1
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
2
|
Miao X, Shen S, Koch G, Wang X, Li J, Shen X, Qu J, Straubinger RM, Jusko WJ. Systems pharmacodynamic model of combined gemcitabine and trabectedin in pancreatic cancer cells. Part I.Çô Effects on signal transduction pathways related to tumor growth. J Pharm Sci 2024; 113:214-227. [PMID: 38498417 PMCID: PMC11017371 DOI: 10.1016/j.xphs.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 03/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States
| | - Shichen Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics Research Center, University of Basel, Children's Hospital, Basel, Switzerland
| | - Xue Wang
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Jun Li
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States; New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, United States; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
3
|
Frey N, Ouologuem L, Blenninger J, Siow WX, Thorn-Seshold J, Stöckl J, Abrahamian C, Fröhlich T, Vollmar AM, Grimm C, Bartel K. Endolysosomal TRPML1 channel regulates cancer cell migration by altering intracellular trafficking of E-cadherin and β 1-integrin. J Biol Chem 2024; 300:105581. [PMID: 38141765 PMCID: PMC10825694 DOI: 10.1016/j.jbc.2023.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023] Open
Abstract
Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and β1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and β1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a β-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.
Collapse
Affiliation(s)
- Nadine Frey
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lina Ouologuem
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Blenninger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wei-Xiong Siow
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Stöckl
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Carla Abrahamian
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
4
|
Podieh F, Wensveen R, Overboom M, Abbas L, Majolée J, Hordijk P. Differential role for rapid proteostasis in Rho GTPase-mediated control of quiescent endothelial integrity. J Biol Chem 2023; 299:104593. [PMID: 36894017 PMCID: PMC10124901 DOI: 10.1016/j.jbc.2023.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion- and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homologue RhoA, increase ∼10-fold in 5-8 h. We determined that, the depletion of RhoB, but not of RhoA, the inhibition of actin contractility and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact, is essential to preserve monolayer integrity.
Collapse
Affiliation(s)
- Fabienne Podieh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Roos Wensveen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - MaxC Overboom
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Lotte Abbas
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands; Developmental Biology and Stem Cell Research, Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - PeterL Hordijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Cortisol Rapidly Facilitates Glucocorticoid Receptor Translocation to the Plasma Membrane in Primary Trout Hepatocytes. BIOLOGY 2023; 12:biology12020311. [PMID: 36829586 PMCID: PMC9953755 DOI: 10.3390/biology12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Glucocorticoids (GCs) stimulate rapid cell signalling by activating the membrane-anchored intracellular glucocorticoid receptor (GR). However, the recruitment of the GR to the plasma membrane to facilitate nongenomic signalling is far from clear. As cytosolic free calcium ([Ca2+]i) is involved in intracellular protein dynamics, we tested the hypothesis that acute elevation in cortisol levels rapidly stimulates GR translocation to the plasma membrane via a calcium-dependent process in rainbow trout (Oncorhynchus mykiss) hepatocytes. To test this, we monitored temporal changes in intracellular GR distribution in response to cortisol exposure. Immunofluorescence labelling showed that the GR was present in cytosolic and nuclear compartments in trout hepatocytes. However, upon cortisol exposure, the GR rapidly (within 5 min) formed punctate and colocalized with caveolin-1, suggesting plasma membrane localization of the receptor. This redistribution of the GR to the plasma membrane was transient and lasted for 30 min and was evident even upon exposure to cortisol-BSA, a membrane-impermeable analogue of the steroid. The rapid cortisol-mediated GR translocation to the plasma membrane involved F-actin polymerization and was completely abolished in the presence of either EGTA or Cpd5J-4, a calcium release-activated calcium (CRAC) channel blocker. Additionally, the modulation of the biophysical properties of the plasma membrane by cholesterol or methyl β-cyclodextrin, which led to changes in ([Ca2+]i) levels, modified GR translocation to the plasma membrane. Altogether, acute cortisol-mediated rise in ([Ca2+]i) levels rapidly stimulated the translocation of intracellular GR to the plasma membrane, and we propose this as a mechanism promoting the nongenomic action of the GR for hepatocyte stress resistance.
Collapse
|
6
|
Maier M, Olthoff S, Hill K, Zosel C, Magauer T, Wein LA, Schaefer M. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. Br J Pharmacol 2022; 179:5290-5304. [PMID: 35916168 DOI: 10.1111/bph.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ signalling mediated by the thermosensitive, non-selective, Ca2+ -permeable transient receptor potential channel TRPV3 is assumed to play a critical role in regulating several aspects of skin functions, such as keratinocyte proliferation, differentiation, skin barrier formation and wound healing. Studying the function of TRPV3 in skin homeostasis, however, is still constrained by a lack of potent and selective pharmacological modulators of TRPV3. EXPERIMENTAL APPROACH By screening an in-house compound library using fluorometric intracellular Ca2+ assays, we identified two chemically related hits. The more potent and efficient TRPV3 activator KS0365 was further evaluated in fluo-4-assisted Ca2+ assays, different Ca2+ imaging approaches, electrophysiological studies, cytotoxicity and migration assays. KEY RESULTS KS0365 activated recombinant and native mouse TRPV3 more potently and with a higher efficacy compared to 2-APB and did not activate TRPV1, TRPV2 or TRPV4 channels. The activation of TRPV3 by KS0365 super-additively accelerated the EGF-induced keratinocyte migration, which was inhibited by the TRP channel blocker ruthenium red or by siRNA-mediated TRPV3 knockdown. Moreover, KS0365 induced strong Ca2+ responses in migrating front cells and in leading edges of keratinocytes. CONCLUSIONS AND IMPLICATIONS The selective TRPV3 activator KS0365 triggers increases in [Ca2+ ]i with most prominent signals in the leading edge, and accelerates migration of keratinocytes. TRPV3 activators may promote reepithelialization upon skin wounding.
Collapse
Affiliation(s)
- Marion Maier
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Stefan Olthoff
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Kerstin Hill
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Carolin Zosel
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Thomas Magauer
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Lukas Anton Wein
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Michael Schaefer
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| |
Collapse
|
7
|
Piraino LR, Benoit DSW, DeLouise LA. Optimizing Soluble Cues for Salivary Gland Tissue Mimetics Using a Design of Experiments (DoE) Approach. Cells 2022; 11:1962. [PMID: 35741092 PMCID: PMC9222211 DOI: 10.3390/cells11121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The development of therapies to prevent or treat salivary gland dysfunction has been limited by a lack of functional in vitro models. Specifically, critical markers of salivary gland secretory phenotype downregulate rapidly ex vivo. Here, we utilize a salivary gland tissue chip model to conduct a design of experiments (DoE) approach to test combinations of seven soluble cues that were previously shown to maintain or improve salivary gland cell function. This approach uses statistical techniques to improve efficiency and accuracy of combinations of factors. The DoE-designed culture conditions improve markers of salivary gland function. Data show that the EGFR inhibitor, EKI-785, maintains relative mRNA expression of Mist1, a key acinar cell transcription factor, while FGF10 and neurturin promote mRNA expression of Aqp5 and Tmem16a, channel proteins involved in secretion. Mist1 mRNA expression correlates with increased secretory function, including calcium signaling and mucin (PAS-AB) staining. Overall, this study demonstrates that media conditions can be efficiently optimized to support secretory function in vitro using a DoE approach.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
8
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
9
|
Shiota T, Nagata R, Kikuchi S, Nanaura H, Matsubayashi M, Nakanishi M, Kobashigawa S, Isozumi N, Kiriyama T, Nagayama K, Sugie K, Yamashiro Y, Mori E. C9orf72-Derived Proline:Arginine Poly-Dipeptides Modulate Cytoskeleton and Mechanical Stress Response. Front Cell Dev Biol 2022; 10:750829. [PMID: 35399536 PMCID: PMC8983821 DOI: 10.3389/fcell.2022.750829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in C9orf72 have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response. PR poly-dipeptides increased the junctions and branches of the IF network and increased cell stiffness. They also changed the distribution of actin filaments and increased the size of FA and intracellular calcium concentration. PR poly-dipeptides or an inhibitor of IF organization prevented cell detachment. Furthermore, PR poly-dipeptides induced upregulation of mechanical stress response factors and led to a maladaptive response to cyclic stretch. These results suggest that the effects of PR poly-dipeptides on mechanical properties and mechanical stress response may serve as a pathogenesis of C9orf72-related neurodegeneration.
Collapse
Affiliation(s)
- Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Noriyoshi Isozumi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Hitachi, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, Tsukuba, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
- V-iCliniX Laboratory, Nara Medical University, Kashihara, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| |
Collapse
|
10
|
Varma D, Almeida JFQ, DeSantiago J, Blatter LA, Banach K. Inositol 1,4,5-trisphosphate receptor - reactive oxygen signaling domain regulates excitation-contraction coupling in atrial myocytes. J Mol Cell Cardiol 2022; 163:147-155. [PMID: 34755642 PMCID: PMC8826595 DOI: 10.1016/j.yjmcc.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 02/03/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is up-regulated in patients with atrial fibrillation (AF) and InsP3-induced Ca2+ release (IICR) is linked to pro-arrhythmic spontaneous Ca2+ release events. Nevertheless, knowledge of the physiological relevance and regulation of InsP3Rs in atrial muscle is still limited. We hypothesize that InsP3R and NADPH oxidase 2 (NOX2) form a functional signaling domain where NOX2 derived reactive oxygen species (ROS) regulate InsP3R agonist affinity and thereby Ca2+ release. To quantitate the contribution of IICR to atrial excitation-contraction coupling (ECC) atrial myocytes (AMs) were isolated from wild type and NOX2 deficient (Nox2-/-) mice and changes in the cytoplasmic Ca2+ concentration ([Ca2+]i; fluo-4/AM, indo-1) or ROS (2',7'-dichlorofluorescein, DCF) were monitored by fluorescence microscopy. Superfusion of AMs with Angiotensin II (AngII: 1 μmol/L) significantly increased diastolic [Ca2+]i (F/F0, Ctrl: 1.00 ± 0.01, AngII: 1.20 ± 0.03; n = 7; p < 0.05), the field stimulation induced Ca2+ transient (CaT) amplitude (ΔF/F0, Ctrl: 2.00 ± 0.17, AngII: 2.39 ± 0.22, n = 7; p < 0.05), and let to the occurrence of spontaneous increases in [Ca2+]i. These changes in [Ca2+]i were suppressed by the InsP3R blocker 2-aminoethoxydiphenyl-borate (2-APB; 1 μmol/L). Concomitantly, AngII induced an increase in ROS production that was sensitive to the NOX2 specific inhibitor gp91ds-tat (1 μmol/L). In NOX2-/- AMs, AngII failed to increase diastolic [Ca2+]i, CaT amplitude, and the frequency of spontaneous Ca2+ increases. Furthermore, the enhancement of CaTs by exposure to membrane permeant InsP3 was abolished by NOX inhibition with apocynin (1 μM). AngII induced IICR in Nox2-/- AMs could be restored by addition of exogenous ROS (tert-butyl hydroperoxide, tBHP: 5 μmol/L). In saponin permeabilized AMs InsP3 (5 μmol/L) induced Ca2+ sparks that increased in frequency in the presence of ROS (InsP3: 9.65 ± 1.44 sparks*s-1*(100μm)-1; InsP3 + tBHP: 10.77 ± 1.5 sparks*s-1*(100μm)-1; n = 5; p < 0.05). The combined effect of InsP3 + tBHP was entirely suppressed by 2-APB and Xestospongine C (XeC). Changes in IICR due to InsP3R glutathionylation induced by diamide could be reversed by the reducing agent dithiothreitol (DTT: 1 mmol/L) and prevented by pretreatment with 2-APB, supporting that the ROS-dependent post-translational modification of the InsP3R plays a role in the regulation of ECC. Our data demonstrate that in AMs the InsP3R is under dual control of agonist induced InsP3 and ROS formation and suggest that InsP3 and NOX2-derived ROS co-regulate atrial IICR and ECC in a defined InsP3R/NOX2 signaling domain.
Collapse
Affiliation(s)
- Disha Varma
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Jonathas F Q Almeida
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Jaime DeSantiago
- Dept. of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Lothar A Blatter
- Dept. of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Miroshnikova YA, Manet S, Li X, Wickström SA, Faurobert E, Albiges-Rizo C. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol Biol Cell 2021; 32:1724-1736. [PMID: 34081532 PMCID: PMC8684738 DOI: 10.1091/mbc.e21-03-0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin–based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France.,Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandra Manet
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eva Faurobert
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| |
Collapse
|
12
|
Store Operated Calcium Entry in Cell Migration and Cancer Metastasis. Cells 2021; 10:cells10051246. [PMID: 34069353 PMCID: PMC8158756 DOI: 10.3390/cells10051246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Ca2+ signaling is ubiquitous in eukaryotic cells and modulates many cellular events including cell migration. Directional cell migration requires the polarization of both signaling and structural elements. This polarization is reflected in various Ca2+ signaling pathways that impinge on cell movement. In particular, store-operated Ca2+ entry (SOCE) plays important roles in regulating cell movement at both the front and rear of migrating cells. SOCE represents a predominant Ca2+ influx pathway in non-excitable cells, which are the primary migrating cells in multicellular organisms. In this review, we summarize the role of Ca2+ signaling in cell migration with a focus on SOCE and its diverse functions in migrating cells and cancer metastasis. SOCE has been implicated in regulating focal adhesion turnover in a polarized fashion and the mechanisms involved are beginning to be elucidated. However, SOCE is also involved is other aspects of cell migration with a less well-defined mechanistic understanding. Therefore, much remains to be learned regarding the role and regulation of SOCE in migrating cells.
Collapse
|
13
|
Vreeken D, Bruikman CS, Stam W, Cox SML, Nagy Z, Zhang H, Postma RJ, van Zonneveld AJ, Hovingh GK, van Gils JM. Downregulation of Endothelial Plexin A4 Under Inflammatory Conditions Impairs Vascular Integrity. Front Cardiovasc Med 2021; 8:633609. [PMID: 34017863 PMCID: PMC8129156 DOI: 10.3389/fcvm.2021.633609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Besides hyperlipidemia, inflammation is an important determinant in the initiation and the progression of atherosclerosis. As Neuroimmune Guidance Cues (NGCs) are emerging as regulators of atherosclerosis, we set out to investigate the expression and function of inflammation-regulated NGCs. Methods and results: NGC expression in human monocytes and endothelial cells was assessed using a publicly available RNA dataset. Next, the mRNA levels of expressed NGCs were analyzed in primary human monocytes and endothelial cells after stimulation with IL1β or TNFα. Upon stimulation a total of 14 and 19 NGCs in monocytes and endothelial cells, respectively, were differentially expressed. Since plexin A4 (PLXNA4) was strongly downregulated in endothelial cells under inflammatory conditions, the role of PLXNA4 in endothelial function was investigated. Knockdown of PLXNA4 in endothelial cells markedly impaired the integrity of the monolayer leading to more elongated cells with an inflammatory phenotype. In addition, these cells showed an increase in actin stress fibers and decreased cell-cell junctions. Functional assays revealed decreased barrier function and capillary network formation of the endothelial cells, while vascular leakage and trans-endothelial migration of monocytes was increased. Conclusion: The current study demonstrates that pro-inflammatory conditions result in differential expression of NGCs in endothelial cells and monocytes, both culprit cell types in atherosclerosis. Specifically, endothelial PLXNA4 is reduced upon inflammation, while PLXNA4 maintains endothelial barrier function thereby preventing vascular leakage of fluids as well as cells. Taken together, PLXNA4 may well have a causal role in atherogenesis that deserves further investigation.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline Suzanne Bruikman
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Zsófia Nagy
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Huayu Zhang
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rudmer Johannes Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Gerard Kornelis Hovingh
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands.,Novo Nordisk A/S, Copenhagen, Denmark
| | - Janine Maria van Gils
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Bustos G, Ahumada-Castro U, Silva-Pavez E, Puebla A, Lovy A, Cesar Cardenas J. The ER-mitochondria Ca 2+ signaling in cancer progression: Fueling the monster. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:49-121. [PMID: 34392932 DOI: 10.1016/bs.ircmb.2021.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
Collapse
Affiliation(s)
- Galdo Bustos
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Eduardo Silva-Pavez
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Andrea Puebla
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.
| | - J Cesar Cardenas
- Faculty of Sciences, Universidad Mayor, Center for Integrative Biology, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
15
|
Bhat S, Adiga D, Shukla V, Guruprasad KP, Kabekkodu SP, Satyamoorthy K. Metastatic suppression by DOC2B is mediated by inhibition of epithelial-mesenchymal transition and induction of senescence. Cell Biol Toxicol 2021; 38:237-258. [PMID: 33758996 PMCID: PMC8986756 DOI: 10.1007/s10565-021-09598-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Kanive Parashiva Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, India.
| |
Collapse
|
16
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
17
|
Abedi T, Castilleux R, Nibbering P, Niittylä T. The Spatio-Temporal Distribution of Cell Wall-Associated Glycoproteins During Wood Formation in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:611607. [PMID: 33381142 PMCID: PMC7768015 DOI: 10.3389/fpls.2020.611607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/26/2020] [Indexed: 05/31/2023]
Abstract
Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with β-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.
Collapse
|
18
|
K + Channel Tetramerization Domain 5 (KCTD5) Protein Regulates Cell Migration, Focal Adhesion Dynamics and Spreading through Modulation of Ca 2+ Signaling and Rac1 Activity. Cells 2020; 9:cells9102273. [PMID: 33053687 PMCID: PMC7600296 DOI: 10.3390/cells9102273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Cell migration is critical for several physiological and pathophysiological processes. It depends on the coordinated action of kinases, phosphatases, Rho-GTPases proteins, and Ca2+ signaling. Interestingly, ubiquitination events have emerged as regulatory elements of migration. Thus, the role of proteins involved in ubiquitination processes could be relevant to a complete understanding of pro-migratory mechanisms. KCTD5 is a member of Potassium Channel Tetramerization Domain (KCTD) proteins that have been proposed as a putative adaptor for Cullin3-E3 ubiquitin ligase and a novel regulatory protein of TRPM4 channels. Here, we study whether KCTD5 participates in cell migration-associated mechanisms, such as focal adhesion dynamics and cellular spreading. Our results show that KCTD5 CRISPR/Cas9- and shRNA-based depletion in B16-F10 cells promoted an increase in cell migration and cell spreading, and a decrease in the focal adhesion area, consistent with an increased focal adhesion disassembly rate. The expression of a dominant-negative mutant of Rho-GTPases Rac1 precluded the KCTD5 depletion-induced increase in cell spreading. Additionally, KCTD5 silencing decreased the serum-induced Ca2+ response, and the reversion of this with ionomycin abolished the KCTD5 knockdown-induced decrease in focal adhesion size. Together, these data suggest that KCTD5 acts as a regulator of cell migration by modulating cell spreading and focal adhesion dynamics through Rac1 activity and Ca2+ signaling, respectively.
Collapse
|
19
|
Zhou W, Hsu AY, Wang Y, Syahirah R, Wang T, Jeffries J, Wang X, Mohammad H, Seleem MN, Umulis D, Deng Q. Mitofusin 2 regulates neutrophil adhesive migration and the actin cytoskeleton. J Cell Sci 2020; 133:jcs248880. [PMID: 32788232 PMCID: PMC7491649 DOI: 10.1242/jcs.248880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils rely on glycolysis for energy production. How mitochondria regulate neutrophil function is not fully understood. Here, we report that mitochondrial outer membrane protein Mitofusin 2 (MFN2) regulates neutrophil homeostasis and chemotaxis in vivoMfn2-deficient neutrophils are released from the hematopoietic tissue, trapped in the vasculature in zebrafish embryos, and not capable of chemotaxis. Consistent with this, human neutrophil-like cells that are deficient for MFN2 fail to arrest on activated endothelium under sheer stress or perform chemotaxis on 2D surfaces. Deletion of MFN2 results in a significant reduction of neutrophil infiltration to the inflamed peritoneal cavity in mice. Mechanistically, MFN2-deficient neutrophil-like cells display disrupted mitochondria-ER interaction, heightened intracellular Ca2+ levels and elevated Rac activation after chemokine stimulation. Restoring a mitochondria-ER tether rescues the abnormal Ca2+ levels, Rac hyperactivation and chemotaxis defect resulting from MFN2 depletion. Finally, inhibition of Rac activation restores chemotaxis in MFN2-deficient neutrophils. Taken together, we have identified that MFN2 regulates neutrophil migration via maintaining the mitochondria-ER interaction to suppress Rac activation, and uncovered a previously unrecognized role of MFN2 in regulating cell migration and the actin cytoskeleton.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jacob Jeffries
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xu Wang
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - David Umulis
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Kolyvushko O, Kelch MA, Osterrieder N, Azab W. Equine Alphaherpesviruses Require Activation of the Small GTPases Rac1 and Cdc42 for Intracellular Transport. Microorganisms 2020; 8:microorganisms8071013. [PMID: 32645930 PMCID: PMC7409331 DOI: 10.3390/microorganisms8071013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses utilize host cell signaling to facilitate productive infection. Equine herpesvirus type 1 (EHV-1) has been shown to activate Ca2+ release and phospholipase C upon contact with α4β1 integrins on the cell surface. Signaling molecules, including small GTPases, have been shown to be activated downstream of Ca2+ release, and modulate virus entry, membrane remodeling and intracellular transport. In this study, we show that EHV-1 activates the small GTPases Rac1 and Cdc42 during infection. The activation of Rac1 and Cdc42 is necessary for virus-induced acetylation of tubulin, effective viral transport to the nucleus, and cell-to-cell spread. We also show that inhibitors of Rac1 and Cdc42 did not block virus entry, but inhibited overall virus infection. The Rac1 and Cdc42 signaling is presumably orthogonal to Ca2+ release, since Rac1 and Cdc42 inhibitors affected the infection of both EHV-1 and EHV-4, which do not bind to integrins.
Collapse
Affiliation(s)
| | | | | | - Walid Azab
- Correspondence: ; Tel.: +49-30-838-50087
| |
Collapse
|
21
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
22
|
Hann J, Bueb JL, Tolle F, Bréchard S. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J Leukoc Biol 2019; 107:285-297. [PMID: 31841231 DOI: 10.1002/jlb.3ru0719-241r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca2+ -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca2+ concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca2+ mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca2+ in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca2+ -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca2+ influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review.
Collapse
Affiliation(s)
- J Hann
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
23
|
Inoue K, Tian X, Velazquez H, Soda K, Wang Z, Pedigo CE, Wang Y, Cross E, Groener M, Shin JW, Li W, Hassan H, Yamamoto K, Mundel P, Ishibe S. Inhibition of Endocytosis of Clathrin-Mediated Angiotensin II Receptor Type 1 in Podocytes Augments Glomerular Injury. J Am Soc Nephrol 2019; 30:2307-2320. [PMID: 31511362 PMCID: PMC6900791 DOI: 10.1681/asn.2019010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibition of the renin-angiotensin system remains a cornerstone in reducing proteinuria and progression of kidney failure, effects believed to be the result of reduction in BP and glomerular hyperfiltration. However, studies have yielded conflicting results on whether podocyte-specific angiotensin II (AngII) signaling directly induces podocyte injury. Previous research has found that after AngII stimulation, β-arrestin-bound angiotensin II receptor type 1 (AT1R) is internalized in a clathrin- and dynamin-dependent manner, and that Dynamin1 and Dynamin2 double-knockout mice exhibit impaired clathrin-mediated endocytosis. METHODS We used podocyte-specific Dyn double-knockout mice to examine AngII-stimulated AT1R internalization and signaling in primary podocytes and controls. We also examined the in vivo effect of AngII in these double-knockout mice through renin-angiotensin system blockers and through deletion of Agtr1a (which encodes the predominant AT1R isoform expressed in kidney, AT1aR). We tested calcium influx, Rac1 activation, and lamellipodial extension in control and primary podocytes of Dnm double-knockout mice treated with AngII. RESULTS We confirmed augmented AngII-stimulated AT1R signaling in primary Dnm double-knockout podocytes resulting from arrest of clathrin-coated pit turnover. Genetic ablation of podocyte Agtr1a in Dnm double-knockout mice demonstrated improved albuminuria and kidney function compared with the double-knockout mice. Isolation of podocytes from Dnm double-knockout mice revealed abnormal membrane dynamics, with increased Rac1 activation and lamellipodial extension, which was attenuated in Dnm double-knockout podocytes lacking AT1aR. CONCLUSIONS Our results indicate that inhibiting aberrant podocyte-associated AT1aR signaling pathways has a protective effect in maintaining the integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kazunori Inoue
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Heino Velazquez
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Keita Soda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christopher E Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ying Wang
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jee-Won Shin
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hossam Hassan
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; and
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut;
| |
Collapse
|
24
|
Karunakaran U, Lee JE, Elumalai S, Moon JS, Won KC. Myricetin prevents thapsigargin-induced CDK5-P66Shc signalosome mediated pancreatic β-cell dysfunction. Free Radic Biol Med 2019; 141:59-66. [PMID: 31163256 DOI: 10.1016/j.freeradbiomed.2019.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress has deleterious effects on pancreatic β-cell function and survival in type 2 diabetes (T2D). Cyclin-dependent kinase 5 (CDK5) plays a critical role in β-cell failure under diabetic milieu conditions. However, little information is available on CDK5's ability to impair the function of β-cells via a chemical ER stress inducer thapsigargin. Myricetin, a natural flavonoid, has therapeutic potential for the treatment of type 2 diabetes mellitus. Therefore, we examined the effect of CDK5 on thapsigargin-induced β-cell apoptosis, and explored the relationship between myricetin and CDK5. Exposure of beta cells with thapsigargin, induced a Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Activated CDK5 induced antiapoptotic protein myeloid cell leukemia sequence 1 (Mcl-1) degradation which was associated with p66Shc serine 36 phosphorylation, causing beta cell apoptosis via mitochondrial dysfunction. Exposure of beta cells to myricetin resulted in an acute inhibition of Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Myricetin inhibited CDK5 activation by directly binding to its ATP-binding pocket. Treatment with myricetin also enhanced the stability of Mcl-1 after thapsigargin treatment. Inhibition of CDK5 with myricetin or roscovitine, a CDK5 inhibitor attenuates thapsigargin induced p66Shc serine 36 phosphorylation and also reduced mitochondrial dysfunction by decreasing mitochondrial ROS and caspase-3 activation. In addition, myricetin was observed to enhance PDX-1 and insulin mRNA expression and potentiate glucose stimulated insulin secretion (GSIS). Taken together, these findings indicate that thapsigargin-induced early molecular events lead to CDK5-p66Shc signalosome contributes to thapsigargin-induced pancreatic β-cell dysfunction. Myricetin blocked thapsigargin induced CDK5-p66Shc signalosome formation and prevented pancreatic beta cell dysfunction. In this study, we demonstrated for the first time that thapsigargin initiated CDK5-p66Shc signalosome mediates the pancreatic beta cell dysfunction and myricetin protects the pancreatic beta cells through the inhibition of CDK5-p66Shc signalosome.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Ji Eun Lee
- Department of Internal Medicine, CHA Gumi Medical Center, CHA University, Gumi, Republic of Korea
| | - Suma Elumalai
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea; Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
25
|
Canales J, Morales D, Blanco C, Rivas J, Díaz N, Angelopoulos I, Cerda O. A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Front Physiol 2019; 10:757. [PMID: 31275168 PMCID: PMC6591513 DOI: 10.3389/fphys.2019.00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cell migration is a key process in cancer metastasis, allowing malignant cells to spread from the primary tumor to distant organs. At the molecular level, migration is the result of several coordinated events involving mechanical forces and cellular signaling, where the second messenger Ca2+ plays a pivotal role. Therefore, elucidating the regulation of intracellular Ca2+ levels is key for a complete understanding of the mechanisms controlling cellular migration. In this regard, understanding the function of Transient Receptor Potential (TRP) channels, which are fundamental determinants of Ca2+ signaling, is critical to uncovering mechanisms of mechanotransduction during cell migration and, consequently, in pathologies closely linked to it, such as cancer. Here, we review recent studies on the association between TRP channels and migration-related mechanotransduction events, as well as in the involvement of TRP channels in the migration-dependent pathophysiological process of metastasis.
Collapse
Affiliation(s)
- Jimena Canales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Constanza Blanco
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - José Rivas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Nicolás Díaz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Ioannis Angelopoulos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases, Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
26
|
Chopra R, Wasserman AH, Pulst SM, De Zeeuw CI, Shakkottai VG. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia. Hum Mol Genet 2019; 27:1396-1410. [PMID: 29432535 DOI: 10.1093/hmg/ddy050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause cerebellar ataxia. PRKCG has also been identified as an important node in ataxia gene networks more broadly, but the functional role of PKC in other forms of ataxia remains unexplored, and the mechanisms by which PKC isozymes regulate Purkinje neuron health are not well understood. Here, we investigated how PKC activity influences neurodegeneration in inherited ataxia. Using mouse models of spinocerebellar ataxia type 1 (SCA1) and 2 (SCA2) we identify an increase in PKC-mediated substrate phosphorylation in two different forms of inherited cerebellar ataxia. Normalizing PKC substrate phosphorylation in SCA1 and SCA2 mice accelerates degeneration, suggesting that the increased activity observed in these models is neuroprotective. We also find that increased phosphorylation of PKC targets limits Purkinje neuron membrane excitability, suggesting that PKC activity may support Purkinje neuron health by moderating excitability. These data suggest a functional role for PKC enzymes in ataxia gene networks, and demonstrate that increased PKC activity is a protective modifier of degeneration in inherited cerebellar ataxia.
Collapse
Affiliation(s)
- Ravi Chopra
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aaron H Wasserman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam 1105 CA, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam 3015 GE, The Netherlands
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Chen Y, Wang D, Peng H, Chen X, Han X, Yu J, Wang W, Liang L, Liu Z, Zheng Y, Hu J, Yang L, Li J, Zhou H, Cui X, Li F. Epigenetically upregulated oncoprotein PLCE1 drives esophageal carcinoma angiogenesis and proliferation via activating the PI-PLCε-NF-κB signaling pathway and VEGF-C/ Bcl-2 expression. Mol Cancer 2019; 18:1. [PMID: 30609930 PMCID: PMC6320601 DOI: 10.1186/s12943-018-0930-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies. Neovascularization during tumorigenesis supplies oxygen and nutrients to proliferative tumor cells, and serves as a conduit for migration. Targeting oncogenes involved in angiogenesis is needed to treat organ-confined and locally advanced ESCC. Although the phospholipase C epsilon-1 (PLCE1) gene was originally identified as a susceptibility gene for ESCC, how PLCE1 is involved in ESCC is unclear. METHODS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used to measure the methylation status of the PLCE1 promoter region. To validate the underlying mechanism for PLCE1 in constitutive activation of the NF-κB signaling pathway, we performed studies using in vitro and in vivo assays and samples from 368 formalin-fixed esophageal cancer tissues and 215 normal tissues with IHC using tissue microarrays and the Cancer Genome Atlas dataset. RESULTS We report that hypomethylation-associated up-regulation of PLCE1 expression was correlated with tumor angiogenesis and poor prognosis in ESCC cohorts. PLCE1 can activate NF-κB through phosphoinositide-phospholipase C-ε (PI-PLCε) signaling pathway. Furthermore, PLCE1 can bind p65 and IκBα proteins, promoting IκBα-S32 and p65-S536 phosphorylation. Consequently, phosphorylated IκBα promotes nuclear translocation of p50/p65 and p65, as a transcription factor, can bind vascular endothelial growth factor-C and bcl-2 promoters, enhancing angiogenesis and inhibiting apoptosis in vitro. Moreover, xenograft tumors in nude mice proved that PLCE1 can induce angiogenesis, inhibit apoptosis, and increase tumor aggressiveness via the NF-κB signaling pathway in vivo. CONCLUSIONS Our findings not only provide evidence that hypomethylation-induced PLCE1 confers angiogenesis and proliferation in ESCC by activating PI-PLCε-NF-κB signaling pathway and VEGF-C/Bcl-2 expression, but also suggest that modulation of PLCE1 by epigenetic modification or a selective inhibitor may be a promising therapeutic approach for the treatment of ESCC.
Collapse
Affiliation(s)
- Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.,The people's hospital of Suzhou National Hi-Tech District, Suzhou, 215010, China
| | - Dandan Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xi Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jie Yu
- The people's hospital of Suzhou National Hi-Tech District, Suzhou, 215010, China
| | - Wenjie Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lirong Liang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jun Li
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
28
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
30
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
31
|
Hayashi K, Yamamoto TS, Ueno N. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Sci Rep 2018; 8:2433. [PMID: 29402947 PMCID: PMC5799360 DOI: 10.1038/s41598-018-20747-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca2+ signals play an essential role in the active cell migration during gastrulation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takamasa S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
32
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
33
|
Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang X, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca 2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Mol Biol Cell 2017; 29:270-284. [PMID: 29187576 PMCID: PMC5996962 DOI: 10.1091/mbc.e17-09-0561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Host cell invasion is an indispensable step for a successful infection by intracellular pathogens. Recent studies identified pathogen-induced host cell plasma membrane perforation as a novel mechanism used by diverse pathogens (Trypanosoma cruzi, Listeria monocytogenes, and adenovirus) to promote their internalization into target cells. It was concluded that T. cruzi and adenovirus damage the host cell plasma membrane to hijack the endocytic-dependent membrane resealing machinery, thereby invading the host cell. We studied L. monocytogenes and its secreted pore-forming toxin listeriolysin O (LLO) to identify key signaling events activated upon plasma membrane perforation that lead to bacterial internalization. Using various approaches, including fluorescence resonance energy transfer imaging, we found that the influx of extracellular Ca2+ subsequent to LLO-mediated plasma membrane perforation is required for the activation of a conventional protein kinase C (cPKC). cPKC is positioned upstream of Rac1 and the Arp2/3 complex, which activation leads to F-actin--dependent bacterial internalization. Inhibition of this pathway did not prevent membrane resealing, revealing that perforation-dependent L. monocytogenes endocytosis is distinct from the resealing machinery. These studies identified the LLO-dependent endocytic pathway of L. monocytogenes and support a novel model for pathogen uptake promoted by plasma membrane injury that is independent of membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210.,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Stephen Vadia
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarika Pathak-Sharma
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5624
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 .,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
The minor histocompatibility antigen 1 (HMHA1)/ArhGAP45 is a RacGAP and a novel regulator of endothelial integrity. Vascul Pharmacol 2017; 101:38-47. [PMID: 29174013 DOI: 10.1016/j.vph.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/25/2022]
Abstract
Endothelial cells line the vasculature and act as gatekeepers that control the passage of plasma, macromolecules and cells from the circulation to the interstitial space. Dysfunction of the endothelial barrier can lead to uncontrolled leak or edema. Vascular leakage is a hallmark of a range of diseases and despite its large impact no specialized therapies are available to prevent or reduce it. RhoGTPases are known key regulators of cellular behavior that are directly involved in the regulation of the endothelial barrier. We recently performed a comprehensive analysis of the effect of all RhoGTPases and their regulators on basal endothelial integrity. In addition to novel positive regulators of endothelial barrier function, we also identified novel negative regulators, of which the ArhGAP45 (also known as HMHA1) was the most significant. We now demonstrate that ArhGAP45 acts as a Rac-GAP (GTPase-Activating Protein) in endothelial cells, which explains its negative effect on endothelial barrier function. Silencing ArhGAP45 not only promotes basal endothelial barrier function, but also increases cellular surface area and induces sprout formation in a 3D-fibrin matrix. Our data further shows that loss of ArhGAP45 promotes migration and shear stress adaptation. In conclusion, we identify ArhGAP45 (HMHA1) as a novel regulator, which contributes to the fine-tuning of the regulation of basal endothelial integrity.
Collapse
|
35
|
Huang X, Jin M, Chen YX, Wang J, Zhai K, Chang Y, Yuan Q, Yao KT, Ji G. ERP44 inhibits human lung cancer cell migration mainly via IP3R2. Aging (Albany NY) 2017; 8:1276-86. [PMID: 27347718 PMCID: PMC4931832 DOI: 10.18632/aging.100984] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.
Collapse
Affiliation(s)
- Xue Huang
- Cancer Research Institute of Southern Medical University, Guangzhou, China
| | - Meng Jin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying-Xiao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Current address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jun Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Chang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qi Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kai-Tai Yao
- Cancer Research Institute of Southern Medical University, Guangzhou, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Wang Y, Bao X, Zhang Z, Sun Y, Zhou X. FGF2 promotes metastasis of uveal melanoma cells via store-operated calcium entry. Onco Targets Ther 2017; 10:5317-5328. [PMID: 29184418 PMCID: PMC5687494 DOI: 10.2147/ott.s136677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular malignancy in adults, is highly metastatic and associated with dismal prognosis. Fibroblast growth factor 2 (FGF2) has been shown to induce cell proliferation and angiogenesis of melanoma and other malignancies. However, the expression of FGF2 in UM and its effects on melanoma cell migration are not well known. In this study, we found FGF2 expression was related to UM histological subtype and presence of metastasis. In vitro experiments showed that FGF2 treatment caused increased horizontal and vertical migration and F-actin cytoskeleton assembly as well as decreased adhesive activity of MUM2B cells, together with increased intracellular calcium concentration and expression of ORAI1 and STIM1 – two key regulatory proteins of store-operated calcium entry (SOCE). The mouse xenograft model showed that MUM2B cells with FGF2 stimulation grew into larger tumor masses and were prone to metastasis. In addition, the SOCE inhibitor 2-aminoethoxydiphenyl borate (2-APB) reversed all of these effects of FGF2. Finally, human UM samples and mouse xenograft model samples were used to confirm the correlation of FGF2 with ORAI1 and STIM1 expression. Taken together, our study suggests that FGF2 promotes metastasis of UM via SOCE.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | | | | | - Yi Sun
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing
| |
Collapse
|
37
|
White C. The Regulation of Tumor Cell Invasion and Metastasis by Endoplasmic Reticulum-to-Mitochondrial Ca 2+ Transfer. Front Oncol 2017; 7:171. [PMID: 28848710 PMCID: PMC5554129 DOI: 10.3389/fonc.2017.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cell migration is one of the many processes orchestrated by calcium (Ca2+) signaling, and its dysregulation drives the increased invasive and metastatic potential of cancer cells. The ability of Ca2+ to function effectively as a regulator of migration requires the generation of temporally complex signals within spatially restricted microdomains. The generation and maintenance of these Ca2+ signals require a specific structural architecture and tightly regulated communication between the extracellular space, intracellular organelles, and cytoplasmic compartments. New insights into how Ca2+ microdomains are shaped by interorganellar Ca2+ communication have shed light on how Ca2+ coordinates cell migration by directing cellular polarization and the rearrangement of structural proteins. Importantly, we are beginning to understand how cancer subverts normal migration through the activity of oncogenes and tumor suppressors that impinge directly on the physiological function or expression levels of Ca2+ signaling proteins. In this review, we present and discuss research at the forefront of interorganellar Ca2+ signaling as it relates to cell migration, metastasis, and cancer progression, with special focus on endoplasmic reticulum-to-mitochondrial Ca2+ transfer.
Collapse
Affiliation(s)
- Carl White
- Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
38
|
A Feed-Forward Mechanism Involving the NOX Complex and RyR-Mediated Ca2+ Release During Axonal Specification. J Neurosci 2017; 36:11107-11119. [PMID: 27798190 DOI: 10.1523/jneurosci.1455-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/06/2016] [Indexed: 01/16/2023] Open
Abstract
Physiological levels of ROS support neurite outgrowth and axonal specification, but the mechanisms by which ROS are able to shape neurons remain unknown. Ca2+, a broad intracellular second messenger, promotes both Rac1 activation and neurite extension. Ca2+ release from the endoplasmic reticulum, mediated by both the IP3R1 and ryanodine receptor (RyR) channels, requires physiological ROS levels that are mainly sustained by the NADPH oxidase (NOX) complex. In this work, we explore the contribution of the link between NOX and RyR-mediated Ca2+ release toward axonal specification of rat hippocampal neurons. Using genetic approaches, we find that NOX activation promotes both axonal development and Rac1 activation through a RyR-mediated mechanism, which in turn activates NOX through Rac1, one of the NOX subunits. Collectively, these data suggest a feedforward mechanism that integrates both NOX activity and RyR-mediated Ca2+ release to support cellular mechanisms involved in axon development. SIGNIFICANCE STATEMENT High levels of ROS are frequently associated with oxidative stress and disease. In contrast, physiological levels of ROS, mainly sustained by the NADPH oxidase (NOX) complex, promote neuronal development and axonal growth. However, the mechanisms by which ROS shape neurons have not been described. Our work suggests that NOX-derived ROS promote axonal growth by regulating Rac1 activity, a molecular determinant of axonal growth, through a ryanodine receptor (RyR)-mediated Ca2+ release mechanism. In addition, Rac1, one of the NOX subunits, was activated after RyR-mediated Ca2+ release, suggesting a feedforward mechanism between NOX and RyR. Collectively, our data suggest a novel mechanism that is instrumental in sustaining physiological levels of ROS required for axonal growth of hippocampal neurons.
Collapse
|
39
|
Im K, Graef AJ, Breen M, Lindblad-Toh K, Modiano JF, Kim JH. Interactions between CXCR4 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma. Vet Comp Oncol 2017; 15:315-327. [PMID: 26337509 PMCID: PMC7199805 DOI: 10.1111/vco.12165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/14/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
The CXCR4/CXCL12 axis plays an important role in cell locomotion and metastasis in many cancers. In this study, we hypothesized that the CXCR4/CXCL12 axis promotes migration and invasion of canine hemangiosarcoma (HSA) cells. Transcriptomic analysis across 12 HSA cell lines and 58 HSA whole tumour tissues identified heterogeneous expression of CXCR4 and CXCL12, which was associated with cell movement. In vitro, CXCL12 promoted calcium mobilization, cell migration and invasion that were directly proportional to surface expression of CXCR4; furthermore, these responses proved sensitive to the CXCR4 antagonist, AMD3100, in HSA cell lines. These results indicate that CXCL12 potentiates migration and invasion of canine HSA cells through CXCR4 signalling. The direct relationship between these responses in HSA cells suggests that the CXCR4/CXCL12 axis contributes to HSA progression.
Collapse
Affiliation(s)
- KeumSoon Im
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Ashley J. Graef
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, & Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, NC, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Dept. of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Stem Cell Institute, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jong-Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
40
|
González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain. Front Cell Neurosci 2017; 11:130. [PMID: 28522963 PMCID: PMC5415606 DOI: 10.3389/fncel.2017.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Narcisa Martinez-Quiles
- Departamento de Microbiología (Inmunología), Facultad de Medicina, Universidad Complutense de MadridMadrid, Spain
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
41
|
Namayanja M, Dai Y, Nerima B, Matovu E, Lun ZR, Lubega GW, Zhengjun C. Trypanosoma brucei brucei traverses different biological barriers differently and may modify the host plasma membrane in the process. Exp Parasitol 2016; 174:31-41. [PMID: 28011167 DOI: 10.1016/j.exppara.2016.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei are extracellular hemoflagellate protozoan parasites and one of the causative agents of a devastating zoonotic disease called African Trypanosomiasis. In humans, the disease is caused by Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense, which cross the blood brain barrier (BBB) causing neurological disorders which culminate in death if untreated. In some domestic animals and laboratory rodents, Trypanosoma brucei brucei causes a disease similar to that in humans. The mechanism by which Trypanosoma brucei brucei invade biological barriers including the BBB has not been fully elucidated. To further address this issue, Mardin Dardy Canine Kidney II (MDCKII) and Human dermal microvascular endothelial cell (HDMEC) monolayers were grown to confluence on transwell inserts to constitute in vitro biological barriers. MDCKII cells were chosen for their ability to form tight junctions similar to those formed by the BBB endothelial cells. Labeled trypanosomes were placed in the upper chamber of transwell inserts layered with confluent MDCKII/HDMEC monolayers and their ability to cross the monolayer over time evaluated. Our results show that only 0.5-1.25% of Trypanosoma brucei brucei were able to migrate across the monolayers after 3 h. By employing immune-staining and confocal microscopic analysis we observed that trypanosomes were located at the tight junctions and inside the cell in the MDCK II monolayers indicating that they crossed the monolayer using both the paracellular and transcellular routes. Our observations also showed that there seemed to be no obvious degradation of junction proteins Zonula Ocludens-1, Occludin and Ecadherin. In the HDMEC cell monolayer, our scanning electron microscopy data showed that Trypanosoma brucei brucei is able to modulate the plasma membrane to form invaginations similar to cuplike structures formed by Tlymphocytes. However these structures seemed to be independent of vascular adhesion molecules suggesting that they could be more like the membrane ruffles formed by certain intracellular bacteria during invasion. Taken together, our data reveal a mechanism by which Trypanosoma brucei brucei is able to cross different biological barriers including the BBB without causing any obvious damage.
Collapse
Affiliation(s)
- Monica Namayanja
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China; Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Yan Dai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China
| | - Barbara Nerima
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Enock Matovu
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Zhao-Rong Lun
- Centre for Parasitic Organisms, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510276, China
| | - George W Lubega
- Molecular Biology Laboratory, School of Biotechnical, Biosecurity and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Chen Zhengjun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, 200031, Shanghai, China
| |
Collapse
|
42
|
Characterization of Novel Molecular Mechanisms Favoring Rac1 Membrane Translocation. PLoS One 2016; 11:e0166715. [PMID: 27835684 PMCID: PMC5105943 DOI: 10.1371/journal.pone.0166715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
The Rac1 GTPase plays key roles in cytoskeletal organization, cell motility and a variety of physiological and disease-linked responses. Wild type Rac1 signaling entails dissociation of the GTPase from cytosolic Rac1-Rho GDP dissociation inhibitor (GDI) complexes, translocation to membranes, activation by exchange factors, effector binding, and activation of downstream signaling cascades. Out of those steps, membrane translocation is the less understood. Using transfections of a expression cDNA library in cells expressing a Rac1 bioreporter, we previously identified a cytoskeletal feedback loop nucleated by the F-actin binding protein coronin 1A (Coro1A) that promotes Rac1 translocation to the plasma membrane by facilitating the Pak-dependent dissociation of Rac1-Rho GDI complexes. This screening identified other potential regulators of this process, including WDR26, basigin, and TMEM8A. Here, we show that WDR26 promotes Rac1 translocation following a Coro1A-like and Coro1A-dependent mechanism. By contrast, basigin and TMEM8A stabilize Rac1 at the plasma membrane by inhibiting the internalization of caveolin-rich membrane subdomains. This latter pathway is F-actin-dependent but Coro1A-, Pak- and Rho GDI-independent.
Collapse
|
43
|
Koehler S, Brähler S, Kuczkowski A, Binz J, Hackl MJ, Hagmann H, Höhne M, Vogt MC, Wunderlich CM, Wunderlich FT, Schweda F, Schermer B, Benzing T, Brinkkoetter PT. Single and Transient Ca 2+ Peaks in Podocytes do not induce Changes in Glomerular Filtration and Perfusion. Sci Rep 2016; 6:35400. [PMID: 27759104 PMCID: PMC5069688 DOI: 10.1038/srep35400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic alterations in calcium (Ca2+) signalling in podocytes have been shown to cause proteinuria and progressive glomerular diseases. However, it is unclear whether short Ca2+ peaks influence glomerular biology and cause podocyte injury. Here we generated a DREADD (Designer Receptor Exclusively Activated by a Designer Drug) knock-in mouse line to manipulate intracellular Ca2+ levels. By mating to a podocyte-specific Cre driver we are able to investigate the impact of Ca2+ peaks on podocyte biology in living animals. Activation of the engineered G-protein coupled receptor with the synthetic compound clozapine-N-oxide (CNO) evoked a short and transient Ca2+ peak in podocytes immediately after CNO administration in vivo. Interestingly, this Ca2+ peak did neither affect glomerular perfusion nor filtration in the animals. Moreover, no obvious alterations in the glomerular morphology could be observed. Taken together, these in vivo findings suggest that chronic alterations and calcium overload rather than an induction of transient Ca2+ peaks contribute to podocyte disease.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Brähler
- Department of Pathology &Immunology, Division of Immunobiology, Washington University School of Medicine, St Louis, USA
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Julia Binz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Merly C Vogt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | - Frank Schweda
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
44
|
Roles of the mitochondrial Na(+)-Ca(2+) exchanger, NCLX, in B lymphocyte chemotaxis. Sci Rep 2016; 6:28378. [PMID: 27328625 PMCID: PMC4916421 DOI: 10.1038/srep28378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Lymphocyte chemotaxis plays important roles in immunological reactions, although the mechanism of its regulation is still unclear. We found that the cytosolic Na(+)-dependent mitochondrial Ca(2+) efflux transporter, NCLX, regulates B lymphocyte chemotaxis. Inhibiting or silencing NCLX in A20 and DT40 B lymphocytes markedly increased random migration and suppressed the chemotactic response to CXCL12. In contrast to control cells, cytosolic Ca(2+) was higher and was not increased further by CXCL12 in NCLX-knockdown A20 B lymphocytes. Chelating intracellular Ca(2+) with BAPTA-AM disturbed CXCL12-induced chemotaxis, suggesting that modulation of cytosolic Ca(2+) via NCLX, and thereby Rac1 activation and F-actin polymerization, is essential for B lymphocyte motility and chemotaxis. Mitochondrial polarization, which is necessary for directional movement, was unaltered in NCLX-knockdown cells, although CXCL12 application failed to induce enhancement of mitochondrial polarization, in contrast to control cells. Mouse spleen B lymphocytes were similar to the cell lines, in that pharmacological inhibition of NCLX by CGP-37157 diminished CXCL12-induced chemotaxis. Unexpectedly, spleen T lymphocyte chemotaxis was unaffected by CGP-37157 treatment, indicating that NCLX-mediated regulation of chemotaxis is B lymphocyte-specific, and mitochondria-endoplasmic reticulum Ca(2+) dynamics are more important in B lymphocytes than in T lymphocytes. We conclude that NCLX is pivotal for B lymphocyte motility and chemotaxis.
Collapse
|
45
|
Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 2016; 7:e2194. [PMID: 27077810 PMCID: PMC4855673 DOI: 10.1038/cddis.2016.94] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a general inhibitor of caspase activity, was ineffective. Analysis of ROS generation, performed using fluorescent probes, showed that both the drugs stimulated in the first hours of treatment a very high production of hydrogen peroxide. This event was, at least in part, a consequence of activation of NADPH oxidases (NOXs), as it was reduced by apocynin and diphenylene iodinium, two inhibitors of NOXs. Moreover, both the drugs caused downregulation of Nrf2 (nuclear factor erythroid 2-related factor 2), which is a critical regulator of the intracellular antioxidant response. Prolonging the treatment with PN or DMAPT we observed between 12 and 24 h that the levels of both superoxide anion and hROS increased in concomitance with the downregulation of manganese superoxide dismutase and catalase. In addition, during this phase dissipation of mitochondrial membrane potential occurred together with necrosis of stem-like cells. Finally, our results suggested that the effect on ROS generation found in the first hours of treatment was, in part, responsible for the cytotoxic events observed in the successive phase. In conclusion, PN and DMAPT markedly inhibited viability of stem-like cells derived from three lines of TNBCs by inducing ROS generation, mitochondrial dysfunction and cell necrosis.
Collapse
|
46
|
Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, Awwad K, Wang L, Erfinanda L, Nouailles G, Witzenrath M, Vogelzang A, Lv L, Lee WL, Zhang H, Rotstein O, Kapus A, Szaszi K, Fleming I, Liedtke WB, Kuppe H, Kuebler WM. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury. Am J Respir Cell Mol Biol 2016; 54:370-383. [DOI: 10.1165/rcmb.2014-0225oc] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Laura Michalick
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Tang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Neil Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Khader Awwad
- Institute for Vascular Signaling, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Liming Wang
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Lasti Erfinanda
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ingrid Fleming
- Institute for Vascular Signaling, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Wolfgang B. Liedtke
- Department of Medicine/Division of Neurology, Duke Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, North Carolina; and
| | | | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
47
|
Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia 2016; 64:1628-45. [PMID: 26919466 DOI: 10.1002/glia.22967] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
48
|
Wölwer CB, Pase LB, Russell SM, Humbert PO. Calcium Signaling Is Required for Erythroid Enucleation. PLoS One 2016; 11:e0146201. [PMID: 26731108 PMCID: PMC4701494 DOI: 10.1371/journal.pone.0146201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/13/2015] [Indexed: 12/31/2022] Open
Abstract
Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.
Collapse
Affiliation(s)
- Christina B. Wölwer
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Luke B. Pase
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah M. Russell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Immune Signaling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
49
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
50
|
Timmerman I, Heemskerk N, Kroon J, Schaefer A, van Rijssel J, Hoogenboezem M, van Unen J, Goedhart J, Gadella TWJ, Yin T, Wu Y, Huveneers S, van Buul JD. A local VE-cadherin and Trio-based signaling complex stabilizes endothelial junctions through Rac1. J Cell Sci 2015; 128:3041-54. [PMID: 26116572 DOI: 10.1242/jcs.168674] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
Endothelial cell-cell junctions maintain a restrictive barrier that is tightly regulated to allow dynamic responses to permeability-inducing angiogenic factors, as well as to inflammatory agents and adherent leukocytes. The ability of these stimuli to transiently remodel adherens junctions depends on Rho-GTPase-controlled cytoskeletal rearrangements. How the activity of Rho-GTPases is spatio-temporally controlled at endothelial adherens junctions by guanine-nucleotide exchange factors (GEFs) is incompletely understood. Here, we identify a crucial role for the Rho-GEF Trio in stabilizing junctions based around vascular endothelial (VE)-cadherin (also known as CDH5). Trio interacts with VE-cadherin and locally activates Rac1 at adherens junctions during the formation of nascent contacts, as assessed using a novel FRET-based Rac1 biosensor and biochemical assays. The Rac-GEF domain of Trio is responsible for the remodeling of junctional actin from radial into cortical actin bundles, a crucial step for junction stabilization. This promotes the formation of linear adherens junctions and increases endothelial monolayer resistance. Collectively, our data show the importance of spatio-temporal regulation of the actin cytoskeleton through Trio and Rac1 at VE-cadherin-based cell-cell junctions in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Niels Heemskerk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Antje Schaefer
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jakobus van Unen
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modelling, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Yi Wu
- Center for Cell Analysis and Modelling, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephan Huveneers
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|