1
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
2
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
4
|
Morita M, Nishida N, Aoki T, Chishina H, Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K, Kudo M. Role of β-Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082311. [PMID: 37190239 DOI: 10.3390/cancers15082311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Recently, the therapeutic combination of atezolizumab and bevacizumab was widely used to treat advanced hepatocellular carcinoma (HCC). According to recent clinical trials, immune checkpoint inhibitors (ICIs) and molecular target agents are expected to be key therapeutic strategies in the future. Nonetheless, the mechanisms underlying molecular immune responses and immune evasion remain unclear. The tumor immune microenvironment plays a vital role in HCC progression. The infiltration of CD8-positive cells into tumors and the expression of immune checkpoint molecules are key factors in this immune microenvironment. Specifically, Wnt/β catenin pathway activation causes "immune exclusion", associated with poor infiltration of CD8-positive cells. Some clinical studies suggested an association between ICI resistance and β-catenin activation in HCC. Additionally, several subclassifications of the tumor immune microenvironment were proposed. The HCC immune microenvironment can be broadly divided into inflamed class and non-inflamed class, with several subclasses. β-catenin mutations are important factors in immune subclasses; this may be useful when considering therapeutic strategies as β-catenin activation may serve as a biomarker for ICI. Various types of β-catenin modulators were developed. Several kinases may also be involved in the β-catenin pathway. Therefore, combinations of β-catenin modulators, kinase inhibitors, and ICIs may exert synergistic effects.
Collapse
Affiliation(s)
- Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
5
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Sun J, Zhang X, Sun Y. C1orf109 promotes malignant phenotype of liver cancer via wnt signaling pathway in a CK2-dependent manner. J Mol Histol 2023; 54:135-145. [PMID: 36988773 DOI: 10.1007/s10735-023-10117-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
Chromosome 1 open reading frame 109 (C1orf09) is a protein whose expression pattern and biological function in humans, particularly in malignant tumors, have not been explored. In this study, both bioinformatics and immunohistochemical staining revealed that C1orf109 was overexpressed in the cytoplasm of liver cancer cells, and the positive ratio of C1orf109 in liver cancer samples (42.5%, 37/87) was significantly higher than that in normal liver tissues (10%, 3/30, P = 0.0012). C1orf109 expression was correlated with an advanced TNM stage (P = 0.017) and vascular invasion (P = 0.023) and predicted the poor overall survival of patients with liver cancer (P = 0.001). C1orf109 facilitated tumor growth, colony formation, migration, and invasion by activating Wnt signaling by upregulating non-phosphorylated β-catenin and its downstream target genes such as CyclinD1, c-myc, and MMP7. Our results also suggest that C1orf109 interacts and co-localizes with casein kinase II (CK2) to activate Wnt signaling. Treatment with a CK2-specific inhibitor markedly counteracted the increased expression of CyclinD1, c-Myc, and MMP7, as well as the upregulation of tumor proliferation and invasion caused by C1orf109 overexpression. Taken together, our results indicate that C1orf109 accelerates liver cancer cell proliferation and invasion by strengthening the Wnt signaling pathway in a CK2-dependent manner.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yefei Sun
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, No.155, North Nanjing Street, Heping District, 110001, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
8
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
9
|
Wang Q, Hu X, Shi W, Long H, Wang H. Design, synthesis and biological evaluation of chromone derivatives as novel protein kinase CK2 inhibitors. Bioorg Med Chem Lett 2022; 69:128799. [PMID: 35580724 DOI: 10.1016/j.bmcl.2022.128799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Protein kinase CK2 is a potential target for the discovery of anticancer drugs. Flavonoids are reported to be effective CK2 inhibitors. Herein, based on structural trimming of flavonoids, a series of chromone-2-aminothiazole derivatives (1a-d, 2a-g, 4a-j, 5a-k) were designed and synthesized by hybridizing the chromone skeleton with 2-aminothiazole scaffold. Among these compounds, compound 5i was the most effective CK2 inhibitor (IC50 = 0.08 μM) and possessed potent anti-proliferative activity against HL-60 tumor cells (IC50 = 0.25 μM). Cellular thermal shift assay (CESTA) confirmed that 5i directly bound to the CK2, and the possible binding mode of 5i toward CK2 was also simulated. Further studies showed that 5i induced the apoptosis of HL-60 cells and arrested the cell cycle. Finally, western-blot analysis showed that 5i could inhibit the downstream of CK2, including α-catenin/Akt pathway and PARP/Survivin pathway.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - XiaoLong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
10
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
11
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
12
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
13
|
Date Y, Matsuura A, Itakura E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Dis 2022; 8:37. [PMID: 35079001 PMCID: PMC8789831 DOI: 10.1038/s41420-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
Collapse
|
14
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
15
|
Sato K, Padgaonkar AA, Baker SJ, Cosenza SC, Rechkoblit O, Subbaiah DRCV, Domingo-Domenech J, Bartkowski A, Port ER, Aggarwal AK, Ramana Reddy MV, Irie HY, Reddy EP. Simultaneous CK2/TNIK/DYRK1 inhibition by 108600 suppresses triple negative breast cancer stem cells and chemotherapy-resistant disease. Nat Commun 2021; 12:4671. [PMID: 34344863 PMCID: PMC8333338 DOI: 10.1038/s41467-021-24878-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSCs) have been proposed to represent a chemotherapy-resistant subpopulation responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. Here, we describe a novel multi-kinase inhibitor, 108600, that targets the TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of BCSCs and induces G2M arrest and apoptosis of TNBC cells. In vivo, 108600 treatment of mice bearing triple negative tumors results in the induction of apoptosis and overcomes chemotherapy resistance. Finally, treatment with 108600 and chemotherapy suppresses growth of pre-established TNBC metastases, providing additional support for the clinical translation of this agent to clinical trials.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amol A Padgaonkar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen C Cosenza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D R C Venkata Subbaiah
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alison Bartkowski
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa R Port
- Department of Surgery, Mount Sinai Hospital, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M V Ramana Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Regulation of stability and inhibitory activity of the tumor suppressor SEF through casein-kinase II-mediated phosphorylation. Cell Signal 2021; 86:110085. [PMID: 34280495 DOI: 10.1016/j.cellsig.2021.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Inflammation and cancer are intimately linked. A key mediator of inflammation is the transcription-factor NF-κB/RelA:p50. SEF (also known as IL-17RD) is a feedback antagonist of NF-κB/RelA:p50 that is emerging as an important link between inflammation and cancer. SEF acts as a buffer to prevent excessive NF-κB activity by sequestering NF-κB/RelA:p50 in the cytoplasm of unstimulated cells, and consequently attenuating the NF-κB response upon pro-inflammatory cytokine stimulation. SEF contributes to cancer progression also via modulating other signaling pathways, including those triggered by growth-factors. Despite its important role in human physiology and pathology, mechanisms that regulate SEF biochemical properties and inhibitory activity are unknown. Here we show that human SEF is an intrinsically labile protein that is stabilized via CK2-mediated phosphorylation, and identified the residues whom phosphorylation by CK2 stabilizes hSEF. Unlike endogenous SEF, ectopic SEF was rapidly degraded when overexpressed but was stabilized in the presence of excess CK2, suggesting a mechanism for limiting SEF levels depending upon CK2 processivity. Additionally, phosphorylation by CK2 potentiated hSef interaction with NF-κB in cell-free binding assays. Most importantly, we identified a CK2 phosphorylation site that was indispensable for SEF inhibition of pro-inflammatory cytokine signaling but was not required for SEF inhibition of growth-factor signaling. To our knowledge, this is the first demonstration of post-translational modifications that regulate SEF at multiple levels to optimize its inhibitory activity in a specific signaling context. These findings may facilitate the design of SEF variants for treating cytokine-dependent pathologies, including cancer and chronic inflammation.
Collapse
|
17
|
Li Q, Sun M, Wang M, Feng M, Yang F, Li L, Zhao J, Chang C, Dong H, Xie T, Chen J. Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci 2021; 112:1695-1706. [PMID: 33605517 PMCID: PMC8088956 DOI: 10.1111/cas.14861] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt/β-catenin signaling is indispensable for many biological processes, including embryonic development, cell cycle, inflammation, and carcinogenesis. Aberrant activation of the Wnt/β-catenin signaling can promote tumorigenicity and enhance metastatic potential in hepatocellular carcinoma (HCC). Targeting this pathway is a new opportunity for precise medicine for HCC. However, inhibiting Wnt/β-catenin signaling alone is unlikely to significantly improve HCC patient outcome due to the lack of specific inhibitors and the complexity of this pathway. Combination with other therapies will be an important next step in improving the efficacy of Wnt/β-catenin signaling inhibitors. Protein kinases play a key and evolutionarily conserved role in the Wnt/β-catenin signaling and have become one of the most important drug targets in cancer. Targeting Wnt/β-catenin signaling and its regulatory kinase together will be a promising HCC management strategy. In this review, we summarize the kinases that modulate the Wnt/β-catenin signaling in HCC and briefly discuss their molecular mechanisms. Furthermore, we list some small molecules that target the kinases and may inhibit Wnt/β-catenin signaling, to offer new perspectives for preclinical and clinical HCC studies.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Menglan Wang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Feng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lina Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianbo Zhao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Cunjie Chang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Heng Dong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Division of Cellular and Molecular Research, Laboratory of Cancer Genomics, National Cancer Centre, Singapore City, Singapore
| |
Collapse
|
18
|
Spinello Z, Fregnani A, Quotti Tubi L, Trentin L, Piazza F, Manni S. Targeting Protein Kinases in Blood Cancer: Focusing on CK1α and CK2. Int J Mol Sci 2021; 22:ijms22073716. [PMID: 33918307 PMCID: PMC8038136 DOI: 10.3390/ijms22073716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| | - Sabrina Manni
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| |
Collapse
|
19
|
Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct Target Ther 2021; 6:71. [PMID: 33602894 PMCID: PMC7893052 DOI: 10.1038/s41392-020-00447-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial fusion/fission dynamics plays a fundamental role in neuroprotection; however, there is still a severe lack of therapeutic targets for this biological process. Here, we found that the naturally derived small molecule echinacoside (ECH) significantly promotes mitochondrial fusion progression. ECH selectively binds to the previously uncharacterized casein kinase 2 (CK2) α' subunit (CK2α') as a direct cellular target, and genetic knockdown of CK2α' abolishes ECH-mediated mitochondrial fusion. Mechanistically, ECH allosterically regulates CK2α' conformation to recruit basic transcription factor 3 (BTF3) to form a binary protein complex. Then, the CK2α'/BTF3 complex facilitates β-catenin nuclear translocation to activate TCF/LEF transcription factors and stimulate transcription of the mitochondrial fusion gene Mfn2. Strikingly, in a mouse middle cerebral artery occlusion (MCAO) model, ECH administration was found to significantly improve cerebral injuries and behavioral deficits by enhancing Mfn2 expression in wild-type but not CK2α'+/- mice. Taken together, our findings reveal, for the first time, that CK2 is essential for promoting mitochondrial fusion in a Wnt/β-catenin-dependent manner and suggest that pharmacologically targeting CK2 is a promising therapeutic strategy for ischemic stroke.
Collapse
|
20
|
Cho DG, Lee SS, Cho KO. Anastral Spindle 3/Rotatin Stabilizes Sol narae and Promotes Cell Survival in Drosophila melanogaster. Mol Cells 2021; 44:13-25. [PMID: 33510049 PMCID: PMC7854181 DOI: 10.14348/molcells.2020.0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022] Open
Abstract
Apoptosis and compensatory proliferation, two intertwined cellular processes essential for both development and adult homeostasis, are often initiated by the mis-regulation of centrosomal proteins, damaged DNA, and defects in mitosis. Fly Anastral spindle 3 (Ana3) is a member of the pericentriolar matrix proteins and known as a key component of centriolar cohesion and basal body formation. We report here that ana3m19 is a suppressor of lethality induced by the overexpression of Sol narae (Sona), a metalloprotease in a disintegrin and metalloprotease with thrombospondin motif (ADAMTS) family. ana3m19 has a nonsense mutation that truncates the highly conserved carboxyl terminal region containing multiple Armadillo repeats. Lethality induced by Sona overexpression was completely rescued by knockdown of Ana3, and the small and malformed wing and hinge phenotype induced by the knockdown of Ana3 was also normalized by Sona overexpression, establishing a mutually positive genetic interaction between ana3 and sona. p35 inhibited apoptosis and rescued the small wing and hinge phenotype induced by knockdown of ana3. Furthermore, overexpression of Ana3 increased the survival rate of irradiated flies and reduced the number of dying cells, demonstrating that Ana3 actively promotes cell survival. Knockdown of Ana3 decreased the levels of both intra- and extracellular Sona in wing discs, while overexpression of Ana3 in S2 cells dramatically increased the levels of both cytoplasmic and exosomal Sona due to the stabilization of Sona in the lysosomal degradation pathway. We propose that one of the main functions of Ana3 is to stabilize Sona for cell survival and proliferation.
Collapse
Affiliation(s)
- Dong-Gyu Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang-Soo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Present address: Center for Bioanalysis, Korea Research Institute of Standard and Science, Daejeon 34113, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
21
|
Cardaci TD, Machek SB, Wilburn DT, Heileson JL, Willoughby DS. High-Load Resistance Exercise Augments Androgen Receptor-DNA Binding and Wnt/β-Catenin Signaling without Increases in Serum/Muscle Androgens or Androgen Receptor Content. Nutrients 2020; 12:E3829. [PMID: 33333818 PMCID: PMC7765240 DOI: 10.3390/nu12123829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was (1) to determine the effect of single bouts of volume- and intensity-equated low- (LL) and high-load (HL) full-body resistance exercise (RE) on AR-DNA binding, serum/muscle testosterone and dihydrotestosterone, muscle androgen receptor (AR), and AR-DNA binding; and, (2) to determine the effect of RE on sarcoplasmic and nucleoplasmic β-catenin concentrations in order to determine their impact on mediating AR-DNA binding in the absence/presence of serum/muscle androgen and AR protein. In a cross-over design, 10 resistance-trained males completed volume- and intensity-equated LL and HL full-body RE. Blood and muscle samples were collected at pre-, 3 h-, and 24 h post-exercise. Separate 2 × 3 factorial analyses of variance (ANOVAs) with repeated measures and pairwise comparisons with a Bonferroni adjustment were used to analyze the main effects. No significant differences were observed in muscle AR, testosterone, dihydrotestosterone, or serum total testosterone in either condition (p > 0.05). Serum-free testosterone was significantly decreased 3 h post-exercise and remained significantly less than baseline 24 h post-exercise in both conditions (p < 0.05). In response to HL, AR-DNA binding significantly increased at 3 h post-exercise (p < 0.05), whereas no significant differences were observed at any time in response to LL (p > 0.05). Moreover, sarcoplasmic β-catenin was significantly greater in HL (p < 0.05) without significant changes in nucleoplasmic β-catenin (p > 0.05). In conclusion, increases in AR-DNA binding in response to HL RE indicate AR signaling may be load-dependent. Furthermore, despite the lack of increase in serum and muscle androgens or AR content following HL RE, elevations in AR-DNA binding with elevated sarcoplasmic β-catenin suggests β-catenin may be facilitating this response.
Collapse
Affiliation(s)
- Thomas D. Cardaci
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Steven B. Machek
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Dylan T. Wilburn
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Jeffery L. Heileson
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
| | - Darryn S. Willoughby
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (T.D.C.); (S.B.M.); (D.T.W.); (J.L.H.)
- School of Exercise and Sport Science, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| |
Collapse
|
22
|
Exosomal arrow (Arr)/lipoprotein receptor protein 6 (LRP6) in Drosophila melanogaster increases the extracellular level of Sol narae (Sona) in a Wnt-independent manner. Cell Death Dis 2020; 11:944. [PMID: 33139721 PMCID: PMC7608652 DOI: 10.1038/s41419-020-02850-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Wg/Wnt as a signaling protein binds to Frizzled (Fz) and Arrow (Arr), two Wg co-receptors essential for Wg signaling for cell proliferation, differentiation, and cell survival. Arr has a long extracellular region, a single transmembrane domain and an intracellular region. Here, we report that a new arrm7 mutant is identified in a genetic screen as a suppressor of lethality induced by overexpression of Sol narae (Sona), a secreted metalloprotease in ADAMTS family involved in Wg signaling. arrm7 allele has a premature stop codon, which encodes Arrm7 protein missing the intracellular region. arrm7 clones show cell death phenotype and overexpression of Arrm7 protein also induces cell death. Levels of extracellular Sona were decreased in both arrm7 and arr2 null clones, demonstrating that Arr increases the level of extracellular Sona. Indeed, Arr but not Arrm7, increased levels of Sona in cytoplasm and exosome fraction by inhibiting the lysosomal degradation pathway. Interestingly, Arr itself was identified in the exosome fraction, demonstrating that Arr is secreted to extracellular space. When Sona-expressing S2 cells were treated with exosomal Arr, the extracellular level of active Sona was increased. These results show that exosomal Arr dictates Sona-expressing cells to increase the level of extracellular Sona. This new function of Arr occurred in the absence of Wg because S2 cells do not express Wg. We propose that Arr plays two distinct roles, one as an exosomal protein to increase the level of extracellular Sona in a Wnt-independent manner and the other as a Wg co-receptor in a Wnt-dependent manner.
Collapse
|
23
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
24
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
25
|
Nagata E, Fujii N, Kohara S, Okada C, Satoh T, Takekoshi S, Takao M, Mihara B, Takizawa S. Inositol hexakisphosphate kinase 2 promotes cell death of anterior horn cells in the spinal cord of patients with amyotrophic lateral sclerosis. Mol Biol Rep 2020; 47:6479-6485. [PMID: 32929655 DOI: 10.1007/s11033-020-05688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022]
Abstract
We have previously reported that inositol hexakisphosphate kinase (InsP6K)2 mediates cell death. InsP6K2 is abundantly expressed in anterior horn cells of the mammalian spinal cord. We investigated the role of InsP6K2 in spinal cords of patients with amyotrophic lateral sclerosis (ALS). Autopsy specimens of lumbar spinal cords from ten patients with sporadic ALS and five non-neurological disease patients (NNDPs) were obtained. We performed quantitative real-time PCR, immunostaining, and western blotting for InsP6K1, InsP6K2, InsP6K3, protein kinase B (Akt), casein kinase 2 (CK2), and 90-kDa heat-shock protein (HSP90). In contrast to InsP6K1 and InsP6K3 mRNA expression, InsP6K2 levels in anterior horn cells of the spinal cord were significantly increased in ALS patients compared to NNDPs. In ALS patients, InsP6K2 translocated from the nucleus to the cytoplasm. However, we observed a decrease in HSP90, CK2, and Akt activity in ALS patients compared to NNDPs. A previous study reported that InsP6K2 activity is suppressed after binding to HSP90 and subsequent phosphorylation and degradation by CK2, thus decreasing InsP6K2 activity. However, InsP7, which is generated by InsP6K2, can compete with Akt for PH domain binding. Consequently, InsP7 can inhibit Akt phosphorylation. Our results suggest that InsP6K2 is activated in the spinal cord of patients with ALS and may play an important role in ALS by inducing cell death mechanisms via Akt, CK2, and HSP90 pathways.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tadayuki Satoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Susumu Takekoshi
- Department of Clinical Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| | - Ban Mihara
- Department of Neurology, Mihara Memorial Hospital, Gunma, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
26
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
27
|
Silva-Pavez E, Tapia JC. Protein Kinase CK2 in Cancer Energetics. Front Oncol 2020; 10:893. [PMID: 32626654 PMCID: PMC7315807 DOI: 10.3389/fonc.2020.00893] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase CK2 (formerly known as casein kinase 2) is abnormally elevated in many cancers. This may increase tumor aggressiveness through CK2-dependent phosphorylation of key proteins in several signaling pathways. In this work, we have compiled evidence from the literature to suggest that CK2 also modulates a metabolic switch characteristic of cancer cells that enhances resistance to death, due to either drugs or to a microenvironment deficient in oxygen or nutrients. Concurrently, CK2 may help to preserve mitochondrial activity in a PTEN-dependent manner. PTEN, widely recognized as a tumor suppressor, is another CK2 substrate in the PI3K/Akt signaling pathway that promotes cancer viability and aerobic glycolysis. Given that CK2 can regulate Akt as well as two of its main effectors, namely mTORC1 and β-catenin, we comprehensively describe how CK2 may modulate cancer energetics by regulating expression of key targets and downstream processes, such as HIF-1 and autophagy, respectively. Thus, the specific inhibition of CK2 may lead to a catastrophic death of cancer cells, which could become a feasible therapeutic strategy to beat this devastating disease. In fact, ATP-competitive inhibitors, synthetic peptides and antisense oligonucleotides have been designed as CK2 inhibitors, some of them used in preclinical models of cancer, of which TBB and silmitasertib are widely known. We will finish by discussing a hypothetical scenario in which cancer cells are "addicted" to CK2; i.e., in which many proteins that regulate signaling pathways and metabolism-linked processes are highly dependent on this kinase.
Collapse
Affiliation(s)
- Eduardo Silva-Pavez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Hashemolhosseini S. The role of protein kinase CK2 in skeletal muscle: Myogenesis, neuromuscular junctions, and rhabdomyosarcoma. Neurosci Lett 2020; 729:135001. [DOI: 10.1016/j.neulet.2020.135001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023]
|
29
|
Martinez-Monseny AF, Casas-Alba D, Arjona C, Bolasell M, Casano P, Muchart J, Ramos F, Martorell L, Palau F, García-Alix A, Serrano M. Okur-Chung neurodevelopmental syndrome in a patient from Spain. Am J Med Genet A 2019; 182:20-24. [PMID: 31729156 DOI: 10.1002/ajmg.a.61405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Okur-Chung neurodevelopmental syndrome (OCNS, MIM#617062) is a rare autosomal dominant syndrome related to CSNK2A1 mutations. It is characterized by intellectual disability, hypotonia, feeding and speech difficulties, dysmorphic features, and multisystem involvement. To date, less than 30 patients with OCNS have been described in detail in the literature, primarily in Asian populations. Here, we report a 5-year-old Spanish female with OCNS arising from a novel CSNK2A1 mutation c.149A>G, p.Tyr50Cys. Although her clinical features were compatible with OCNS syndrome, magnetic resonance imaging unexpectedly showed a duplication of the pituitary gland, a clinical finding not previously related to any known genetic condition. Other novel signs were an absence of the olfactory bulbs and multiple duplications of cervical vertebrae. We suggest that the midline abnormalities may be a significant part of this condition and lead to diagnostic suspicion. However, further descriptions are needed.
Collapse
Affiliation(s)
- Antonio F Martinez-Monseny
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Dídac Casas-Alba
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - César Arjona
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Mercè Bolasell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Paula Casano
- Endocrinology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Jordi Muchart
- Radiology Department, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Federico Ramos
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain
| | - Alfredo García-Alix
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
30
|
Lee YS, Park SY, Heo HJ, Lee WS, Hong KW, Kim CD. Multitarget-directed cotreatment with cilostazol and aripiprazole for augmented neuroprotection against oxidative stress-induced toxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2019; 857:172454. [PMID: 31202803 DOI: 10.1016/j.ejphar.2019.172454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 μM) or cilostazol (1 μM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-β-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3β (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 μM) plus cilostazol (1 μM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (β-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, β-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.
Collapse
Affiliation(s)
- Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
31
|
Razak S, Afsar T, Almajwal A, Alam I, Jahan S. Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci 2019; 9:15. [PMID: 30733856 PMCID: PMC6359839 DOI: 10.1186/s13578-019-0277-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND More than the two decades, the question of whether vitamin D has a role in cancer frequency, development, and death has been premeditated in detail. Colorectal, breast, and prostate cancers have been a scrupulous spot of center, altogether, these three malignancies report for approximately 35% of cancer cases and 20% of cancer demises in the United States, and as such are a chief public health apprehension. The aim was to evaluate antitumor activity of Vitamin D-Nanoemulsion (NVD) in colorectal cancer cell lines and HCT116 xenograft model in a comprehensive approach. METHODS Two human colorectal cancer cell lines HCT116 and HT29 (gained from College of Pharmacy, King Saud University, KSA were grown. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide protocol were performed to show the impact of NVD and β-catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis/cell cycle assay was performed. Analysis was done with a FACScan (Becton-Dickinson, NJ). About 10,000 cells per sample were harvested and Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. RESULTS We found that NVD induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that NVD administration of human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, alteration in molecules regulating cell cycle operative in the G2 phase of the cell cycle and apoptosis in a dose dependent approach. Further our results concluded that NVD administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. CONCLUSION Our findings suggest that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
32
|
Kim S, Ham S, Yang K, Kim K. Protein kinase CK2 activation is required for transforming growth factor β-induced epithelial-mesenchymal transition. Mol Oncol 2018; 12:1811-1826. [PMID: 30171795 PMCID: PMC6165993 DOI: 10.1002/1878-0261.12378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β (TGFβ) is overexpressed in advanced cancers and promotes tumorigenesis by inducing epithelial–mesenchymal transition (EMT), which enhances invasiveness and metastasis. Although we previously reported that EMT could be induced by increasing CK2 activity alone, it is not known whether CK2 also plays an essential role in TGFβ‐induced EMT. Therefore, in the present study, we investigated whether TGFβ signaling could activate CK2 and, if so, whether such activation is required for TGFβ‐induced EMT. We found that CK2 is activated by TGFβ treatment, and that activity peaks at 48 h after treatment. CK2 activation is dependent on TGFβ receptor (TGFBR) I kinase activity, but independent of SMAD4. Inhibition of CK2 activation through the use of either a CK2 inhibitor or shRNA against CSNK2A1 inhibited TGFβ‐induced EMT. TGFβ signaling decreased CK2β but did not affect CK2α protein levels, resulting in a quantitative imbalance between the catalytic α and regulatory β subunits, thereby increasing CK2 activity. The decrease in CK2β expression was dependent on TGFBRI kinase activity and the ubiquitin–proteasome pathway. The E3 ubiquitin ligases responsible for TGFβ‐induced CK2β degradation were found to be CHIP and WWP1. Okadaic acid (OA) pretreatment protected CK2β from TGFβ‐induced degradation, suggesting that dephosphorylation of CK2β by an OA‐sensitive phosphatase might be required for CK2 activation in TGFβ‐induced EMT. Collectively, our results suggest CK2 as a therapeutic target for the prevention of EMT and metastasis of cancers.
Collapse
Affiliation(s)
- Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Integrated Genomic Research Center for Metabolic Regulation, Seoul, Korea
| | - Sunyoung Ham
- Quality Evaluation Team, Samsung Bioepis, Incheon, Korea
| | - Kyungmi Yang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Integrated Genomic Research Center for Metabolic Regulation, Seoul, Korea
| |
Collapse
|
33
|
Yang KM, Kim K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J Cell Biochem 2018; 119:8501-8510. [PMID: 30015359 DOI: 10.1002/jcb.27078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Protein kinase CK2 is active in cancer cells. Previously, we reported that increased CK2 activity could induce epithelial mesenchymal transition of cancer cells. CK2 also induced epithelial mesenchymal transition in colon cancer cell lines such as HT29 and SW620, and the transitioned cells (CK2α cells) became more proliferative than the controls. We assumed that CK2 could affect cancer cell growth by modulating their energy metabolism. Here, we examined the molecular effects of CK2 on the glucose metabolism of cancer cells. We found that CK2α cells consumed more glucose and produced more lactate than control cells did. An XF glycolysis stress test showed that aerobic glycolysis was augmented up to the cancer cell's maximal glycolytic capacity in CK2α cells. Molecular analysis revealed that pyruvate kinase M1 was downregulated and pyruvate kinase M2 was nuclear localized in CK2α cells. Consequently, the expression and activity of lactate dehydrogenase A (LDHA) were upregulated. Treatment with FX11-a specific LDHA inhibitor-or clustered regularly interspaced short palindromic repeats (CRISPR)-mediated knockout of LDHA inhibited the CK2-driven proliferation of cancer cells. We conclude that CK2 augments the Warburg effect, resulting in increased proliferation of cancer cells.
Collapse
Affiliation(s)
- Kyung Mi Yang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Integrated Genomic Research Center for Metabolic Regulation, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
34
|
Han B, Wei SP, Zhang XC, Li H, Li Y, Li RX, Li K, Zhang XZ. Effects of constrained dynamic loading, CKIP‑1 gene knockout and combination stimulations on bone loss caused by mechanical unloading. Mol Med Rep 2018; 18:2506-2514. [PMID: 29956799 DOI: 10.3892/mmr.2018.9222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 11/05/2022] Open
Abstract
Mechanical stimulation plays an important role in maintaining the growth and normal function of the skeletal system. Mechanical unloading occurs, for example, in astronauts spending long periods of time in space or in patients on prolonged bed rest, and causes a rapid loss of bone mass. Casein kinase 2‑interacting protein‑1 (CKIP‑1) is a novel negative bone regulation factor that has been demonstrated to reduce bone loss and enhance bone formation. The aim of this study was to investigate the effect of constrained dynamic loading (Loading) in combination with CKIP‑1 gene knockout (KO) on unloading‑induced bone loss in tail‑suspension mice. The blood serum metabolism index [alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels], tibia mechanical behavior (including bone trabecular microstructure parameters and tibia biomechanical properties), osteoblast‑related gene expression [ALP, OCN, collagen I and bone morphogenetic protein‑2 and osteoprotegerin (OPG)] and osteoclast‑related gene expression [receptor activators of NF‑kB ligand (RANKL)] were measured. The results demonstrated that mice experienced a loss of bone mass after four weeks of tail suspension compared with a wild type group. The mechanical properties, microarchitecture and mRNA expression were significantly increased in mice after Loading + KO treatment (P<0.05). Furthermore, compared with loading or KO alone, the ratio of OPG/RANKL was increased in the combined treatment group. The combined effect of Loading + KO was greater than that observed with loading or KO alone (P<0.05). The present study demonstrates that Loading + KO can counter unloading‑induced bone loss, and combining the two treatments has an additive effect. These results indicate that combined therapy could be a novel strategy for the clinical treatment of disuse osteoporosis associated with space travel or bed rest.
Collapse
Affiliation(s)
- Biao Han
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Shu-Ping Wei
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xin-Chang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Hao Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Yu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Rui-Xin Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Kairen Li
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| | - Xi-Zheng Zhang
- Department of Biomedical Engineering and Medical Technology, Tianjin Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161, P.R. China
| |
Collapse
|
35
|
Phosphorylation-dependent stabilization of MZF1 upregulates N-cadherin expression during protein kinase CK2-mediated epithelial-mesenchymal transition. Oncogenesis 2018. [PMID: 29540671 PMCID: PMC5852951 DOI: 10.1038/s41389-018-0035-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process in invasion and metastasis of cancer cells. E-cadherin to N-cadherin switching is considered a molecular hallmark of EMT. Recently, we reported that increased CK2 activity fully induces E-cadherin to N-cadherin switching, but the molecular mechanisms of N-cadherin upregulation are unknown. In this study, we examined how N-cadherin is upregulated by CK2. N-cadherin promoter analysis and ChIP analysis identified and confirmed myeloid zinc finger 1 (MZF1) as an N-cadherin transcription factor. Molecular analysis showed that MZF1 directly interacts with CK2 and is phosphorylated at serine 27. Phosphorylation stabilizes MZF1 and induces transcription of N-cadherin. MZF1 knockdown (MKD) in N-cadherin-expressing cancer cells downregulates N-cadherin expression and reverts the morphology from spindle and fibroblast-like to a rounded, epithelial shape. In addition, we showed that that MKD reduced the motility and invasiveness of N-cadherin-expressing cancer cells. Collectively, these data indicate that N-cadherin upregulation in CK2-mediated E-cadherin to N-cadherin switching is dependent on phosphorylation-mediated MZF1 stabilization. CK2 could be a good therapeutic target for the prevention of metastasis.
Collapse
|
36
|
Ramazzotti G, Billi AM, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, Kim S, Suh PG, Cocco L, Faenza I. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget 2018; 7:84118-84127. [PMID: 27563828 PMCID: PMC5356648 DOI: 10.18632/oncotarget.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
In previous studies, we have reported that phospholipase C (PLC)-β1 plays a crucial role in myogenic differentiation and we determined the importance of its catalytic activity for the initiation of this process. Here we define the effectors that take part to its signaling pathway. We show that the Inositol Polyphosphate Multikinase (IPMK) is able to promote myogenic differentiation since its overexpression determines the up-regulation of several myogenic markers. Moreover, we demonstrate that IPMK activates the same cyclin D3 promoter region targeted by PLC-β1 and that IPMK-induced promoter activation relies upon c-jun binding to the promoter, as we have shown previously for PLC-β1. Furthermore, our data shows that IPMK overexpression causes an increase in β-catenin translocation and accumulation to the nuclei of differentiating myoblasts resulting in higher MyoD activation. Finally, we describe that PLC-β1 overexpression determines too an increase in β-catenin translocation and that PLC-β1, IPMK and β-catenin are mediators of the same signaling pathway since their overexpression results in cyclin D3 and myosin heavy chain (MYH) induction.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Mazzetti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Ruggeri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Seyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget 2018; 7:53191-53203. [PMID: 27448963 PMCID: PMC5288178 DOI: 10.18632/oncotarget.10668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that are a major cause of mortality of Neurofibromatosis type 1 (NF1) patients. MPNST patients have few therapeutic options available and only complete surgical resection can be curative. MPNST formation and survival are dependent on activated β-catenin signaling. The goal of this study was to determine if inhibition of the CK2 enzyme can be therapeutically exploited in MPNSTs, given CK2's role in mainta ining oncogenic phenotypes including stabilization of β-catenin. We found that CK2α is over-expressed in MPNSTs and is critical for maintaining cell survival, as the CK2 inhibitor, CX-4945 (Silmitasertib), and shRNA targeting CK2α each significantly reduce MPNST cell viability. These effects were preceded by loss of critical signaling pathways in MPNSTs, including destabilization of β-catenin and TCF8. CX-4945 administration in vivo slowed tumor growth and extends survival time. We conclude that CK2 inhibition is a promising approach to blocking β-catenin in MPNST cells, although combinatorial therapies may be required for maximal efficacy.
Collapse
|
38
|
Neuroprotection by aripiprazole against β-amyloid-induced toxicity by P-CK2α activation via inhibition of GSK-3β. Oncotarget 2017; 8:110380-110391. [PMID: 29299155 PMCID: PMC5746390 DOI: 10.18632/oncotarget.22777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
Psychosis is reported over 30% of patients with Alzheimer's disease (AD) in clinics. Aripiprazole is an atypical antipsychotic drug with partial agonist activity at the D2 dopamine and 5-HT1A receptors with low side-effect profile. We identified aripiprazole is able to overcome the amyloid-β (Aβ)-evoked neurotoxicity and then increase the cell viability. This study elucidated the mechanism(s) by which aripiprazole ameliorates Aβ1-42-induced decreased neurite outgrowth and viability in neuronal cells. Pretreatment with aripiprazole increased Brain-derived neurotrophic factor (BDNF) mRNA and protein expressions in N2a cells. Additionally, phosphorylated casein kinase 2α at Y 255 (P-CK2α) was increased in time- and concentration-dependent manners. Furthermore, Aβ1-42-induced decreased BDNF and P-CK2α expression were increased over control level by aripiprazole. Subsequently, Aβ1-42-induced decreased levels of phosphorylated glycogen synthase-3β at Ser9 (P-GSK-3β) and nuclear P-β-catenin (Ser675) were elevated by aripiprazole, which were inhibited by K252A (inhibitor of BDNF receptor) and tetrabromocinnamic acid (TBCA, CK2 inhibitor), indicating that BDNF and P-CK2α activation are implicated in the aripiprazole effects. Expressions of cyclin D1 and insulin-like growth factor 2 (IGF2) mRNA were increased by aripiprazole; even in the presence of Aβ1-42, which was blocked by K252A and TBCA. In CK2α gene-silenced N2a cells, aripiprazole failed to increase P-GSK-3β and P-β-catenin expressions. Consequently, aripiprazole ameliorated Aβ1-42-induced attenuation of neurite elongation in HT22 cells, and this effect was blocked by both TBCA and imatinib. Decreased viability induced by Aβ1-42 was recovered by aripiprazole. These findings provide evidence supporting that aripiprazole can provide an effective therapeutic strategy against Aβ-induced neurotoxicity in AD-associated psychosis.
Collapse
|
39
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
40
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
41
|
Eiber N, Simeone L, Hashemolhosseini S. Ablation of Protein Kinase CK2β in Skeletal Muscle Fibers Interferes with Their Oxidative Capacity. Pharmaceuticals (Basel) 2017; 10:ph10010013. [PMID: 28106831 PMCID: PMC5374417 DOI: 10.3390/ph10010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 11/16/2022] Open
Abstract
The tetrameric protein kinase CK2 was identified playing a role at neuromuscular junctions by studying CK2β-deficient muscle fibers in mice, and in cultured immortalized C2C12 muscle cells after individual knockdown of CK2α and CK2β subunits. In muscle cells, CK2 activity appeared to be at least required for regular aggregation of nicotinic acetylcholine receptors, which serves as a hallmark for the presence of a postsynaptic apparatus. Here, we set out to determine whether any other feature accompanies CK2β-deficient muscle fibers. Hind limb muscles gastrocnemius, plantaris, and soleus of adult wildtype and CK2β-deficient mice were dissected, cross-sectioned, and stained histochemically by Gomori trichrome and for nicotinamide adenine dinucleotide (NADH) dehydrogenase and succinate dehydrogenase (SDH) enzymatic activities. A reduction of oxidative enzymatic activity was determined for CK2β-deficient muscle fibers in comparison with wildtype controls. Importantly, the CK2β-deficient fibers, muscle fibers that typically exhibit high NADH dehydrogenase and SDH activities, like slow-type fibers, showed a marked reduction in these activities. Altogether, our data indicate additional impairments in the absence of CK2β in skeletal muscle fibers, pointing to an eventual mitochondrial myopathy.
Collapse
Affiliation(s)
- Nane Eiber
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | - Luca Simeone
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | - Said Hashemolhosseini
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
42
|
Currier N, Solomon SE, Demicco EG, Chang DLF, Farago M, Ying H, Dominguez I, Sonenshein GE, Cardiff RD, Xiao ZXJ, Sherr DH, Seldin DC. Oncogenic Signaling Pathways Activated in DMBA-Induced Mouse Mammary Tumors. Toxicol Pathol 2017; 33:726-37. [PMID: 16263698 DOI: 10.1080/01926230500352226] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Only about 5% of human breast cancers can be attributed to inheritance of breast cancer susceptibility genes, while the balance are considered to be sporadic in origin. Breast cancer incidence varies with diet and other environmental influences, including carcinogen exposure. However, the effects of environmental carcinogens on cell growth control pathways are poorly understood. Here we have examined oncogenic signaling pathways that are activated in mammary tumors in mice treated with the prototypical polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[ a]anthracene (DMBA). In female FVB mice given 6 doses of 1 mg of DMBA by weekly gavage beginning at 5 weeks of age, all of the mice developed tumors by 34 weeks of age (median 20 weeks after beginning DMBA); 75% of the mice had mammary tumors. DMBA-induced mammary tumors exhibited elevated expression of the aryl hydrocarbon receptor (AhR), c- myc, cyclin D1, and hyperphosphorylated retinoblastoma (Rb) protein. Because of this, the activation of upstream regulatory pathways was assessed, and elements of the Wnt signaling pathway, the NF-κB pathway, and the prolyl isomerase Pin-1 were found to be frequently up-regulated in the tumors when compared to normal mammary gland controls. These data suggest that environmental carcinogens can produce long-lasting alterations in growth and anti-apoptotic pathways, leading to mammary tumorigenesis.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Apoptosis/drug effects
- Carcinogens
- Casein Kinase II/metabolism
- DNA/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, bcl-1/drug effects
- Genes, bcl-1/physiology
- Genes, myc/drug effects
- Genes, myc/physiology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- NF-kappa B/metabolism
- NIMA-Interacting Peptidylprolyl Isomerase
- Oncogenes/drug effects
- Oncogenes/physiology
- Peptidylprolyl Isomerase/metabolism
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Retinoblastoma Protein/metabolism
- Signal Transduction/drug effects
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Nicolas Currier
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chou ST, Patil R, Galstyan A, Gangalum PR, Cavenee WK, Furnari FB, Ljubimov VA, Chesnokova A, Kramerov AA, Ding H, Falahatian V, Mashouf L, Fox I, Black KL, Holler E, Ljubimov AV, Ljubimova JY. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release 2016; 244:14-23. [PMID: 27825958 PMCID: PMC5308909 DOI: 10.1016/j.jconrel.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database. Two xenogeneic mouse models bearing intracranial human GBMs from cell lines LN229 and U87MG that expressed both CK2 and EGFR at different levels were used. Simultaneous knockdown of CK2α and EGFR/EGFRvIII suppressed their downstream prosurvival signaling. Treatment also markedly reduced the expression of programmed death-ligand 1 (PD-L1), a negative regulator of cytotoxic lymphocytes. Downregulation of CK2 and EGFR also caused deactivation of heat shock protein 90 (Hsp90) co-chaperone Cdc37, which may suppress the activity of key cellular kinases. Inhibition of either target was associated with downregulation of the other target as well, which may underlie the increased efficacy of the dual nanobioconjugate that is directed against both CK2 and EGFR. Importantly, the single nanodrugs, and especially the dual nanodrug, markedly suppressed the expression of the cancer stem cell markers c-Myc, CD133, and nestin, which could contribute to the efficacy of the treatments. In both tumor models, the nanobioconjugates significantly increased (up to 2-fold) animal survival compared with the PBS-treated control group. The versatile nanobioconjugates developed in this study, with the abilities of anti-cancer drug delivery across biobarriers and the inhibition of key tumor regulators, offer a promising nanotherapeutic approach to treat GBMs, and to potentially prevent drug resistance and retard the recurrence of brain tumors.
Collapse
Affiliation(s)
- Szu-Ting Chou
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pallavi R. Gangalum
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California, USA
| | - Vladimir A. Ljubimov
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandra Chesnokova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrei A. Kramerov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistic and Bioinformatics Clinical Research Training Program ( CRTP )
| | | | - Irving Fox
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Keith L. Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexander V. Ljubimov
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Julia Y. Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
44
|
Bae JS, Park SH, Jamiyandorj U, Kim KM, Noh SJ, Kim JR, Park HJ, Kwon KS, Jung SH, Park HS, Park BH, Lee H, Moon WS, Sylvester KG, Jang KY. CK2α/CSNK2A1 Phosphorylates SIRT6 and Is Involved in the Progression of Breast Carcinoma and Predicts Shorter Survival of Diagnosed Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3297-3315. [DOI: 10.1016/j.ajpath.2016.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 01/24/2023]
|
45
|
Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability. Oncotarget 2016; 6:42749-60. [PMID: 26543229 PMCID: PMC4767467 DOI: 10.18632/oncotarget.5722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells. CK2 phosphorylated the N-terminal end of ECE-1c and this was precluded upon inhibition of CK2. Inhibition also led to diminished protein levels of both endogen ECE-1 or GFP-fused N-terminal end of ECE-1c in 293T embryonic and DLD-1 colon cancer cells, which highlighted the importance of this motif on UPS-dependent ECE-1c degradation. Full-length ECE-1c mutants designed either to mimic or abrogate CK2-phosphorylation displayed increased or decreased migration/invasion of colon cancer cells, respectively. Moreover, ECE-1c overexpression or its silencing with a siRNA led to increased or diminished cell migration/invasion, respectively. Altogether, these data show that CK2-increased ECE-1c protein stability is related to augmented migration and invasion of colon cancer cells, shedding light on a novel mechanism by which CK2 may promote malignant progression of this disease.
Collapse
|
46
|
Proteomics perturbations promoted by the protein kinase CK2 inhibitor quinalizarin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1676-86. [DOI: 10.1016/j.bbapap.2015.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 01/18/2023]
|
47
|
Petersen HO, Höger SK, Looso M, Lengfeld T, Kuhn A, Warnken U, Nishimiya-Fujisawa C, Schnölzer M, Krüger M, Özbek S, Simakov O, Holstein TW. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration. Mol Biol Evol 2015; 32:1928-47. [PMID: 25841488 PMCID: PMC4833066 DOI: 10.1093/molbev/msv079] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration.
Collapse
Affiliation(s)
- Hendrik O Petersen
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Stefanie K Höger
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Mario Looso
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany
| | - Tobias Lengfeld
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anne Kuhn
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiemi Nishimiya-Fujisawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Martina Schnölzer
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Krüger
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany CECAD, University of Cologne, Germany
| | - Suat Özbek
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Oleg Simakov
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Maturana JL, Niechi I, Silva E, Huerta H, Cataldo R, Härtel S, Barros LF, Galindo M, Tapia JC. Transactivation activity and nucleocytoplasmic transport of β-catenin are independently regulated by its C-terminal end. Gene 2015; 573:115-22. [PMID: 26187068 DOI: 10.1016/j.gene.2015.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 11/20/2022]
Abstract
The key protein in the canonical Wnt pathway is β-catenin, which is phosphorylated both in absence and presence of Wnt signals by different kinases. Upon activation in the cytoplasm, β-catenin can enter into the nucleus to transactivate target gene expression, many of which are cancer-related genes. The mechanism governing β-catenin's nucleocytoplasmic transport has been recently unvealed, although phosphorylation at its C-terminal end and its functional consequences are not completely understood. Serine 646 of β-catenin is a putative CK2 phosphorylation site and lies in a region which has been proposed to be important for its nucleocytoplasmic transport and transactivation activity. This residue was mutated to aspartic acid mimicking CK2-phosphorylation and its effects on β-catenin activity as well as localization were explored. β-Catenin S6464D did not show significant differences in both transcriptional activity and nuclear localization compared to the wild-type form, but displayed a characteristic granular nuclear pattern. Three-dimensional models of nuclei were constructed which showed differences in number and volume of granules, being those from β-catenin S646D more and smaller than the wild-type form. FRAP microscopy was used to compare nuclear export of both proteins which showed a slightly higher but not significant retention of β-catenin S646D. Altogether, these results show that C-terminal phosphorylation of β-catenin seems to be related with its nucleocytoplasmic transport but not transactivation activity.
Collapse
Affiliation(s)
- J L Maturana
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Niechi
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - E Silva
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - H Huerta
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Cataldo
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - S Härtel
- Laboratory for Scientific Image Analysis (SCIAN-Lab), ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - L F Barros
- Centro de Estudios Cientificos, Valdivia, Chile
| | - M Galindo
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J C Tapia
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
49
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
50
|
Cytoskeleton involvement in lithium-induced SH-SY5Y neuritogenesis and the role of glycogen synthase kinase 3β. Aging Clin Exp Res 2015; 27:255-63. [PMID: 25409859 DOI: 10.1007/s40520-014-0290-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/01/2014] [Indexed: 12/14/2022]
Abstract
Lithium modulates signals impacting on the cytoskeleton, a dynamic system contributing to neural plasticity at multiple levels. In this study, SH-SY5Y human neuronal cells were cultured in the absence (C) or in presence (Li) of a 0.5 mM Li2CO3 (i.e. 1 mM lithium ion) for 25-50 weeks. We investigated the effect of this treatment on (1) morphological changes of cells observed using Hemalun eosin staining assay, (2) cytoskeletal changes by indirect immunofluorescence (IIF) staining of microtubules (α-tubulin) and heavy neurofilaments subunits (NF-H) and by measuring the expression rate changes of genes coding for receptor for activated C kinase (RACK1), casein kinase2 (CK2) and thymosine beta-10 using cDNA arrays technology, (3) cell adhesion properties by IIF staining of β-catenin protein. Besides, we have tried to understand the molecular mechanism of lithium action that triggers changes in cytoskeleton and neurites outgrowth. Thus, we examined the effect of this treatment on glycogen synthase kinase 3 (GSK3) expression and activity using western blotting of GSK3 and phosphorylated β-catenin, a downstream GSK3 target protein. Our results showed that lithium treatment reduces axon length, increases axonal spreading, enhances neurites growth and neurites branching with an increase of growth cone size. Moreover, genes coding for CK2 and thymosine beta-10 were significantly up-regulated, however, that coding for RACK1 was down-regulated. The most interesting result in this work is that mechanism underlying lithium action was not related to the inhibition of GSK3 activity. In fact, neither expression rate nor activity of this protein was changed.
Collapse
|