1
|
Di Paolo A, Eastman G, Mesquita-Ribeiro R, Farias J, Macklin A, Kislinger T, Colburn N, Munroe D, Sotelo Sosa JR, Dajas-Bailador F, Sotelo-Silveira JR. PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. RNA (NEW YORK, N.Y.) 2020; 26:1637-1653. [PMID: 32747606 PMCID: PMC7566564 DOI: 10.1261/rna.075424.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Programmed cell death 4 (PDCD4) protein is a tumor suppressor that inhibits translation through the mTOR-dependent initiation factor EIF4A, but its functional role and mRNA targets in neurons remain largely unknown. Our work identified that PDCD4 is highly expressed in axons and dendrites of CNS and PNS neurons. Using loss- and gain-of-function experiments in cortical and dorsal root ganglia primary neurons, we demonstrated the capacity of PDCD4 to negatively control axonal growth. To explore PDCD4 transcriptome and translatome targets, we used Ribo-seq and uncovered a list of potential targets with known functions as axon/neurite outgrowth regulators. In addition, we observed that PDCD4 can be locally synthesized in adult axons in vivo, and its levels decrease at the site of peripheral nerve injury and before nerve regeneration. Overall, our findings demonstrate that PDCD4 can act as a new regulator of axonal growth via the selective control of translation, providing a target mechanism for axon regeneration and neuronal plasticity processes in neurons.
Collapse
Affiliation(s)
- Andrés Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto M5S 1A1, Canada
| | - Nancy Colburn
- Former Chief of Laboratory of Cancer Prevention at the National Cancer Institute-NIH at Frederick, Maryland 21702, USA
| | - David Munroe
- Former Laboratory of Molecular Technologies, LEIDOS at Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - José R Sotelo Sosa
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias UdelaR, Montevideo 11400, Uruguay
| |
Collapse
|
2
|
Sharma S, Chakravarthy H, Suresh G, Devanathan V. Adult Goat Retinal Neuronal Culture: Applications in Modeling Hyperglycemia. Front Neurosci 2019; 13:983. [PMID: 31607843 PMCID: PMC6756134 DOI: 10.3389/fnins.2019.00983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Culture of adult neurons of the central nervous system (CNS) can provide a unique model system to explore neurodegenerative diseases. The CNS includes neurons and glia of the brain, spinal cord and retina. Neurons in the retina have the advantage of being the most accessible cells of the CNS, and can serve as a reliable mirror to the brain. Typically, primary cultures utilize fetal rodent neurons, but very rarely adult neurons from larger mammals. Here, we cultured primary retinal neurons isolated from adult goat up to 10 days, and established an in vitro model of hyperglycemia for performing morphological and molecular characterization studies. Immunofluorescence staining revealed that approximately 30–40% of cultured cells expressed neuronal markers. Next, we examined the relative expression of cell adhesion molecules (CAMs) in adult goat brain and retina. We also studied the effect of different glucose concentrations and media composition on the growth and expression of CAMs in cultured retinal neurons. Hyperglycemia significantly enhances neurite outgrowth in adult retinal neurons in culture. Expression of CAMs such as Caspr1, Contactin1 and Prion is downregulated in the presence of high glucose. Hyperglycemia downregulates the expression of the transcription factor CCAAT/enhancer binding protein (C/EBP α), predicted to bind CAM gene promoters. Collectively, our study demonstrates that metabolic environment markedly affects transcriptional regulation of CAMs in adult retinal neurons in culture. The effect of hyperglycemia on CAM interactions, as well as related changes in intracellular signaling pathways in adult retinal neurons warrants further investigation.
Collapse
Affiliation(s)
- Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India
| | - Gowthaman Suresh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati, India
| |
Collapse
|
3
|
Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P. Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor. Dev Biol 2019; 447:200-213. [DOI: 10.1016/j.ydbio.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
|
4
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
5
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
6
|
Pellegrino MJ, Habecker BA. STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration. Mol Cell Neurosci 2013; 56:272-82. [PMID: 23831387 DOI: 10.1016/j.mcn.2013.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022] Open
Abstract
The transcription factor STAT3 has been implicated in axon regeneration. Here we investigate a role for STAT3 in sympathetic nerve sprouting after myocardial infarction (MI) - a common injury in humans. We show that NGF stimulates serine phosphorylation (S727) of STAT3 in sympathetic neurons via ERK1/2, in contrast to cytokine phosphorylation of Y705. Maximal sympathetic axon regeneration in vitro requires phosphorylation of both S727 and Y705. Furthermore, cytokine signaling is necessary for NGF-induced sympathetic nerve sprouting in the heart after MI. Transfection studies in neurons lacking STAT3 suggest two independent pools of STAT3, phosphorylated on either S727 or Y705, that regulate sympathetic regeneration via both transcriptional and non-transcriptional means. Additional data identify STAT3-microtubule interactions that may complement the well-characterized role of STAT3 stimulating regeneration associated genes. These data show that STAT3 is critical for sympathetic axon regeneration in vitro and in vivo, and identify a novel non-transcriptional mode of action.
Collapse
Affiliation(s)
- Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
7
|
McEwen BS. Structural plasticity of the adult brain: how animal models help us understand brain changes in depression and systemic disorders related to depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034132 PMCID: PMC3181799 DOI: 10.31887/dcns.2004.6.2/bmcewen] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The brain interprets experiences and translates them into behavioral and physiological responses. Stressful events are those which are threatening or, at the very least, unexpected and surprising, and the physiological and behavioral responses are intended to promote adaptation via a process called “allostasis. ” Chemical mediators of allostasis include cortisol and adrenalin from the adrenal glands, other hormones, and neurotransmitters, the parasympathetic and sympathetic nervous systems, and cytokines and chemokines from the immune system. Two brain structures, the amygdala and hippocampus, play key roles in interpreting what is stressful and determining appropriate responses. The hippocampus, a key structure for memories of events and contexts, expresses receptors that enable it to respond to glucocorticoid hormones in the blood, it undergoes atrophy in a number of psychiatric disorders; it also responds to stressors with changes in excitability, decreased dendritic branching, and reduction in number of neurons in the dentate gyrus. The amygdala, which is important for “emotional memories, ” becomes hyperactive in posttraumatic stress disorder and depressive illness, in animal models of stress, there is evidence for growth and hypertrophy of nerve cells in the amygdala. Changes in the brain after acute and chronic stressors mirror the pattern seen in the metabolic, cardiovascular, and immune systems, that is, short-term adaptation (allostasis) followed by long-term damage (allostatic load), eg, atherosclerosis, fat deposition obesity, bone demineralization, and impaired immune function. Allostatic load of this kind is seen in major depressive illness and may also be expressed in other chronic anxiety and mood disorders.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
9
|
Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y, Lambert WS, Morrison JC. Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci 2011; 52:504-18. [PMID: 20847120 DOI: 10.1167/iovs.10-5317] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury. METHODS Unilateral IOP elevation was produced in rats by episcleral vein injection of hypertonic saline. ONH mRNA was extracted, and retrobulbar optic nerve cross-sections were graded for axonal degeneration. Gene expression was determined by microarray and quantitative PCR (QPCR) analysis. Significantly altered gene expression was determined by multiclass analysis and ANOVA. DAVID gene ontology determined the functional categories of significantly affected genes. RESULTS The Early Injury group consisted of ONH from eyes with <15% axon degeneration. By array analysis, 877 genes were significantly regulated in this group. The most significant upregulated gene categories were cell cycle, cytoskeleton, and immune system process, whereas the downregulated categories included glucose and lipid metabolism. QPCR confirmed the upregulation of cell cycle-associated genes and leukemia inhibitory factor (Lif) and revealed alterations in expression of other IL-6-type cytokines and Jak-Stat signaling pathway components, including increased expression of IL-6 (1553%). In contrast, astrocytic glial fibrillary acidic protein (Gfap) message levels were unaltered, and other astrocytic markers were significantly downregulated. Microglial activation and vascular-associated gene responses were identified. CONCLUSIONS Cell proliferation and IL-6-type cytokine gene expression, rather than astrocyte hypertrophy, characterize early pressure-induced ONH injury.
Collapse
Affiliation(s)
- Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hong Z, Zhang QY, Liu J, Wang ZQ, Zhang Y, Xiao Q, Lu J, Zhou HY, Chen SD. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. J Proteome Res 2009; 8:2768-87. [PMID: 19290620 DOI: 10.1021/pr801052v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a most potent survival factor for dopaminergic neurons. In addition, GDNF was also found to promote neurite outgrowth in dopaminergic neurons. However, despite the potential clinical and physiological importance of GDNF, its mechanism of action is unclear. Therefore, we employed a state-of-the-art proteomic technique, DIGE (Difference in two-dimensional gel electrophoresis), to quantitatively compare profiles of phosphoproteins of PC12-GFRalpha1-RET cells (that stably overexpress GDNF receptor alpha1 and RET) 0.5 and 10 h after GDNF challenge with control. A total of 92 differentially expressed proteins were successfully identified by mass spectrometry. Among them, the relative levels of phosphorylated Hsp27 increased significantly both in 0.5 and 10 h GDNF-treated PC12-GFRalpha1-RET cells. Confocal microscopy and Western blot results showed that the phosphorylation of Hsp27 after GDNF treatment was accompanied by its nuclear translocation. After the mRNA of Hsp27 was interfered, neurite outgrowth of PC12-GFRalpha1-RET cells induced by GDNF was significantly blocked. Furthermore, the percentage of neurite outgrowth induced by GDNF was also reduced by the expression of dominant-negative mutants of Hsp27, in which specific serine phosphorylation residues (Ser15, Ser78 and Ser82) were substituted with alanine. Our data also revealed that p38 MAPK and ERK are the upstream regulators of Hsp27 phosphorylation. Hence, in addition to the numerous novel proteins that are potentially important in GDNF mediated differentiation of dopaminergic cells revealed by our study, our data has indicated that Hsp27 is a novel signaling molecule involved in GDNF-induced neurite outgrowth of dopaminergic neurons.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fila T, Trazzi S, Crochemore C, Bartesaghi R, Ciani E. Lot1 is a key element of the pituitary adenylate cyclase-activating polypeptide (PACAP)/cyclic AMP pathway that negatively regulates neuronal precursor proliferation. J Biol Chem 2009; 284:15325-38. [PMID: 19346254 DOI: 10.1074/jbc.m109.002329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor gene Lot1 is highly expressed during brain development. During cerebellar development, Lot1 is expressed by proliferating granule cells with a time course matching the expression of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor, a neuropeptide receptor that plays an important role in the regulation of granule cell proliferation/survival. Although it has become clear that Lot1 is a negative regulator of cell division in tumor cells, its role in neuronal proliferation is not understood. We previously demonstrated that in cerebellar granule cells Lot1 expression is regulated by the PACAP/cAMP system. The aim of this study was to investigate the role played by Lot1 in neuron proliferation/survival and to identify the molecular mechanisms underlying its actions. Using a Lot1-inducible expression system, we found that in PC12 cells Lot1 negatively regulates proliferation and favors differentiation by up-regulating the expression of the PACAP receptor. In cerebellar granule cells in culture, an increase in Lot1 expression was paralleled by inhibition of proliferation and up-regulation of the PACAP receptor, which in turn positively regulated Lot1 expression. Silencing of Lot1 leads to an increase in granule cell proliferation and a reduction in survival. Confirming the in vitro results, in vivo experiments showed that PACAP induced an increase in Lot1 expression that was paralleled by inhibition of cerebellar granule cell proliferation. These data show that Lot1 is a key element of the PACAP/cAMP pathway that negatively regulates neuronal precursor proliferation. The existence of a PACAP receptor/Lot1-positive feedback loop may powerfully regulate neural proliferation during critical phases of cerebellar development.
Collapse
Affiliation(s)
- Tatiana Fila
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | | | | | | | | |
Collapse
|
12
|
Differences in the injury/sprouting response of splenic noradrenergic nerves in Lewis rats with adjuvant-induced arthritis compared with rats treated with 6-hydroxydopamine. Brain Behav Immun 2009; 23:276-85. [PMID: 18984038 DOI: 10.1016/j.bbi.2008.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/24/2008] [Accepted: 10/12/2008] [Indexed: 11/21/2022] Open
Abstract
Sympathetic nerves in the spleen undergo an injury and sprouting response with development of adjuvant-induced arthritis (AA), a model of rheumatoid arthritis (RA). The objective of the present study was to determine whether this injury and sprouting response is disease-specific or occurs in a non-specific manner similar to injury and sprouting responses following sympathectomy with specific neurotoxins. Changes in noradrenergic (NA) innervation in spleens from Lewis rats 28 days following adjuvant treatment to induce arthritis and/or local 6-hydroxydopamine (6-OHDA) treatment to destroy NA nerves were examined using immunocytochemistry for tyrosine hydroxylase (TH). We observed significant increases in sympathetic innervation of hilar regions, sites of nerve entry into the spleen, and a striking decline in innervation of splenic regions distant to the hilus in arthritic compared to non-arthritic rats. While increased hilar and decreased distal NA innervation in arthritic rats was strikingly similar to that of non-arthritic 6-OHDA-treated rats, there were differences in splenic compartments innervated by sympathetic nerves between these groups. In 6-OHDA-treated rats, NA nerves re-innervated splenic compartments normally innervated by sympathetic nerves. In arthritic rats, sympathetic nerves returned to normally innervated splenic compartments, but also abundantly innervated red pulp. These findings suggest that splenic sympathetic nerves undergo a disease-associated injury/sprouting response with disease development that alters the normal pattern and distribution of NA innervation. The altered sympathetic innervation pattern is likely to change NA signaling to immune cell targets, which could exert long-term regulatory influences on initiation, maintenance, and resolution of immune responses that impact disease pathology.
Collapse
|
13
|
Endophilin B1 as a novel regulator of nerve growth factor/ TrkA trafficking and neurite outgrowth. J Neurosci 2008; 28:9002-12. [PMID: 18768694 DOI: 10.1523/jneurosci.0767-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neurotrophins and their cognate receptors Trks are important regulators of neuronal survival and differentiation. Recent studies reveal that internalization and trafficking of Trks play a critical role in neurotrophin-mediated signaling. At present, little is known of the molecular events that mediate this process. In the current study, we show that endophilin B1 is a novel regulator of nerve growth factor (NGF) trafficking. We found that endophilin B1 interacts with both TrkA and early endosome marker EEA1. Interestingly, knockdown of endophilin B1 results in enlarged EEA1-positive vesicles in NGF-treated PC12 cells. This is accompanied by increased lysosomal targeting of NGF/TrkA and TrkA degradation, and reduced total TrkA levels. In addition, knockdown of endophilin B1 attenuates Erk1/2 activation in the endosomal fraction after NGF treatment. This is accompanied by a marked inhibition of NGF-induced gene transcription and neurite outgrowth in endophilin B1-knocked down cells. Our observations implicate endophilin B1 as a novel regulator of NGF trafficking, thereby affecting TrkA levels and downstream signaling on endosomes to mediate biological functions of NGF.
Collapse
|
14
|
Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J Mol Neurosci 2008; 36:45-56. [DOI: 10.1007/s12031-008-9082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
15
|
Specificity of amyloid precursor-like protein 2 interactions with MHC class I molecules. Immunogenetics 2008; 60:303-13. [PMID: 18452037 DOI: 10.1007/s00251-008-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
The ubiquitously expressed amyloid precursor-like protein 2 (APLP2) has been previously found to regulate cell surface expression of the major histocompatibility complex (MHC) class I molecule K(d) and bind strongly to K(d). In the study reported here, we demonstrated that APLP2 binds, in varied degrees, to several other mouse MHC class I allotypes and that the ability of APLP2 to affect cell surface expression of an MHC class I molecule is not limited to K(d). L(d), like K(d), was found associated with APLP2 in the Golgi, but K(d) was also associated with APLP2 within intracellular vesicular structures. We also investigated the effect of beta(2)m on APLP2/MHC interaction and found that human beta(2)m transfection increased the association of APLP2 with mouse MHC class I molecules, likely by affecting H2 class I heavy chain conformation. APLP2 was demonstrated to bind specifically to the conformation of L(d) having folded outer domains, consistent with our previous results with K(d) and indicating APLP2 interacts with the alpha1alpha2 region on each of these H2 class I molecules. Furthermore, we observed that binding to APLP2 involved the MHC alpha3/transmembrane/cytoplasmic region, suggesting that conserved as well as polymorphic regions of the H2 class I molecule may participate in interaction with APLP2. In summary, we demonstrated that APLP2's binding, co-localization pattern, and functional impact vary among H2 class I molecules and that APLP2/MHC association is influenced by multiple domains of the MHC class I heavy chain and by beta(2)m's effects on the conformation of the heavy chain.
Collapse
|
16
|
Ozog MA, Modha G, Church J, Reilly R, Naus CC. Co-administration of Ciliary Neurotrophic Factor with Its Soluble Receptor Protects against Neuronal Death and Enhances Neurite Outgrowth. J Biol Chem 2008; 283:6546-60. [DOI: 10.1074/jbc.m709065200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Sloan EK, Capitanio JP, Cole SW. Stress-induced remodeling of lymphoid innervation. Brain Behav Immun 2008; 22:15-21. [PMID: 17697764 PMCID: PMC2754291 DOI: 10.1016/j.bbi.2007.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 06/27/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022] Open
Abstract
Lymphoid organs have long been known to harbor neural fibers from the sympathetic division of the autonomic nervous system, but recent studies suggest a surprising degree of plasticity in the density of innervation. This review summarizes data showing that behavioral stress can increase the density of catecholaminergic neural fibers within lymphoid organs of adult primates. Stress-induced neural densification is associated with increased expression of neurotrophic factors, and functional consequences include alterations in lymph node cytokine expression and increased replication of a lymphotropic virus. The finding that behavioral stress can tonically alter lymph node neural structure suggests that behavioral factors could exert long-term regulatory influences on the initiation, maintenance, and resolution of immune responses.
Collapse
Affiliation(s)
- Erica K. Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, UCLA School of Medicine, and UCLA AIDS Institute
| | - John P. Capitanio
- California National Primate Research Center and Department of Psychology, University of California Davis
| | - Steve W. Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, UCLA School of Medicine, and UCLA AIDS Institute
- Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine, Jonsson Comprehensive Cancer Center, and the UCLA Molecular Biology Institute
- Address correspondence to: Steve W. Cole, Department of Medicine, Division of Hematology-Oncology, 11-934 Factor Building, David Geffen School of Medicine at UCLA, Los Angeles CA 90095-1678, , (310) 267-4243
| |
Collapse
|
18
|
Damon DH. TH and NPY in sympathetic neurovascular cultures: role of LIF and NT-3. Am J Physiol Cell Physiol 2007; 294:C306-12. [PMID: 18032527 DOI: 10.1152/ajpcell.00214.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The sympathetic nervous system is an important determinant of vascular function. The effects of the sympathetic nervous system are mediated via release of neurotransmitters and neuropeptides from postganglionic sympathetic neurons. The present study tests the hypothesis that vascular smooth muscle cells (VSM) maintain adrenergic neurotransmitter/neuropeptide expression in the postganglionic sympathetic neurons that innervate them. The effects of rat aortic and tail artery VSM (AVSM and TAVSM, respectively) on neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were assessed in cultures of dissociated sympathetic neurons. AVSM decreased TH (39 +/- 12% of control) but did not affect NPY. TAVSM decreased TH (76 +/- 10% of control) but increased NPY (153 +/- 20% of control). VSM expressed leukemia inhibitory factor (LIF) and neurotrophin-3 (NT-3), which are known to modulate NPY and TH expression. Sympathetic neurons innervating blood vessels expressed LIF and NT-3 receptors. Inhibition of LIF inhibited the effect of AVSM on TH. Inhibition of neurotrophin-3 (NT-3) decreased TH and NPY in neurons grown in the presence of TAVSM. These data suggest that vascular-derived LIF decreases TH and vascular-derived NT-3 increases or maintains NPY and TH expression in postganglionic sympathetic neurons. NPY and TH in vascular sympathetic nerves are likely to modulate NPY and/or norepinephrine release from these nerves and are thus likely to affect blood flow and blood pressure. The present studies suggest a novel mechanism whereby VSM would modulate sympathetic control of vascular function.
Collapse
Affiliation(s)
- Deborah H Damon
- Dept. of Pharmacology, Univ. of Vermont, 89 Beaumont Ave., Given Bldg., Burlington, VT 05405, USA.
| |
Collapse
|
19
|
Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY. Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol 2007; 5:e63. [PMID: 17341134 PMCID: PMC1808488 DOI: 10.1371/journal.pbio.0050063] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/29/2006] [Indexed: 01/15/2023] Open
Abstract
Neurotrophins are key regulators of neuronal survival and differentiation during development. Activation of their cognate receptors, Trk receptors, a family of receptor tyrosine kinases (RTKs), is pivotal for mediating the downstream functions of neurotrophins. Recent studies reveal that cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase, may modulate RTK signaling through phosphorylation of the receptor. Given the abundant expression of both Cdk5 and Trk receptors in the nervous system, and their mutual involvement in the regulation of neuronal architecture and synaptic functions, it is of interest to investigate if Cdk5 may also modulate Trk signaling. In the current study, we report the identification of TrkB as a Cdk5 substrate. Cdk5 phosphorylates TrkB at Ser478 at the intracellular juxtamembrane region of TrkB. Interestingly, attenuation of Cdk5 activity or overexpression of a TrkB mutant lacking the Cdk5 phosphorylation site essentially abolishes brain-derived neurotrophic factor (BDNF)–triggered dendritic growth in primary hippocampal neurons. In addition, we found that Cdk5 is involved in BDNF-induced activation of Rho GTPase Cdc42, which is essential for BDNF-triggered dendritic growth. Our observations therefore reveal an unanticipated role of Cdk5 in TrkB-mediated regulation of dendritic growth through modulation of BDNF-induced Cdc42 activation. Accurate transmission of information in the nervous system requires the precise formation of contact points between neurons. Regulation of these contact sites involves fine tuning the number and branching of dendritic processes on neurons. Throughout development, several secreted factors act to regulate dendrite number and branching. One important family of these factors is neurotrophins, which are indispensable for the survival and development of neurons. For example, stimulation of hippocampal neurons with one neurotrophin, brain-derived neurotrophic factor (BDNF), increases the number of dendrites directly extending from the cell body. Here, we report that BDNF-stimulated dendritic growth requires phosphorylation of the BDNF receptor, TrkB, by a kinase known as cyclin-dependent kinase 5 (Cdk5). Inhibiting phosphorylation of TrkB by Cdk5 essentially abolishes the induction of dendrites by BDNF. Our observations reveal that Cdk5 serves as a regulator of neurotrophin function. Since Cdk5 and neurotrophins both play essential roles in neuronal development, our findings suggest that the interplay between Cdk5 and TrkB may also be implicated in the regulation of other biological processes during development. Dendritic growth stimulated by brain-derived neurotrophic factor (BDNF) requires phosphorylation of the BDNF receptor, TrkB, by a kinase known as cyclin-dependent kinase 5 (Cdk5). This study identifies a novel interplay between Cdk5 and TrkB.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wing Hong Chin
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yu Chen
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yu Pong Ng
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Nancy Y Ip
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Kavanagh ET, Loughlin JP, Herbert KR, Dockery P, Samali A, Doyle KM, Gorman AM. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine. Biochem Biophys Res Commun 2006; 351:890-5. [PMID: 17092485 DOI: 10.1016/j.bbrc.2006.10.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 11/20/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of betaIII tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of betaIII-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.
Collapse
Affiliation(s)
- Edel T Kavanagh
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Miao T, Wu D, Zhang Y, Bo X, Subang MC, Wang P, Richardson PM. Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons. J Neurosci 2006; 26:9512-9. [PMID: 16971535 PMCID: PMC6674589 DOI: 10.1523/jneurosci.2160-06.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The actions of the neuropoietic cytokines are mediated by the gp130 receptor, which activates several signaling molecules including the transcription factor STAT3 (signal transducer and activator of transcription), which, in turn, is subject to feedback inhibition by SOCS3 (suppressor of cytokine signaling). Activation of the gp130 receptor has been implicated in axonal growth particularly during regeneration, but the specific contribution of STAT3 is the subject of conflicting reports. Measurements of SOCS3 mRNA in rat dorsal root ganglia showed a significant induction in this inhibitory molecule after peripheral nerve injury. The functions of STAT3 and SOCS3 in adult rat primary sensory neurons were investigated in vitro through transduction of lentiviruses yielding a conditionally activated STAT3, native SOCS3, or a mutant SOCS3 with dominant-negative actions. The SOCS3 construct was effective in inhibiting tyrosine phosphorylation of STAT3 in a neuroblastoma cell line and in blocking nuclear accumulation of endogenous STAT3 or of the conditionally activated STAT3 chimera in primary sensory neurons. In such neurons, transduction and activation of STAT3 enhanced neurite growth, transduction with SOCS3 reduced neurite outgrowth, and transduction with mutant SOCS3 enhanced neurite growth, at least under basal conditions. In conclusion, STAT3 signaling is beneficial to axonal growth through activating transcription of unidentified genes, and SOCS3 is detrimental to axonal growth through inhibition of STAT3 and/or other transcription factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Axotomy
- Cell Differentiation/physiology
- Cell Line, Tumor
- Cells, Cultured
- Feedback, Physiological/physiology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental/physiology
- Genetic Vectors/genetics
- Humans
- Mice
- Nerve Regeneration/genetics
- Neurites/metabolism
- Neurites/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- RNA, Messenger/metabolism
- Rats
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/physiology
- Sciatic Neuropathy/genetics
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/physiopathology
- Signal Transduction/physiology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/physiology
- Transfection
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Wang
- Gastroenterology, Barts and the London Queen Mary's School of Medicine, University of London, London E1 2AT, United Kingdom
| | | |
Collapse
|
22
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) has long been shown to regulate gene transcription in response to cytokines and growth factors. Recent evidence suggests that STAT3 activation may also occur downstream of receptor-tyrosine kinase activation. In the current study we have identified STAT3 as a novel signal transducer for TrkA, the receptor-tyrosine kinase that mediates the functions of nerve growth factor (NGF). Activation of TrkA by NGF triggered STAT3 phosphorylation at Ser-727, and enhanced the DNA binding and transcriptional activities of STAT3. More importantly, neurotrophin-induced increase in STAT3 activation was observed to underlie several downstream functions of neurotrophin signaling. First of all, knockdown of STAT3 expression using the RNA interference approach attenuated NGF-induced transcription of immediate early genes in PC12 cells. Furthermore, reduced STAT3 expression in PC12 cells suppressed NGF-induced cyclin D1 expression, thereby inhibiting growth arrest normally triggered by NGF treatment. Finally, inhibition of STAT3 expression decreased brain-derived neurotrophic factor-promoted neurite outgrowth in primary hippocampal neurons. Together, our findings have identified STAT3 as an essential component of neurotrophin signaling and functions.
Collapse
Affiliation(s)
- Yu Pong Ng
- Department of Biochemistry, Biotechnology Research Institute, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
23
|
Berman-Shlomovich T, Wormser U, Brodsky B. Toxic serum factor long after single exposure to organophosphate; a new approach for biomonitoring. Arch Toxicol 2005; 80:269-74. [PMID: 16237519 DOI: 10.1007/s00204-005-0035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 09/08/2005] [Indexed: 11/30/2022]
Abstract
One of the major limitations of current methods of biological detection of exposure to hazardous environmental agents is their inability to detect long-term exposures. In the current study we examined the potential of a new bioassay based on the hypothesis that serum of exposed individuals contains a toxic factor(s) produced by an affected cell/tissue. The procedure included exposure of neuronal PC12 cell cultures to sera of rats treated once with the organophosphate chlorpyrifos. Samples taken 4 weeks after chlorpyrifos exposure reduced nerve growth factor (NGF)-induced neurite outgrowth by 40%. This effect lasted 6 weeks after treatment, whereas motor activity and cholinesterase activity returned to normal levels within 1 week. These results demonstrate the potential of the proposed method to detect environmental exposures long after they have occurred.
Collapse
Affiliation(s)
- Tamar Berman-Shlomovich
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | |
Collapse
|