1
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
2
|
Xu W, Yan J, Travis ZD, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Shao A, Yu J. Apelin/APJ system: a novel promising target for anti-oxidative stress in stroke. Front Pharmacol 2025; 15:1352927. [PMID: 39881878 PMCID: PMC11775478 DOI: 10.3389/fphar.2024.1352927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS). However, the distribution of the apelin/APJ system varies across different regions and subcellular organelles of the brain. Additionally, the neuroprotective effects of the apelin/APJ system have been reported to inhibit oxidative and nitrative stresses via various signaling pathways. Despite this, the clinical application of the apelin/APJ system remains distant, as apelin has numerous active forms and signaling pathways. The development of a range of drugs targeting the apelin/APJ system holds promise for treating stroke.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zachary D. Travis
- Department of Medical Science Education, College of Health Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Malamos P, Kalyvianaki K, Panagiotopoulos AA, Vogiatzoglou AP, Tsikalaki AA, Katifori A, Polioudaki H, Darivianaki MN, Theodoropoulos PA, Panagiotidis CA, Notas G, Castanas E, Kampa M. Nuclear translocation of the membrane oxoeicosanoid/androgen receptor, OXER1: Possible mechanisms involved. Mol Cell Endocrinol 2024; 594:112357. [PMID: 39236798 DOI: 10.1016/j.mce.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane. However, for numerous GPCRs, there is now strong evidence that they can be also found in other cellular compartments, including the nucleus. The aim of the present work was to investigate OXER1's possible localization in the nucleus and identify the mechanism(s) involved. For this purpose, we verified OXER1's nuclear presence by immunofluorescence and western blot, in whole cells and nuclei of two different prostate cancer cell lines (DU-145 and LNCaP) and in CHO cells transfected with a GFP labelled OXER1, both in untreated and OXER1 ligands' treated cells. Mutated, OXER1-tGFP expressing, CHO cells were used to verify that OXER1 agonist (5-oxo-ETE) binding is necessary for OXER1 nuclear translocation. NLS sequences were in silico identified, and a specific inhibitor, as well as, specific importins' siRNAs were also utilized to explore the mechanism involved. Moreover, we examined the role of palmitoylation in OXER1 nuclear translocation by in silico identifying possible palmitoylation sites and using a palmitoylation inhibitor. Our results clearly show that OXER1 can be localized in the nucleus, in an agonist-dependent manner, that is inhibited by androgens. We also provide evidence for two possible mechanisms for its nuclear trafficking, that involve receptor palmitoylation and importin-mediated cytoplasmic-nuclear transport. In our knowledge, it is the first time that a membrane androgen receptor is identified into the nucleus, suggesting an alternative, more direct, mode of action, involving nuclear mechanisms. Therefore, our findings provide new insights on androgen-mediated actions and androgen-lipid interactions, and reveal new possible therapeutic targets, not only for cancer, but also for other pathological conditions in which OXER1 may have an important role.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasios A Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Amalia P Vogiatzoglou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasia Artemis Tsikalaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Anastasia Katifori
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Hara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria N Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panayiotis A Theodoropoulos
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
4
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
5
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
7
|
Gupta M, Korde JP, Bahiram KB, Sardar VM, Kurkure NV. Expression and localization of apelin and apelin receptor (APJ) in buffalo ovarian follicles and corpus luteum and the in-vitro effect of apelin on steroidogenesis and survival of granulosa cells. Theriogenology 2023; 197:240-251. [PMID: 36525863 DOI: 10.1016/j.theriogenology.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Apelin is an adipose tissue-derived hormone with many physiological functions, including the regulation of female reproduction. It acts through an orphan G protein-coupled receptor APJ/APLNR. The present study aimed to investigate the expression of apelin and its receptor APJ in the ovarian follicles and corpus luteum (CL) and the role of apelin on steroidogenesis and cell survival. Ovarian follicles were classified into four groups based on size and estradiol (E2) level in the follicular fluid as follows: (i) F1 (4-6 mm; <0.5 ng/mL) (ii) F2 (7-9 mm; 0.5-5 ng/mL) (iii) F3 (10-13 mm; 5-40 ng/mL) and (iv) F4 (dominant/pre-ovulatory follicle) (>13 mm; >180 ng/mL). The corpora lutea (CL) were categorized into early (CL1), mid (CL2), late luteal (CL3), and regressing (CL4) CL stages. Expression of apelin increased with follicle size, with significantly greatest in the dominant or pre-ovulatory follicle (P < 0.05). Expression of APJ was greater in large and dominant follicles than in small and medium follicles (P < 0.05). In CL, the mRNA and protein abundance of apelin and apelin receptor was greater during mid (CL2) and late luteal (CL3) stages as compared to early (CL1) and regressing (CL4) stages (P < 0.05). Both the factors were localized in granulosa and theca cells of follicles and small and large luteal cells of CL. The pattern of the intensity of immunofluorescence was similar to mRNA and protein expression. Granulosa cells were cultured in vitro and treated at 1, 10, and 10 ng/mL apelin-13 either alone or in the presence of the follicle-stimulating hormone (FSH) (30 ng/mL) or insulin-like growth factor-I (IGF-I) (10 ng/mL) for 48 h. The luteal cells were treated with apelin-13 at 1, 10, and 100 ng/mL doses for 48 h. Apelin treatment at 10 and 100 ng/ml significantly (P < 0.05) increased E2 secretion, cytochrome P450 aromatase or CYP19A1 expression in GC. In luteal cells, apelin at 10 ng/mL and 100 ng/mL significantly (P < 0.05) increased progesterone (P4) secretion and HSD3B1 expression. In GCs, apelin, either alone or in combination, increased PCNA expression and inhibited CASPASE3 expression suggesting its role in cell survival. In conclusion, this study provides novel evidence for the presence of apelin and receptor APJ in ovarian follicles and corpora lutea and the stimulatory effect on E2 and P4 production and promotes GC survival in buffalo, suggesting the role of apelin in follicular and luteal functions in buffalo.
Collapse
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India.
| | - Jayant P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur, 440006, India
| |
Collapse
|
8
|
Armando I, Cuevas S, Fan C, Kumar M, Izzi Z, Jose PA, Konkalmatt PR. G Protein-Coupled Receptor 37L1 Modulates Epigenetic Changes in Human Renal Proximal Tubule Cells. Int J Mol Sci 2022; 23:ijms232214456. [PMID: 36430934 PMCID: PMC9698582 DOI: 10.3390/ijms232214456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Renal luminal sodium transport is essential for physiological blood pressure control, and abnormalities in this process are strongly implicated in the pathogenesis of essential hypertension. Renal G protein-coupled receptors (GPCRs) are critical for the regulation of the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Recently, we showed that GPCR 37L1 (GPR37L1) is expressed on the apical membrane of renal proximal tubules (RPT) and regulates luminal sodium transport and blood pressure by modulating the function of the sodium proton exchanger 3 (NHE3). However, little is known about GPR37L1 intracellular signaling. Here, we show that GPR37L1 is localized to the nuclear membrane, in addition to the plasma membrane in human RPT cells. Furthermore, GPR37L1 signals via the PI3K/AKT/mTOR pathway to decrease the expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhance NHE3 transcription. Overall, we demonstrate the direct role of a nuclear membrane GPCR in the regulation of renal sodium through epigenetic gene regulation.
Collapse
|
9
|
Isaac R, Vinik Y, Mikl M, Nadav-Eliyahu S, Shatz-Azoulay H, Yaakobi A, DeForest N, Majithia AR, Webster NJ, Shav-Tal Y, Elhanany E, Zick Y. A seven-transmembrane protein-TM7SF3, resides in nuclear speckles and regulates alternative splicing. iScience 2022; 25:105270. [PMID: 36304109 PMCID: PMC9593240 DOI: 10.1016/j.isci.2022.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
The seven-transmembrane superfamily member 3 protein (TM7SF3) is a p53-regulated homeostatic factor that attenuates cellular stress and the unfolded protein response. Here we show that TM7SF3 localizes to nuclear speckles; eukaryotic nuclear bodies enriched in splicing factors. This unexpected location for a trans -membranal protein enables formation of stable complexes between TM7SF3 and pre-mRNA splicing factors including DHX15, LARP7, HNRNPU, RBM14, and HNRNPK. Indeed, TM7SF3 regulates alternative splicing of >330 genes, mainly at the 3'end of introns by directly modulating the activity of splicing factors such as HNRNPK. These effects are observed both in cell lines and primary human pancreatic islets. Accordingly, silencing of TM7SF3 results in differential expression of 1465 genes (about 7% of the human genome); with 844 and 621 genes being up- or down-regulated, respectively. Our findings implicate TM7SF3, as a resident protein of nuclear speckles and suggest a role for seven-transmembrane proteins as regulators of alternative splicing.
Collapse
Affiliation(s)
- Roi Isaac
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin Mikl
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Biology, University of Haifa, Haifa, Israel
| | - Shani Nadav-Eliyahu
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Yaakobi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natalie DeForest
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Amit R. Majithia
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J.G. Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eytan Elhanany
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
12
|
Fasciani I, Carli M, Petragnano F, Colaianni F, Aloisi G, Maggio R, Scarselli M, Rossi M. GPCRs in Intracellular Compartments: New Targets for Drug Discovery. Biomolecules 2022; 12:1343. [PMID: 36291552 PMCID: PMC9599219 DOI: 10.3390/biom12101343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 08/02/2023] Open
Abstract
The architecture of eukaryotic cells is defined by extensive membrane-delimited compartments, which entails separate metabolic processes that would otherwise interfere with each other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking, internalization, and recycling were considered only to regulate receptor desensitization and cell surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly, from these sites they have shown to orchestrate multiple signals that regulate different cell pathways. In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Understanding how GPCR signaling compartmentalization is regulated will provide a unique opportunity to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards new therapeutic approaches.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Carli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Colaianni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Mario Rossi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
13
|
Rebeillard F, De Gois S, Pietrancosta N, Mai TH, Lai-Kuen R, Kieffer BL, Giros B, Massart R, Darmon M, Diaz J. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex. Cereb Cortex 2021; 32:479-489. [PMID: 34247243 DOI: 10.1093/cercor/bhab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GPR88 is an orphan G-protein-coupled receptor (GPCR) highly expressed in striatal medium spiny neurons (MSN), also found in cortical neurons at low level. In MSN, GPR88 has a canonical GPCR plasma membrane/cytoplasmic expression, whereas in cortical neurons, we previously reported an atypical intranuclear localization. Molecular size analysis suggests that GPR88, expressed in plasma membrane of MSN or in nuclear compartment of cortical neurons, corresponds to the full-length protein. By transfection of cortical neurons, we showed that GPR88 fluorescent chimeras exhibit a nuclear localization. This localization is contingent on the third intracytoplasmic loop and C-terminus domains, even though these domains do not contain any known nuclear localization signals (NLS). Using yeast two-hybrid screening with these domains, we identified the nuclear proteins ATRX, TOP2B, and BAZ2B, all involved in chromatin remodeling, as potential protein partners of GPR88. We also validated the interaction of GPR88 with these nuclear proteins by proximity ligation assay on cortical neurons in culture and coimmunoprecipitation experiments on cortical extracts from GPR88 wild-type (WT) and knockout (KO) mice. The identification of GPR88 subcellular partners may provide novel functional insights for nonclassical modes of GPCR action that could be relevant in the maturating process of neocortical neurons.
Collapse
Affiliation(s)
- Florian Rebeillard
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, Sorbonne Paris Cité, Paris 75005, France
| | | | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris 75005, France
| | - Thi Hue Mai
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - René Lai-Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm-3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | | | - Bruno Giros
- Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France.,Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Quebec H4H 1R3, Canada
| | - Renaud Massart
- Inserm U955 Interventional NeuroPsychology Team, Ecole Normale Supérieure, Paris 75005, France
| | - Michèle Darmon
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - Jorge Diaz
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France
| |
Collapse
|
14
|
Rajendran S, Seetharaman S, Dharmarajan A, Kuppan K. Microvascular cells: A special focus on heterogeneity of pericytes in diabetes associated complications. Int J Biochem Cell Biol 2021; 134:105971. [PMID: 33775914 DOI: 10.1016/j.biocel.2021.105971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Pericytes (PC) are microvascular mural cells that make specific cell-to-cell contacts with the endothelial cells (EC). These cells are obligatory constituents of the microvessels including the retinal vasculature and they serve as regulators of vascular development, stabilization, maturation and remodeling. During early stages of diabetic retinopathy (DR), apoptotic loss of PC surrounding the retinal vasculature occurs. This may lead to reduced vessel stability, the onset of EC apoptosis, and subsequent retinal ischemia leading to angiogenesis and eventually, severe vision loss due to late proliferative diabetic retinopathy (PDR). Similarly, diabetic nephropathy (DN) is a chronic kidney disease due to hyperglycemia that particularly affects renal PC. Chronic high blood glucose level causes migration of peritubular PC away from the capillary into the interstitial space, which destabilizes the micro vessels, resulting in microvascular rarefaction. In both diabetes associated complications, the identification of specific biomarkers is necessary to stabilize the PC at an early stage. This review largely covers the importance of PC towards the pathogenesis of diabetes associated complications, and their heterogeneity in healthy and angiogenic vasculature.
Collapse
Affiliation(s)
- Sharmila Rajendran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Shanmuganathan Seetharaman
- Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India; School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Perth, Australia
| | - Kaviarasan Kuppan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
15
|
Ogawa A, Nagiri C, Shihoya W, Inoue A, Kawakami K, Hiratsuka S, Aoki J, Ito Y, Suzuki T, Suzuki T, Inoue T, Nureki O, Tanihara H, Tomizawa K, Wei FY. N 6-methyladenosine (m 6A) is an endogenous A3 adenosine receptor ligand. Mol Cell 2021; 81:659-674.e7. [PMID: 33472058 DOI: 10.1016/j.molcel.2020.12.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/15/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
About 150 post-transcriptional RNA modifications have been identified in all kingdoms of life. During RNA catabolism, most modified nucleosides are resistant to degradation and are released into the extracellular space. In this study, we explored the physiological role of these extracellular modified nucleosides and found that N6-methyladenosine (m6A), widely recognized as an epigenetic mark in RNA, acts as a ligand for the human adenosine A3 receptor, for which it has greater affinity than unmodified adenosine. We used structural modeling to define the amino acids required for specific binding of m6A to the human A3 receptor. We also demonstrated that m6A was dynamically released in response to cytotoxic stimuli and facilitated type I allergy in vivo. Our findings implicate m6A as a signaling molecule capable of activating G protein-coupled receptors (GPCRs) and triggering pathophysiological responses, a previously unreported property of RNA modifications.
Collapse
Affiliation(s)
- Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chisae Nagiri
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Advanced Research and Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Advanced Research and Development Programs for Medical Innovation (LEAP), AMED, Tokyo, Japan
| | - Kouki Kawakami
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Suzune Hiratsuka
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Advanced Research and Development Programs for Medical Innovation (LEAP), AMED, Tokyo, Japan; Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasuhiro Ito
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan; Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan.
| |
Collapse
|
16
|
Mulchandani N, Masutani K, Kumar S, Yamane H, Sakurai S, Kimura Y, Katiyar V. Toughened PLA-b-PCL-b-PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polym Chem 2021. [DOI: 10.1039/d1py00429h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current research unfolds the effect of block lengths, microdomain morphology and stereocomplexation on the mechanical properties of PLA-b-PCL-b-PLA triblock copolymers where PCL is involved to improve the poor extensibility of PLA.
Collapse
Affiliation(s)
- Neha Mulchandani
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- North Guwahati 781-039
- India
| | - Kazunari Masutani
- Department of Biobased Materials Science
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Sachin Kumar
- Department of Bioscience and Bioengineering
- Indian Institute of Technology Guwahati
- North Guwahati 781-039
- India
| | - Hideki Yamane
- Department of Biobased Materials Science
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Shinichi Sakurai
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- North Guwahati 781-039
- India
- Department of Biobased Materials Science
| | - Yoshiharu Kimura
- Department of Biobased Materials Science
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Vimal Katiyar
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- North Guwahati 781-039
- India
| |
Collapse
|
17
|
Mohammad Nezhady MA, Rivera JC, Chemtob S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020; 23:101643. [PMID: 33103080 PMCID: PMC7569339 DOI: 10.1016/j.isci.2020.101643] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GPCRs are the largest receptor family that are involved in virtually all biological processes. Pharmacologically, they are highly druggable targets, as they cover more than 40% of all drugs in the market. Our knowledge of biased signaling provided insight into pharmacology vastly improving drug design to avoid unwanted effects and achieve higher efficacy and selectivity. However, yet another feature of GPCR biology is left largely unexplored, location bias. Recent developments in this field show promising avenues for evolution of new class of pharmaceuticals with greater potential for higher level of precision medicine. Further consideration and understanding of this phenomenon with deep biochemical and molecular insights would pave the road to success. In this review, we critically analyze this perspective and discuss new avenues of investigation.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Corresponding author
| | | | - Sylvain Chemtob
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| |
Collapse
|
18
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|
20
|
Ribeiro-Oliveira R, Vojtek M, Gonçalves-Monteiro S, Vieira-Rocha MS, Sousa JB, Gonçalves J, Diniz C. Nuclear G-protein-coupled receptors as putative novel pharmacological targets. Drug Discov Today 2019; 24:2192-2201. [DOI: 10.1016/j.drudis.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
|
21
|
Heteromerization fingerprints between bradykinin B2 and thromboxane TP receptors in native cells. PLoS One 2019; 14:e0216908. [PMID: 31086419 PMCID: PMC6516669 DOI: 10.1371/journal.pone.0216908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Bradykinin (BK) and thromboxane-A2 (TX-A2) are two vasoactive mediators that modulate vascular tone and inflammation via binding to their cognate "class A" G-protein coupled receptors (GPCRs), BK-B2 receptors (B2R) and TX-prostanoid receptors (TP), respectively. Both BK and TX-A2 lead to ERK1/2-mediated vascular smooth muscle cell (VSMC) proliferation and/or hypertrophy. While each of B2R and TP could form functional dimers with various GPCRs, the likelihood that B2R-TP heteromerization could contribute to their co-regulation has never been investigated. The main objective of this study was to investigate the mode of B2R and TP interaction in VSMC, and its possible impact on downstream signaling. Our findings revealed synergistically activated ERK1/2 following co-stimulation of rat VSMC with a subthreshold dose of BK and effective doses of the TP stable agonist, IBOP, possibly involving biased agonist signaling. Single detection of each of B2R and TP in VSMC, using in-situ proximity ligation assay (PLA), provided evidence of the constitutive expression of nuclear and extranuclear B2R and TP. Moreover, inspection of B2R-TP PLA signals in VSMC revealed agonist-modulated nuclear and extranuclear proximity between B2R and TP, whose quantification varied substantially following single versus dual agonist stimulations. B2R-TP interaction was further verified by the findings of co-immunoprecipitation (co-IP) analysis of VSMC lysates. To our knowledge, this is the first study that provides evidence supporting the existence of B2R-TP heteromerization fingerprints in primary cultured VSMC.
Collapse
|
22
|
Zhang M, Wu G. Mechanisms of the anterograde trafficking of GPCRs: Regulation of AT1R transport by interacting proteins and motifs. Traffic 2018; 20:110-120. [PMID: 30426616 DOI: 10.1111/tra.12624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Anterograde cell surface transport of nascent G protein-coupled receptors (GPCRs) en route from the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to control the amount of the receptors at the functional destination and the strength of receptor activation-elicited cellular responses. However, as compared with extensively studied internalization and recycling processes, the molecular mechanisms of cell surface trafficking of GPCRs are relatively less defined. Here, we will review the current advances in understanding the ER-Golgi-cell surface transport of GPCRs and use angiotensin II type 1 receptor as a representative GPCR to discuss emerging roles of receptor-interacting proteins and specific motifs embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic pathway.
Collapse
Affiliation(s)
- Maoxiang Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
23
|
Müller T, Kalea AZ, Marquez A, Hsieh I, Haque S, Ye M, Wysocki J, Bader M, Batlle D. Apelinergic system in the kidney: implications for diabetic kidney disease. Physiol Rep 2018; 6:e13939. [PMID: 30548130 PMCID: PMC6288480 DOI: 10.14814/phy2.13939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
The bioactive peptides of the apelinergic system and its receptor APJ have been shown to play a protective role in experimental cardiovascular and diabetic kidney disease (DKD). Mechanisms of this renoprotective effect remain to be elucidated. In this study, we examined the localization of APJ within the normal kidney and its kidney expression in the db/db model of DKD. The effect of hyperglycemia and angiotensin II on APJ was examined in cultured podocytes. In the glomerulus, APJ colocalized with podocyte but not endothelial cell markers. In podocytes stimulated with Pyr1 Apelin-13, a change in the phosphorylation status of the signaling proteins, AKT, ERK, and p70S6K, was observed with an increase 15 min after stimulation. Apelin-13 decreased activity of Caspase-3 in podocytes after high glucose treatment reflecting an antiapoptotic effect of APJ stimulation. In podocytes, APJ mRNA was downregulated in high glucose, when compared to normal glucose conditions and exposure to angiotensin II led to a further significant decrease in APJ mRNA. APJ and preproapelin mRNA levels in kidneys from db/db mice were markedly decreased along with decreased tubular APJ protein by western blotting and immunostaining when compared to db/m controls. In conclusion, the apelinergic system is decreased in kidneys from db/db mice. Within the glomerulus, APJ is mainly localized in podocytes and in this cell type its activation by Apelin-13 abolishes the proapoptotic effect of high glucose, suggesting a potential therapeutic role of apelin and emerging agonists with extended half-life for therapy of DKD.
Collapse
Affiliation(s)
- Tilman Müller
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Charité‐Universitätsmedizin BerlinBerlinGermany
| | - Anastasia Z. Kalea
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Institute of Liver and Digestive HealthUniversity College LondonLondonUK
| | - Alonso Marquez
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Ivy Hsieh
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Syed Haque
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Minghao Ye
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Jan Wysocki
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Michael Bader
- Charité‐Universitätsmedizin BerlinBerlinGermany
- Max Delbrück Center for Molecular MedicineBerlinGermany
- German Center for Cardiovascular Research (DZHK), partner site BerlinBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
- University of LübeckLübeckGermany
| | - Daniel Batlle
- Department of MedicineDivision of Nephrology and HypertensionFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
24
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
25
|
Endocytosis of G Protein-Coupled Receptors and Their Ligands: Is There a Role in Metal Trafficking? Cell Biochem Biophys 2018; 76:329-337. [PMID: 30022374 DOI: 10.1007/s12013-018-0850-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The prevalence of metal dysregulation in many neurodegenerative and neurocognitive disorders has compelled many studying such diseases to investigate the mechanisms underlying metal regulation in the central nervous system. Metal homoeostasis is often complex, with sophisticated, multilayered pathways in operation. G protein-coupled receptors are omnipresent on cell membranes and have intriguing mechanisms of endocytosis and trafficking that may be useful in metal homoeostasis. Indeed, many receptors and/or their cognate ligands are able to bind metals, and in many cases metals are considered to have neuromodulatory roles as a result of receptor binding. In this mini-review, we outline the structural and functional aspects of G protein-coupled receptors with a focus on the mechanisms leading to endocytosis and cellular trafficking. We further highlight how this may help in the trafficking of metal ions, notably copper.
Collapse
|
26
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
27
|
Vélez-Aguilera G, de Dios Gómez-López J, Jiménez-Gutiérrez GE, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez P, Winder SJ, Cisneros B. Control of nuclear β-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:406-420. [PMID: 29175376 DOI: 10.1016/j.bbamcr.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity.
Collapse
Affiliation(s)
- Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Guadalupe E Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico; Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Marco S Laredo-Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Pablo Gómez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
28
|
Dubuc C, Savard M, Bovenzi V, Lessard A, Fortier A, Côté J, Neugebauer W, Rizzolio F, Geha S, Giordano A, Chemtob S, Gobeil F. Targeting intracellular B2 receptors using novel cell-penetrating antagonists to arrest growth and induce apoptosis in human triple-negative breast cancer. Oncotarget 2018. [PMID: 29515778 PMCID: PMC5839409 DOI: 10.18632/oncotarget.24009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are integral cell-surface proteins having a central role in tumor growth and metastasis. However, several GPCRs retain an atypical intracellular/nuclear location in various types of cancer. The pathological significance of this is currently unknown. Here we extend this observation by showing that the bradykinin B2R (BK-B2R) is nuclearly expressed in the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and in human clinical specimens of TNBC. We posited that these “nuclearized” receptors could be involved in oncogenic signaling linked to aberrant growth and survival maintenance of TNBC. We used cell-penetrating BK-B2R antagonists, including FR173657 and novel transducible, cell-permeable forms of the peptide B2R antagonist HOE 140 (NG68, NG134) to demonstrate their superior efficacy over impermeable ones (HOE 140), in blocking proliferation and promoting apoptosis of MDA-MB-231 cells. Some showed an even greater antineoplastic activity over conventional chemotherapeutic drugs in vitro. The cell-permeable B2R antagonists had less to no anticancer effects on B2R shRNA-knockdown or non-B2R expressing (COS-1) cells, indicating specificity in their action. Possible mechanisms of their anticancer effects may involve activation of p38kinase/p27Kip1 pathways. Together, our data support the existence of a possible intracrine signaling pathway via internal/nuclear B2R, critical for the growth of TNBC cells, and identify new chemical entities that enable to target the corresponding intracellular GPCRs.
Collapse
Affiliation(s)
- Céléna Dubuc
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Veronica Bovenzi
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andrée Lessard
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Audrey Fortier
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Witold Neugebauer
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Flavio Rizzolio
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA.,Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre-Venezia, Italy
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
| | - Sylvain Chemtob
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
29
|
Zhu L, Lu Y, Zhang J, Hu Q. Subcellular Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:385-398. [DOI: 10.1007/978-3-319-63245-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. Br J Pharmacol 2017; 175:4026-4035. [PMID: 28872669 DOI: 10.1111/bph.14023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Gracida-Jiménez V, Mondragón-González R, Vélez-Aguilera G, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez-López JDD, Vaca L, Gourlay SC, Jacobs LA, Winder SJ, Cisneros B. Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus. Sci Rep 2017; 7:9906. [PMID: 28852008 PMCID: PMC5575308 DOI: 10.1038/s41598-017-09972-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/31/2017] [Indexed: 12/04/2022] Open
Abstract
β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE.
Collapse
Affiliation(s)
- Viridiana Gracida-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Ricardo Mondragón-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Alejandra Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico.,Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Marco S Laredo-Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico, Mexico
| | - Sarah C Gourlay
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Laura A Jacobs
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico.
| |
Collapse
|
32
|
Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K. Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 2017; 428:88-100. [PMID: 28576690 PMCID: PMC5726978 DOI: 10.1016/j.ydbio.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear β-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.
Collapse
Affiliation(s)
- Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA; Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Jeffrey Bierly
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zeyu Han
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Christian Gutierrez
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Zachary McKinney
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
33
|
Thomas M, Snead D, Mitchell D. An investigation into the potential role of brain angiogenesis inhibitor protein 3 (BAI3) in the tumorigenesis of small-cell carcinoma: a review of the surrounding literature. J Recept Signal Transduct Res 2017; 37:325-334. [PMID: 28537194 DOI: 10.1080/10799893.2017.1328441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain angiogenesis inhibitor protein 3 (BAI3) is from the adhesion group of seven-transmembrane spanning G protein-coupled receptors (GPCRs) and has been identified via gene expression profiling as being upregulated in small-cell lung cancer (SCLC) tumors. It has subsequently been validated as a sensitive and specific immunohistochemical marker for SCLC, helping to differentiate these tumors from morphologically similar large-cell neuroendocrine (LCNEC) malignancies. It is, however, still unclear as to the role BAI3 proteins might play in SCLC and indeed how they might contribute to tumorigenesis. Interestingly, the pattern of staining observed on immunohistochemistry was in fact nuclear as opposed to the membranous staining pattern expected of transmembrane-bound molecules. This fact has lead the authors to believe that the protein receptor is structurally altered in SCLC and that this modification may confer different behavioral properties that contribute toward tumorigenesis. Nuclear localization is not unique to BAI3 and has been reported in a number of GPCRs and frequently correlates with survival outcomes. BAI3 has the potential to act as target for pharmaceutical intervention inline with developing trends in molecular pathology aiming to provide personalized, treatment regimes based on tumor-specific mutation profiles. The adhesion group of the GPCR superfamily is still poorly understood. We present a review of the existing literature regarding the role they play in both physiological and disease states and the mechanisms by which they influence a range of cellular processes.
Collapse
Affiliation(s)
- Michael Thomas
- a Department of Histopathology , University Hospitals Coventry and Warwickshire , Coventry , UK
| | - David Snead
- a Department of Histopathology , University Hospitals Coventry and Warwickshire , Coventry , UK
| | - Daniel Mitchell
- b Department of Translational Medicine , University of Warwick , Coventry , UK
| |
Collapse
|
34
|
Tadevosyan A, Xiao J, Surinkaew S, Naud P, Merlen C, Harada M, Qi X, Chatenet D, Fournier A, Allen BG, Nattel S. Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion. J Am Heart Assoc 2017; 6:e004965. [PMID: 28381466 PMCID: PMC5533010 DOI: 10.1161/jaha.116.004965] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cardiac fibroblasts play important functional and pathophysiological roles. Intracellular ("intracrine") angiotensin-II (Ang-II) signaling regulates intercellular communication, excitability, and gene expression in cardiomyocytes; however, the existence and role of intracrine Ang-II signaling in cardiac fibroblasts is unstudied. Here, we evaluated the localization of Ang-II receptors on atrial fibroblast nuclei and associated intracrine effects of potential functional significance. METHODS AND RESULTS Immunoblots of subcellular protein-fractions from isolated canine atrial fibroblasts indicated the presence of nuclear Ang-II type 1 receptors (AT1Rs) and Ang-II type 2 receptors (AT2Rs). Fluorescein isothiocyanate-Ang-II binding displaceable by AT1R- and AT2R-blockers was present on isolated fibroblast nuclei. G-protein subunits, including Gαq/11, Gαi/3, and Gβ, were observed in purified fibroblast nuclear fractions by immunoblotting and intact-fibroblast nuclei by confocal immunocytofluorescence microscopy. Nuclear AT1Rs and AT2Rs regulated de novo RNA synthesis ([α32P]UTP incorporation) via IP3R- and NO-dependent pathways, respectively. In intact cultured fibroblasts, intracellular Ang-II release by photolysis of a membrane-permeable caged Ang-II analog led to IP3R-dependent nucleoplasmic Ca2+-liberation, with IP3R3 being the predominant nuclear isoform. Intracellular Ang-II regulated fibroblast proliferation ([3H]thymidine incorporation), collagen-1A1 mRNA-expression, and collagen secretion. Intracellular Ang-II and nuclear AT1R protein levels were significantly increased in a heart failure model in which atrial fibrosis underlies atrial fibrillation. CONCLUSIONS Fibroblast nuclei possess AT1R and AT2R binding sites that are coupled to intranuclear Ca2+-mobilization and NO liberation, respectively. Intracellular Ang-II signaling regulates fibroblast proliferation, collagen gene expression, and collagen secretion. Heart failure upregulates Ang-II intracrine signaling-components in atrial fibroblasts. These results show for the first time that nuclear angiotensin-II receptor activation and intracrine Ang-II signaling control fibroblast function and may have pathophysiological significance.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers/pharmacology
- Animals
- Calcium/metabolism
- Cell Nucleus/metabolism
- Cell Proliferation
- Collagen/metabolism
- Collagen Type I/genetics
- Disease Models, Animal
- Dogs
- Fibroblasts/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein beta Subunits/metabolism
- Heart Atria/cytology
- Heart Failure/metabolism
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Microscopy, Fluorescence
- Nitric Oxide/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Jiening Xiao
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Sirirat Surinkaew
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Patrice Naud
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Clémence Merlen
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Masahide Harada
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Xiaoyan Qi
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada
| | - Alain Fournier
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada
| | - Bruce G Allen
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
35
|
Bhosle VK, Rivera JC, Chemtob S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2017; 10:254-263. [PMID: 28125336 DOI: 10.1080/21541248.2017.1282402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to trigger various intracellular signaling cascades, and termination of signaling by internalization of the receptor. It is now accepted that many GPCRs continue to signal after internalization in the endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s, several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs, many of whom contain putative nuclear localization signals, remain poorly understood to date. Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we highlight several recent studies which suggest novel roles of small GTPases, importins and sorting nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken together with increasing evidence for in vivo functionality of the nuclear GPCRs, better understanding of their trafficking will provide valuable clues in cell biology.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,e Cell Biology Program , Peter Gilgan Centre for Research and Learning , Toronto , Ontario , Canada
| | - José Carlos Rivera
- b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada
| | - Sylvain Chemtob
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,d Departments of Pediatrics, Ophthalmology and Pharmacology , University of Montréal , Montréal , Québec , Canada
| |
Collapse
|
36
|
Jovancevic N, Wunderlich KA, Haering C, Flegel C, Maßberg D, Weinrich M, Weber L, Tebbe L, Kampik A, Gisselmann G, Wolfrum U, Hatt H, Gelis L. Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors. Front Cell Neurosci 2017; 11:03. [PMID: 28174521 PMCID: PMC5258773 DOI: 10.3389/fncel.2017.00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference tissues. The protein localization of several ORs was investigated by immunohistochemistry. The transcriptome analyses detected an average of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly expressed ORs. Immunohistochemical stainings of retina sections localized OR2W3 to the photosensitive outer segment membranes of cones, whereas OR6B3 was found in various cell types. OR5P3 and OR10AD1 were detected at the base of the photoreceptor connecting cilium, and OR10AD1 was also localized to the nuclear envelope of all of the nuclei of the retina. The cell type-specific expression of the ORs in the retina suggests that there are unique biological functions for those receptors.
Collapse
Affiliation(s)
| | - Kirsten A Wunderlich
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Claudia Haering
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Désirée Maßberg
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Markus Weinrich
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lea Weber
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Anselm Kampik
- Department of Ophthalmology, Ludwig Maximilian University of Munich Munich, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lian Gelis
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
37
|
Sergin I, Jong YJI, Harmon SK, Kumar V, O'Malley KL. Sequences within the C Terminus of the Metabotropic Glutamate Receptor 5 (mGluR5) Are Responsible for Inner Nuclear Membrane Localization. J Biol Chem 2017; 292:3637-3655. [PMID: 28096465 DOI: 10.1074/jbc.m116.757724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca2+ changes in the nucleoplasm by coupling with Gq/11 Here, we identified a region within the C-terminal domain (amino acids 852-876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca2+in situ.
Collapse
Affiliation(s)
- Ismail Sergin
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yuh-Jiin I Jong
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven K Harmon
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vikas Kumar
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Karen L O'Malley
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
38
|
Zhu C, Kros JM, van der Weiden M, Zheng P, Cheng C, Mustafa DAM. Expression site of P2RY12 in residential microglial cells in astrocytomas correlates with M1 and M2 marker expression and tumor grade. Acta Neuropathol Commun 2017; 5:4. [PMID: 28073370 PMCID: PMC5223388 DOI: 10.1186/s40478-016-0405-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
The role of resident microglial cells in the pathogenesis and progression of glial tumors is still obscure mainly due to a lack of specific markers. Recently P2RY12, a P2 purinergic receptor, was introduced as a specific marker for microglial cells under normal and pathologic conditions. Here we analyzed the expression of P2RY12 in astrocytomas of various malignancy grades in relation to markers for M1 and M2 macrophage activation profiles by using two web-based glioma datasets and confocal immunohistochemistry to 28 astrocytoma samples grades II-IV. In the gliomas, P2RY12 immunoreactivity delineated CD68 negative cells with otherwise microglial features from CD68 positive tumor associated macrophages (TAMs). The presence of P2RY12 positive cells correlated positively with overall survival. P2RY12 mRNA levels and membrane-bound localization of P2RY12 were inversely correlated with increasing malignancy grade, and the expression site of P2RY12 shifted from cytoplasmic in low-grade gliomas, to nuclear in high-grade tumors. The cytoplasmic expression of P2RY12 was associated with the expression of M1 markers, characteristic of the pro-inflammatory macrophage response. In contrast, the nuclear localization of P2RY12 was predominant in the higher graded tumors and associated with the expression of the M2 marker CD163. We conclude that P2RY12 is a specific marker for resident microglia in glioma and its expression and localization correspond to tumor grade and predominant stage of M1/M2 immune response.
Collapse
|
39
|
Jong YJI, O'Malley KL. Mechanisms Associated with Activation of Intracellular Metabotropic Glutamate Receptor, mGluR5. Neurochem Res 2016; 42:166-172. [PMID: 27514643 PMCID: PMC5283513 DOI: 10.1007/s11064-016-2026-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO, 63110, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Wierzbicka JM, Żmijewski MA, Antoniewicz J, Sobjanek M, Slominski AT. Differentiation of Keratinocytes Modulates Skin HPA Analog. J Cell Physiol 2016; 232:154-66. [PMID: 27061711 DOI: 10.1002/jcp.25400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
It is well established, that epidermal keratinocytes express functional equivalent of hypothalamus-pituitary-adrenal axis (HPA) in order to respond to changing environment and maintain internal homeostasis. We are presenting data indicating that differentiation of primary neonatal human keratinocytes (HPEKp), induced by prolonged incubation or calcium is accompanied by significant changes in the expression of the elements of skin analog of HPA (sHPA). Expression of CRF, UCN1-3, POMC, ACTH, CRFR1, CRFR2, MC1R, MC2R, and GR (coded by NR3C1 gene) were observed on gene/protein levels along differentiation of keratinocytes in culture with similar pattern seen by immunohistochemistry on full thickness skin biopsies. Expression of CRF was more pronounced in less differentiated keratinocytes, which corresponded to the detection of CRF immunoreactivity preferentially in the stratum basale. POMC expression was enhanced in more differentiated keratinocytes, which corresponded to detection of ACTH immunoreactivity, predominantly in the stratum spinosum and stratum granulosum. Expression of urocortins was also affected by induction of HPEKp differentiation. Immunohistochemical studies showed high prevalence of CRFR1 in well differentiated keratinocytes, while smaller keratinocytes showed predominantly CRFR2 immunoreactivity. MC2R mRNA levels were elevated from days 4 to 8 of in vitro incubation, while MC2R immunoreactivity was the highest in the upper layers of epidermis. Similar changes in mRNA/protein levels of sHPA elements were observed in HPEKp keratinocytes treated with calcium. Summarizing, preferential expression of CRF and POMC (ACTH) by populations of keratinocytes on different stage of differentiation resembles organization of central HPA axis suggesting their distinct role in physiology and pathology of the epidermis. J. Cell. Physiol. 232: 154-166, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Jakub Antoniewicz
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michal Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama Birmingham, Birmingham, Alabama.,VA Medical Center, Birmingham, Alabama
| |
Collapse
|
41
|
Morinelli TA, Luttrell LM, Strungs EG, Ullian ME. Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol 2016; 77:240-50. [PMID: 27167177 PMCID: PMC5038354 DOI: 10.1016/j.biocel.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
Abstract
The vasoactive hormone angiotensin II initiates its major hemodynamic effects through interaction with AT1 receptors, a member of the class of G protein-coupled receptors. Acting through its AT1R, angiotensin II regulates blood pressure and renal salt and water balance. Recent evidence points to additional pathological influences of activation of AT1R, in particular inflammation, fibrosis and atherosclerosis. The transcription factor nuclear factor κB, a key mediator in inflammation and atherosclerosis, can be activated by angiotensin II through a mechanism that may involve arrestin-dependent AT1 receptor internalization. Peritoneal dialysis is a therapeutic modality for treating patients with end-stage kidney disease. The effectiveness of peritoneal dialysis at removing waste from the circulation is compromised over time as a consequence of peritoneal dialysis-induced peritoneal fibrosis. The non-physiological dialysis solution used in peritoneal dialysis, i.e. highly concentrated, hyperosmotic glucose, acidic pH as well as large volumes infused into the peritoneal cavity, contributes to the development of fibrosis. Numerous trials have been conducted altering certain components of the peritoneal dialysis fluid in hopes of preventing or delaying the fibrotic response with limited success. We hypothesize that structural activation of AT1R by hyperosmotic peritoneal dialysis fluid activates the internalization process and subsequent signaling through the transcription factor nuclear factor κB, resulting in the generation of pro-fibrotic/pro-inflammatory mediators producing peritoneal fibrosis.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Louis M Luttrell
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| | - Erik G Strungs
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael E Ullian
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| |
Collapse
|
42
|
Bhosle VK, Rivera JC, Zhou TE, Omri S, Sanchez M, Hamel D, Zhu T, Rouget R, Rabea AA, Hou X, Lahaie I, Ribeiro-da-Silva A, Chemtob S. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization. Cell Discov 2016; 2:16017. [PMID: 27462464 PMCID: PMC4941644 DOI: 10.1038/celldisc.2016.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023] Open
Abstract
Platelet-activating factor (PAF) is a pleiotropic phospholipid with proinflammatory, procoagulant and angiogenic actions on the vasculature. We and others have reported the presence of PAF receptor (Ptafr) at intracellular sites such as the nucleus. However, mechanisms of localization and physiologic functions of intracellular Ptafr remain poorly understood. We hereby identify the importance of C-terminal motif of the receptor and uncover novel roles of Rab11a GTPase and importin-5 in nuclear translocation of Ptafr in primary human retinal microvascular endothelial cells. Nuclear localization of Ptafr is independent of exogenous PAF stimulation as well as intracellular PAF biosynthesis. Moreover, nuclear Ptafr is responsible for the upregulation of unique set of growth factors, including vascular endothelial growth factor, in vitro and ex vivo. We further corroborate the intracrine PAF signaling, resulting in angiogenesis in vivo, using Ptafr antagonists with distinct plasma membrane permeability. Collectively, our findings show that nuclear Ptafr translocates in an agonist-independent manner, and distinctive functions of Ptafr based on its cellular localization point to another dimension needed for pharmacologic selectivity of drugs.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Tianwei Ellen Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Samy Omri
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - David Hamel
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada
| | - Tang Zhu
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada
| | - Areej Al Rabea
- Experimental Surgery, Montreal General Hospital, McGill University , Montréal, QC, Canada
| | - Xin Hou
- CHU Sainte Justine Hospital Research Centre, University of Montréal , Montréal, QC, Canada
| | - Isabelle Lahaie
- CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada; CHU Sainte Justine Hospital Research Centre, University of Montréal, Montréal, QC, Canada; Department of Ophthalmology, Research Centre of Hôpital Maisonneuve-Rosemont, University of Montréal, Montréal, QC, Canada; Department of Pharmacology, University of Montréal, Montréal, QC, Canada; Departments of Pediatrics and Ophthalmology, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Cattaneo F, Parisi M, Fioretti T, Sarnataro D, Esposito G, Ammendola R. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells. Arch Biochem Biophys 2016; 603:10-9. [PMID: 27177968 DOI: 10.1016/j.abb.2016.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Tiziana Fioretti
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; IRCCS SDN, Via E. Gianturco 113, Naples 80143, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
44
|
Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JAJ, Kieffer BL, Darmon M, Sokoloff P, Diaz J. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 2016; 524:2776-802. [PMID: 26918661 DOI: 10.1002/cne.23991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renaud Massart
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Virginie Mignon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jennifer Stanic
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Paola Munoz-Tello
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Jerôme A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Michèle Darmon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Pierre Sokoloff
- Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Jorge Diaz
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| |
Collapse
|
45
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
46
|
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles and represent a significant target for drug development. However, historically, drugs were developed with the understanding that GPCRs as a therapeutic target exist solely on cell surface membranes. More recently, GPCRs have been detected on intracellular membranes, including the nuclear membrane, and the concept that intracellular GPCRs are functional is become more widely accepted. Nuclear GPCRs couple to effectors and regulate signaling pathways, analogous to their counterparts at the cell surface, but may serve distinct biological roles. Hence, the physiological responses mediated by GPCR ligands, or pharmacological agents, result from the integration of their actions at extracellular and intracellular receptors. The net effect depends on the ability of a given ligand or drug to access intracellular receptors, as dictated by its structure, lipophilic properties, and affinity for nuclear receptors. This review will discuss angiotensin II, endothelin, and β-adrenergic receptors located on the nuclear envelope in cardiac cells in terms of their origin, activation, and role in cardiovascular function and pathology.
Collapse
|
47
|
Chaumet A, Wright GD, Seet SH, Tham KM, Gounko NV, Bard F. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nat Commun 2015; 6:8218. [PMID: 26356418 PMCID: PMC4579783 DOI: 10.1038/ncomms9218] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/29/2015] [Indexed: 01/16/2023] Open
Abstract
Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus.
Collapse
Affiliation(s)
- Alexandre Chaumet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Graham D. Wright
- Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
- Joint IMB-IMCB Electron Microscopy Suite, 20 Biopolis Street, #B2-14 Matrix, Singapore 138671, Singapore
| | - Sze Hwee Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Keit Min Tham
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Natalia V. Gounko
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
- Joint IMB-IMCB Electron Microscopy Suite, 20 Biopolis Street, #B2-14 Matrix, Singapore 138671, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
48
|
Zhu S, Zhang M, Davis JE, Wu WH, Surrao K, Wang H, Wu G. A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell Signal 2015; 27:2371-9. [PMID: 26342563 DOI: 10.1016/j.cellsig.2015.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Abstract
The amphipathic helix 8 in the membrane-proximal C-terminus is a structurally conserved feature of class A seven transmembrane-spanning G protein-coupled receptors (GPCRs). Mutations of this helical motif often cause receptor misfolding, defective cell surface transport and dysfunction. Surprisingly, we demonstrated here that a single point mutation at Lys308 in helix 8 markedly enhanced the steady-state surface density of the angiotensin II type 1a receptor (AT1aR). Consistent with the enhanced cell surface expression, Lys308 mutation significantly augmented AT1aR-mediated mitogen-activated protein kinase ERK1/2 activation, inositol phosphate production, and vascular smooth muscle cell migration. This mutation also increased the overall expression of AT1aR without altering receptor degradation. More interestingly, Lys308 mutation abolished AT1aR interaction with β-COP, a component of COPI transport vesicles, and impaired AT1aR responsiveness to the inhibition of Rab6 GTPase involved in the Golgi-to-ER retrograde pathway. Furthermore, these functions of Lys308 were largely dependent on its positively charged property. These data reveal previously unappreciated functions of helix 8 and novel mechanisms governing the cell surface transport and function of AT1aR.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Jason E Davis
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - William H Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Kristen Surrao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States
| | - Hong Wang
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta GA 30912, United States.
| |
Collapse
|
49
|
Joyal JS, Bhosle VK, Chemtob S. Subcellular G-protein coupled receptor signaling hints at greater therapeutic selectivity. Expert Opin Ther Targets 2015; 19:717-21. [DOI: 10.1517/14728222.2015.1042365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Kim SO, Markosyan N, Pepe GJ, Duffy DM. Estrogen promotes luteolysis by redistributing prostaglandin F2α receptors within primate luteal cells. Reproduction 2015; 149:453-64. [PMID: 25687410 DOI: 10.1530/rep-14-0412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin F2α (PGF2α) has been proposed as a functional luteolysin in primates. However, administration of PGF2α or prostaglandin synthesis inhibitors in vivo both initiate luteolysis. These contradictory findings may reflect changes in PGF2α receptors (PTGFRs) or responsiveness to PGF2α at a critical point during the life span of the corpus luteum. The current study addressed this question using ovarian cells and tissues from female cynomolgus monkeys and luteinizing granulosa cells from healthy women undergoing follicle aspiration. PTGFRs were present in the cytoplasm of monkey granulosa cells, while PTGFRs were localized in the perinuclear region of large, granulosa-derived monkey luteal cells by mid-late luteal phase. A PTGFR agonist decreased progesterone production in luteal cells obtained at mid-late and late luteal phases, but did not decrease progesterone production by granulosa cells or luteal cells from younger corpora lutea. These findings are consistent with a role for perinuclear PTGFRs in functional luteolysis. This concept was explored using human luteinizing granulosa cells maintained in vitro as a model for luteal cell differentiation. In these cells, PTGFRs relocated from the cytoplasm to the perinuclear area in an estrogen- and estrogen receptor-dependent manner. Similar to our findings with monkey luteal cells, human luteinizing granulosa cells with perinuclear PTGFRs responded to a PTGFR agonist with decreased progesterone production. These data support the concept that PTGFR stimulation promotes functional luteolysis only when PTGFRs are located in the perinuclear region. Estrogen receptor-mediated relocation of PTGFRs within luteal cells may be a necessary step in the initiation of luteolysis in primates.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Nune Markosyan
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Gerald J Pepe
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Diane M Duffy
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| |
Collapse
|