1
|
Nešić D, Zhang Y, Spasic A, Li J, Provasi D, Filizola M, Walz T, Coller BS. Cryo-Electron Microscopy Structure of the αIIbβ3-Abciximab Complex. Arterioscler Thromb Vasc Biol 2020; 40:624-637. [PMID: 31969014 PMCID: PMC7047619 DOI: 10.1161/atvbaha.119.313671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The αIIbβ3 antagonist antiplatelet drug abciximab is the chimeric antigen-binding fragment comprising the variable regions of murine monoclonal antibody 7E3 and the constant domains of human IgG1 and light chain κ. Previous mutagenesis studies suggested that abciximab binds to the β3 C177-C184 specificity-determining loop (SDL) and Trp129 on the adjacent β1-α1 helix. These studies could not, however, assess whether 7E3 or abciximab prevents fibrinogen binding by steric interference, disruption of either the αIIbβ3-binding pocket for fibrinogen or the β3 SDL (which is not part of the binding pocket but affects fibrinogen binding), or some combination of these effects. To address this gap, we used cryo-electron microscopy to determine the structure of the αIIbβ3-abciximab complex at 2.8 Å resolution. Approach and Results: The interacting surface of abciximab is comprised of residues from all 3 complementarity-determining regions of both the light and heavy chains, with high representation of aromatic residues. Binding is primarily to the β3 SDL and neighboring residues, the β1-α1 helix, and β3 residues Ser211, Val212 and Met335. Unexpectedly, the structure also indicated several interactions with αIIb. As judged by the cryo-electron microscopy model, molecular-dynamics simulations, and mutagenesis, the binding of abciximab does not appear to rely on the interaction with the αIIb residues and does not result in disruption of the fibrinogen-binding pocket; it does, however, compress and reduce the flexibility of the SDL. CONCLUSIONS We deduce that abciximab prevents ligand binding by steric interference, with a potential contribution via displacement of the SDL and limitation of the flexibility of the SDL residues.
Collapse
Affiliation(s)
- Dragana Nešić
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | - Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| |
Collapse
|
2
|
Wang M, Hinton JP, Gard JMC, Garcia JGN, Knudsen BS, Nagle RB, Cress AE. Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell-cell and cell-extracellular matrix interactions. Mol Biol Cell 2019; 30:838-850. [PMID: 30865564 PMCID: PMC6589785 DOI: 10.1091/mbc.e18-10-0652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Integrin α6β4 is an essential, dynamic adhesion receptor for laminin 332 found on epithelial cells, required for formation of strong cell–extracellular matrix (ECM) adhesion and induced migration, and coordinated by regions of the β4C cytoplasmic domain. β4E, a unique splice variant of β4 expressed in normal tissue, contains a cytoplasmic domain of 231 amino acids with a unique sequence of 114 amino acids instead of β4C’s canonical 1089 amino acids. We determined the distribution of α6β4E within normal human glandular epithelium and its regulation and effect on cellular biophysical properties. Canonical α6β4C expressed in all basal cells, as expected, while α6β4E expressed within a subset of luminal cells. α6β4E expression was induced by three-dimensional culture conditions, activated Src, was reversible, and was stabilized by bortezomib, a proteasome inhibitor. α6β4C expressed in all cells during induced migration, whereas α6β4E was restricted to a subset of cells with increased kinetics of cell–cell and cell–ECM resistance properties. Interestingly, α6β4E presented in “ringlike” patterns measuring ∼1.75 × 0.72 microns and containing actin and CD9 at cell–ECM locations. In contrast, α6β4C expressed only within hemidesmosome-like structures containing BP180. Integrin α6β4E is an inducible adhesion isoform in normal epithelial cells that can alter biophysical properties of cell–cell and cell–ECM interactions.
Collapse
Affiliation(s)
- Mengdie Wang
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - James P Hinton
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - Jaime M C Gard
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
3
|
Russo V, Klein T, Lim DJ, Solis N, Machado Y, Hiroyasu S, Nabai L, Shen Y, Zeglinski MR, Zhao H, Oram CP, Lennox PA, Van Laeken N, Carr NJ, Crawford RI, Franzke CW, Overall CM, Granville DJ. Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Sci Rep 2018; 8:9690. [PMID: 29946113 PMCID: PMC6018769 DOI: 10.1038/s41598-018-28070-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023] Open
Abstract
In healthy skin, epidermis and dermis are anchored together at the dermal-epidermal junction (DEJ), a specialized basement membrane pivotal for skin integrity and function. However, increased inflammation in the DEJ is associated with the disruption and separation of this junction and sub-epidermal blistering. Granzyme B (GzmB) is a serine protease secreted by immune cells. Dysregulated inflammation may lead to increased GzmB accumulation and proteolysis in the extracellular milieu. Although elevated GzmB is observed at the level of the DEJ in inflammatory and blistering skin conditions, the present study is the first to explore GzmB in the context of DEJ degradation in autoimmune sub-epidermal blistering. In the present study, GzmB induced separation of the DEJ in healthy human skin. Subsequently, α6/β4 integrin, collagen VII, and collagen XVII were identified as extracellular substrates for GzmB through western blot, and specific cleavage sites were identified by mass spectrometry. In human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita, GzmB was elevated at the DEJ when compared to healthy samples, while α6/β4 integrin, collagen VII, and collagen XVII were reduced or absent in the area of blistering. In summary, our results suggest that regardless of the initial causation of sub-epidermal blistering, GzmB activity is a common final pathway that could be amenable to a single targeted treatment approach.
Collapse
Affiliation(s)
- Valerio Russo
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Darielle J Lim
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Layla Nabai
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Yue Shen
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Cameron P Oram
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada
| | - Peter A Lennox
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nancy Van Laeken
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nick J Carr
- Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, V5Z 4E8, Canada
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center and Faculty of Medicine - University of Freiburg, 79104, Freiburg, Germany
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Research Centre, Vancouver, BC, V5Z 1M9, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
5
|
Nowak R, Kwiecien M, Tkacz M, Mazurek U. Transforming growth factor-beta (TGF- β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:594287. [PMID: 25313366 PMCID: PMC4181945 DOI: 10.1155/2014/594287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/19/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Abstract
Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis.
Collapse
Affiliation(s)
- Roman Nowak
- Department of Orthopedics, School of Medicine with the Division of Dentistry, Medical University of Silesia, Wojewódzki Szpital Specjalistyczny nr 5 Plac Medyków 1, 41-200 Sosnowiec, Poland
| | - Magdalena Kwiecien
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| | - Magdalena Tkacz
- Institute of Computer Science, Division of Information Systems, University of Silesia, Ulica Będzińska 39, 41-200 Sosnowiec, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Ulica Narcyzów 1, 41-100 Sosnowiec, Poland
| |
Collapse
|
6
|
Kligys K, Wu Y, Hamill KJ, Lewandowski KT, Hopkinson SB, Budinger GRS, Jones JCR. Laminin-332 and α3β1 integrin-supported migration of bronchial epithelial cells is modulated by fibronectin. Am J Respir Cell Mol Biol 2013; 49:731-40. [PMID: 23590307 PMCID: PMC3931100 DOI: 10.1165/rcmb.2012-0509oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/22/2013] [Indexed: 11/24/2022] Open
Abstract
The repair of the bronchiolar epithelium damaged by cell-mediated, physical, or chemical insult requires epithelial cell migration over a provisional matrix composed of complexes of extracellular matrix molecules, including fibronectin and laminin. These matrix molecules support migration and enhance cell adhesion. When cells adhere too tightly to their matrix they fail to move; but if they adhere too little, they are unable to develop the traction force necessary for motility. Thus, we investigated the relative contributions of laminin and fibronectin to bronchiolar cell adhesion and migration using the immortalized bronchial lung epithelial cell line (BEP2D) and normal human bronchial epithelial (NHBE) cells, both of which assemble a laminin α3β3γ2 (LM332)/fibronectin-rich matrix. Intriguingly, BEP2D and NHBE cells migrate significantly faster on an LM332-rich matrix than on fibronectin. Moreover, addition of fibronectin to LM332 matrix suppresses motility of both cell types. Finally, fibronectin enhances the adhesion of both BEP2D and NHBE cells to LM332-coated surfaces. These results suggest that fibronectin fine tunes LM332-mediated migration by boosting bronchiolar cell adhesion to substrate. We suggest that, during epithelial wound healing of the injured airway, fibronectin plays an important adhesive role for laminin-driven epithelial cell motility by promoting a stable cellular interaction with the provisional matrix.
Collapse
Affiliation(s)
- Kristina Kligys
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yvonne Wu
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kevin J. Hamill
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine T. Lewandowski
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susan B. Hopkinson
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - G. R. Scott Budinger
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan C. R. Jones
- Department of Cell and Molecular Biology and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Hiroyasu S, Ozawa T, Kobayashi H, Ishii M, Aoyama Y, Kitajima Y, Hashimoto T, Jones JC, Tsuruta D. Bullous pemphigoid IgG induces BP180 internalization via a macropinocytic pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:828-40. [PMID: 23337823 PMCID: PMC3590760 DOI: 10.1016/j.ajpath.2012.11.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/18/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering skin disease induced by pathogenic autoantibodies against a type II transmembrane protein (BP180, collagen type XVII, or BPAG2). In animal models, BP180 autoantibody-antigen interaction appears insufficient to develop blisters, but involvement of complement and neutrophils is required. However, cultured keratinocytes treated with BP-IgG exhibit a reduction in the adhesive strength and a loss of expression of BP180, suggesting that the autoantibodies directly affect epidermal cell-extracellular matrix integrity. In this study, we explored the consequences of two distinct epithelial cells treated with BP-IgG, particularly the fate of BP180. First, we followed the distribution of green fluorescent protein-tagged BP180 in an epithelial cell line, 804G, and normal human epidermal keratinocytes after autoantibody clustering. After BP-IgG treatment, the adhesive strength of the cells to their substrate was decreased, and BP180 was internalized in both cell types, together with the early endosomal antigen-1. By using various endocytosis inhibitors and a fluid-uptake assay, we demonstrated that BP-IgG-induced BP180 internalization is mediated via a macropinocytic pathway. Moreover, a macropinocytosis inhibitor rescued a BP-IgG-induced reduction in the adhesive strength of the cells from their substrate. The results of this study suggest that BP180 internalization induced by BP-IgG plays an important role in the initiation of disease pathogenesis.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Kobayashi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masamitsu Ishii
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yumi Aoyama
- Department of Dermatology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yasuo Kitajima
- Division of Dermatology, Kizawa Memorial Hospital, Gifu, Japan
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| | - Jonathan C.R. Jones
- Department of Cell and Molecular Biology, Northwestern University the Feinberg School of Medicine, Chicago, Illinois
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Fukuoka, Japan
| |
Collapse
|
8
|
Kligys KR, Wu Y, Hopkinson SB, Kaur S, Platanias LC, Jones JCR. α6β4 integrin, a master regulator of expression of integrins in human keratinocytes. J Biol Chem 2012; 287:17975-84. [PMID: 22493440 DOI: 10.1074/jbc.m111.310458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three major laminin and collagen-binding integrins in skin (α6β4, α3β1, and α2β1) are involved in keratinocyte adhesion to the dermis and dissemination of skin cells during wound healing and/or tumorigenesis. Knockdown of α6 integrin in keratinocytes not only results in motility defects but also leads to decreased surface expression of the α2, α3, and β4 integrin subunits. Whereas α2 integrin mRNA levels are decreased in α6 integrin knockdown cells, α3 and β4 integrin mRNAs levels are unaffected. Expression of either α6 or α3 integrin in α6 integrin knockdown cells restores α2 integrin mRNA levels. Moreover, re-expression of α6 integrin increases β4 integrin protein at the cell surface, which results in an increase in α3 integrin expression via activation of initiation factor 4E-binding protein 1. Our data indicate that the α6β4 integrin is a master regulator of transcription and translation of other integrin subunits and underscore its pivotal role in wound healing and cancer.
Collapse
Affiliation(s)
- Kristina R Kligys
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wang L, Dong Z, Zhang Y, Miao J. The roles of integrin β4 in Vascular Endothelial Cells. J Cell Physiol 2011; 227:474-8. [DOI: 10.1002/jcp.22769] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chiang LY, Poole K, Oliveira BE, Duarte N, Sierra YAB, Bruckner-Tuderman L, Koch M, Hu J, Lewin GR. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat Neurosci 2011; 14:993-1000. [PMID: 21725315 DOI: 10.1038/nn.2873] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/10/2011] [Indexed: 11/09/2022]
Abstract
Laminin-332 is a major component of the dermo-epidermal skin basement membrane and maintains skin integrity. The transduction of mechanical force into electrical signals by sensory endings in the skin requires mechanosensitive channels. We found that mouse epidermal keratinocytes produce a matrix that is inhibitory for sensory mechanotransduction and that the active molecular component is laminin-332. Substrate-bound laminin-332 specifically suppressed one type of mechanosensitive current (rapidly adapting) independently of integrin-receptor activation. This mechanotransduction suppression could be exerted locally and was mediated by preventing the formation of protein tethers necessary for current activation. We also found that laminin-332 could locally control sensory axon branching behavior. Loss of laminin-332 in humans led to increased sensory terminal branching and may lead to a de-repression of mechanosensitive currents. These previously unknown functions for this matrix molecule may explain some of the extreme pain experienced by individuals with epidermolysis bullosa who are deficient in laminin-332.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Animals
- Animals, Newborn
- Axons/physiology
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/pharmacology
- Cell Adhesion Molecules/ultrastructure
- Cells, Cultured
- Coculture Techniques
- Collagen Type VII/metabolism
- Epidermolysis Bullosa, Junctional/metabolism
- Epidermolysis Bullosa, Junctional/pathology
- Ganglia, Spinal/cytology
- Growth Cones/drug effects
- Growth Cones/physiology
- Growth Cones/ultrastructure
- Humans
- Keratinocytes/cytology
- Lidocaine/analogs & derivatives
- Lidocaine/pharmacology
- Mechanotransduction, Cellular/drug effects
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Membrane Potentials/genetics
- Membrane Potentials/physiology
- Mice
- Microscopy, Atomic Force/methods
- Microscopy, Electron, Transmission/methods
- Neurofilament Proteins/metabolism
- Patch-Clamp Techniques/methods
- Physical Stimulation
- Reaction Time/drug effects
- Reaction Time/genetics
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Skin/innervation
- Skin/metabolism
- Skin/pathology
- Sodium Channel Blockers/pharmacology
- TRPV Cation Channels/metabolism
- Tetrodotoxin/pharmacology
- Time Factors
- Ubiquitin Thiolesterase/metabolism
- Kalinin
Collapse
Affiliation(s)
- Li-Yang Chiang
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hamill KJ, Hopkinson SB, Jonkman MF, Jones JCR. Type XVII collagen regulates lamellipod stability, cell motility, and signaling to Rac1 by targeting bullous pemphigoid antigen 1e to alpha6beta4 integrin. J Biol Chem 2011; 286:26768-80. [PMID: 21642434 DOI: 10.1074/jbc.m110.203646] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rac1 activity, polarity, lamellipodial dynamics, and directed motility are defective in keratinocytes exhibiting deficiency in β4 integrin or knockdown of the plakin protein Bullous Pemphigoid Antigen 1e (BPAG1e). The activity of Rac, formation of stable lamellipodia, and directed migration are restored in β4 integrin-deficient cells by inducing expression of a truncated form of β4 integrin, which lacks binding sites for BPAG1e and plectin. In these same cells, BPAG1e, the truncated β4 integrin, and type XVII collagen (Col XVII), a transmembrane BPAG1e-binding protein, but not plectin, colocalize along the substratum-attached surface. This finding suggested to us that Col XVII mediates the association of BPAG1e and α6β4 integrin containing the truncated β4 subunit and supports directed migration. To test these possibilities, we knocked down Col XVII expression in keratinocytes expressing both full-length and truncated β4 integrin proteins. Col XVII-knockdown keratinocytes exhibit a loss in BPAG1e-α6β4 integrin interaction, a reduction in lamellipodial stability, an impairment in directional motility, and a decrease in Rac1 activity. These defects are rescued by a mutant Col XVII protein truncated at its carboxyl terminus. In summary, our results suggest that in motile cells Col XVII recruits BPAG1e to α6β4 integrin and is necessary for activation of signaling pathways, motile behavior, and lamellipodial stability.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
12
|
Ozawa T, Tsuruta D. Comparative study of the dynamics of focal contacts in live epithelial and mesenchymal cells. Med Mol Morphol 2011; 44:27-33. [PMID: 21424934 DOI: 10.1007/s00795-010-0502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/08/2010] [Indexed: 01/26/2023]
Abstract
To further characterize the morphology and dynamics of focal contacts (FCs) in epithelial cells, we compared the size, number, localization, velocity, and turnover of FCs in epithelial and mesenchymal cell lines. Using immunocytochemistry, we found there were no significant differences between mesenchymal and epithelial cells in number and appearance whereas the location and size of FCs in each cell were different between mesenchymal and epithelial cells. FCs in mesenchymal cells localized at the cell periphery and cell center, but FCs were found only at the cell periphery in epithelial cells. The size of FCs in epithelial cells were significantly smaller than in mesenchymal cells. Next, we compared the dynamics of FCs in both mesenchymal and epithelial cells and found no significant difference between the two groups. Finally, we added inhibitors for the hemidesmosome (HD) proteins, α6 integrin and β4 integrin, to HaCat cell (epithelial) cultures and examined the number and size of FCs. Under these conditions, the size and localization of FCs in HaCat cells became comparable to that of mesenchymal cells. Therefore, we concluded the size and localization of FCs is regulated by the existence of HDs in epithelial cells.
Collapse
Affiliation(s)
- Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | | |
Collapse
|
13
|
Pan Y, Zhang K, Qi J, Yue J, Springer TA, Chen J. Cation-pi interaction regulates ligand-binding affinity and signaling of integrin alpha4beta7. Proc Natl Acad Sci U S A 2010; 107:21388-93. [PMID: 21098296 PMCID: PMC3003088 DOI: 10.1073/pnas.1015487107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrin α(4)β(7) mediates rolling and firm adhesion of leucocytes, two of the critical steps in leukocyte migration and tissue specific homing. Affinity of α(4)β(7) for ligand is dynamically regulated by three interlinked metal ion-binding sites in β(7)-subunit I domain. In this study, we found that Phe185 (F185), a highly conserved aromatic residue in β(7)-subunit, links the specificity-determining loop and the synergistic metal ion-binding site (SyMBS) through cation-π interaction. Mutations of F185 that disrupted the SyMBS cation-F185 interaction led to deficient firm cell adhesion mediated by high affinity α(4)β(7), and only slightly affected rolling adhesion mediated by low affinity α(4)β(7). Disruption of SyMBS cation-F185 interaction induced partial extension of integrin ectodomain and separation of cytoplasmic tails, and impaired α(4)β(7)-mediated bidirectional signaling. In addition, loss of SyMBS cation-F185 interaction increased paxillin expression and promoted paxillin-integrin binding, leading to deficient cell spreading. Furthermore, integrin α(4)β(7)-mediated cell migration was decreased by the abolishment of SyMBS cation-F185 interaction. Thus, these findings reveal a cation-π interaction playing vital roles in the regulation of integrin affinity, signaling, and biological functions.
Collapse
Affiliation(s)
- YouDong Pan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Kun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - JunPeng Qi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Jiao Yue
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Timothy A. Springer
- The Immune Disease Institute, Children’s Hospital Boston, and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115
| | - JianFeng Chen
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| |
Collapse
|
14
|
Desai LP, White SR, Waters CM. Cyclic mechanical stretch decreases cell migration by inhibiting phosphatidylinositol 3-kinase- and focal adhesion kinase-mediated JNK1 activation. J Biol Chem 2010; 285:4511-9. [PMID: 20018857 PMCID: PMC2836056 DOI: 10.1074/jbc.m109.084335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Indexed: 01/11/2023] Open
Abstract
Epithelial cell migration during wound healing requires coordinated signaling pathways that direct polarization of the leading and trailing ends of the cells, cytoskeletal organization, and remodeling of focal adhesions. These inherently mechanical processes are disrupted by cyclic stretch (CS), but the specific signaling molecules involved in this disruption are not well understood. In this study, we demonstrate that inhibition of phosphatidylinositol 3-kinase (PI3K) or expression of a dominant-negative form of PI3K caused inhibition of airway epithelial cell wound closure. CS caused a sustained decrease in activation of PI3K and inhibited wound healing. Expression of constitutively active PI3K stimulated translocation of Tiam1 to the membrane, increased Rac1 activity, and increased wound healing of airway epithelial cells. Increased Rac1 activity resulted in increased phosphorylation of JNK1. PI3K activation was not regulated by association with focal adhesion kinase. Restoration of efficient cell migration during CS required coexpression of constitutively active PI3K, focal adhesion kinase, and JIP3.
Collapse
Affiliation(s)
| | - Steven R. White
- the Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois 60637
| | - Christopher M. Waters
- From the Departments of Physiology
- Medicine, and
- Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
15
|
Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297:L520-9. [PMID: 19574423 DOI: 10.1152/ajplung.00076.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
JNK is a nonreceptor kinase involved in the early events that signal cell migration after injury. However, the linkage to early signals required to initiate the migration response to JNK has not been defined in airway epithelial cells, which exist in an environment subjected to cyclic mechanical strain (MS). The present studies demonstrate that the JNK/stress-activated protein kinase-associated protein 1 (JSAP1; also termed JNK-interacting protein 3, JIP3), a scaffold factor for MAPK cascades that links JNK activation to focal adhesion kinase (FAK), are both associated and activated following mechanical injury in 16HBE14o- human airway epithelial cells and that both FAK and JIP3 phosphorylation seen after injury are decreased in cells subjected to cyclic MS. Overexpression of either wild-type (WT)-FAK or WT-JIP3 enhanced phosphorylation and kinase activation of JNK and reduced the inhibitory effect of cyclic MS. These results suggest that cyclic MS impairs signaling of cell migration after injury via a pathway that involves FAK-JIP3-JNK.
Collapse
Affiliation(s)
- Leena P Desai
- Dept. of Physiology, The Univ. of Tennessee Health Science Center, 894 Union Ave, Rm. 426, Memphis, TN 38163-0001, USA
| | | | | |
Collapse
|
16
|
Fang IM, Yang CH, Yang CM, Chen MS. Overexpression of integrin α6 and β4 enhances adhesion and proliferation of human retinal pigment epithelial cells on layers of porcine Bruch's membrane. Exp Eye Res 2009; 88:12-21. [DOI: 10.1016/j.exer.2008.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 09/13/2008] [Indexed: 11/30/2022]
|
17
|
He Q, Huang B, Zhao J, Zhang Y, Zhang S, Miao J. Knockdown of integrin β4-induced autophagic cell death associated with P53 in A549 lung adenocarcinoma cells. FEBS J 2008; 275:5725-32. [DOI: 10.1111/j.1742-4658.2008.06699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JCR. The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J Biol Chem 2007; 282:32520-8. [PMID: 17848544 PMCID: PMC2754063 DOI: 10.1074/jbc.m707041200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon alpha6beta4 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by alpha6beta4 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/alpha6beta4 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which alpha6beta4 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.
Collapse
Affiliation(s)
- Kristina Kligys
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jessica N. Claiborne
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Phillip J. DeBiase
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Susan B. Hopkinson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yvonne Wu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Jonathan C. R. Jones
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
19
|
Li DF, Zhang MC, Yang HJ, Zhu YB, Xu X. Beta-integrin mediates WSSV infection. Virology 2007; 368:122-32. [PMID: 17655902 DOI: 10.1016/j.virol.2007.06.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 05/21/2007] [Accepted: 06/19/2007] [Indexed: 12/19/2022]
Abstract
White Spot Syndrome Virus (WSSV) is a virulent and widespread dsDNA virus with a wide range of hosts. Although remarkable progress has been made on virus characterization, however, its mechanism of infection is poorly understood. In this study, by analyzing the phage display library of the WSSV genome, a WSSV envelope protein VP187 (wsv209) was found to interact with shrimp integrin. VP187 possesses the RGD motif. The interaction between integrin and VP187 was confirmed with coimmunoprecipitation. These results demonstrate for the first time an interaction between the WSSV envelope protein and a cell surface molecule. Soluble integrin, integrin-specific antibody and an RGD-containing peptide were found to block the WSSV infection in vivo and in vitro. Gene silencing using a sequence-specific dsRNA targeting beta-integrin effectively inhibited the virus infection. These findings suggest that beta-integrin may function as a cellular receptor for WSSV infection.
Collapse
Affiliation(s)
- Deng-Feng Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, P.R. China.
| | | | | | | | | |
Collapse
|
20
|
Werner ME, Chen F, Moyano JV, Yehiely F, Jones JCR, Cryns VL. Caspase proteolysis of the integrin beta4 subunit disrupts hemidesmosome assembly, promotes apoptosis, and inhibits cell migration. J Biol Chem 2006; 282:5560-9. [PMID: 17178732 PMCID: PMC2819670 DOI: 10.1074/jbc.m603669200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases are a conserved family of cell death proteases that cleave intracellular substrates at Asp residues to modify their function and promote apoptosis. In this report we identify the integrin beta4 subunit as a novel caspase substrate using an expression cloning strategy. Together with its alpha6 partner, alpha6beta4 integrin anchors epithelial cells to the basement membrane at specialized adhesive structures known as hemidesmosomes and plays a critical role in diverse epithelial cell functions including cell survival and migration. We show that integrin beta4 is cleaved by caspase-3 and -7 at a conserved Asp residue (Asp(1109)) in vitro and in epithelial cells undergoing apoptosis, resulting in the removal of most of its cytoplasmic tail. Caspase cleavage of integrin beta4 produces two products, 1) a carboxyl-terminal product that is unstable and rapidly degraded by the proteasome and 2) an amino-terminal cleavage product (amino acids 1-1109) that is unable to assemble into mature hemidesmosomes. We also demonstrate that caspase cleavage of integrin beta4 sensitizes epithelial cells to apoptosis and inhibits cell migration. Taken together, we have identified a previously unrecognized proteolytic truncation of integrin beta4 generated by caspases that disrupts key structural and functional properties of epithelial cells and promotes apoptosis.
Collapse
Affiliation(s)
- Michael E. Werner
- Cell Death Regulation Laboratory, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Feng Chen
- Cell Death Regulation Laboratory, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jose V. Moyano
- Cell Death Regulation Laboratory, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Fruma Yehiely
- Cell Death Regulation Laboratory, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jonathan C. R. Jones
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Vincent L. Cryns
- Cell Death Regulation Laboratory, Northwestern University, Chicago, Illinois 60611
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- To whom correspondence should be addressed: Departs. of Medicine and Cell and Molecular Biology, Lurie 4-113, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL 60611. Tel.: 312-503-0644; Fax: 312-908-9032;
| |
Collapse
|
21
|
Sehgal BU, DeBiase PJ, Matzno S, Chew TL, Claiborne JN, Hopkinson SB, Russell A, Marinkovich MP, Jones JCR. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J Biol Chem 2006; 281:35487-98. [PMID: 16973601 PMCID: PMC2820731 DOI: 10.1074/jbc.m606317200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whether alpha6beta4 integrin regulates migration remains controversial. beta4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express beta4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type beta4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with alpha6beta4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the alpha6beta4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells.
Collapse
Affiliation(s)
- Bernd U. Sehgal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Phillip J. DeBiase
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sumio Matzno
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Teng-Leong Chew
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jessica N. Claiborne
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Susan B. Hopkinson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alan Russell
- Department of Molecular and Cell Biology, Cytokinetics, Inc., South San Francisco, California 94080
| | - M. Peter Marinkovich
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305
- Veterans Affairs Palo Alto Health Care System, Stanford, California 94304
| | - Jonathan C. R. Jones
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- To whom correspondence should be addressed: Dept. of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611. Tel.: 312-503-1412; Fax: 312-503-6475;
| |
Collapse
|
22
|
van Zalen S, Nijenhuis M, Jonkman MF, Pas HH. Two major 5'-untranslated regions for type XVII collagen mRNA. J Dermatol Sci 2006; 43:11-9. [PMID: 16580182 DOI: 10.1016/j.jdermsci.2006.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/07/2006] [Accepted: 02/23/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Type XVII collagen is an important structural component of keratinocyte hemidesmosomes and its functional loss in genetic or autoimmune disease results in blistering of the skin. In neoplastic tissue aberrant expression is seen dependent on the stage of the tumor. While the sequence of the type XVII collagen encoding gene -COL17A1 - is now completely elucidated, the sequence of the 5'-untranslated region (UTR) of the mRNA is still unknown. Since UTRs can modulate translation efficiency, the determination of the UTR sequence is indispensable for understanding the regulation of translation of type XVII collagen mRNA. OBJECTIVE To resolve the sequence of the 5'UTR of type XVII collagen mRNA and to analyse the promoter region for transcription motifs. METHODS 5' Rapid amplification of cDNA ends (RACE) followed by sequence analysis and ribonuclease protection assays (RPA) were performed. RESULTS RACE and sequence analysis revealed the presence of six different 5'UTRs for the type XVII collagen mRNA. The start points of these six transcripts differ but no alternative exons are used. The longest 5'UTR starts 220 nucleotides before the open reading frame, whereas the shortest UTR is only 89 nucleotides in length. RPA confirmed the RACE results and furthermore demonstrated that the 5'UTRs with lengths of 102 and 220 nucleotides are the two major transcripts. Transcription motif analysis of the 5' region of the COL17A gene demonstrated several binding sites for transcription factors including the Sp1 and activating protein-1 (AP-1) families. CONCLUSION Type XVII collagen mRNA is alternatively transcribed, which may result in complex regulation of type XVII collagen.
Collapse
Affiliation(s)
- Sebastiaan van Zalen
- Department of Dermatology, Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, NL-9713 GZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
23
|
Abstract
CLCA proteins were discovered in bovine trachea and named for a calcium-dependent chloride conductance found in trachea and in other secretory epithelial tissues. At least four closely located gene loci in the mouse and the human code for independent isoforms of CLCA proteins. Full-length CLCA proteins have an unprocessed mass ratio of approximately 100 kDa. Three of the four human loci code for the synthesis of membrane-associated proteins. CLCA proteins affect chloride conductance, epithelial secretion, cell-cell adhesion, apoptosis, cell cycle control, mucus production in asthma, and blood pressure. There is a structural and probable functional divergence between CLCA isoforms containing or not containing beta4-integrin binding domains. Cell cycle control and tumor metastasis are affected by isoforms with the binding domains. These isoforms are expressed prominently in smooth muscle, in some endothelial cells, in the central nervous system, and also in secretory epithelial cells. The isoform with disrupted beta4-integrin binding (hCLCA1, pCLCA1, mCLCA3) alters epithelial mucus secretion and ion transport processes. It is preferentially expressed in secretory epithelial tissues including trachea and small intestine. Chloride conductance is affected by the expression of several CLCA proteins. However, the dependence of the resulting electrical signature on the expression system rather than the CLCA protein suggests that these proteins are not independent Ca2+-dependent chloride channels, but may contribute to the activity of chloride channels formed by, or in conjunction with, other proteins.
Collapse
Affiliation(s)
- Matthew E Loewen
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
24
|
Hu B, Nadiri A, Bopp-Küchler S, Perrin-Schmitt F, Lesot H. Dental Epithelial Histomorphogenesis in vitro. J Dent Res 2005; 84:521-5. [PMID: 15914588 DOI: 10.1177/154405910508400607] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent developments in tooth-tissue engineering require that we understand the regulatory processes to be preserved to achieve histomorphogenesis and cell differentiation, especially for enamel tissue engineering. Using mouse first lower molars, our objectives were: (1) to determine whether the cap-stage dental mesenchyme can control dental epithelial histogenesis, (2) to test the role of the primary enamel knot (PEK) in specifying the potentialities of the dental mesenchyme, and (3) to evaluate the importance of positional information in epithelial cells. After tissue dissociation, the dental epithelium was further dissociated into individual cells, re-associated with dental mesenchyme, and cultured. Epithelial cells showed a high plasticity: Despite a complete loss of positional information, they rapidly underwent typical dental epithelial histogenesis. This was stimulated by the mesenchyme. Experiments performed at E13 demonstrated that the initial potentialities of the mesenchyme are not specified by the PEK. Positional information of dental epithelial cells does not require the memorization of their history.
Collapse
Affiliation(s)
- B Hu
- UMR INSERM 595, Faculté de Médecine, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Contacts of Basement Membrane Molecules with Cell Membranes. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Abdel-Ghany M, Cheng HC, Elble RC, Lin H, DiBiasio J, Pauli BU. The interacting binding domains of the beta(4) integrin and calcium-activated chloride channels (CLCAs) in metastasis. J Biol Chem 2003; 278:49406-16. [PMID: 14512419 DOI: 10.1074/jbc.m309086200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CLCA (chloride channel, calcium-activated) proteins are novel pulmonary vascular addresses for blood-borne, lung-metastatic cancer cells. They facilitate vascular arrest of cancer cells via adhesion to beta4 integrin and promote early, intravascular, metastatic growth. Here we identify the interacting binding domains of endothelial CLCA proteins (e.g. hCLCA2, mCLCA5, mCLCA1, and bCLCA2) and beta4 integrin. Endothelial CLCAs share a common beta4-binding motif (beta4BM) in their 90- and 35-kDa subunits of the sequence F(S/N)R(I/L/V)(S/T)S, which is located in the second extracellular domain of the 90-kDa CLCA and near the N terminus of the 35-kDa CLCA, respectively. Using enzyme-linked immunosorbent, pull-down, and adhesion assays, we showed that glutathione S-transferase fusion proteins of beta4BMs from the 90- and 35-kDa CLCA subunits bind to the beta4 integrin in a metal ion-dependent manner. Fusion proteins from fibronectin and the integrins beta1 and beta3 served as negative controls. beta4BM fusion proteins competitively blocked the beta4/CLCA adhesion and prevented lung colonization of MDA-MB-231 breast cancer cells. A disrupted beta4BM in hCLCA1, which is not expressed in endothelia, failed to interact with beta4 integrin. The corresponding CLCA-binding domain of the beta4 integrin is localized to the specific determining loop (SDL). Again enzyme-linked immunosorbent, pull-down, and adhesion assays were used to confirm the interaction with CLCA proteins using a glutathione S-transferase fusion protein representing the C-terminal two-thirds of beta4 SDL (amino acids 184-203). A chimeric beta4 integrin in which the indicated SDL sequence had been replaced with the corresponding sequence from the beta1 integrin failed to bind hCLCA2. The dominance of the CLCA ligand in beta4 activation and outside-in signaling is discussed in reference to our previous report that beta4/CLCA ligation elicits selective signaling via focal adhesion kinase to promote metastatic growth.
Collapse
Affiliation(s)
- Mossaad Abdel-Ghany
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|