1
|
Kiesworo K, Agius T, Macarthur MR, Lambelet M, Lyon A, Zhang J, Turiel G, Fan Z, d’Almeida S, Uygun K, Yeh H, Déglise S, de Bock K, Mitchell SJ, Ocampo A, Allagnat F, Longchamp A. Nicotinamide mononucleotide restores impaired metabolism, endothelial cell proliferation and angiogenesis in old sedentary male mice. iScience 2025; 28:111656. [PMID: 39868046 PMCID: PMC11763620 DOI: 10.1016/j.isci.2024.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity. Aged EC harvested from the mouse skeletal muscle displayed a pro-angiogenic gene expression phenotype, along with considerable changes in metabolic genes. Metabolomics analysis and 13C glucose tracing revealed impaired ATP production and blockade in glycolysis and TCA cycle in late passage HUVECs, which occurred at nicotinamide adenine dinucleotide (NAD⁺)-dependent steps, along with NAD+ depletion. Supplementation with nicotinamide mononucleotide (NMN), a precursor of NAD⁺, enhances late-passage EC proliferation and sprouting angiogenesis from aged mice aortas. Taken together, our study illustrates the importance of NAD+-dependent metabolism in the maintenance of EC proliferation capacity with age, and the therapeutic potential of NAD precursors.
Collapse
Affiliation(s)
- Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Martine Lambelet
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Transplantation Centre and Transplantation Immunopathology Laboratory, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Guillermo Turiel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Zheng Fan
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah J. Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Lausanne University (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 2024:S1043-2760(24)00296-0. [PMID: 39672762 DOI: 10.1016/j.tem.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Indian Institute of Technology Dharwad, Karnataka, India
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Nakamura M, Magara T, Yoshimitsu M, Kano S, Kato H, Yokota K, Okuda K, Morita A. Blockade of glucose-6-phosphate dehydrogenase induces immunogenic cell death and accelerates immunotherapy. J Immunother Cancer 2024; 12:e008441. [PMID: 39089738 PMCID: PMC11293396 DOI: 10.1136/jitc-2023-008441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Enhanced glucose metabolism has been reported in many cancers. Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme involved in the pentose phosphate pathway, which maintains NADPH levels and protects cells from oxidative damage. We recently found that low G6PD expression correlates with active tumor immunity. However, the mechanism involving G6PD and tumor immunity remained unclear. METHODS We conducted in vitro studies using G6PD-knocked down malignant melanoma cells, pathway analysis using the GEO dataset, in vivo studies in combination with immune checkpoint inhibitors (ICIs) using a mouse melanoma model, and prognostic analysis in 42 melanoma patients and 30 lung cancer patients who were treated with ICIs. RESULTS Inhibition of G6PD, both chemically and genetically, has been shown to decrease the production of NADPH and reduce their oxidative stress tolerance. This leads to cell death, which is accompanied by the release of high mobility group box 1 and the translocation of calreticulin to the plasma membrane. These findings suggested that inhibiting G6PD can induce immunogenic cell death. In experiments with C57BL/6 mice transplanted with G6PD-knockdown B16 melanoma cells and treated with anti-PD-L1 antibody, a significant reduction in tumor size was observed. Interestingly, inhibiting G6PD in only a part of the lesions increased the sensitivity of other lesions to ICI. Additionally, out of 42 melanoma patients and 30 lung cancer patients treated with ICIs, those with low G6PD expression had a better prognosis than those with high G6PD expression (p=0.0473; melanoma, p=0.0287; lung cancer). CONCLUSION G6PD inhibition is a potent therapeutic strategy that triggers immunogenic cell death in tumors, significantly augmenting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Keisuke Yokota
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
6
|
Shah SS, Stone EF, Francis RO, Karafin MS. The global role of G6PD in infection and immunity. Front Immunol 2024; 15:1393213. [PMID: 38938571 PMCID: PMC11208698 DOI: 10.3389/fimmu.2024.1393213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.
Collapse
Affiliation(s)
- Shivang S. Shah
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Chen X, Xu Y, Ju Y, Gu P. Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:5926. [PMID: 38892113 PMCID: PMC11172501 DOI: 10.3390/ijms25115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Wet age-related macular degeneration (wet AMD) is a primary contributor to visual impairment and severe vision loss globally, but the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells (ECs) is mainly dictated by angiogenic growth factors. Even though treatments targeting vascular endothelial growth factor (VEGF), like ranibizumab, are widely administered, more than half of patients still exhibit inadequate or null responses, suggesting the involvement of other pathogenic mechanisms. With advances in research in recent years, it has become well recognized that EC metabolic regulation plays an active rather than merely passive responsive role in angiogenesis. Disturbances of these metabolic pathways may lead to excessive neovascularization in angiogenic diseases such as wet AMD, therefore targeted modulation of EC metabolism represents a promising therapeutic strategy for wet AMD. In this review, we comprehensively discuss the potential applications of EC metabolic regulation in wet AMD treatment from multiple perspectives, including the involvement of ECs in wet AMD pathogenesis, the major endothelial metabolic pathways, and novel therapeutic approaches targeting metabolism for wet AMD.
Collapse
Affiliation(s)
- Xirui Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
8
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2024:S2090-1232(24)00178-4. [PMID: 38704087 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Conning-Rowland M, Cubbon RM. Molecular mechanisms of diabetic heart disease: Insights from transcriptomic technologies. Diab Vasc Dis Res 2023; 20:14791641231205428. [PMID: 38116627 PMCID: PMC10734343 DOI: 10.1177/14791641231205428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Over half a billion adults across the world have diabetes mellitus (DM). This has a wide-ranging impact on their health, including more than doubling their risk of major cardiovascular events, in comparison to age-sex matched individuals without DM. Notably, the risk of heart failure is particularly increased, even when coronary artery disease and hypertension are not present. Macro- and micro-vascular complications related to endothelial cell (EC) dysfunction are a systemic feature of DM and can affect the heart. However, it remains unclear to what extent these and other factors underpin myocardial dysfunction and heart failure linked with DM. Use of unbiased 'omics approaches to profile the molecular environment of the heart offers an opportunity to identify novel drivers of cardiac dysfunction in DM. Multiple transcriptomics studies have characterised the whole myocardium or isolated cardiac ECs. We present a systematic summary of relevant studies, which identifies common themes including alterations in both myocardial fatty acid metabolism and inflammation. These findings prompt further research focussed on these processes to validate potentially causal factors for prioritisation into therapeutic development pipelines.
Collapse
Affiliation(s)
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Aydemir D, Ulusu NN. The impact of the endocrine-disrupting chemicals on the glucose-6-phosphate dehydrogenase enzyme activity. Front Pharmacol 2023; 14:1133741. [PMID: 36992836 PMCID: PMC10040789 DOI: 10.3389/fphar.2023.1133741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
11
|
DeVallance ER, Dustin CM, de Jesus DS, Ghouleh IA, Sembrat JC, Cifuentes-Pagano E, Pagano PJ. Specificity Protein 1-Mediated Promotion of CXCL12 Advances Endothelial Cell Metabolism and Proliferation in Pulmonary Hypertension. Antioxidants (Basel) 2022; 12:71. [PMID: 36670936 PMCID: PMC9854820 DOI: 10.3390/antiox12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.
Collapse
Affiliation(s)
- Evan R. DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Christopher M. Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Simoes de Jesus
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C. Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Monavarian M, Elhaw AT, Tang PW, Javed Z, Shonibare Z, Scalise CB, Arend R, Jolly MK, Sewell-Loftin MK, Hempel N, Mythreye K. Emerging perspectives on growth factor metabolic relationships in the ovarian cancer ascites environment. Semin Cancer Biol 2022; 86:709-719. [PMID: 35259492 PMCID: PMC9441472 DOI: 10.1016/j.semcancer.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
The ascites ecosystem in ovarian cancer is inhabited by complex cell types and is bathed in an environment rich in cytokines, chemokines, and growth factors that directly and indirectly impact metabolism of cancer cells and tumor associated cells. This milieu of malignant ascites, provides a 'rich' environment for the disease to thrive, contributing to every aspect of advanced ovarian cancer, a devastating gynecological cancer with a significant gap in targeted therapeutics. In this perspective we focus our discussions on the 'acellular' constituents of this liquid malignant tumor microenvironment, and how they influence metabolic pathways. Growth factors, chemokines and cytokines are known modulators of metabolism and have been shown to impact nutrient uptake and metabolic flexibility of tumors, yet few studies have explored how their enrichment in malignant ascites of ovarian cancer patients contributes to the metabolic requirements of ascites-resident cells. We focus here on TGF-βs, VEGF and ILs, which are frequently elevated in ovarian cancer ascites and have all been described to have direct or indirect effects on metabolism, often through gene regulation of metabolic enzymes. We summarize what is known, describe gaps in knowledge, and provide examples from other tumor types to infer potential unexplored roles and mechanisms for ovarian cancer. The distribution and variation in acellular ascites components between patients poses both a challenge and opportunity to further understand how the ascites may contribute to disease heterogeneity. The review also highlights opportunities for studies on ascites-derived factors in regulating the ascites metabolic environment that could act as a unique signature in aiding clinical decisions in the future.
Collapse
Affiliation(s)
- Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Amal Taher Elhaw
- Division of Hematology Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh PA 15213, USA
| | - Priscilla W Tang
- Division of Hematology Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh PA 15213, USA
| | - Zaineb Javed
- Division of Hematology Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh PA 15213, USA
| | - Zainab Shonibare
- Division of Molecular Cellular Pathology, Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Carly Bess Scalise
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Rebecca Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Mohit Kumar Jolly
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, O'Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Division of Hematology Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh PA 15213, USA.
| | - Karthikeyan Mythreye
- Division of Molecular Cellular Pathology, Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
13
|
Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H, Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 2022; 7:303. [PMID: 36045132 PMCID: PMC9433407 DOI: 10.1038/s41392-022-01097-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Zheng-hong Qin
- grid.263761.70000 0001 0198 0694Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123 China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Construction of a competing endogenous RNA network to analyse glucose-6-phosphate dehydrogenase dysregulation in hepatocellular carcinoma. Biosci Rep 2022; 42:231432. [PMID: 35712981 PMCID: PMC9245079 DOI: 10.1042/bsr20220674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumour with high rates of morbidity and mortality worldwide. Therefore, it is of great significance to find new molecular markers for HCC diagnosis and treatment. G6PD is known to be dysregulated in a variety of tumours. In addition, the ceRNA network plays a crucial role in the occurrence and development of HCC. However, the mechanism by which the ceRNA network regulates G6PD in HCC remains unclear. We used TCGA-LIHC data to analyse the possibility of using G6PD as an independent prognostic marker. Univariate Cox proportional hazards regression, multivariate Cox proportional hazards regression, and receiver operating characteristic curve analysis were used to analyse the influence of G6PD overexpression on the prognosis of HCC patients. We also analysed the biological function of G6PD, its effect on the immune microenvironment, and drug sensitivity. Finally, we constructed a ceRNA network of lncRNAs/miR-122-5p/G6PD to explore the regulatory mechanism of G6PD. G6PD was highly expressed in HCC, was related to pathological stage and poor prognosis, and could be used as an independent prognostic indicator of HCC. The expression of G6PD was closely related to the immune microenvironment of HCC. In addition, the expression of G6PD in HCC could be regulated by the ceRNA network. Therefore, G6PD can be used as an immunotherapy target to improve the survival and prognosis of HCC patients, and the ceRNA regulatory network of G6PD has potential diagnostic and therapeutic value for HCC.
Collapse
|
16
|
Yang C, Zhang X, Ge X, He C, Liu S, Yang S, Huang C. N-Acetylcysteine protects against cobalt chloride-induced endothelial dysfunction by enhancing glucose-6-phosphate dehydrogenase activity. FEBS Open Bio 2022; 12:1475-1488. [PMID: 35666067 PMCID: PMC9340863 DOI: 10.1002/2211-5463.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022] Open
Abstract
Hypoxia‐induced endothelial dysfunction is known to be involved in the pathogenesis of several vascular diseases. However, it remains unclear whether the pentose phosphate pathway (PPP) is involved in regulating the response of endothelial cells to hypoxia. Here, we established an in vitro model by treating EA.hy926 (a hybrid human umbilical vein cell line) with cobalt chloride (CoCl2; a chemical mimic that stabilizes HIF‐1α, thereby leading to the development of hypoxia), and used this to investigate the involvement of PPP by examining expression of its key enzyme, glucose‐6‐phosphate dehydrogenase (G6PD). We report that CoCl2 induces the accumulation of HIF‐1α, leading to endothelial cell dysfunction characterized by reduced cell viability, proliferation, tube formation, and activation of cytokine production, accompanied with a significant decrease in G6PD expression and activity. The addition of 6‐aminonicotinamide (6‐AN) to inhibit PPP directly causes endothelial dysfunction. Additionally, N‐Acetylcysteine (NAC), a precursor of glutathione, was further evaluated for its protective effects; NAC displayed a protective effect against CoCl2‐induced cell damage by enhancing G6PD activity, and this was abrogated by 6‐AN. The effects of CoCl2 and the involvement of G6PD in endothelial dysfunction have been confirmed in primary human aortic endothelial cells. In summary, G6PD was identified as a novel target of CoCl2‐induced damage, which highlighted the involvement of PPP in regulating the response of endothelial cell CoCl2. Treatment with NAC may be a potential strategy to treat hypoxia or ischemia, which are widely observed in vascular diseases.
Collapse
Affiliation(s)
- Chen Yang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xilin Ge
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Chunmei He
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Suhuan Liu
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Research Center for Translational Medicine, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Shuyu Yang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.,Traditional Chinese Medicine research studio, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
17
|
Ma H, Li J. The ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH, apoptosis, inflammation, and angiogenesis. J Food Biochem 2022; 46:e14084. [PMID: 35060143 DOI: 10.1111/jfbc.14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetic retinopathy is a complication of diabetes, caused by high blood sugar levels damaging the retina. It is the result of damage to the small blood vessels and neurons of the retina. Ginger and its phytochemical compounds can improve oxidative damage and inflammation. However, the effects of this plant on ocular expression G6PDH and e/iNOS, eye cell apoptosis, and angiogenesis are not well known in this tissue. Therefore, the aim of this study was to evaluate the therapeutic potential of ginger extract on rats with type 2 diabetic retinopathy. Thirty-two Wistar rats were randomly divided into four controlled and treated groups. The serum level of metabolic factors such as lipid profiles, insulin and glucose, and the level of oxidative biomarkers along with the TNF-α level in eye tissue were measured. The expression of NF-κB, VEGF, BAX, Bcl-2, caspase-3, e/iNOS, and G6PDH in eye tissue was measured. Serum levels of lipid profiles, glucose, and insulin, oxidative and inflammatory markers were significantly increased in the diabetic group compared to control. While, treatment with ginger extract could significantly improve these factors in diabetic rats. Moreover, the ocular expression of e/iNOS, G6PDH, VEGF, NF-κB, and genes involved in apoptosis was changed in diabetic rats. However, treatment with ginger extract could ameliorate these changes in the diabetic-treated group. It can be concluded that ginger extract could improve diabetic retinopathy by inhibiting oxidative damage, inflammation, iNOS, VEGF, apoptosis, and improving eNOS and G6PDH. PRACTICAL APPLICATIONS: Microvascular complications of diabetes such as retinopathy can be one of the main causes of disability in people with diabetes. Chronic hyperglycemia, oxidative stress, inflammation, and apoptosis cause diabetic retinopathy through retinal damage. Ginger, on the other hand, is an available, inexpensive, and uncomplicated medicinal plant that contains more than 20 different phytochemicals, such as gingerol and shogaol, which have anti-inflammatory, antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties. The results of our study showed well that the ginger extract could improve diabetic retinopathy by inhibiting the expression of e/iNOS and G6PDH and oxidative damage, apoptosis, inflammation, and angiogenesis. Therefore, ginger and its compounds can be a good option to improve the complications of diabetes.
Collapse
Affiliation(s)
- Haiyan Ma
- Department of Ophthalmology, Shandong Feicheng People's Hospital, Taian, China
| | - Jinqi Li
- Department of Ophthalmology, Jinan Second People's Hospital, Jinan, China
| |
Collapse
|
18
|
Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol Metab 2022; 60:101468. [PMID: 35248787 PMCID: PMC8958550 DOI: 10.1016/j.molmet.2022.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Methods Results Conclusions Our work is the first to perform a comprehensive and quantitative analysis of intermediary metabolism in neurons in the setting of fALS causing gene products. Because the cardinal feature of ALS is death of motor neurons, these new studies are directly relevant to the pathogenesis of ALS. Our functional interrogations begin to unpack how metabolic re-wiring is induced by fALS genes and it will be very interesting, in the future, to gain insight in amino acid fueling of the TCA cycle. We suspect pleiotropic effects of amino acid fueling, and this may lead to very targeted therapeutic interventions.
Collapse
|
19
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021; 289:5440-5462. [PMID: 34496138 DOI: 10.1111/febs.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Zoccarato
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Rafael R Oexner
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| |
Collapse
|
21
|
Yu B, Zhu HD, Shi XL, Chen PP, Sun XM, Xia GY, Fang M, Zhong YX, Tang XL, Zhang T, Pan HT. iTRAQ-based quantitative proteomic analysis of thoracic aortas from adult rats born to preeclamptic dams. Clin Proteomics 2021; 18:22. [PMID: 34418970 PMCID: PMC8379584 DOI: 10.1186/s12014-021-09327-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Preeclampsia and gestational hypertension can cause vascular function impairment in offspring. In our previous work, we described the protein expression profiles of umbilical artery tissues from patients with preeclampsia. Methods To gain insights into the mechanisms of vascular dysfunction in adult rats born to preeclamptic dams, we analyzed thoracic aorta tissues by using iTRAQ isobaric tags and 2D nano LC-MS/MS. Results By using the iTRAQ method, we analyzed 1825 proteins, of which 106 showed significantly different expression in the thoracic aortic. Ingenuity pathway analysis (IPA) showed that the majority of differentially expressed proteins (DEPs) were associated with cardiovascular function. Further analysis indicated that glucose-6-phosphate dehydrogenase (G6PD), which is inhibited by miR-423-5p and activated by TP53, had the strongest effect on cardiovascular function. The expression of G6PD was upregulated in thoracic aorta tissues, as confirmed by Western blotting. The expression of two other vascular function-related proteins, cysteine- and glycine-rich protein 2 (CSRP2) and tubulin alpha-4 A (TUBA4A), was upregulated, as demonstrated by mass spectrometry (MS). Conclusions Although the results require further functional validation, these data provide novel findings related to vascular function impairment in the adult offspring of preeclamptic mothers. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09327-9.
Collapse
Affiliation(s)
- Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Hong-Dan Zhu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiao-Liang Shi
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Pan-Pan Chen
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiang-Mei Sun
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Gui-Yu Xia
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Min Fang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yong-Xing Zhong
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiao-Li Tang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China.,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| | - Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China. .,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
22
|
Porwal A, Kundu GC, Bhagwat G, Butti R. Polyherbal formulation Anoac‑H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula. Mol Med Rep 2021; 24:736. [PMID: 34414451 PMCID: PMC8404094 DOI: 10.3892/mmr.2021.12376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022] Open
Abstract
Hemorrhoids and fistula are considered the most common anorectal conditions in the general population. These conditions affect the quality of a patient's life by causing pain and bleeding during defecation or even in the resting state. Lower grades of hemorrhoids may be controlled by traditional measures. However, surgery is an effective treatment option in recurrent-lower and higher-grade hemorrhoids. Surgical procedures are associated with various complications, including pain and delayed wound healing. Recurrence of hemorrhoids is also a major concern in the post-operative period. An anal fistula is the connection between the anus and the skin and causes severe pain, swelling, as well as blood and pus discharge. Fistula has serious social and economic consequences. Hence, it is important to understand the pathophysiology and molecular pathology of hemorrhoids and fistula, to identify the molecular targets and to develop pharmacological-interventions. In a previous study by our group, the polyherbal formulation Anoac-H was developed for the treatment of different stages of hemorrhoids and fistula, and it was demonstrated that Anoac-H is an effective formulation for treating hemorrhoids. However, the molecular mode of action of Anoac-H on hemorrhoids and fistula had remained elusive. In the present study, it was determined that this formulation reduces the migration of mesenchymal (fibroblasts) and immune (RAW 264.7) cells without affecting their viability. It was also observed that Anoac-H suppresses the expression of regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and VEGF in fibroblasts and macrophages. Inflammation and elevated expression of RANTES and VEGF were observed in hemorrhoids and fistula. However, inflammation, as well as the expression of RANTES and VEGF, were significantly reduced in treated human hemorrhoid and fistula tissues as compared to untreated ones, confirming the in vitro results.
Collapse
Affiliation(s)
- Ashwin Porwal
- Healing Hands Clinic, Pune, Maharashtra 411001, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Gajanan Bhagwat
- Healing Hands & Herbs (R&D Center), Pune, Maharashtra 411002, India
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
23
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
24
|
Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochem Pharmacol 2021; 190:114597. [PMID: 33965393 DOI: 10.1016/j.bcp.2021.114597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is one of the major contributors to cardiovascular morbidity and mortality. Excess inflammation significantly contributes to cardiac remodeling and heart failure after MI. Accumulating evidence has shown the central role of cellular metabolism in regulating the differentiation and function of cells. Metabolic rewiring is particularly relevant for proinflammatory responses induced by ischemia. Hypoxia reduces mitochondrial oxidative phosphorylation (OXPHOS) and induces increased reliance on glycolysis. Moreover, activation of a proinflammatory transcriptional program is associated with preferential glucose metabolism in leukocytes. An improved understanding of the mechanisms that regulate metabolic adaptations holds the potential to identify new metabolic targets and strategies to reduce ischemic cardiac damage, attenuate excess local inflammation and ultimately prevent the development of heart failure. Among possible drug targets, glucose transporter 1 (GLUT1) gained considerable interest considering its pivotal role in regulating glucose availability in activated leukocytes and the availability of small molecules that selectively inhibit it. Therefore, we summarize current evidence on the role of GLUT1 in leukocytes (focusing on macrophages and T cells) and non-leukocytes, including cardiomyocytes, endothelial cells and fibroblasts regarding ischemic heart disease. Beyond myocardial infarction, we can foresee the role of GLUT1 blockers as a possible pharmacological approach to limit pathogenic inflammation in other conditions driven by excess sterile inflammation.
Collapse
|
25
|
The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529256. [PMID: 34007401 PMCID: PMC8110402 DOI: 10.1155/2021/5529256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disorders (CVD) are highly prevalent and the leading cause of death worldwide. Atherosclerosis is responsible for most cases of CVD. The plaque formation and subsequent thrombosis in atherosclerosis constitute an ongoing process that is influenced by numerous risk factors such as hypertension, diabetes, dyslipidemia, obesity, smoking, inflammation, and sedentary lifestyle. Among the various risk and protective factors, the role of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common inborn enzyme disorder across populations, is still debated. For decades, it has been considered a protective factor against the development of CVD. However, in the recent years, growing scientific evidence has suggested that this inherited condition may act as a CVD risk factor. The role of G6PD deficiency in the atherogenic process has been investigated using in vitro or ex vivo cellular models, animal models, and epidemiological studies in human cohorts of variable size and across different ethnic groups, with conflicting results. In this review, the impact of G6PD deficiency on CVD was critically reconsidered, taking into account the most recent acquisitions on molecular and biochemical mechanisms, namely, antioxidative mechanisms, glutathione recycling, and nitric oxide production, as well as their mutual interactions, which may be impaired by the enzyme defect in the context of the pentose phosphate pathway. Overall, current evidence supports the notion that G6PD downregulation may favor the onset and evolution of atheroma in subjects at risk of CVD. Given the relatively high frequency of this enzyme deficiency in several regions of the world, this finding might be of practical importance to tailor surveillance guidelines and facilitate risk stratification.
Collapse
|
26
|
miR-206-G6PD axis regulates lipogenesis and cell growth in hepatocellular carcinoma cell. Anticancer Drugs 2021; 32:508-516. [PMID: 33735119 DOI: 10.1097/cad.0000000000001069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
miR-206 plays an essential role in repressing the growth of multiple cancer cells. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. However, it is mostly unknown whether G6PD is associated with miR-206-mediated growth repression of hepatocellular carcinoma (HCC) cells. In this study, we found that the expression of G6PD was upregulated in HCC patients and cell lines, whereas the expression of miR-206 was negatively associated with the clinical staging criterion of primary liver cancer. Overexpression of G6PD increased lipid accumulation and promoted cell proliferation. Conversely, inhibition of G6PD expression decreased lipid accumulation and suppressed cell proliferation. Moreover, miR-206 could directly bind to G6PD mRNA 3´-UTR and downregulate G6PD level. Overexpression of G6PD significantly attenuated the miR-206 mimic-mediated suppression of lipid accumulation and cell proliferation. In summary, the results demonstrated that miR-206 could inhibit lipid accumulation and growth of HCC cells by targeting G6PD, suggesting that the miR-206-G6PD axis may be a promising target for treating HCC.
Collapse
|
27
|
Gong J, Feng Z, Peterson AL, Carr JF, Lu X, Zhao H, Ji X, Zhao YY, De Paepe ME, Dennery PA, Yao H. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight 2021; 6:137594. [PMID: 33497360 PMCID: PMC8021105 DOI: 10.1172/jci.insight.137594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
Dysmorphic pulmonary vascular growth and abnormal endothelial cell (EC) proliferation are paradoxically observed in premature infants with bronchopulmonary dysplasia (BPD), despite vascular pruning. The pentose phosphate pathway (PPP), a metabolic pathway parallel to glycolysis, generates NADPH as a reducing equivalent and ribose 5-phosphate for nucleotide synthesis. It is unknown whether hyperoxia, a known mediator of BPD in rodent models, alters glycolysis and the PPP in lung ECs. We hypothesized that hyperoxia increases glycolysis and the PPP, resulting in abnormal EC proliferation and dysmorphic angiogenesis in neonatal mice. To test this hypothesis, lung ECs and newborn mice were exposed to hyperoxia and allowed to recover in air. Hyperoxia increased glycolysis and the PPP. Increased PPP, but not glycolysis, caused hyperoxia-induced abnormal EC proliferation. Blocking the PPP reduced hyperoxia-induced glucose-derived deoxynucleotide synthesis in cultured ECs. In neonatal mice, hyperoxia-induced abnormal EC proliferation, dysmorphic angiogenesis, and alveolar simplification were augmented by nanoparticle-mediated endothelial overexpression of phosphogluconate dehydrogenase, the second enzyme in the PPP. These effects were attenuated by inhibitors of the PPP. Neonatal hyperoxia augments the PPP, causing abnormal lung EC proliferation, dysmorphic vascular development, and alveolar simplification. These observations provide mechanisms and potential metabolic targets to prevent BPD-associated vascular dysgenesis.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Haifeng Zhao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics (Critical Care Division), Pharmacology, and Medicine (Pulmonary and Critical Care Medicine), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, Rhode Island, USA
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
28
|
Yang HC, Stern A, Chiu DTY. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2020; 44:285-292. [PMID: 33097441 PMCID: PMC8358196 DOI: 10.1016/j.bj.2020.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic hubs play a major role in the initiation and development of cancer. Oncogenic signaling pathways drive metabolic reprogramming and alter redox homeostasis. G6PD has potential oncogenic activity and it plays a pivotal role in cell proliferation, survival and stress responses. Aberrant activation of G6PD via metabolic reprogramming alters NADPH levels, leading to an antioxidant or a pro-oxidant environment which can either enhance DNA oxidative damage and genomic instability or initiate oncogenic signaling. Nutrient deprivation can rewire metabolism, which leads to mutations that determine a cancer cell's fate. Deregulated G6PD status and oxidative stress form a vicious cycle, which paves the way for cancer progression. This review aims to update and focus the potential role of G6PD in metabolic reprogramming and redox signaling in cancer.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pediatric Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Ou Z, Chen Y, Li J, Ouyang F, Liu G, Tan S, Huang W, Gong X, Zhang Y, Liang Z, Deng W, Xing S, Zeng J. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology 2020; 95:e1471-e1478. [PMID: 32651291 DOI: 10.1212/wnl.0000000000010245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the risk of glucose-6-phosphate dehydrogenase (G6PD) on stroke prognosis, we compared outcomes between patients with stroke with and without G6PD deficiency. METHODS The study recruited 1,251 patients with acute ischemic stroke. Patients were individually categorized into G6PD-deficiency and non-G6PD-deficiency groups according to G6PD activity upon admission. The primary endpoint was poor outcome at 3 months defined by a modified Rankin Scale (mRS) score ≥2 (including disability and death). Secondary outcomes included the overall mRS score at 3 months and in-hospital death and all death within 3 months. Logistic regression and Cox models, adjusted for potential confounders, were fitted to estimate the association of G6PD deficiency with the outcomes. RESULTS Among 1,251 patients, 150 (12.0%) were G6PD-deficient. Patients with G6PD deficiency had higher proportions of large-artery atherosclerosis (odds ratio [OR] 1.53, 95% confidence interval [CI] 1.09-2.17) and stroke history (OR 1.93, 95% CI 1.26-2.90) compared to the non-G6PD-deficient group. The 2 groups differed significantly in the overall mRS score distribution (adjusted common OR 1.57, 95% CI 1.14-2.17). Patients with G6PD deficiency had higher rates of poor outcome at 3 months (adjusted OR 1.73, 95% CI 1.08-2.76; adjusted absolute risk increase 13.0%, 95% CI 2.4%-23.6%). The hazard ratio of in-hospital death for patients with G6PD-deficiency was 1.46 (95% CI 1.37-1.84). CONCLUSIONS G6PD deficiency is associated with the risk of poor outcome at 3 months after ischemic stroke and may increase the risk of in-hospital death. These findings suggest the rationality of G6PD screening in patients with stroke.
Collapse
Affiliation(s)
- Zilin Ou
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| | - Yicong Chen
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Jianle Li
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Fubing Ouyang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Gang Liu
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Shuangquan Tan
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Weixian Huang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Xiao Gong
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Yusheng Zhang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Zhijian Liang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Weisheng Deng
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Shihui Xing
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| | - Jinsheng Zeng
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| |
Collapse
|
30
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
31
|
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, Zheng C, Zhang H, Jordan A, Waddell I, Leopold J, Hu CJ, McMurtry IF, D'Alessandro A, Stenmark KR, Gupte SA. Hypoxic activation of glucose-6-phosphate dehydrogenase controls the expression of genes involved in the pathogenesis of pulmonary hypertension through the regulation of DNA methylation. Am J Physiol Lung Cell Mol Physiol 2020; 318:L773-L786. [PMID: 32159369 PMCID: PMC7191486 DOI: 10.1152/ajplung.00001.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is considered important in the pathogenesis of the occlusive vasculopathy observed in pulmonary hypertension (PH). However, the mechanisms that link reprogrammed metabolism to aberrant expression of genes, which modulate functional phenotypes of cells in PH, remain enigmatic. Herein, we demonstrate that, in mice, hypoxia-induced PH was prevented by glucose-6-phosphate dehydrogenase deficiency (G6PDDef), and further show that established severe PH in Cyp2c44-/- mice was attenuated by knockdown with G6PD shRNA or by G6PD inhibition with an inhibitor (N-ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl]urea, NEOU). Mechanistically, G6PDDef, knockdown and inhibition in lungs: 1) reduced hypoxia-induced changes in cytoplasmic and mitochondrial metabolism, 2) increased expression of Tet methylcytosine dioxygenase 2 (Tet2) gene, and 3) upregulated expression of the coding genes and long noncoding (lnc) RNA Pint, which inhibits cell growth, by hypomethylating the promoter flanking region downstream of the transcription start site. These results suggest functional TET2 is required for G6PD inhibition to increase gene expression and to reverse hypoxia-induced PH in mice. Furthermore, the inhibitor of G6PD activity (NEOU) decreased metabolic reprogramming, upregulated TET2 and lncPINT, and inhibited growth of control and diseased smooth muscle cells isolated from pulmonary arteries of normal individuals and idiopathic-PAH patients, respectively. Collectively, these findings demonstrate a previously unrecognized function for G6PD as a regulator of DNA methylation. These findings further suggest that G6PD acts as a link between reprogrammed metabolism and aberrant gene regulation and plays a crucial role in regulating the phenotype of cells implicated in the pathogenesis of PH, a debilitating disorder with a high mortality rate.
Collapse
Affiliation(s)
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ryota Hashimoto
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amrit Ramesh
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Jane Leopold
- Department of Medicine, Division of Cardiology, Brigham Women and Children's Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ivan F McMurtry
- Departments of Pharmacology and Internal Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Division of Pediatric Critical Care Medicine, Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
32
|
Valuparampil Varghese M, James J, Eccles CA, Niihori M, Rafikova O, Rafikov R. Inhibition of Anaplerosis Attenuated Vascular Proliferation in Pulmonary Arterial Hypertension. J Clin Med 2020; 9:jcm9020443. [PMID: 32041182 PMCID: PMC7074087 DOI: 10.3390/jcm9020443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
Vascular remodeling is considered a key event in the pathogenesis of pulmonary arterial hypertension (PAH). However, mechanisms of gaining the proliferative phenotype by pulmonary vascular cells are still unresolved. Due to well-established pyruvate dehydrogenase (PDH) deficiency in PAH pathogenesis, we hypothesized that the activation of another branch of pyruvate metabolism, anaplerosis, via pyruvate carboxylase (PC) could be a key contributor to the metabolic reprogramming of the vasculature. In sugen/hypoxic PAH rats, vascular proliferation was found to be accompanied by increased activation of Akt signaling, which upregulated membrane Glut4 translocation and caused upregulation of hexokinase and pyruvate kinase-2, and an overall increase in the glycolytic flux. Decreased PDH activity and upregulation of PC shuttled more pyruvate to oxaloacetate. This results in the anaplerotic reprogramming of lung vascular cells and their subsequent proliferation. Treatment of sugen/hypoxia rats with the PC inhibitor, phenylacetic acid 20 mg/kg, starting after one week from disease induction, significantly attenuated right ventricular systolic pressure, Fulton index, and pulmonary vascular cell proliferation. PC inhibition reduced the glycolytic shift by attenuating Akt-signaling, glycolysis, and restored mitochondrial pyruvate oxidation. Our findings suggest that targeting PC mediated anaplerosis is a potential therapeutic intervention for the resolution of vascular remodeling in PAH.
Collapse
Affiliation(s)
| | | | | | | | - Olga Rafikova
- Correspondence: (O.R.); (R.R.); Tel.: +1-520-626-1303 (O.R.); +1-520-626-6092 (R.R.)
| | - Ruslan Rafikov
- Correspondence: (O.R.); (R.R.); Tel.: +1-520-626-1303 (O.R.); +1-520-626-6092 (R.R.)
| |
Collapse
|
33
|
Antioxidant-Conjugated Peptide Attenuated Metabolic Reprogramming in Pulmonary Hypertension. Antioxidants (Basel) 2020; 9:antiox9020104. [PMID: 31991719 PMCID: PMC7071131 DOI: 10.3390/antiox9020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder instigated by pulmonary vascular cell proliferation. Activation of Akt was previously reported to promote vascular remodeling. Also, the irreversible nitration of Y350 residue in Akt results in its activation. NitroAkt was increased in PAH patients and the SU5416/Hypoxia (SU/Hx) PAH model. This study investigated whether the prevention of Akt nitration in PAH by Akt targeted nitroxide-conjugated peptide (NP) could reverse vascular remodeling and metabolic reprogramming. Treatment of the SU/Hx model with NP significantly decreased nitration of Akt in lungs, attenuated right ventricle (RV) hypertrophy, and reduced RV systolic pressure. In the PAH model, Akt-nitration induces glycolysis by activation of the glucose transporter Glut4 and lactate dehydrogenase-A (LDHA). Decreased G6PD and increased GSK3β in SU/Hx additionally shunted intracellular glucose via glycolysis. The increased glycolytic rate upregulated anaplerosis due to activation of pyruvate carboxylase in a nitroAkt-dependent manner. NP treatment resolved glycolytic switch and activated collateral pentose phosphate and glycogenesis pathways. Prevention of Akt-nitration significantly controlled pyruvate in oxidative phosphorylation by decreasing lactate and increasing pyruvate dehydrogenases activities. Histopathological studies showed significantly reduced pulmonary vascular proliferation. Based on our current observation, preventing Akt-nitration by using an Akt-targeted nitroxide-conjugated peptide could be a useful treatment option for controlling vascular proliferation in PAH.
Collapse
|
34
|
Lopes-Coelho F, Martins F, Serpa J. Endothelial Cells (ECs) Metabolism: A Valuable Piece to Disentangle Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:143-159. [PMID: 32130698 DOI: 10.1007/978-3-030-34025-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective therapies to fight cancer should not be focused specifically on cancer cells, but it should consider the various components of the TME. Non-cancerous cells cooperate with cancer cells by sharing signaling and organic molecules, accounting for cancer progression. Most of the anti-angiogenic therapy clinically approved for the treatment of human diseases relies on targeting vascular endothelial growth factor (VEGF) signaling pathway. Unexpectedly and unfortunately, the results of anti-angiogenic therapies in the treatment of human diseases are not so effective, showing an insufficient efficacy and resistance.This chapter will give some insights on showing that targeting endothelial cell metabolism is a missing piece to revolutionize cancer therapy. Only recently endothelial cell (EC) metabolism has been granted as an important inducer of angiogenesis. Metabolic studies in EC demonstrated that targeting EC metabolism can be an alternative to overcome the failure of anti-angiogenic therapies. Hence, it is urgent to increase the knowledge on how ECs alter their metabolism during human diseases, in order to open new therapeutic perspectives in the treatment of pathophysiological angiogenesis, as in cancer.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
35
|
Falkenberg KD, Rohlenova K, Luo Y, Carmeliet P. The metabolic engine of endothelial cells. Nat Metab 2019; 1:937-946. [PMID: 32694836 DOI: 10.1038/s42255-019-0117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qindao, Qindao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
36
|
Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab 2019; 30:414-433. [PMID: 31484054 DOI: 10.1016/j.cmet.2019.08.011] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023]
Abstract
In 2009, it was postulated that endothelial cells (ECs) would only be able to execute the orders of growth factors if these cells would accordingly adapt their metabolism. Ten years later, it has become clear that ECs, often differently from other cell types, rely on distinct metabolic pathways to survive and form new blood vessels; that manipulation of EC metabolic pathways alone (even without changing angiogenic signaling) suffices to alter vessel sprouting; and that perturbations of these metabolic pathways can underlie excess formation of new blood vessels (angiogenesis) in cancer and ocular diseases. Initial proof of evidence has been provided that targeting (normalizing) these metabolic perturbations in diseased ECs and delivery of metabolites deserve increasing attention as novel therapeutic approaches for inhibiting or stimulating vessel growth in multiple disorders.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium.
| |
Collapse
|
37
|
The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Sci Rep 2019; 9:12608. [PMID: 31471554 PMCID: PMC6717205 DOI: 10.1038/s41598-019-48676-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
During sprouting angiogenesis, an individual endothelial tip cell grows out from a pre-existing vascular network and guides following and proliferating stalk cells to form a new vessel. Metabolic pathways such as glycolysis and mitochondrial respiration as the major sources of adenosine 5'-triphosphate (ATP) for energy production are differentially activated in these types of endothelial cells (ECs) during angiogenesis. Therefore, we studied energy metabolism during angiogenesis in more detail in tip cell and non-tip cell human umbilical vein ECs. Small interfering RNA was used to inhibit transcription of glycolytic enzymes PFKFB3 or LDHA and mitochondrial enzyme PDHA1 to test whether inhibition of these specific pathways affects tip cell differentiation and sprouting angiogenesis in vitro and in vivo. We show that glycolysis is essential for tip cell differentiation, whereas both glycolysis and mitochondrial respiration occur during proliferation of non-tip cells and in sprouting angiogenesis in vitro and in vivo. Finally, we demonstrate that inhibition of mitochondrial respiration causes adaptation of EC metabolism by increasing glycolysis and vice versa. In conclusion, our studies show a complex but flexible role of the different metabolic pathways to produce ATP in the regulation of tip cell and non-tip cell differentiation and functioning during sprouting angiogenesis.
Collapse
|
38
|
Derakhshesh N, Salamat N, Movahedinia A, Hashemitabar M, Bayati V. Exposure of liver cell culture from the orange-spotted grouper, Epinephelus coioides, to benzo[a]pyrene and light results in oxidative damage as measured by antioxidant enzymes. CHEMOSPHERE 2019; 226:534-544. [PMID: 30953898 DOI: 10.1016/j.chemosphere.2019.03.181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Among the various toxicants discharged into aquatic environments, benzo (a) pyrene (BaP) has been shown to effect on the antioxidant system of fish and the evaluation of its impact on biota is of considerable concern. The aim of the present study was to use the primary hepatocyte culture obtained from the orange-spotted grouper, Epinephelus coioides, to evaluate the adverse effects of benzo (a) pyrene (BaP) on cell viability and liver antioxidant system. BaP was selected for its high ability to produce reactive oxygen species (ROS) and oxidative stress. The liver was minced by a scalpel and digested in the PBS solution with 0.1% collagenase IV at room temperature for 20 min. Then, the cell suspension was transferred to a plate contained an equal amount of Leibovitz's L-15 medium with 20% fetal bovine serum (FBS), 100 IU mL-1 of penicillin and 100 μg mL-1 streptomycin. 5 mL of cell suspension were plated into sterile 25 cm2 tissue culture flasks at the density of 1.5 × 106 cell/ml L-15 and incubated at 30 °C for two weeks. The medium was renewed after 24-48 h. The number of the liver cells was adjusted to 4 × 106 after two weeks. 10-4 mol l-1 was verified by MTT assay as the IC50 of BaP. Then, hepatocytes were exposed to three concentrations of BaP (10-5, 2 × 10-5, 3 × 10-5 mol L-1) and incubated for 24 h. Samples were collected after 6, 12 and 24 h and the amounts of SOD, CAT, GPx, LPO, LDH, AST, ALT, ALP and total protein were analyzed. The results showed that, 10-5 mol L-1 of BaP was not significantly toxic to cultivated hepatocytes, however, the sensitivity of cells to BaP increased in a dose-related pattern. The activity of the antioxidant enzymes (SOD, CAT and GPx) and liver enzymes (ALT, AST, ALP, LDH) significantly increased, though the amount of LPO, total antioxidant power and total protein decreased dose-dependently in BaP-exposed cells. In conclusion, according to the finding of the present study, BaP has a high potential to induce the oxidative stress in primary liver cell culture of E. coioides.
Collapse
Affiliation(s)
- Negin Derakhshesh
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - AbdolAli Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, Mazandaran University, Babolsar, Iran
| | - Mahmoud Hashemitabar
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
NSD2 silencing alleviates pulmonary arterial hypertension by inhibiting trehalose metabolism and autophagy. Clin Sci (Lond) 2019; 133:1085-1096. [PMID: 31040165 DOI: 10.1042/cs20190142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nuclear receptor binding SET domain 2 (NSD2)-mediated metabolic reprogramming has been demonstrated to regulate oncogenesis via catalyzing the methylation of histones. The present study aimed to investigate the role of NSD2-mediated metabolic abnormality in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH rat model was established and infected with adeno-associated virus carrying short hairpin RNA (shRNA) targeting NSD2. Hemodynamic parameters, ventricular function, and pathology were evaluated by microcatheter, echocardiography, and histological analysis. Metabolomics changes in lung tissue were analyzed by LC-MS. The results showed that silencing of NSD2 effectively ameliorated MCT-induced PAH and right ventricle dysfunction, and partially reversed pathological remodeling of pulmonary artery and right ventricular hypertrophy. In addition, the silencing of NSD2 markedly reduced the di-methylation level of H3K36 (H3K36me2 level) and inhibited autophagy in pulmonary artery. Non-targeted LC-MS based metabolomics analysis indicated that trehalose showed the most significant change in lung tissue. NSD2-regulated trehalose mainly affected ABC transporters, mineral absorption, protein digestion and absorption, metabolic pathways, and aminoacyl-tRNA biosynthesis. In conclusion, we reveal a new role of NSD2 in the pathogenesis of PAH related to the regulation of trehalose metabolism and autophagy via increasing the H3K36me2 level. NSD2 is a promising target for PAH therapy.
Collapse
|
40
|
Teuwen LA, Geldhof V, Carmeliet P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev Biol 2019; 447:90-102. [DOI: 10.1016/j.ydbio.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
|
41
|
Wang M, Hu J, Yan L, Yang Y, He M, Wu M, Li Q, Gong W, Yang Y, Wang Y, Handy DE, Lu B, Hao C, Wang Q, Li Y, Hu R, Stanton RC, Zhang Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33:6296-6310. [PMID: 30785802 DOI: 10.1096/fj.201801921r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidative stress contributes substantially to podocyte injury, which plays an important role in the development of diabetic kidney disease. The mechanism of hyperglycemia-induced oxidative stress in podocytes is not fully understood. Glucose-6-phosphate dehydrogenase (G6PD) is critical in maintaining NADPH, which is an important cofactor for the antioxidant system. Here, we hypothesized that high glucose induced ubiquitination and degradation of G6PD, which injured podocytes by reactive oxygen species (ROS) accumulation. We found that G6PD protein expression was decreased in kidneys of both diabetic patients and diabetic rodents. G6PD activity was also reduced in diabetic mice. Overexpressing G6PD reversed redox imbalance and podocyte apoptosis induced by high glucose and palmitate. Inhibition of G6PD with small interfering RNA induced podocyte apoptosis. In kidneys of G6PD-deficient mice, podocyte apoptosis was significantly increased. Interestingly, high glucose had no effect on G6PD mRNA expression. Decreased G6PD protein expression was mediated by the ubiquitin proteasome pathway. We found that the von Hippel-Lindau (VHL) protein, an E3 ubiquitin ligase subunit, directly bound to G6PD and degraded G6PD through ubiquitylating G6PD on K366 and K403. In summary, our data suggest that high glucose induces ubiquitination of G6PD by VHL E3 ubiquitin ligase, which leads to ROS accumulation and podocyte injury.-Wang, M., Hu, J., Yan, L., Yang, Y., He, M., Wu, M., Li, Q., Gong, W., Yang, Y., Wang, Y., Handy, D. E., Lu, B., Hao, C., Wang, Q., Li, Y., Hu, R., Stanton, R. C., Zhang, Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes.
Collapse
Affiliation(s)
- Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Linling Yan
- Department of Endocrinology, The First People's Hospital of Taicang, Suzhou, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Li
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Yi Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Lu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronggui Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Yang HC, Yu H, Liu YC, Chen TL, Stern A, Lo SJ, Chiu DTY. IDH-1 deficiency induces growth defects and metabolic alterations in GSPD-1-deficient Caenorhabditis elegans. J Mol Med (Berl) 2019; 97:385-396. [PMID: 30661088 PMCID: PMC6394583 DOI: 10.1007/s00109-018-01740-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
NADPH is a reducing equivalent that maintains redox homeostasis and supports reductive biosynthesis. Lack of major NADPH-producing enzymes predisposes cells to growth retardation and demise. It was hypothesized that double deficiency of the NADPH-generating enzymes, GSPD-1 (Glucose-6-phosphate 1-dehydrogenase), a functional homolog of human glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, and IDH-1 (isocitrate dehydrogenase-1) affect growth and development in the nematode, Caenorhabditis elegans (C. elegans). The idh-1;gspd-1(RNAi) double-deficient C. elegans model displayed shrinkage of body size, growth retardation, slowed locomotion, and impaired molting. Global metabolomic analysis was employed to address whether or not metabolic pathways were altered by severe NADPH insufficiency by the idh-1;gspd-1(RNAi) double-deficiency. The principal component analysis (PCA) points to a distinct metabolomic profile of idh-1;gspd-1(RNAi) double-deficiency. Further metabolomic analysis revealed that NADPH-dependent and glutamate-dependent amino acid biosynthesis were significantly affected. The reduced pool of amino acids may affect protein synthesis, as indicated by the absence of NAS-37 expression during the molting process. In short, double deficiency of GSPD-1 and IDH-1 causes growth retardation and molting defects, which are, in part, attributed to defective protein synthesis, possibly mediated by altered amino acid biosynthesis and metabolism in C. elegans.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Hsiang Yu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - You-Cheng Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Ling Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
43
|
Veys K, Alvarado-Diaz A, De Bock K. Measuring Glycolytic and Mitochondrial Fluxes in Endothelial Cells Using Radioactive Tracers. Methods Mol Biol 2019; 1862:121-136. [PMID: 30315464 DOI: 10.1007/978-1-4939-8769-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) form the inner lining of the vascular network. Although they can remain quiescent for years, ECs exhibit high plasticity in both physiological and pathological conditions, when they need to rapidly form new blood vessels in a process called angiogenesis. EC metabolism recently emerged as an important driver of this angiogenic switch. The use of radioactive tracer substrates to assess metabolic flux rates in ECs has been essential for the discovery that fatty acid, glucose, and glutamine metabolism critically contribute to vessel sprouting. In the future, these assays will be useful as a tool for the characterization of pathological conditions in which deregulation of EC metabolism underlies and/or precedes the disease, but also for the identification of anti-angiogenic metabolic targets. This chapter describes in detail the radioactive tracer substrate assays that have been used for the determination of EC metabolic flux in vitro.
Collapse
Affiliation(s)
- Koen Veys
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abdiel Alvarado-Diaz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
44
|
Theodorou K, Boon RA. Endothelial Cell Metabolism in Atherosclerosis. Front Cell Dev Biol 2018; 6:82. [PMID: 30131957 PMCID: PMC6090045 DOI: 10.3389/fcell.2018.00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis and its sequelae, such as myocardial infarction and stroke, are the leading cause of death worldwide. Vascular endothelial cells (EC) play a critical role in vascular homeostasis and disease. Atherosclerosis as well as its independent risk factors including diabetes, obesity, and aging, are hallmarked by endothelial activation and dysfunction. Metabolic pathways have emerged as key regulators of many EC functions, including angiogenesis, inflammation, and barrier function, processes which are deregulated during atherogenesis. In this review, we highlight the role of glucose, fatty acid, and amino acid metabolism in EC functions during physiological and pathological states, specifically atherosclerosis, diabetes, obesity and aging.
Collapse
Affiliation(s)
- Kosta Theodorou
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Reinier A Boon
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Rhine-Main, Berlin, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
45
|
Linagliptin unmasks specific antioxidant pathways protective against albuminuria and kidney hypertrophy in a mouse model of diabetes. PLoS One 2018; 13:e0200249. [PMID: 29979777 PMCID: PMC6034861 DOI: 10.1371/journal.pone.0200249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/24/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors may have protective effects on diabetic kidney disease (DKD) via specific antioxidant pathways. The DPP-4 inhibitor, linagliptin, was evaluated with the hypothesis that DPP-4 inhibition would ameliorate the development of DKD in a glucose-independent manner by altering specific antioxidant function. METHODS DBA/2J mice (a well-characterized model of DKD) and glucose 6-phosphate dehydrogenase (G6PD) deficient mice (a model of impaired antioxidant function) were evaluated. Diabetes was induced by streptozotocin. Mice were divided into: diabetic (DM), diabetic+linagliptin (DM+Lina), and non-diabetic control and treated for 12 weeks. RESULTS In DBA/2J mice, there was no difference in body weight and blood glucose between DM and DM+Lina groups. Linagliptin ameliorated albuminuria and kidney hypertrophy in DM DBA/2J mice and specifically increased the mRNA and protein levels for the antioxidants catalase and MnSOD. In G6PD deficient mice, however, increases in these mRNA levels did not occur and linagliptin renoprotection was not observed. Linagliptin also ameliorated histological trends toward mesangial expansion in wild-type mice but not in G6PD deficient mice. CONCLUSIONS Linagliptin renoprotection involved glucose-independent but antioxidant-enzyme-system-dependent increases in transcription (not just increased protein levels) of antioxidant proteins in wild-type mice. These studies demonstrate that an intact antioxidant system, in particular including transcription of catalase and MnSOD, is required for the renoprotective effects of linagliptin.
Collapse
|
46
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. RECENT FINDINGS NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. SUMMARY Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.
Collapse
|
48
|
Hashimoto R, Gupte S. Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:47-55. [PMID: 29047080 DOI: 10.1007/978-3-319-63245-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Redox signaling plays a critical role in the pathophysiology of cardiovascular diseases. The pentose phosphate pathway is a major source of NADPH redox in the cell. The activities of glucose-6-phosphate dehydrogenase (the rate-limiting enzyme in the pentose shunt) and glucose flux through the shunt pathway is increased in various lung cells including, the stem cells, in pulmonary hypertension. This chapter discusses the importance of the shunt pathway and glucose-6-phosphate dehydrogenase in the pathogenesis of pulmonary artery remodeling and occlusive lesion formation within the hypertensive lungs.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Department of Pharmacology, New York Medical College, School of Medicine, Basic Science Building, Rm. 546, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, School of Medicine, Basic Science Building, Rm. 546, 15 Dana Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
49
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
50
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|