Sundheim O, Akbari M, Liabakk NB, Slupphaug G, Otterlei M, Krokan HE. Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem 2008; 283:25046-56. [PMID: 18603530 DOI: 10.1074/jbc.m803776200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.
Collapse
Affiliation(s)
- Marianne Pedersen Westbye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|