1
|
Hagan ML, Tuladhar A, Yu K, Alhamad DW, Bensreti H, Dorn J, Piedra VM, Cantu N, Stokes EG, Blumenthal D, Roberts RL, Balayan V, Bass SM, Dickerson T, Cartelle AL, Montesinos-Cartagena M, Awad ME, Castro AA, Garland T, Cooley MA, Johnson M, Hamrick MW, McNeil PL, McGee-Lawrence ME. Osteocyte Sptbn1 Deficiency Alters Cell Survival and Mechanotransduction Following Formation of Plasma Membrane Disruptions (PMD) from Mechanical Loading. Calcif Tissue Int 2024; 115:725-743. [PMID: 39276238 DOI: 10.1007/s00223-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein β2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Victor M Piedra
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Nicholas Cantu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Eric G Stokes
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Daniel Blumenthal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Sarah M Bass
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Thomas Dickerson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anabel Liyen Cartelle
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Marlian Montesinos-Cartagena
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alberto A Castro
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Theodore Garland
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Paul L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Ozcelik F, Ersahan S, Sirin DA, Ozçelik IK, Hepsenoglu YE, Karip B. The importance of mechanosensitive cell mediated prostaglandin and nitric oxide synthesis in the pathogenesis of apical periodontitis: comparative with chronic periodontitis. Clin Oral Investig 2024; 28:337. [PMID: 38795217 PMCID: PMC11127815 DOI: 10.1007/s00784-024-05721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVES Mechano-sensitive odontoblast cells, which sense mechanical loading and various stresses in the tooth structure, synthesize early signaling molecules such as prostaglandin E2 (PGE2) and nitric oxide (NO) as an adaptive response. It is thought that these synthesized molecules can be used for the diagnosis and treatment of periodontal and periapical diseases. The aim of this study was to investigate the relationship between the severity of apical periodontitis (AP) and chronic periodontitis (CP) and serum (s) TNF-α, IL-10, PGE2 and NO levels, as well as PGE2 and NO levels in gingival crevicular fluid (GCF) samples. MATERIALS & METHODS A total of 185 subjects were divided into three categories: AP group (n = 85), CP group (n = 50) and healthy control group (n = 50). The AP group was divided into 3 subgroups according to abscess scoring (AS-PAI 1, 2 and 3) based on the periapical index. The CP group was divided into 4 subgroups according to the periodontitis staging system (PSS1, 2,3 and 4). After recording the demographic and clinical characteristics of all participants, serum (s) and gingival crevicular fluid (GCF) samples were taken. TNF-α, IL-10, PGE2 and NO levels were measured in these samples. RESULTS Unlike serum measurements (sTNF-α, sIL-10, sNO and sPGE2), GCF-NO and GCF-PGE levels of the AP group were significantly higher than the control group in relation to abscess formation (54.4 ± 56.3 vs. 22.5 ± 12.6 µmol/mL, p < 0.001 and 100 ± 98 vs. 41 ± 28 ng/L, p < 0.001, respectively). Confirming this, the GCF-NO and GCF-PGE levels of the AS-PAI 1 group, in which abscesses have not yet formed, were found to be lower than those in AS-PAI 2 and 3, which are characterized by abscess formation [(16.7(3.7-117.8), 32.9(11.8-212.8) and 36.9(4.3-251.6) µmol/mL, p = 0,0131; 46.0(31.4-120.0), 69.6(40.3-424.2) and 74.4(32.1-471.0) ng/L, p = 0,0020, respectively]. Consistent with the increase in PSS, the levels of sTNF [29.8 (8.2-105.5) vs. 16.7(6.3-37.9) pg/mL, p < 0.001], sIL-10 [542(106-1326) vs. 190(69-411) pg/mL, p < 0.001], sNO [182.1(36.3-437) vs. 57.0(15.9-196) µmol/mL, p < 0.001], sPGE2 [344(82-1298) vs. 100(35-1178) ng/L, p < 0.001], GCF-NO [58.9 ± 33.6 vs. 22.5 ± 12.6 ng/L, p < 0.001] and GCF-PGE2 [ 99(37-365) vs. 30(13-119), p < 0.001] in the CP group were higher than the control group. Comparison ROC analysis revealed that the GCF-PGE2 test had the best diagnostic value for both AP and CP (sensitivity: 94.1 and 88.0; specificity: 64.0 and 78.0, respectively; p < 0.001). CONCLUSIONS GCF-PE2 and GCF-NO have high diagnostic value in the determination of AP and CP, and can be selected as targets to guide treatment. In addition, the measurements of PGE2 and NO in GCF can be used as an important predictor of pulpal necrosis leading to abscess in patients with AP. CLINICAL RELEVANCE In this article, it is reported that syntheses of early signaling molecules such as PGE2 and NO can be used for the diagnosis and treatment target of periapical and periodontal infections.
Collapse
Affiliation(s)
- Fatih Ozcelik
- Department of Medical Biochemistry, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences Turkiye, Istanbul, Türkiye.
| | - Seyda Ersahan
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Türkiye
| | - Dursun Ali Sirin
- Department of Endodontics, Faculty of Dentistry, University of Health Sciences, Istanbul, Türkiye
| | | | - Yelda Erdem Hepsenoglu
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Türkiye
| | - Burak Karip
- Department of Anatomy (Dentist), Hamidiye Faculty of Medicine, University of Health Sciences Turkiye, Istanbul, Türkiye
| |
Collapse
|
4
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
7
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
8
|
Wilmoth RL, Sharma S, Ferguson VL, Bryant SJ. The effects of prostaglandin E2 on gene expression of IDG-SW3-derived osteocytes in 2D and 3D culture. Biochem Biophys Res Commun 2022; 630:8-15. [PMID: 36126467 DOI: 10.1016/j.bbrc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Prostaglandin E2 (PGE2) is a key signaling molecule produced by osteocytes in response to mechanical loading, but its effect on osteocytes is less understood. This work examined the effect of PGE2 on IDG-SW3-derived osteocytes in standard 2D culture (collagen-coated tissue culture polystyrene) and in a 3D degradable poly(ethylene glycol) hydrogel. IDG-SW3 cells were differentiated for 35 days into osteocytes in 2D and 3D cultures. 3D culture led to a more mature osteocyte phenotype with 100-fold higher Sost expression. IDG-SW3-derived osteocytes were treated with PGE2 and assessed for expression of genes involved in PGE2, anabolic, and catabolic signaling. In 2D, PGE2 had a rapid (1 h) and sustained (24 h) effect on many PGE2 signaling genes, a rapid stimulatory effect on Il6, and a sustained inhibitory effect on Tnfrsf11b and Bglap. Comparing culture environment without PGE2, osteocytes had higher expression of all four EP receptors and Sost but lower expression of Tnfrsf11b, Bglap, and Gja1 in 3D. Osteocytes were more responsive to PGE2 in 3D. With increasing PGE2, 3D led to increased Gja1 and decreased Sost expressions and a higher Tnfrsf11b/Tnfsf11 ratio, indicating an anabolic response. Further analysis in 3D revealed that EP4, the receptor implicated in PGE2 signaling in bone, was not responsible for the PGE2-induced gene expression changes in osteocytes. In summary, osteocytes are highly responsive to PGE2 when cultured in an in vitro 3D hydrogel model suggesting that autocrine and paracrine PGE2 signaling in osteocytes may play a role in bone homeostasis.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA
| | - Sadhana Sharma
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Mechanical Engineering, University of Colorado, 1111 Engineering Dr, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80309, USA; Materials Science and Engineering, University of Colorado, 4001 Discovery Dr., Boulder, CO, 80309, USA.
| |
Collapse
|
9
|
Zhang J, Riquelme MA, Hua R, Acosta FM, Gu S, Jiang JX. Connexin 43 hemichannels regulate mitochondrial ATP generation, mobilization, and mitochondrial homeostasis against oxidative stress. eLife 2022; 11:82206. [DOI: 10.7554/elife.82206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is a major risk factor that causes osteocyte cell death and bone loss. Prior studies primarily focus on the function of cell surface expressed Cx43 channels. Here, we reported a new role of mitochondrial Cx43 (mtCx43) and hemichannels (HCs) in modulating mitochondria homeostasis and function in bone osteocytes under oxidative stress. In murine long bone osteocyte-Y4 cells, the translocation of Cx43 to mitochondria was increased under H2O2-induced oxidative stress. H2O2 increased the mtCx43 level accompanied by elevated mtCx43 HC activity, determined by dye uptake assay. Cx43 knockdown (KD) by the CRISPR-Cas9 lentivirus system resulted in impairment of mitochondrial function, primarily manifested as decreased ATP production. Cx43 KD had reduced intracellular reactive oxidative species levels and mitochondrial membrane potential. Additionally, live-cell imaging results demonstrated that the proton flux was dependent on mtCx43 HCs because its activity was specifically inhibited by an antibody targeting Cx43 C-terminus. The co-localization and interaction of mtCx43 and ATP synthase subunit F (ATP5J2) were confirmed by Förster resonance energy transfer and a protein pull-down assay. Together, our study suggests that mtCx43 HCs regulate mitochondrial ATP generation by mediating K+, H+, and ATP transfer across the mitochondrial inner membrane and the interaction with mitochondrial ATP synthase, contributing to the maintenance of mitochondrial redox levels in response to oxidative stress.
Collapse
Affiliation(s)
- Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center
| |
Collapse
|
10
|
Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 2022; 290:121823. [DOI: 10.1016/j.biomaterials.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
11
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
12
|
Hua R, Gu S, Jiang JX. Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation. Front Cell Dev Biol 2022; 10:892229. [PMID: 35693933 PMCID: PMC9184820 DOI: 10.3389/fcell.2022.892229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Connexin 43 (Cx43) is the predominant connexin subtype expressed in osteocytes. Osteocytes, accounting for 90%–95% of total bone cells, function as orchestrators coordinating balanced activity between bone-resorbing osteoclasts and bone-forming osteoblasts. In this study, two newly developed osteocytic cell lines, OCY454 and IDG-SW3, were used to determine the role of Cx43 gap junctions and hemichannels (HCs) in the regulation of osteoblast to osteocyte differentiation. We found that the Cx43 level was substantially increased during the differentiation of IDG-SW3 cells and is also much higher than that of OCY454 cells. We knocked down Cx43 expression using the lentiviral CRISPR/Cas9 approach and inhibition of Cx43 HCs using Cx43 (E2) antibody in IDG-SW3 cells. Cx43 knockdown (KD) or Cx43 HC inhibition decreased gene expression for osteoblast and osteocyte markers, including alkaline phosphatase, type I collagen, dentin matrix protein 1, sclerostin, and fibroblast growth factor 23, whereas increasing the osteoclastogenesis indicator and the receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio at early and late differentiation stages. Moreover, mineralization was remarkably attenuated in differentiated Cx43-deficient IDG-SW3 cells compared to ROSA26 control. The conditioned medium collected from fully differentiated IDG-SW3 cells with Cx43 KD promoted osteoclastogenesis of RAW264.7 osteoclast precursors. Our results demonstrated that Cx43 HCs play critical roles in osteoblast to osteocyte differentiation process and regulate osteoclast differentiation via secreted factors.
Collapse
|
13
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency. RECENT FINDINGS At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts. Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.
Collapse
Affiliation(s)
- Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
16
|
Garg P, Strigini M, Peurière L, Vico L, Iandolo D. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model. Front Physiol 2021; 12:749464. [PMID: 34737712 PMCID: PMC8562483 DOI: 10.3389/fphys.2021.749464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.
Collapse
Affiliation(s)
- Priyanka Garg
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Maura Strigini
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laura Peurière
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laurence Vico
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| |
Collapse
|
17
|
Gardinier JD. The Diminishing Returns of Mechanical Loading and Potential Mechanisms that Desensitize Osteocytes. Curr Osteoporos Rep 2021; 19:436-443. [PMID: 34216359 PMCID: PMC9306018 DOI: 10.1007/s11914-021-00693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.
Collapse
|
18
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
20
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
22
|
Azab E, Chandler KB, Uda Y, Sun N, Hussein A, Shuwaikan R, Lu V, Costello CE, McComb ME, Divieti Pajevic P. Osteocytes control myeloid cell proliferation and differentiation through Gsα-dependent and -independent mechanisms. FASEB J 2020; 34:10191-10211. [PMID: 32557809 DOI: 10.1096/fj.202000366r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 01/19/2023]
Abstract
Osteocytes, the bone cells embedded in the mineralized matrix, control bone modeling, and remodeling through direct contact with adjacent cells and via paracrine and endocrine factors that affect cells in the bone marrow microenvironment or distant organs. Osteocytes express numerous G protein-coupled receptors (GPCRs) and thus mice lacking the stimulatory subunit of G-protein (Gsα) in osteocytes (Dmp1-GsαKO mice) have abnormal myelopoiesis, osteopenia, and reduced adipose tissue. We previously reported that the severe osteopenia and the changes in adipose tissue present in these mice were mediated by increased sclerostin, which suppress osteoblast functions and promote browning of white adipocytes. Inversely, the myeloproliferation was driven by granulocyte colony-stimulating factor (G-CSF) and administration of neutralizing antibodies against G-CSF only partially restored the myeloproliferation, suggesting that additional osteocyte-derived factors might be involved. We hypothesized that osteocytes secrete Gsα-dependent factor(s) which regulate the myeloid cells proliferation. To identify osteocyte-secreted proteins, we used the osteocytic cell line Ocy454 expressing or lacking Gsα expression (Ocy454-Gsαcont and Ocy454-GsαKO ) to delineate the osteocyte "secretome" and its regulation by Gsα. Here we reported that factors secreted by osteocytes increased the number of myeloid colonies and promoted macrophage proliferation. The proliferation of myeloid cells was further promoted by osteocytes lacking Gsα expression. Myeloid cells can differentiate into bone-resorbing osteoclasts, therefore, we hypothesized that osteocyte-secreted factors might also regulate osteoclastogenesis in a Gsα-dependent manner. Conditioned medium (CM) from Ocy454 (both Gsαcont and GsαKO ) significanlty increased the proliferation of bone marrow mononuclear cells (BMNC) and, at the same time, inhibited their differentiation into mature osteoclasts via a Gsα-dependent mechanism. Proteomics analysis of CM from Ocy454 Gsαcont and GsαKO cells identified neuropilin-1 (Nrp-1) and granulin (Grn) as osteocytic-secreted proteins upregulated in Ocy454-GsαKO cells compared to Ocy454-Gsαcont , whereas semaphorin3A was significantly suppressed. Treatment of Ocy454-Gsαcont cells with recombinant proteins or knockdown of Nrp-1 and Grn in Ocy454-GsαKO cells partially rescued the inhibition of osteoclasts, demonstrating that osteocytes control osteoclasts differentiation through Nrp-1 and Grn which are regulated by Gsα signaling.
Collapse
Affiliation(s)
- Ehab Azab
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, School of Medicine, Boston University, Boston, MA, USA
| | - Yuhei Uda
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Ningyuan Sun
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Amira Hussein
- Department of Orthopedics, School of Medicine, Boston University, Boston, MA, USA
| | - Raghad Shuwaikan
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Veronica Lu
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, School of Medicine, Boston University, Boston, MA, USA
| | - Mark E McComb
- Center for Biomedical Mass Spectrometry, School of Medicine, Boston University, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Concerted EP2 and EP4 Receptor Signaling Stimulates Autocrine Prostaglandin E 2 Activation in Human Podocytes. Cells 2020; 9:cells9051256. [PMID: 32438662 PMCID: PMC7290667 DOI: 10.3390/cells9051256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glomerular hyperfiltration is an important mechanism in the development of albuminuria. During hyperfiltration, podocytes are exposed to increased fluid flow shear stress (FFSS) in Bowman’s space. Elevated Prostaglandin E2 (PGE2) synthesis and upregulated cyclooxygenase 2 (Cox2) are associated with podocyte injury by FFSS. We aimed to elucidate a PGE2 autocrine/paracrine pathway in human podocytes (hPC). We developed a modified liquid chromatography tandem mass spectrometry (LC/ESI-MS/MS) protocol to quantify cellular PGE2, 15-keto-PGE2, and 13,14-dihydro-15-keto-PGE2 levels. hPC were treated with PGE2 with or without separate or combined blockade of prostaglandin E receptors (EP), EP2, and EP4. Furthermore, the effect of FFSS on COX2, PTGER2, and PTGER4 expression in hPC was quantified. In hPC, stimulation with PGE2 led to an EP2- and EP4-dependent increase in cyclic adenosine monophosphate (cAMP) and COX2, and induced cellular PGE2. PTGER4 was downregulated after PGE2 stimulation in hPC. In the corresponding LC/ESI-MS/MS in vivo analysis at the tissue level, increased PGE2 and 15-keto-PGE2 levels were observed in isolated glomeruli obtained from a well-established rat model with glomerular hyperfiltration, the Munich Wistar Frömter rat. COX2 and PTGER2 were upregulated by FFSS. Our data thus support an autocrine/paracrine COX2/PGE2 pathway in hPC linked to concerted EP2 and EP4 signaling.
Collapse
|
24
|
Wang T, Yu X, He C. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte. Curr Drug Targets 2020; 20:1-15. [PMID: 29618305 DOI: 10.2174/1389450119666180405094046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are widely used to treat varieties of allergic and autoimmune diseases, however, long-term application results in glucocorticoid-induced osteoporosis (GIOP). Inflammatory cytokines: tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) play important regulatory roles in bone metabolism, but their roles in GIOP remain largely unknown. Osteocytes can modulate the formation and function of both osteoblasts and osteoclasts, directly via gap junctions, or indirectly by transferring molecule signaling. Apoptotic osteocytes release RANKL, HMGB1 and pro-inflammatory cytokines to stimulate osteoclastogenesis. Moreover, osteocytes can secrete FGF23 to regulate bone metabolism. Exposure to high levels of GCs can drive osteocyte apoptosis and influence gap junctions, leading to bone loss. GCs treatment is regarded to produce more FGF23 to inhibit bone mineralization. GCs also disrupt the vascular to decrease osteocyte feasibility and mineral appositional rate, resulting in a decline in bone strength. Apoptotic bodies from osteocytes induced by GCs treatment can enhance production of TNF-α and IL-6. On the other hand, TNF-α and IL-6 show synergistic effects by altering osteocytes signaling towards osteoclasts and osteoblasts. In addition, TNF-α can induce osteocyte apoptosis and attribute to a worsened bone quality in GCs. IL-6 and osteocytes may interact with each other. Therefore, we hypothesize that GCs regulate osteocyteogenesis through TNF-α and IL-6, which are highly expressed around osteocyte undergoing apoptosis. In the present review, we summarized the roles of osteocytes in regulating osteoblasts and osteoclasts. Furthermore, the mechanism of GCs altered relationship between osteocytes and osteoblasts/osteoclasts. In addition, we discussed the roles of TNF-α and IL-6 in GIOP by modulating osteocytes. Lastly, we discussed the possibility of using pro-inflammatory signaling pathway as therapeutic targets to develop drugs for GIOP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
25
|
Gregory M, Cyr DG. Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 2020; 100:123-132. [PMID: 30060123 DOI: 10.1093/biolre/ioy171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions are responsible for intercellular communication. In the adult mammalian epididymis, gap junction protein alpha 1 (GJA1) is localized between basal and either principal or clear cells. GJA1 levels and localization change during the differentiation of basal cells. The present objective was to determine the role of basal cells and prostaglandin E2 (PGE2) on GJA1 in the rat epididymis. Prior to basal cell differentiation, GJA1 is colocalized with TJP1 at the apical lateral margins between adjacent epithelial cells. When basal cells are present, GJA1 becomes associated between basal and principal cells, where it is primarily immunolocalized until adulthood. Basal cells express TP63, differentiate from epithelial cells, and produce prostaglandin-endoperoxide synthase 1 by 21 days of age. Prior to day 21, GJA1and TP63 are not strongly associated at the apical region. However, by day 28, TP63-positive basal cells migrate to the base of the epithelium, and also express GJA1. To assess effects of PGE2 on GJA1, rat caput epididymal (RCE) cells were exposed to PGE2 (50 μM) for 3 h. PGE2 increased levels of Gja1 mRNA in RCE cells, while levels of Gjb1, Gjb2, Gjb4, and GjB5 were unaltered. Furthermore, PGE2 increased protein levels of GJA1, phospho-GJA1, phospho-AKT, CTNNB1, and phospho-CTNNB1. Total AKT and the tight junction protein claudin1 were also not altered by PGE2. Data suggest that development of the epididymal epithelium and differentiation of epididymal basal cells regulate the targeting of GJA1, and that this appears to be mediated by PGE2.
Collapse
Affiliation(s)
- Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| |
Collapse
|
26
|
Nguyen J, Massoumi R, Alliston T. CYLD, a mechanosensitive deubiquitinase, regulates TGFβ signaling in load-induced bone formation. Bone 2020; 131:115148. [PMID: 31715338 PMCID: PMC7032548 DOI: 10.1016/j.bone.2019.115148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Many signaling pathways involved in bone homeostasis also participate in the anabolic response of bone to mechanical loading. For example, TGFβ signaling coordinates the maintenance of bone mass and bone quality through its effects on osteoblasts, osteoclasts, and osteocytes. TGFβ signaling is also essential for the mechanosensitive formation of new bone. However, the mechanosensitive mechanisms controlling TGFβ signaling in osteocytes remain to be determined, particularly those that integrate TGFβ signaling with other early responses to mechanical stimulation. Here, we used an in vivo mouse hindlimb loading model to identify mechanosensitive molecules in the TGFβ pathway, and MLO-Y4 cells to evaluate their interactions with the prostaglandin E2 (PGE2) pathway, which is well-known for its rapid response to mechanical stimulation and its role in bone anabolism. Although mRNA levels for several TGFβ ligands, receptors, and effectors were unchanged, the level of phosphorylated Smad2/3 (pSmad2/3) was reduced in tibial bone as early as 3 h after early mechanical stimulation. We found that PGE2 and its receptor, EP2, repress pSmad2/3 levels and transactivation of Serpine1 in osteocytes. PGE2 and EP2 control the level of pSmad2/3 through a proteasome-dependent mechanism that relies on the deubiquitinase CYLD. CYLD protein levels were also reduced in the tibiae within 3 h of mechanical loading. Using CYLD-deficient mice, we found that CYLD is required for the rapid load-mediated repression of pSmad2/3 and for load-induced bone formation. These data introduce CYLD as a mechanosensitive deubiquitinase that participates in the prostaglandin-dependent repression of TGFβ signaling in osteocytes.
Collapse
Affiliation(s)
- Jacqueline Nguyen
- Department of Orthopaedic Surgery, University of California San Francisco, 94143, USA; Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 94143, USA
| | - Ramin Massoumi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Medicon Village, 22381, Sweden
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, 94143, USA; Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 94143, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS Both β1 and β3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland
| | - Laoise M McNamara
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
28
|
Wang H, Hu Y, He F, Li L, Li PP, Deng Y, Li FS, Wu K, He BC. All-trans retinoic acid and COX-2 cross-talk to regulate BMP9-induced osteogenic differentiation via Wnt/β-catenin in mesenchymal stem cells. Biomed Pharmacother 2019; 118:109279. [PMID: 31376651 DOI: 10.1016/j.biopha.2019.109279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
COX-2 specific inhibitor, which has been widely used, can delay bone fracture healing and reduce osteogenic potential of bone marrow stromal cells. However, it remains unknown how to prevent these side-effects of COX-2 inhibitor. In this study, we introduced BMP9-induced osteogenic differentiation as model to evaluate whether all-trans retinoic acid (ATRA) could ameliorate these adverse effects of COX-2 specific inhibitor on bone metabolism with in vitro and in vivo experiments, and uncover the possible mechanism underlying this process. Results showed that ATRA enhanced the potential of BMP9 to induce the osteogenic markers, such as alkaline phosphates (ALP) and mineralization; but retinoic acid receptor a (RARa) inhibitor showed the reversal effects. COX-2 specific inhibitor (NS398) reduced the osteogenic markers induced by BMP9, and ATRA almost eliminated the inhibitory effect of NS398. BMP9 up-regulated the protein level of β-catenin and promoted it translocate to nucleus, and both were reduced by NS398. On the contrary, ATRA notablely attenuated the inhibitory effect of NS398 on BMP9-increased β-catenin. Exogenous RXRa obviously ameliorated the inhibitory effect of silencing COX-2 on ectopic bone formation induced by BMP9. NS398 reduced the level of phosphorylated CREB, which was almost reversed by ATRA. Besides, RXRa interacted with phosphorylated CREB directly and both were recruited at β-catenin promoter region. Thus, we demonstrated that ATRA may reverse the side-effects of COX-2 inhibitor on bone metabolism through increasing the activation of Wnt/β-catenin pathway partly.
Collapse
Affiliation(s)
- Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ying Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Nephrology, First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ling Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pei-Pei Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
29
|
Connexin 43 hemichannels protect bone loss during estrogen deficiency. Bone Res 2019; 7:11. [PMID: 31016065 PMCID: PMC6476886 DOI: 10.1038/s41413-019-0050-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Estrogen deficiency in postmenopausal women is a major cause of bone loss, resulting in osteopenia, osteoporosis, and a high risk for bone fracture. Connexin 43 (Cx43) hemichannels (HCs) in osteocytes play an important role in osteocyte viability, bone formation, and remodeling. We showed here that estrogen deficiency reduced Cx43 expression and HC function. To determine if functional HCs protect osteocytes and bone loss during estrogen deficiency, we adopted an ovariectomy model in wild-type (WT) and two transgenic Cx43 mice: R76W (dominant-negative mutant inhibiting only gap junction channels) and Cx43 Δ130–136 (dominant-negative mutant compromising both gap junction channels and HCs). The bone mineral density (BMD), bone structure, and histomorphometric changes of cortical and trabecular bones after ovariectomy were investigated. Our results showed that the Δ130–136 transgenic cohort had greatly decreased vertebral trabecular bone mass compared to WT and R76W mice, associated with a significant increase in the number of apoptotic osteocyte and empty lacunae. Moreover, osteoclast surfaces in trabecular and cortical bones were increased after ovariectomy in the R76W and WT mice, respectively, but not in ∆130–136 mice. These data demonstrate that impairment of Cx43 HCs in osteocytes accelerates vertebral trabecular bone loss and increase in osteocyte apoptosis, and further suggest that Cx43 HCs in osteocytes protect trabecular bone against catabolic effects due to estrogen deficiency. Channels that form between cells and their extracellular environment help protect bone tissue from the damage wrought by low estrogen levels, a major cause of bone loss in post-menopausal women. Jean Jiang from the UT Health San Antonio and colleagues showed that depleting the estrogen hormone in mouse bone cells reduced levels of connexin 43 and impaired the protein’s ability to forms pores known as ‘hemichannels’. The researchers surgically removed the ovaries of various mouse strains to induce estrogen deficiencies. They found that transgenic mice without working hemichannels had reduced bone mass compared to normal mice or mice that could make hemichannels but lacked the ability for those channels to come together to form complete passageways. The findings highlight the importance of connexin 43 hemichannels in protecting bone tissue against osteoporosis.
Collapse
|
30
|
Trincot CE, Xu W, Zhang H, Kulikauskas MR, Caranasos TG, Jensen BC, Sabine A, Petrova TV, Caron KM. Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ Res 2019; 124:101-113. [PMID: 30582443 PMCID: PMC6318063 DOI: 10.1161/circresaha.118.313835] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.
Collapse
Affiliation(s)
- Claire E. Trincot
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Molly R. Kulikauskas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Thomas G. Caranasos
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Amelie Sabine
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
- Division of Experimental Pathlogy, Lausanne University Hospital
| | - Kathleen M. Caron
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , 111 Mason Farm Rd, MBRB 6312B, CB 7545, Chapel Hill, NC 27599
| |
Collapse
|
31
|
Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: the role of prostaglandins in bone metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1753-1758. [PMID: 29950809 PMCID: PMC6014392 DOI: 10.2147/dddt.s164562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, we discuss the current data about the anatomy and function of bone tissue with particular regard to influence of prostaglandins. Bone tissue dynamics are characterized by a constant remodeling process that involves all bone tissue cells. The communication between bone component cells and other organs is necessary for bone remodeling equilibrium and confirms the dynamic character of bone tissue. Remodeling is also a vital element of healing processes and in adapting bone tissue to stress responses. Therefore, in our review we present the role and significance of bone cells and signaling pathways enabling maintenance of bone homeostasis and remodeling process stability. Cyclooxygenase (COX) is a crucial enzyme in the production of prostaglandins and thromboxane. We focus on the role of COX isoenzymes with highlighting their connection with bone formation, resorption and repair. Prostaglandins are known as arachidonic acid metabolites acting through specific membrane receptors and play an important role in the regulation of osteoblast and osteoclast functions. Prostaglandin PGE2 with its four defined receptors (EP1R, EP2R, EP3R and EP4R) is crucial to maintain balanced bone turnover. Their stimulatory or inhibitory effects appear to depend on different structure-activity relations and signaling pathways. We have described the role of these receptors in bone metabolism and healing. We conclude that the activity of prostaglandins in bone tissue is defined by maintaining bone remodeling balance and its reactions to humoral mediators and mechanical stress. Most data confirm that among prostaglandins, PGE2 takes part in all processes of trauma response, including homeostasis, inflammation and healing, and plays a key role in bone physiology.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital in Grodzisk Mazowiecki, Grodzisk Mazowiecki, Poland
| | - Dariusz Kosson
- Division of Teaching, Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Domaracka
- Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Srivastava T, Dai H, Heruth DP, Alon US, Garola RE, Zhou J, Duncan RS, El-Meanawy A, McCarthy ET, Sharma R, Johnson ML, Savin VJ, Sharma M. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am J Physiol Renal Physiol 2018; 314:F22-F34. [PMID: 28877882 PMCID: PMC5866353 DOI: 10.1152/ajprenal.00325.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Hongying Dai
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Daniel P Heruth
- Department of Experimental and Translational Genetics Research, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City , Kansas City, Missouri
| | - Jianping Zhou
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - R Scott Duncan
- Department of Ophthalmology, University of Missouri at Kansas City , Kansas City, Missouri
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Ram Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City , Kansas City, Missouri
| | - Virginia J Savin
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| | - Mukut Sharma
- Renal Research Laboratory, Research and Development, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
- Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
33
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
34
|
Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before Exercise Does Not Prevent Cortical Bone Adaptations to Training. Med Sci Sports Exerc 2017; 49:888-895. [PMID: 28079706 DOI: 10.1249/mss.0000000000001194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.
Collapse
Affiliation(s)
- Vanessa D Sherk
- 1Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Mechanical Engineering, University of Colorado Denver, Denver, CO; and 3Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to evaluate critically the literature published over the past 3 years regarding the Wnt signaling pathway. The Wnt pathway was found to be involved in bone biology in 2001-2002 with the discovery of a (G171V) mutation in the lipoprotein receptor-related protein 5 (LRP5) that resulted in high bone mass and another mutation that completely inactivated Lrp5 function and resulted in osteoporosis pseudoglioma syndrome (OPPG). The molecular biology has been complex, and very interesting. It has provided many opportunities for exploitation to develop new clinical treatments, particularly for osteoporosis. More clinical possibilities include: treatments for fracture healing, corticosteroid osteoporosis, osteogenesis imperfecta, and others. In addition, we wish to provide historical information coming from distant publications (~350 years ago) regarding bone biology that have been confirmed by study of Wnt signaling. RECENT FINDINGS A recent finding is the development of an antibody to sclerostin that is under study as a treatment for osteoporosis. Development of treatments for other forms of osteoporosis, such as corticosteroid osteoporosis, is also underway. The full range of the applications of the work is not yet been achieved.
Collapse
Affiliation(s)
- Mark L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA
| | - Robert R Recker
- Creighton University, 601 N 30th St., Ste 4841, Omaha, NE, 68131, USA.
| |
Collapse
|
36
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
37
|
Suswillo RFL, Javaheri B, Rawlinson SCF, Dowthwaite GP, Lanyon LE, Pitsillides AA. Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes. Cell Biochem Funct 2017; 35:56-65. [PMID: 28083967 PMCID: PMC5299599 DOI: 10.1002/cbf.3245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load-bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to examine these mechanisms. We exploited the fact that purified osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts and the role of gap junctions in such communication. We found that chick long bone osteocytes significantly increased basal proliferation of primary osteoblasts derived from an identical source (tibiotarsi). Using a gap junction inhibitor, 18β-glycyrrhetinic acid, we also demonstrated that this osteocyte-related increase in osteoblast proliferation was not reliant on functional gap junctions. In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial-derived primary osteoblasts. We also showed that coincubated purified osteocytes exerted a marked inhibitory action on mechanical strain-related increases in proliferation of primary osteoblasts and that this action was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory differences between purified osteocytes derived from functionally distinct bones and provide evidence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to coordinate their activity.
Collapse
Affiliation(s)
| | - Behzad Javaheri
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Simon C F Rawlinson
- Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gary P Dowthwaite
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
38
|
Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:122-130. [DOI: 10.1016/j.pbiomolbio.2015.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022]
|
39
|
Lecarpentier E, Atallah A, Guibourdenche J, Hebert-Schuster M, Vieillefosse S, Chissey A, Haddad B, Pidoux G, Evain-Brion D, Barakat A, Fournier T, Tsatsaris V. Fluid Shear Stress Promotes Placental Growth Factor Upregulation in Human Syncytiotrophoblast Through the cAMP-PKA Signaling Pathway. Hypertension 2016; 68:1438-1446. [PMID: 27698065 DOI: 10.1161/hypertensionaha.116.07890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/03/2016] [Accepted: 09/11/2016] [Indexed: 12/21/2022]
Abstract
The effects of fluid shear stress (FSS) on the human syncytiotrophoblast and its biological functions have never been studied. During pregnancy, the syncytiotrophoblast is the main source of placental growth factor (PlGF), a proangiogenic factor involved in the placental angiogenesis and the vascular adaptation to pregnancy. The role of FSS in regulating PlGF expression in syncytiotrophoblasts is unknown. We investigated the impact of FSS on the production and secretion of the PlGF by the human syncytiotrophoblasts in primary cell culture. Laminar and continuous FSS (1 dyn cm-2) was applied to human syncytiotrophoblasts cultured in a parallel-plate flow chambers. Secreted levels of PlGF, sFlt-1 (soluble fms-like tyrosin kinase-1), and prostaglandin E2 were tested by immunologic assay. PlGF levels of mRNA and intracellular protein were examined by RT-PCR and Western blot, respectively. Intracellular cAMP levels were examined by time-resolved fluorescence resonance energy transfer cAMP accumulation assay. Production of cAMP and PlGF secretion was significantly increased in FSS conditions compared with static conditions. Western blot analysis of cell extracts exposed to FSS showed an increased phosphorylation of protein kinase A substrates and cAMP response element-binding protein on serine 133. FSS-induced phosphorylation of cAMP response element-binding protein and upregulation of PlGF were prevented by inhibition of protein kinase A with H89 (3 μmol/L). FSS also triggers intracellular calcium flux, which increases the synthesis and release of prostaglandin E2. The enhanced intracellular cAMP in FSS conditions was blocked by COX1/COX2 (cyclooxygenase) inhibitors, suggesting that the increase in prostaglandin E2 production could activate the cAMP/protein kinase A pathway in an autocrine/paracrine fashion. FSS activates the cAMP/protein kinase A pathway leading to upregulation of PlGF in human syncytiotrophoblast.
Collapse
Affiliation(s)
- Edouard Lecarpentier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.).
| | - Anthony Atallah
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Jean Guibourdenche
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Marylise Hebert-Schuster
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Sarah Vieillefosse
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Audrey Chissey
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Bassam Haddad
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Guillaume Pidoux
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Daniele Evain-Brion
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Abdul Barakat
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Thierry Fournier
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| | - Vassilis Tsatsaris
- From the INSERM, UMR-S 1139, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., B.H., G.P., T.F., V.T.); PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France (E.L., A.A., J.G., M.H.-S., S.V., A.C., T.F., V.T.); Port Royal Maternity, Department of Gynecology Obstetrics I, Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (E.L., V.T.); DHU Risques et grossesse, Paris, France (E.L., J.G., T.F., V.T.); PremUP Foundation, Paris, France (E.L., J.G., D.E.-B., T.F., V.T.); Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Palaiseau, France (A.B.); SDBA Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (M.H.-S.); Department of Obstetrics and Gynecology, Centre Hospitalier Intercommunal de Créteil, CRC CHI Creteil, University Paris Est Creteil, France (B.H.); Service d'hormonologie Centre Hospitalier Universitaire Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpital de Paris, France (J.G.); and INSERM, UMR-S 1180, Université Paris-Sud, Université Paris-Saclay, F-92296, Châtenay-Malabry, France (G.P.)
| |
Collapse
|
40
|
Abstract
PURPOSE To discuss the terminology, etiopathogenesis, and treatment of radiolucent inflammatory implant periapical lesions. MATERIALS AND METHODS An electronic search for relevant articles published in the English literature in the PubMed database. RESULTS Bacterial contamination of the apical portion of the implant either from a preexisting dental periapical infection or from a periapical lesion of endodontic origin of an adjacent tooth is the probable causative factor. Aseptic bone necrosis owing to overheating of the bone during preparation of osteotomies, or compression of the bone at the apex of the implant owing to excessive tightening, may also play a role. The histopathological features are of a mixed inflammatory cell infiltrate on a background of granulation tissue consistent with either a granuloma or an abscess as may be found at the apex of a nonvital tooth. Treatment consists of immediate and aggressive surgical debridement, chemical detoxification of the apical portion of the exposed implant surface, and systemic antibiotics with or without a bone regenerative procedure. CONCLUSION A radiolucent inflammatory implant periapical lesion is analogous to either a granuloma or an abscess as may be found at the apex of a nonvital tooth.
Collapse
|
41
|
Chen Y, Xu J, Liao H, Ma Z, Zhang Y, Chen H, Huang Z, Hu J. Prostaglandin E2 and Connexin 43 crosstalk in the osteogenesis induced by extracorporeal shockwave. Med Hypotheses 2016; 94:123-5. [PMID: 27515217 DOI: 10.1016/j.mehy.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023]
Abstract
As a type of mechanical stimulation, extracorporeal shockwave (ESW) has been widely used in the clinic to treat bone fracture delayed union and non-unions. A large number of studies have shown beneficial effects of ESW in promoting fracture healing by inducing bone regeneration; however, the underlying mechanisms remain unclear. ESW has been shown to induce the production of prostaglandin E2 (PGE2), which is essential for gap junction intercellular communication in response to mechanical stress. Among the 19 known gap junction subunits, connexin43 (Cx43) is the most prevalent for mediating the response of mechanical stress. However, to our knowledge, the effect of ESW on Cx43 expression has not been reported before. Herein, we propose that a crosstalk between PGE2 and Cx43 is involved in the enhancement of osteogenesis induced by ESW. We review the currently available data to propose an unrevealed, but important mechanism via which ESW treatment affects osteogenic differentiation of bone marrow stromal cells.
Collapse
Affiliation(s)
- Youbin Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiankun Xu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Orthopedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Haojie Liao
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zebin Ma
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuantao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongjiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglian Huang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
42
|
Lee BC, Kim HS, Shin TH, Kang I, Lee JY, Kim JJ, Kang HK, Seo Y, Lee S, Yu KR, Choi SW, Kang KS. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Sci Rep 2016; 6:26298. [PMID: 27230257 PMCID: PMC4882486 DOI: 10.1038/srep26298] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Pusan National University School of Medicine, Busan 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan 49241, South Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Hyun Kyoung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Seunghee Lee
- Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
43
|
Gupta A, Anderson H, Buo AM, Moorer MC, Ren M, Stains JP. Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene expression. Cell Signal 2016; 28:1048-57. [PMID: 27156839 DOI: 10.1016/j.cellsig.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022]
Abstract
Connexin43 (Cx43) containing gap junctions play an important role in bone homeostasis, yet little is known about the second messengers communicated by Cx43 among bone cells. Here, we used MC3T3-E1 pre-osteoblasts and UMR106 rat osteosarcoma cells to test the hypothesis that cAMP is a second messenger communicated by bone cells through Cx43 containing gap junctions in a manner that is sufficient to impact osteoblast function. Overexpression of Cx43 markedly enhanced the activity of a cAMP-response element driven transcriptional luciferase reporter (CRE-luc) and increased phospho-CREB and phospho-ERK1/2 levels following expression of a constitutively active Gsα or by treatment with prostaglandin E2 (PGE2), 3-Isobutyl-1-methyl xanthine (IBMX) or forskolin. The Cx43-dependent potentiation of signaling in PGE2 treated cells was not accompanied by a further increase in cAMP levels, suggesting that the cAMP was shared between cells rather than Cx43 enhancing cAMP production. To support this, we developed a novel assay in which one set of cells expressing constitutively active Gsα (donor cells) were co-cultured with a second set of cells expressing a CRE-luc reporter (acceptor cells). Using this assay, activation of a CRE-luc reporter in the acceptor cells was both Cx43- and cell contact-dependent, indicating communication of cAMP among cells. Finally, we showed that Cx43 increased the cAMP-dependent mRNA expression of receptor activator of nuclear factor kappa B ligand (RANKL) and enhanced the repression of the sclerostin mRNA, implying a potential mechanism for the modulation of tissue remodeling. In total, these data demonstrate that Cx43 can communicate cAMP between cells and, more importantly, that the communicated cAMP is sufficient to impact signal transduction cascades and the expression of key bone effector molecules between interconnected cells.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hidayah Anderson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret Ren
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
45
|
Kizub IV, Lakhkar A, Dhagia V, Joshi SR, Jiang H, Wolin MS, Falck JR, Koduru SR, Errabelli R, Jacobs ER, Schwartzman ML, Gupte SA. Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. Am J Physiol Lung Cell Mol Physiol 2016; 310:L772-83. [PMID: 26895643 DOI: 10.1152/ajplung.00377.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/10/2016] [Indexed: 12/23/2022] Open
Abstract
In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development.
Collapse
Affiliation(s)
- Igor V Kizub
- Department of Experimental Therapeutics, Institute of Pharmacology and Toxicology of NAMS of Ukraine, Kiev, Ukraine; Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Anand Lakhkar
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sachindra R Joshi
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Ramu Errabelli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
46
|
LIU Z, YAMAMOTO T, HASEGAWA T, HONGO H, TSUBOI K, TSUCHIYA E, HARAGUCHI M, ABE M, FREITAS PHLD, KUDO A, ODA K, LI M, AMIZUKA N. Immunolocalization of osteocyte-derived molecules during bone fracture healing of mouse ribs . Biomed Res 2016; 37:141-51. [DOI: 10.2220/biomedres.37.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhusheng LIU
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Tomomaya YAMAMOTO
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Tomoka HASEGAWA
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Hiromi HONGO
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Kanako TSUBOI
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Erika TSUCHIYA
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Mai HARAGUCHI
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | - Miki ABE
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| | | | - Akira KUDO
- Department of Biological Information, Tokyo Institute of Technology
| | - Kimimitsu ODA
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences
| | - Minqi LI
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University
| | - Norio AMIZUKA
- Department of Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
47
|
Riquelme MA, Burra S, Kar R, Lampe PD, Jiang JX. Mitogen-activated Protein Kinase (MAPK) Activated by Prostaglandin E2 Phosphorylates Connexin 43 and Closes Osteocytic Hemichannels in Response to Continuous Flow Shear Stress. J Biol Chem 2015; 290:28321-28328. [PMID: 26442583 DOI: 10.1074/jbc.m115.683417] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/04/2023] Open
Abstract
Cx43 hemichannels serve as a portal for the release of prostaglandins, a critical process in mediating biological responses of mechanical loading on bone formation and remodeling. We have previously observed that fluid flow shear stress (FFSS) opens hemichannels; however, sustained FFSS results in hemichannel closure, as continuous opening of hemichannels is detrimental to cell viability and bone remodeling. However, the mechanism that regulates the closure of the hemichannels is unknown. Here, we show that activation of p44/42 ERK upon continuous FFSS leads to Cx43 phosphorylation at Ser(279)-Ser(282), sites known to be phosphorylated sites by p44/42 MAPK. Incubation of osteocytic MLO-Y4 cells with conditioned media (CM) collected after continuous FFSS increased MAPK-dependent phosphorylation of Cx43. CM treatment inhibited hemichannel opening and this inhibition was reversed when cells were pretreated with the MAPK pathway inhibitor. We found that prostaglandin E2 (PGE2) accumulates in the CM in a time-dependent manner. Treatment with PGE2 increased phospho-p44/42 ERK levels and also Cx43 phosphorylation at Ser(279)-Ser(282) sites. Depletion of PGE2 from CM, and pre-treatment with a p44/42 ERK pathway-specific inhibitor, resulted in a complete inhibition of ERK-dependent Cx43 phosphorylation and attenuated the inhibition of hemichannels by CM and PGE2. Consistently, the opening of hemichannels by FFSS was blocked by PGE2 and CM and this blockage was reversed by U0126 and the CM depleted of PGE2. A similar observation was also obtained in isolated primary osteocytes. Together, results from this study suggest that extracellular PGE2 accumulated after continuous FFSS is responsible for activation of p44/42 ERK signaling and subsequently, direct Cx43 phosphorylation by activated ERK leads to hemichannel closure.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Sirisha Burra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Rekha Kar
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900.
| |
Collapse
|
48
|
Zhang JN, Zhao Y, Liu C, Han ES, Yu X, Lidington D, Bolz SS, You L. The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction. Bone 2015; 79:71-8. [PMID: 25988659 DOI: 10.1016/j.bone.2015.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
Abstract
Osteocytes are proposed to be the mechanosensory cells that translate mechanical loading into biochemical signals during the process of bone adaptation. The lipid mediator sphingosine-1-phosphate (S1P) has been reported to play a role in the mechanotransduction process of blood vessels and also in the dynamic control of bone mineral homeostasis. Nevertheless, the potential role of S1P in bone mechanotransduction has yet to be elucidated. In this study, we hypothesized that a S1P cascade is involved in the activation of osteocytes in response to loading-induced oscillatory fluid flow (OFF) in bone. MLO-Y4 osteocyte-like cells express the necessary components of a functional S1P cascade. To examine the involvement of S1P signaling in osteocyte mechanotransduction, we applied OFF (1 Pa, 1 Hz) to osteocyte-like MLO-Y4 cells under conditions where the S1P signaling pathway was modulated. We found that decreased endogenous S1P levels significantly suppressed the OFF-induced intracellular calcium response. Addition of extracellular S1P to MLO-Y4 cells enhanced the synthesis and release of prostaglandin E2 (PGE2) under static cells and amplified OFF-induced PGE2 release. The stimulatory effect of OFF on the gene expression levels of osteoprotegerin (OPG) and receptor activator for nuclear factor κB ligand (RANKL) was S1P dependent. Furthermore, the S1P2 receptor subtype was shown to be involved in OFF-induced PGE2 synthesis and release, as well as down-regulation of RANKL/OPG gene expression ratio. In summary, our data suggest that S1P cascade is involved in OFF-induced mechanotransduction in MLO-Y4 cells and that extracellular S1P exerts its effect partly through S1P2 receptors.
Collapse
Affiliation(s)
- Jia-Ning Zhang
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, ON, Canada
| | - Yan Zhao
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, ON, Canada
| | - Chao Liu
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, ON, Canada
| | - Elizabeth S Han
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, ON, Canada
| | - Xue Yu
- Division of Engineering Science, University of Toronto, ON, Canada
| | | | | | - Lidan You
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
49
|
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 2015; 20:3142-53. [PMID: 24851936 DOI: 10.1089/ten.tea.2014.0026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal.
Collapse
Affiliation(s)
- Swathi Damaraju
- 1 Biomedical Engineering Program, McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
50
|
Biological Events in Periodontal Ligament and Alveolar Bone Associated with Application of Orthodontic Forces. ScientificWorldJournal 2015; 2015:876509. [PMID: 26421314 PMCID: PMC4572431 DOI: 10.1155/2015/876509] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement.
Collapse
|