1
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
2
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Sperm Redox System Equilibrium: Implications for Fertilization and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:345-367. [DOI: 10.1007/978-3-030-89340-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Wang X, Fu Y, Beatty WL, Ma M, Brown A, Sibley LD, Zhang R. Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nat Commun 2021; 12:3065. [PMID: 34031406 PMCID: PMC8144581 DOI: 10.1038/s41467-021-23351-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
In living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from Toxoplasma gondii, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of β-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.
Collapse
Affiliation(s)
- Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Heme-binding protein CYB5D1 is a radial spoke component required for coordinated ciliary beating. Proc Natl Acad Sci U S A 2021; 118:2015689118. [PMID: 33875586 DOI: 10.1073/pnas.2015689118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain. Mutation or knockdown of Cyb5d1 in zebrafish impaired coordinated ciliary beating in the otic vesicle and olfactory epithelium. Similarly, the two flagella of an insertional mutant of the CYB5D1 ortholog in Chlamydomonas (Crcyb5d1) showed an uncoordinated pattern due to a defect in the cis-flagellum. Biochemical analyses revealed that CrCYB5D1 is a radial spoke stalk protein that binds heme only under oxidizing conditions. Lack of CrCYB5D1 resulted in a reductive shift in flagellar redox state and slowing down of the phototactic response. Treatment of Crcyb5d1 with oxidants restored coordinated flagellar beating. Taken together, these data suggest that CrCYB5D1 may integrate environmental and intraciliary signals and regulate the redox state of cilia, which is crucial for the coordinated beating of multiple cilia.
Collapse
|
6
|
Testis-Specific Thioredoxins TXNDC2, TXNDC3, and TXNDC6 Are Expressed in Both Testicular and Systemic DLBCL and Correlate with Clinical Disease Presentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8026941. [PMID: 33603952 PMCID: PMC7870302 DOI: 10.1155/2021/8026941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
DLBCL is the most common type of non-Hodgkin lymphoma with a substantial group of patients suffering a poor prognosis. Therefore more specific markers are required for better understanding of disease biology and treatment. This study demonstrates that testis-specific antioxidant enzymes TXNDC2, TXNDC3, and TXNDC6 alongside oxidative stress marker 8-OHdG are expressed in both testicular and systemic DLBCL, and their presence or absence has correlations with clinical risk factors such as the number of extranodal effusion, the appearance of B-symptoms, and treatment response. Biopsy samples were collected from 28 systemic and 21 testicular male DLBCL patients. The samples were histostained with TXNDC2, TXNDC3, TXNDC6, and 8-OHdG, then graded by a hematopathologist blinded to clinical data. Immunoelectron microscopy was used as a second method to confirm the reliability of the acquired immunohistochemistry data. The absence of nuclear TXNDC2 expression in testicular DLBCL cells correlated with worse primary treatment response, cytoplasmic TXNDC3 expression in testicular and systemic DLBCL associated with lower frequency of B-symptoms, and TXNDC6 expression in cytoplasm in systemic DLBCL had a clinical significance with higher LD levels suggesting a role in the biological nature of these lymphomas. Overall, TXNDC3 cytoplasmic expression is correlated with a more positive outcome in both testicular and systemic DLBCL, while TXNDC6 cytoplasmic expression is associated with a negative outcome in systemic DLBCL.
Collapse
|
7
|
Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. eLife 2020; 9:e58662. [PMID: 33263282 PMCID: PMC7785291 DOI: 10.7554/elife.58662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Rachael M Cox
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Amjad Horani
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Kevin Drew
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Steven L Brody
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
8
|
Ahlering P, Sutovsky M, Gliedt D, Branson K, Miranda Vizuete A, Sutovsky P. Sperm content of TXNDC8 reflects sperm chromatin structure, pregnancy establishment, and incidence of multiple births after ART. Syst Biol Reprod Med 2020; 66:311-321. [PMID: 32851881 DOI: 10.1080/19396368.2020.1801889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Male germline-specific thioredoxin domain containing 8 (TXNDC8; alias SPTRX3) accumulates indefective human spermatozoa. We assessed the efficiency of two-step semen purification inremoving spermatozoa carrying TXNDC8, and examined the relationship of TXNDC8 with theoutcomes of assisted reproductive therapy (ART), conventional semen parameters, and sperm DNA integrity in sperm chromatin structure assay (SCSA). Semen samples (n = 255) from 91 ART couples were screened in two independent trials, both including a two-step, gradient-and-swim-up separation procedure yielding A-samples (raw semen), B-samples (gradient separated), and C-samples (gradient-and-swim-up). The C-samples were used for intracytoplasmic sperm injection (ICSI) with morphologically selected spermatozoa (IMSSI). Percentage of TXNDC8-positive spermatozoaincreased progressively from A to B/C-samples in both trials. In the first trial (35 couples), the TXNDC8 correlated positively with sperm DNA fragmentation index (%DFI; r = 0.66) measured before separation, and negatively with sperm concentration (r = -0.57) and motility (r = -0.67), also taken before separation. The high DNA stainability index (%HDS) correlated with the percentage of spermatozoa lacking TXNDC8 (r = 0.68). Both SCSA and TXNDC8 parameters showed moderate correlations (r = 0.33-0.66) with blood serum levels of hCG on day 11 (Beta 1) and day13 (Beta 2) after oocyte retrieval. In the second trial (56 couples), fathers of multiplets had a significantly lower percentage of TXNDC8-positive spermatozoa in B-sample (gradient separationonly) compared to men who conceived a singleton pregnancy (p = 0.01) and those who produced no pregnancy (p = 0.02). Those multiplets' fathers also had a significantly higher sperm concentration while their SCSA parameters did not differ from others. It is concluded that theTXNDC8 levels correlate with SCSA and conventional raw semen parameters, and are predictive of pregnancy outcome and multiple births after ART. Two-step purification does not efficiently remove TXNDC8 carrying spermatozoa. ABBREVIATIONS ART- assisted reproductive therapy; DFI- DNA fragmentation index; FC- flow cytometry (FC); hCG: human chorionic gonadotropin; HDS: high DNA stainability index; HEPES- (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); HTF- human tubal fluid; ICSI- intracytoplasmic sperm injection; IgG- immunoglobulin G; IMSSI- ICSI with morphologically selected spermatozoa; IVF- in vitro fertilization; IU-: intrauterine insemination; NGS- normal goat serum; PBS- phosphate buffered saline; PVP- polyvinylpyrrolidone; SAB- spontaneous abortion; SCSA- sperm chromatin structure assay; SPTRX3- spermatid specific thioredoxin 3; SSS- synthetic serum substitute; TRITC- tetramethyl rhodamine isothiocyanate; TX-100- Triton X-100; TXNDC- thioredoxin domain-containing proteins; TXNDC8- thioredoxin domain containing 8; TUNEL- Terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Peter Ahlering
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri , Columbia, MO, 65211-5300, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri , Columbia, MO, 65211-5300, USA
| | - Douglas Gliedt
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Kellie Branson
- Missouri Center for Reproductive Medicine , Chesterfield, MO, USA
| | - Antonio Miranda Vizuete
- Instituto de Biomedicina de SevillaHospital, Universitario Virgen del Rocío/CSIC/Universidad de , Sevilla, SPAIN
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri , Columbia, MO, 65211-5300, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri , Columbia, MO, 65211-5300, USA
| |
Collapse
|
9
|
Characterization of Nme5-Like Gene/Protein from the Red Alga Chondrus Crispus. Mar Drugs 2019; 18:md18010013. [PMID: 31877804 PMCID: PMC7024210 DOI: 10.3390/md18010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.
Collapse
|
10
|
Gellert M, Hossain MF, Berens FJF, Bruhn LW, Urbainsky C, Liebscher V, Lillig CH. Substrate specificity of thioredoxins and glutaredoxins - towards a functional classification. Heliyon 2019; 5:e02943. [PMID: 31890941 PMCID: PMC6928294 DOI: 10.1016/j.heliyon.2019.e02943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
The spatio-temporal reduction and oxidation of protein thiols is an essential mechanism in signal transduction in all kingdoms of life. Thioredoxin (Trx) family proteins efficiently catalyze thiol-disulfide exchange reactions and the proteins are widely recognized for their importance in the operation of thiol switches. Trx family proteins have a broad and at the same time very distinct substrate specificity – a prerequisite for redox switching. Despite of multiple efforts, the true nature for this specificity is still under debate. Here, we comprehensively compare the classification/clustering of various redoxins from all domains of life based on their similarity in amino acid sequence, tertiary structure, and their electrostatic properties. We correlate these similarities to the existence of common interaction partners, identified in various previous studies and suggested by proteomic screenings. These analyses confirm that primary and tertiary structure similarity, and thereby all common classification systems, do not correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. Instead, a number of examples clearly demonstrate the importance of electrostatic similarity for their target specificity, independent of their belonging to the Trx or glutaredoxin subfamilies.
Collapse
Affiliation(s)
- Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Felix Jacob Ferdinand Berens
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Lukas Willy Bruhn
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany.,Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Claudia Urbainsky
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - Volkmar Liebscher
- Institute for Mathematics and Informatics, University of Greifswald, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| |
Collapse
|
11
|
Price ME, Sisson JH. Redox regulation of motile cilia in airway disease. Redox Biol 2019; 27:101146. [PMID: 30833143 PMCID: PMC6859573 DOI: 10.1016/j.redox.2019.101146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Motile cilia on airway cells are necessary for clearance of mucus-trapped particles out of the lung. Ciliated airway epithelial cells are uniquely exposed to oxidants through trapping of particles, debris and pathogens in mucus and the direct exposure to inhaled oxidant gases. Dynein ATPases, the motors driving ciliary motility, are sensitive to the local redox environment within each cilium. Several redox-sensitive cilia-localized proteins modulate dynein activity and include Protein Kinase A, Protein Kinase C, and Protein Phosphatase 1. Moreover, cilia are rich in known redox regulatory proteins and thioredoxin domain-containing proteins that are critical in maintaining a balanced redox environment. Importantly, a nonsense mutation in TXNDC3, which contains a thioredoxin motif, has recently been identified as disease-causing in Primary Ciliary Dyskinesia, a hereditary motile cilia disease resulting in impaired mucociliary clearance. Here we review current understanding of the role(s) oxidant species play in modifying airway ciliary function. We focus on oxidants generated in the airways, cilia redox targets that modulate ciliary beating and imbalances in redox state that impact health and disease. Finally, we review disease models such as smoking, asthma, alcohol drinking, and infections as well as the direct application of oxidants that implicate redox balance as a modulator of cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA; University of Nebraska Medical Center, Department of Cellular & Integrative Physiology, Omaha, NE, USA.
| | - Joseph H Sisson
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Omaha, NE, USA.
| |
Collapse
|
12
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
13
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 PMCID: PMC5473427 DOI: 10.12688/f1000research.11561.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
14
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 DOI: 10.12688/f1000research.11561.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
15
|
Zhang S, Jiang C, Zhang Q, Qi L, Li C, Xu JR. Thioredoxins are involved in the activation of the PMK1 MAP kinase pathway during appressorium penetration and invasive growth in Magnaporthe oryzae. Environ Microbiol 2016; 18:3768-3784. [PMID: 27059015 DOI: 10.1111/1462-2920.13315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Magnaporthe oryzae, the Mst11-Mst7-Pmk1 MAP kinase pathway is essential for appressorium formation and invasive growth. To determine their roles in Pmk1 activation and plant infection, we characterized the two thioredoxin genes, TRX1 and TRX2, in M. oryzae. Whereas the Δtrx1 mutants had no detectable phenotypes, deletion of TRX2 caused pleiotropic defects in growth, conidiation, light sensing, responses to stresses and plant infection progresses. The Δtrx1 Δtrx2 double mutant had more severe defects than the Δtrx2 mutant and was non-pathogenic in infection assays. The Δtrx2 and Δtrx1 Δtrx2 mutant rarely formed appressoria on hyphal tips and were defective in invasive growth after penetration. Pmk1 phosphorylation was barely detectable in the Δtrx2 and Δtrx1 Δtrx2 mutants. Deletion of TRX2 affected proper folding or intra-/inter-molecular interaction of Mst7 and expression of the dominant active MST7 allele partially rescued the defects of the Δtrx1 Δtrx2 mutant. Furthermore, Cys305 is important for Mst7 function and Trx2 directly interacts with Mst7 in co-IP assays. Our data indicated that thioredoxins play important roles in intra-cellular ROS signalling and pathogenesis in M. oryzae. As the predominant thioredoxin gene, TRX2 may regulate the activation of Pmk1 MAPK via its effects on Mst7.
Collapse
Affiliation(s)
- Shijie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linlu Qi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chaohui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Sutovsky P, Aarabi M, Miranda-Vizuete A, Oko R. Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian J Androl 2016; 17:554-60. [PMID: 25999356 PMCID: PMC4492044 DOI: 10.4103/1008-682x.153847] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biomarker-based sperm analysis elevates the treatment of human infertility and ameliorates reproductive performance in livestock. The negative biomarker-based approach focuses on proteins and ligands unique to defective spermatozoa, regardless of their morphological phenotype, lending itself to analysis by flow cytometry (FC). A prime example is the spermatid specific thioredoxin SPTRX3/TXNDC8, retained in the nuclear vacuoles and superfluous cytoplasm of defective human spermatozoa. Infertile couples with high semen SPTRX3 are less likely to conceive by assisted reproductive therapies (ART) and more prone to recurrent miscarriage while low SPTRX3 has been associated with multiple ART births. Ubiquitin, a small, proteolysis-promoting covalent posttranslational protein modifier is found on the surface of defective posttesticular spermatozoa and in the damaged protein aggregates, the aggresomes of spermiogenic origin. Semen ubiquitin content correlates negatively with fertility and conventional semen parameters, and with sperm binding of lectins LCA (Lens culinaris agglutinin; reveals altered sperm surface) and PNA (Arachis hypogaea/peanut agglutinin; reveals acrosomal malformation or damage). The Postacrosomal Sheath WWI Domain Binding Protein (PAWP), implicated in oocyte activation during fertilization, is ectopic or absent from defective human and animal spermatozoa. Consequently, FC-parameters of PAWP correlate with ART outcomes in infertile couples and with fertility in bulls. Assays based on the above biomarkers have been combined into multiplex FC semen screening protocols, and the surface expression of lectins and ubiquitin has been utilized to develop nanoparticle-based bull semen purification method validated by field artificial insemination trials. These advances go hand-in-hand with the innovation of FC-technology and genomics/proteomics-based biomarker discovery.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Science and Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA,
| | | | | | | |
Collapse
|
17
|
Thioredoxin-like protein 2b facilitates colon cancer cell proliferation and inhibits apoptosis via NF-κB pathway. Cancer Lett 2015; 363:119-26. [DOI: 10.1016/j.canlet.2014.12.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/28/2023]
|
18
|
Snider NT, Altshuler PJ, Omary MB. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015. [PMID: 25234227 DOI: 10.07/s00210-014-1046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA,
| | | | | |
Collapse
|
19
|
Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:189-97. [PMID: 25234227 DOI: 10.1007/s00210-014-1046-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.
Collapse
|
20
|
Abstract
The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS) generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases) working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione) to guarantee normal sperm function.
Collapse
|
21
|
O'Flaherty C. Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic Clin Androl 2014; 24:4. [PMID: 25780579 PMCID: PMC4349611 DOI: 10.1186/2051-4190-24-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/27/2014] [Indexed: 12/29/2022] Open
Abstract
Spermatozoon is a cell with a precious message to deliver: the paternal DNA. Its motility machinery must be working perfectly and it should be able to acquire fertilizing ability in order to accomplish this mission. Infertility touches 1 in 6 couples worldwide and in half of the cases the causes can be traced to men. A variety of conditions such as infections of the male genital tract, varicocele, drugs, environmental factors, diseases, smoking, etc., are associated with male infertility and a common feature among them is the oxidative stress in semen that occurs when reactive oxygen species (ROS) are produced at high levels and/or when the antioxidant systems are decreased in the seminal plasma and/or spermatozoa. ROS-dependent damage targets proteins, lipids, and DNA, thus compromising sperm function and survival. Elevated ROS in spermatozoa are associated with DNA damage and decreased motility. Paradoxically, ROS, at very low levels, regulate sperm activation for fertilization. Therefore, the regulation of redox signaling in the male reproductive tract is essential for fertility. Peroxiredoxins (PRDXs) play a central role in redox signaling being both antioxidant enzymes and modulators of ROS action and are essential for pathological and physiological events. Recent studies from our lab emphasize the importance of PRDXs in the protection of spermatozoa as infertile men have significant low levels of PRDXs in semen and with little enzymatic activity available for ROS scavenging. The relationships between sperm DNA damage, motility and lipid peroxidation and high levels of thiol-oxidized PRDXs suggest the enhanced susceptibility of spermatozoa to oxidative stress and further support the importance of PRDXs in human sperm physiology. This review aims to characterize PRDXs, hidden players of the sperm antioxidant system and highlight the central role of PRDXs isoforms in the protection against oxidative stress to assure a proper function and DNA integrity of human spermatozoa.
Collapse
Affiliation(s)
- Cristian O'Flaherty
- Urology Research Laboratory, Royal Victoria Hospital, room H6.46, 687 Avenue des Pins ouest, Montréal, Québec H3A 1A1 Canada ; Department of Surgery (Urology Division), McGill University, Montréal, Québec Canada ; Department of Obstetrics and Gynecology, McGill University, Montréal, Québec Canada ; Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec Canada ; Urology Research Laboratory, Royal Victoria Hospital, room H6.46, 687 Avenue des Pins ouest, Montréal, Québec H3A 1A1 Canada
| |
Collapse
|
22
|
Hou JZ, Feng J, Hou ZJ. Relationship between the nm23 gene and prognosis of esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:3356-3362. [DOI: 10.11569/wcjd.v21.i31.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The occurrence and development of esophageal cancer are the result of multiple gene interactions, and the nm23 gene is involved in the regulation of tumor cell metastasis and can inhibit lymph node metastasis. The detection of the change in the nm23 gene can help predict the presence of lymph node metastasis or not in esophageal carcinoma. Moreover, nm23 is an important indicator for prognosis evaluation in esophageal carcinoma.
Collapse
|
23
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
24
|
Lu Y, Zhao X, Li K, Luo G, Nie Y, Shi Y, Zhou Y, Ren G, Feng B, Liu Z, Pan Y, Li T, Guo X, Wu K, Miranda-Vizuete A, Wang X, Fan D. Thioredoxin-like protein 2 is overexpressed in colon cancer and promotes cancer cell metastasis by interaction with ran. Antioxid Redox Signal 2013; 19:899-911. [PMID: 23311631 PMCID: PMC3763228 DOI: 10.1089/ars.2012.4736] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Our previous work identified thioredoxin-like protein 2 (Txl-2) as the target of the monoclonal antibody MC3 associated with colon cancer, but its underlying mechanisms remain poorly understood. Txl-2, a novel thioredoxin (Trx) and nucleoside diphosphate kinase family member, is alternatively spliced and gives rise to three different Txl-2 isoforms. In this study, Txl-2 expression in colon cancer, differential functions for Txl-2 isoforms in cell invasion and metastasis, and the downstream signaling were investigated. RESULTS Txl-2 expression was elevated in colon cancer tissues compared to normal colonic tissues, with a high correlation between the histological grade and prognosis. Knockdown of Txl-2 expression significantly inhibited cancer cell motility, and the invasive and metastatic abilities of colon cancer cells. Interestingly, Txl-2 isoforms showed differential effects on cancer cell invasion and metastasis. Cell invasion and metastasis were significantly promoted by Txl-2b but inhibited by Txl-2c, while no obvious effect was observed for Txl-2a. Furthermore, a direct interaction was identified between Txl-2b and Ran, a Ras-related protein, by yeast two-hybrid assay and coimmunoprecipitation. PI3K pathway was found to be a major pathway mediating Txl-2b induced tumor invasion and metastasis. INNOVATION The current study provides a novel biomarker and target molecule for the diagnosis and treatment of colon cancer and provides a novel paradigm to understand how alternative splicing functions in human cancer. CONCLUSION Our findings demonstrate an elevated Txl-2 expression in colon cancer and that Txl-2b promotes cell invasion and metastasis through interaction with Ran and PI3K signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Lu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Song YN, Lu CY, Chen J, Qiu GF. Characterization of a novel nm23 gene and its potential roles in gametogenesis in the prawn Macrobrachium rosenbergii (de Man, 1879) (Crustacea: Decapoda). Gene 2013; 531:1-7. [PMID: 23994193 DOI: 10.1016/j.gene.2013.08.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Nm23 is a family of genes encoding the nucleoside diphosphate (NDP) kinase, which functions in a wide variety of biological processes, including growth, development, differentiation and tumor metastasis. In this study, a novel nm23 gene, designated as Mrnm23, was identified from the freshwater giant prawn Macrobrachium rosenbergii. The full-length cDNA was 776bp in length, encoding for a protein of 176 amino acids with one typical NDP kinase domain that harbored all the crucial residues for nucleotide binding and enzymatic activity. Like human novel nm23-H1B, the putative protein contained a unique 21-amino-acid NH2-terminal extension as compared to human nm23 (nm23-H1) homologs. Further, 3 extra amino acid residues prolonged the COOH-terminus. The Mrnm23 was ubiquitously expressed in all tissues examined, including androgenic gland, gill, heart, liver, muscle, ovary, and testis. In situ hybridization to gonad sections indicated that the Mrnm23 mRNA was localized in the cytoplasm of cup-base of differentiating spermatids, in the spike of the umbrella-shaped spermatozoa and in the cytoplasm of the early previtellogenic oocytes, suggesting that the Mrnm23 has potential roles in spermiogenesis and early differentiation of oocyte.
Collapse
Affiliation(s)
- Ya-Nan Song
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, PR China
| | | | | | | |
Collapse
|
26
|
Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii. EUKARYOTIC CELL 2013; 12:1588-99. [PMID: 23873863 DOI: 10.1128/ec.00082-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubules are versatile biopolymers that support numerous vital cellular functions in eukaryotes. The specific properties of microtubules are dependent on distinct microtubule-associated proteins, as the tubulin subunits and microtubule structure are exceptionally conserved. Highly specialized microtubule-containing assemblies are often found in protists, which are rich sources for novel microtubule-associated proteins. A protozoan parasite, Toxoplasma gondii, possesses several distinct tubulin-containing structures, including 22 microtubules closely associated with the cortical membrane. Early ultrastructural studies have shown that the cortical microtubules are heavily decorated with associating proteins. However, little is known about the identities of these proteins. Here, we report the discovery of a novel protein, TrxL1 (for Thioredoxin-Like protein 1), and an associating complex that coats the cortical microtubules. TrxL1 contains a thioredoxin-like fold. To visualize its localization in live parasites by fluorescence, we replaced the endogenous TrxL1 gene with an mEmeraldFP-TrxL1 fusion gene. Structured illumination-based superresolution imaging of this parasite line produced a detailed view of the microtubule cytoskeleton. Despite its stable association with the cortical microtubules in the parasite, TrxL1 does not seem to bind to microtubules directly. Coimmunoprecipitation experiments showed that TrxL1 associates with a protein complex containing SPM1, a previously reported microtubule-associated protein in T. gondii. We also found that SPM1 recruits TrxL1 to the cortical microtubules. Besides SPM1, several other novel proteins are found in the TrxL1-containing complex, including TrxL2, a close homolog of TrxL1. Thus, our results reveal for the first time a microtubule-associated complex in T. gondii.
Collapse
|
27
|
Semen levels of spermatid-specific thioredoxin-3 correlate with pregnancy rates in ART couples. PLoS One 2013; 8:e61000. [PMID: 23734172 PMCID: PMC3667087 DOI: 10.1371/journal.pone.0061000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Spermatid specific thioredoxin-3 (SPTRX3 or TXNDC8) is a testis/male germ line specific member of thioredoxin family that accumulates in the superfluous cytoplasm of defective human spermatozoa. We hypothesized that semen levels of SPTRX3 are reflective of treatment outcome in assisted reproductive therapy (ART) couples treated by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Relationship between SPTRX3 and treatment outcome was investigated in 239 couples undergoing ART at an infertility clinic. Sperm content of SPTRX3 was evaluated by flow cytometry and epifluorescence microscopy, and correlated with clinical semen analysis parameters, and data on embryo development and pregnancy establishment. High SPTRX3 levels (>15% SPTRX3-positive spermatozoa) were found in 51% of male infertility patients (n = 72), in 20% of men from couples with unexplained, idiopathic infertility (n = 61) and in 14% of men from couples previously diagnosed with female-only infertility (n = 85). Couples with high SPTRX3 produced fewer two-pronuclear zygotes and had a reduced pregnancy rate (19.2% pregnant with >15% SPTRX3-positive spermatozoa vs. 41.2% pregnant with <5% SPTRX3-positive sperm; one-sided p<0.05). The average pregnancy rate of all 239 couples was 25.1%. Live birth rate was 19.2% and lowest average SPTRX3 levels were found in couples that delivered twins. Men with >15% of SPTRX3-positive spermatozoa, a cutoff value established by ROC analysis, had their chance of fathering children by IVF or ICSI reduced by nearly two-thirds. The percentage of SPTRX3-positive spermatozoa had predictive value for pregnancy after ART. Gradient purification and sperm swim-up failed to remove all SPTRX3-positive spermatozoa from semen prepared for ART. In summary, the elevated semen content of SPTRX3 in men from ART couples coincided with reduced incidence of pregnancy by IVF or ICSI, identifying SPTRX3 as a candidate biomarker reflective of ART outcome.
Collapse
|
28
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011. [PMID: 21713383 DOI: 10.07/s00210-011-0646-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
29
|
Marino N, Marshall JC, Steeg PS. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:351-62. [PMID: 21713383 DOI: 10.1007/s00210-011-0646-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
Nm23-H1, also known as NDPK-A, was the first of a class of metastasis suppressor genes to be identified. Overexpression of Nm23-H1 in metastatic cell lines (melanoma, breast carcinoma, prostate, colon, hepatocellular, and oral squamous cell carcinoma) reduced cell motility in in vitro assays and metastatic potential in xenograft models, without a significant effect on primary tumor size. The mechanism of Nm23-H1 suppression of metastasis, however, is incompletely understood. Nm23-H1 has been reported to bind proteins, including those in small G-protein complexes, transcriptional complexes, the Map kinase, the TGF-β signaling pathways and the cytoskeleton. Evidence supporting these associations is presented together with evidence of resultant biochemical and phenotypic consequences of association. Cumulatively, the data suggest that part of the anti-metastatic function of Nm23-H1 lies in pathways that it interrupts via binding and inactivation of proteins.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
30
|
Boissan M, Lacombe ML. Learning about the functions of NME/NM23: lessons from knockout mice to silencing strategies. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:421-31. [PMID: 21562815 DOI: 10.1007/s00210-011-0649-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
The human NME gene family (also known as NM23) comprises ten genes that are involved in diverse physiological and pathological processes including proliferation, differentiation, development, ciliary functions, and metastasis. For the moment, only the NME1, NME2, and NME7 genes have been inactivated in transgenic knockout mice, as well as a double NME1-NME2 gene knockout. Mice lacking NME1 or NME2 grow to adulthood without health problems, although NME1 (-/-) mice have modest growth retardation. Double knockout NME1 (-/-)-NME2 (-/-) mice, by contrast, are highly hypotrophic and die at birth from profound anemia due to impaired erythroblast development. Evidence for a metastasis suppressor function of NME1 in vivo comes from crossing NME1 (-/-) mice with mice prone to develop hepatocellular carcinoma; the double transgenic mice present a higher incidence of lung metastases. Silencing of NME1 by siRNA interference has confirmed this function by conferring a "metastatic phenotype" on non-invasive human epithelial cancer cell lines. This function is specific to NME1 and is not observed when the NME2 is silenced. The data indicate that NME1 loss is causally involved at the early stages of the metastatic cascade. NME2 (-/-) mice and NME2 silencing experiments reveal a specific role of NME2 in activation of heterotrimeric G proteins and of KCa3.1 channel in T cells, pointing to a role of NME2 as a histidine phosphotransferase. Regarding NME7, consistent with its expression in axonemal structures, NME7 (-/-) mice present lesions similar to primary ciliary dyskinesia. This review summarizes the recent data obtained by knockout and silencing of NME/NM23 genes that provide mechanistic insights into their respective roles in physiology and pathology.
Collapse
|
31
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
33
|
Ikeda T. NDP kinase 7 is a conserved microtubule-binding protein preferentially expressed in ciliated cells. Cell Struct Funct 2010; 35:23-30. [PMID: 20215702 DOI: 10.1247/csf.09016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleoside diphosphate (NDP) kinase is an enzyme that synthesizes the nucleoside triphosphates. In mammals, nine sequences (NDK1-NDK9) have been found with domain(s) homologous to the catalytic domain of NDP kinase, and some of them have been shown to associate with sperm flagella. The present study examines the localization of NDK7, for which little information has been available. Database analysis showed that the NDK7 gene is present in organisms with cilia and flagella. Western blotting analyses of various mouse tissues consistently indicated that NDK7 is preferentially expressed in tissues with motile cilia as well as in sperm. Immunofluorescence microscopy revealed that this protein is localized along the entire length of the TritonX-100-insoluble fraction of sperm flagella, possibly in the axonemes. Unexpectedly, however, NDK7 in tracheal epithelia was found in the cell body but not in cilia. Finally, in vitro co-sedimentation assays using recombinant proteins showed that both mouse and Chlamydomonas NDK7 directly bind to microtubules.
Collapse
Affiliation(s)
- Takashi Ikeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
34
|
Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 2009; 11:2741-58. [PMID: 19583492 PMCID: PMC2821134 DOI: 10.1089/ars.2009.2683] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) are the key mediators of pathogenesis in cardiovascular diseases. Members of the thioredoxin superfamily take an active part in scavenging reactive oxygen species, thus playing an essential role in maintaining the intracellular redox status. The alteration in the expression levels of thioredoxin family members and related molecules constitute effective biomarkers in various diseases, including cardiovascular complications that involve oxidative stress. Thioredoxin, glutaredoxin, peroxiredoxin, and glutathione peroxidase, along with their isoforms, are involved in interaction with the members of metabolic and signaling pathways, thus making them attractive targets for clinical intervention. Studies with cells and transgenic animals have supported this notion and raised the hope for possible gene therapy as modern genetic medicine. Of all the molecules, thioredoxins, glutaredoxins, and peroxiredoxins are emphasized, because a growing body of evidence reveals their essential and regulatory role in several steps of redox regulation. In this review, we discuss some pertinent observations regarding their distribution, structure, functions, and interactions with the several survival- and death-signaling pathways, especially in the myocardium.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Cardiovascular Research Center, Department of Surgery, School of Medicine, University of Connecticut Health Center , Farmington, CT 06030-1110, USA.
| | | | | | | | | |
Collapse
|
35
|
Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol 2009; 9:256. [PMID: 19852809 PMCID: PMC2777172 DOI: 10.1186/1471-2148-9-256] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 10/23/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates. RESULTS In the present study, we present the evolutionary history of the Nme family in vertebrates and characterize the gene family repertoire for the first time in several non-mammalian species. Our observations show that vertebrate Nme genes can be separated in two evolutionary distinct groups. Nme1, Nme2, Nme3, and Nme4 belong to Group I while vertebrate Nme5, Nme6, Nme7, Nme8, and Nme9 belong to Group II. The position of Nme10 is in contrast more debatable due to its very specific evolutionary history. The present study clearly indicates that Nme5, Nme6, Nme7, and Nme8 originate from duplication events that occurred before the chordate radiation. In contrast, Nme genes of the Group I have a very different evolutionary history as our results suggest that they all arise from a common gene present in the chordate ancestor. In addition, expression patterns of all zebrafish nme transcripts were studied in a broad range of tissues by quantitative PCR and discussed in the light of the function of their mammalian counterparts. CONCLUSION This work offers an evolutionary framework that will pave the way for future studies on vertebrate Nme proteins and provides a unified vertebrate Nme nomenclature that is consistent with the nomenclature in use in mammals. Based on protein structure and expression data, we also provide new insight into molecular functions of Nme proteins among vertebrates and raise intriguing questions on the roles of Nme proteins in gonads.
Collapse
Affiliation(s)
- Thomas Desvignes
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France
- IFREMER, LALR, F-34250 Palavas Les Flots, France
| | - Pierre Pontarotti
- UMR 6632/IFR48 Université de Aix Marseille/CNRS. Equipe Evolution biologique et Modélisation, case 19, 3 place Victor Hugo, 13331 Marseille Cedex 03, France
| | | | - Julien Bobe
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France
| |
Collapse
|
36
|
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
|
37
|
Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML. The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 2009; 329:51-62. [PMID: 19387795 DOI: 10.1007/s11010-009-0120-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM UMRS_938, UMPC Université Paris 06, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Kalinina EV, Chernov NN, Saprin AN. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2009; 73:1493-510. [DOI: 10.1134/s0006297908130099] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Hudemann C, Lönn ME, Godoy JR, Zahedi Avval F, Capani F, Holmgren A, Lillig CH. Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms. Antioxid Redox Signal 2009; 11:1-14. [PMID: 18707224 DOI: 10.1089/ars.2008.2068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase involved in the maintenance of mitochondrial redox homeostasis. Grx2 was first characterized as mitochondrial protein, but alternative mRNA variants lacking the transit peptide-encoding first exon were demonstrated for human and proposed for mouse. We systematically screened for alternative transcript variants of mouse Grx2. We identified a total of six exons, three constitutive (II, III, and IV), two alternative first exons (exons Ia and Ic), and one single-cassette exon (exon IIIb) located between exons III and IV. Exons Ic and IIIb are not present in the human genome; mice lack human exon Ib. The six exons give rise to five transcript variants that encode three protein isoforms: mitochondrial Grx2a, a cytosolic isoform that is homologous to the cytosolic/nuclear human Grx2c and present in specific cells of many tissues and the testis-specific isoform Grx2d that is unique to mice. Mouse Grx2c can form an iron/sulfur cluster-bridged dimer, is enzymatically active as a monomer, and can donate electrons to ribonucleotide reductase. Testicular cells lack mitochondrial Grx2a but contain cytosolic Grx2. Prominent immunostaining was detected in spermatogonia and spermatids. These results provide evidence for additional functions of Grx2 in the cytosol, in cell proliferation, and in cellular differentiation.
Collapse
Affiliation(s)
- Christoph Hudemann
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Mukherjee A, Martin SG. The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol 2008; 81 Spec No 1:S57-68. [PMID: 18819999 DOI: 10.1259/bjr/34180435] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Thioredoxin is a redox-sensitive molecule that has pleiotropic cellular effects, such as the control of proliferation, redox states and apoptosis, and is often upregulated in malignancy. The system controls the activation of a number of transcription factors through sulphydryl transfer and, through its activity on hypoxia inducible factor 1alpha, it is able to regulate vascular endothelial growth factor levels and hence angiogenesis. The thioredoxin protein has been shown to be upregulated in hypoxic regions of certain tumours, suggesting that inhibitors could potentially exhibit enhanced hypoxic toxicity and/or indirect anti-angiogenic effects. Evidence of this is becoming apparent in the literature. The current report reviews the thioredoxin system as an anticancer drug target and focuses upon two recent compounds, PMX464 and PX12, which reportedly inhibit this important pathway.
Collapse
Affiliation(s)
- A Mukherjee
- Department of Clinical Oncology, Nottingham University Hospitals, City Hospital Campus, Hucknall Road, Nottingham NG5 1PB, UK
| | | |
Collapse
|
42
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|
43
|
Yao Y, Wu WY, Guan SH, Jiang BH, Yang M, Chen XH, Bi KS, Liu X, Guo DA. Proteomic analysis of differential protein expression in rat platelets treated with notoginsengnosides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:800-807. [PMID: 18706795 DOI: 10.1016/j.phymed.2008.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/13/2008] [Accepted: 06/27/2008] [Indexed: 05/26/2023]
Abstract
Sanqi, the root of Panax notoginseng, is a popularly used traditional Chinese medicine with cardiovascular effects. Notoginsengnosides (NG) isolated from Sanqi could inhibit ADP-induced platelet aggregation of rat washed platelets. To identify the possible target proteins of NG in platelets, two-dimensional gel electrophoresis (2-DE)-based comparative proteomics was performed and proteins altered in expressional level after NG treatment were identified by MALDI-TOF MS/MS. Treatment of 200 microg/ml NG caused regulation of the levels of 12 proteins, which play important roles in platelet activation, oxidative stress and cytoskeleton. In the NG-treated platelets, there were increase in the levels of growth factor receptor-bound protein 2 (Grb2), thrombospondin 1, tubulin alpha 6 and decrease in the levels of thioredoxin, Cu-Zn superoxide dismutase, DJ-1 protein, peroxiredoxin 3, thioredoxin-like protein 2, ribonuclease inhibitor, potassium channel subfamily V member 2, myosin regulatory light chain 9 and laminin receptor 1. The change in the levels of these proteins caused by NG treatment might contribute to the inhibitive effect of NG on platelet aggregation. Furthermore, analysis of the reactive oxygen species (ROS) level indicated that NG could decrease the ROS level in platelets. The regulation of ROS level might play important role in the effect of NG on platelets.
Collapse
Affiliation(s)
- Yan Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tokarska-Schlattner M, Boissan M, Munier A, Borot C, Mailleau C, Speer O, Schlattner U, Lacombe ML. The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration. J Biol Chem 2008. [PMID: 18635542 DOI: 10.74/jbc.m803132200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Nucleoside diphosphate kinase (NDPK/Nm23), responsible for intracellular di- and triphosphonucleoside homeostasis, plays multiple roles in cellular energetics, signaling, proliferation, differentiation and tumor invasion. The only human NDPK with a mitochondrial targeting sequence is NDPK-D, the NME4 gene product, which is a peripheral protein of mitochondrial membranes. Subfractionation of rat liver and HEK 293 cell mitochondria revealed that NDPK-D is essentially bound to the inner membrane. Surface plasmon resonance analysis of the interaction using recombinant NDPK-D and model liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin. Mutation of the central arginine (Arg-90) in a surface-exposed basic RRK motif unique to NDPK-D strongly reduced interaction with anionic phospholipids. Due to its symmetrical hexameric structure, NDPK-D was able to cross-link anionic phospholipid-containing liposomes, suggesting that NDPK-D could promote intermembrane contacts. Latency assays with isolated mitochondria and antibody binding to mitoplasts indicated a dual orientation for NDPK-D. In HeLa cells, stable expression of wild type but not of the R90D mutant led to membrane-bound enzyme in vivo. Respiration was significantly stimulated by the NDPK substrate TDP in mitochondria containing wild-type NDPK-D, but not in those expressing the R90D mutant, which is catalytically equally active. This indicates local ADP regeneration in the mitochondrial intermembrane space and a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on its membrane-bound state.
Collapse
|
45
|
Lu Y, Wang X, Liu Z, Jin B, Chu D, Zhai H, Zhang F, Li K, Ren G, Miranda-Vizuete A, Guo X, Fan D. Identification and distribution of thioredoxin-like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer. Proteomics 2008; 8:2220-9. [PMID: 18528843 DOI: 10.1002/pmic.200700770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MC3 is a colorectal cancer (CRC)-specific mAb previously prepared in our laboratory that can detect CRC with high sensitivity and specificity. However, the target antigen for MC3 had not been identified due to technological limitations. In the present study, immunocytochemistry and immunohistochemistry revealed the expression patterns of MC3 antigen (MC3-Ag) in colon cancer cell lines and CRC tissues. Western blotting analysis showed that the MC3 antibody reproducibly recognized two approximately 30 kDa proteins in the total cell lysates of human colon carcinoma cell lines SW480 and HT-29. Using a proteomic approach, we identified two MC3 immunoreactive spots as two isoforms of thioredoxin-like 2 (Txl-2) protein. Further paired immunostaining showed that Txl-2 had the same expression profile as probed by the MC3 antibody. Western blotting also showed that both antibodies could detect the same two bands, further verifying that Txl-2 is the antigen of MC3 antibody. Additionally, tissue arrays revealed the expression patterns of Txl-2 in various normal and cancer tissues. Further analysis showed that Txl-2 mRNA was elevated in 18 cases of CRC tissues compared to paracancerous tissues and adjacent normal tissues.
Collapse
Affiliation(s)
- Yuanyuan Lu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee EJ, In KH, Kim JH, Lee SY, Shin C, Shim JJ, Kang KH, Yoo SH, Kim CH, Kim HK, Lee SH, Uhm CS. Proteomic analysis in lung tissue of smokers and COPD patients. Chest 2008; 135:344-352. [PMID: 18753468 DOI: 10.1378/chest.08-1583] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
RATIONALE Although cigarette smoking is the most important risk factor for COPD, COPD develops in only a minority of smokers, suggesting a significant genetic role. To solve the underlying pathophysiologic mechanism, it is critical to understand genes and their final product, ie, proteins. We investigated the exclusive proteins from the lung tissues obtained from COPD patients using proteomics. METHODS Nontumorous lung tissue specimens were obtained from patients who underwent surgery for lung cancer. We included 22 subjects: nonsmokers (n = 8), smokers without COPD (healthy smokers, n = 7), and smokers with COPD (n = 7). Proteins were separated from their spots with two-dimensional polyacrylamide gel electrophoresis and examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). To validate the proteins from the above procedures, Western blotting and immunohistochemistry were conducted. RESULTS Twelve protein spots from COPD group significantly increased or decreased compared with the other two groups were chosen for MALDI-TOF-MS analysis. Eight proteins were up-regulated in the COPD group as compared with the nonsmokers. Meanwhile, five proteins from the COPD group were up-regulated and five were down-regulated when compared with healthy smokers. Of these, matrix metalloproteinase (MMP)-13 and thioredoxin-like 2 were significantly increased in the COPD patients by Western blot and immunohistochemistry. MMP-13 was mainly expressed in the alveolar macrophages and type II pneumocytes; however, thioredoxin-like 2 was primarily seen in the bronchial epithelium. CONCLUSIONS MMP-13 and thioredoxin-like 2 in lungs increased in patients with COPD. MMP-13 was mainly expressed in the alveolar macrophages and type II pneumocytes. In contrast, thioredoxin-like 2 was primarily seen in the bronchial epithelium.
Collapse
Affiliation(s)
- Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul.
| | - Je Hyeong Kim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Ansan
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Chol Shin
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Ansan
| | - Jae Jeong Shim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Kyung Ho Kang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Se Hwa Yoo
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Chul Hwan Kim
- Department of Pathology, Korea University College of Medicine, Seoul
| | - Han-Kyeom Kim
- Department of Pathology, Korea University College of Medicine, Seoul
| | - Sang Hoon Lee
- Department of Anatomy, Korea University College of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chang Sub Uhm
- Department of Anatomy, Korea University College of Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Wang XW, Tan BZ, Sun M, Ho B, Ding JL. Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-kappaB activity. Free Radic Biol Med 2008; 45:336-44. [PMID: 18474255 DOI: 10.1016/j.freeradbiomed.2008.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 12/22/2022]
Abstract
Apoptosis is the common pathway to photoreceptor cell death in many eye diseases including age-related macular degeneration which affects more than 8 million individuals in the United States alone. RdCVF, a truncated mouse thioredoxin is specifically expressed by rod photoreceptor cells and prevents the apoptosis of cone cells. However the protective mechanism of RdCVF and the implications of its human homologue, thioredoxin-like 6 (TXNL6), on the apoptosis of retinal cells remain unknown. In this study, we examined the function of TXNL6 and investigated its mechanism of protection using a cone photoreceptor cell line, 661W. We found that the photooxidative stress-induced degradation of NF-kappaB proteins is rescued by overexpression of TXNL6, which enabled the NF-kappaB transactivation activity. Furthermore, the overexpression of TXNL6 rescued the photooxidative stress-induced apoptosis of 661W cells. Interestingly, this protective effect was significantly blocked by NF-kappaB specific inhibitors demonstrating that TXNL6 exerts its protective effect against apoptosis via NF-kappaB. Taken together, our study shows that the TXNL6 probably protects retinal cells from photooxidative damage-induced apoptosis via upregulation of NF-kappaB activity. The identification of TXNL6 and the demonstration of its protective mechanism offer new insights into treatment possibilities for photoreceptor cell degradation.
Collapse
Affiliation(s)
- Xiao Wei Wang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | | | | | | | | |
Collapse
|
48
|
Tokarska-Schlattner M, Boissan M, Munier A, Borot C, Mailleau C, Speer O, Schlattner U, Lacombe ML. The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration. J Biol Chem 2008; 283:26198-207. [PMID: 18635542 DOI: 10.1074/jbc.m803132200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside diphosphate kinase (NDPK/Nm23), responsible for intracellular di- and triphosphonucleoside homeostasis, plays multiple roles in cellular energetics, signaling, proliferation, differentiation and tumor invasion. The only human NDPK with a mitochondrial targeting sequence is NDPK-D, the NME4 gene product, which is a peripheral protein of mitochondrial membranes. Subfractionation of rat liver and HEK 293 cell mitochondria revealed that NDPK-D is essentially bound to the inner membrane. Surface plasmon resonance analysis of the interaction using recombinant NDPK-D and model liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin. Mutation of the central arginine (Arg-90) in a surface-exposed basic RRK motif unique to NDPK-D strongly reduced interaction with anionic phospholipids. Due to its symmetrical hexameric structure, NDPK-D was able to cross-link anionic phospholipid-containing liposomes, suggesting that NDPK-D could promote intermembrane contacts. Latency assays with isolated mitochondria and antibody binding to mitoplasts indicated a dual orientation for NDPK-D. In HeLa cells, stable expression of wild type but not of the R90D mutant led to membrane-bound enzyme in vivo. Respiration was significantly stimulated by the NDPK substrate TDP in mitochondria containing wild-type NDPK-D, but not in those expressing the R90D mutant, which is catalytically equally active. This indicates local ADP regeneration in the mitochondrial intermembrane space and a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on its membrane-bound state.
Collapse
|
49
|
Dammeyer P, Damdimopoulos AE, Nordman T, Jiménez A, Miranda-Vizuete A, Arnér ESJ. Induction of cell membrane protrusions by the N-terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1. J Biol Chem 2007; 283:2814-21. [PMID: 18042542 DOI: 10.1074/jbc.m708939200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human thioredoxin system has a wide range of functions in cells including regulation of cell proliferation and differentiation, immune system modulation, antioxidant defense, redox control of transcription factor activity, and promotion of cancer development. A key component of this enzymatic system is the selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene. Transcription of TXNRD1 involves alternative splicing, leading to a number of transcripts also encoding isoforms of TrxR1 that differ from each other at their N-terminal domains. Here we have studied the TXNRD1_v3 isoform containing an atypical N-terminal glutaredoxin (Grx) domain. Expression of the transcript of this isoform was found predominantly in testis but was also detected in ovary, spleen, heart, liver, kidney, and pancreas. By immunohistochemical analysis in human testis with antibodies specific for the Grx domain of TXNRD1_v3, the protein was found to be predominantly expressed in the Leydig cells. Expression of the TXNRD1_v3 transcript was also found in several cancer cell lines (HCC1937, H23, A549, U1810, or H157), and in HeLa cells, it was induced by estradiol or testosterone treatments. Surprisingly, green fluorescent protein fusions with the complete TXNRD1_v3 protein or with only its Grx domain localized to distinct cellular sites in proximity to actin, and furthermore, had a potent capacity to rapidly induce cell membrane protrusions. Analyses of these structures suggested that the Grx domain of TXNRD1_v3 localizes first in the emerging protrusion and is then followed into the protrusions by actin and subsequently by tubulin. The results presented thus reveal that TXNRD1_v3 has a unique and distinct expression pattern in human cells and suggest that the protein can guide actin polymerization in relation to cell membrane restructuring.
Collapse
Affiliation(s)
- Pascal Dammeyer
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Jiménez A, Mateos L, Pedrajas JR, Miranda-Vizuete A, Revuelta JL. The txl1+ gene from Schizosaccharomyces pombe encodes a new thioredoxin-like 1 protein that participates in the antioxidant defence against tert-butyl hydroperoxide. Yeast 2007; 24:481-90. [PMID: 17476701 DOI: 10.1002/yea.1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Yeasts are equipped with several putative single-domain thioredoxins located in different subcellular compartments. However, additional proteins containing thioredoxin domains are also encoded by the yeast genomes as described for mammals and other eukaryotic organisms. We report here the characterization of the fission yeast orthologue thioredoxin-like 1 (txl1(+)), which has been previously identified in mammals. Similarly to the human protein, the fission yeast Txl1 is a two-domain protein comprising an N-terminal thioredoxin-like domain and a C-terminal domain of unknown function. Many other yeasts and fungi species contain homologues of txl1(+); however, there is no evidence of txl1(+) orthologues in either Saccharomyces cerevisiae or plants. Txl1 is found in both the nucleus and the cytoplasm of Schizosaccharomyces pombe cells and exhibits a strong reducing activity coupled to thioredoxin reductase. In humans, TXL1 expression is induced by glucose deprivation and overexpression of TXL1 confers resistance against this stress. In contrast, a Sz. pombe Deltatxl1 mutant was not affected in the response against glucose starvation but the Deltatxl1 mutant strain showed a clear hypersensitivity to alkyl hydroperoxide. The mRNA levels of txl1(+) in a h20 strain did not change in response to any oxidative insult (hydrogen peroxide or alkyl hydroperoxide) and the overexpression of an integrated copy of the wild-type txl1(+) gene did not confer a significant increased resistance against alkyl hydroperoxide. Overall, these results indicate that the Txl1 role in the cellular detoxification of alkyl hydroperoxide is exerted through a constitutive transcription of txl1(+).
Collapse
Affiliation(s)
- Alberto Jiménez
- Grupo de Ingeniería Metabólica, Instituto de Microbiología Bioquímica y Departamento de Microbiología y Genética, CSIC, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|