1
|
Liang J, Guo H, He H, Liu B, Zhang N, Xian L, Zhu K, Zhang D. The transcription factors HNF-4α and NF-κB activate the CDO gene to promote taurine biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758). Gene 2024; 928:148786. [PMID: 39047959 DOI: 10.1016/j.gene.2024.148786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.
Collapse
Affiliation(s)
- Junjie Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
2
|
Kotulkar M, Paine-Cabrera D, Robarts DR, Apte U. Regulation of hepatic xenosensor function by HNF4alpha. Toxicol Sci 2024; 200:346-356. [PMID: 38810120 DOI: 10.1093/toxsci/kfae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nuclear receptors such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator-activated receptor-alpha (PPARα), and transcription factors with nuclear receptor type activity such as aryl hydrocarbon receptor (AhR) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for the function of these 4 major xenosensors. Wild-type (WT) and hepatocyte-specific Hnf4a null (HNF4α-KO) mice were treated with the mouse-specific activators of AhR (TCDD, 30 µg/kg), CAR (TCPOBOP, 2.5 µg/g), PXR, (PCN, 100 µg/g), and PPARα (WY-14643, 1 mg/kg). Blood and liver tissue samples were collected to study receptor activation. TCDD (AhR agonist) treatment did not affect the liver-to-body weight ratio (LW/BW) in either WT or HNF4α-KO mice. Further, TCDD activated AhR in both WT and HNF4α-KO mice, confirmed by increase in expression of AhR target genes. TCPOBOP (CAR agonist) significantly increased the LW/BW ratio and CAR target gene expression in WT mice, but not in HNF4α-KO mice. PCN (a mouse PXR agonist) significantly increased LW/BW ratio in both WT and HNF4α-KO mice however, failed to induce PXR target genes in HNF4α-KO mice. The treatment of WY-14643 (PPARα agonist) increased LW/BW ratio and PPARα target gene expression in WT mice but not in HNF4α-KO mice. Together, these data indicate that the function of CAR, PXR, and PPARα but not of AhR was disrupted in HNF4α-KO mice. These results demonstrate that HNF4α function is critical for the activation of hepatic xenosensors, which are critical for toxicological responses.
Collapse
MESH Headings
- Animals
- Hepatocyte Nuclear Factor 4/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- Liver/metabolism
- Liver/drug effects
- PPAR alpha/agonists
- PPAR alpha/metabolism
- PPAR alpha/genetics
- Mice, Knockout
- Constitutive Androstane Receptor
- Pregnane X Receptor/genetics
- Pregnane X Receptor/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Mice
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Steroid/agonists
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Mice, Inbred C57BL
- Male
- Pyrimidines/pharmacology
- Polychlorinated Dibenzodioxins/toxicity
- Pyridines/pharmacology
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
3
|
Kotulkar M, Paine-Cabrera D, Venneman K, Apte U. Role of HNF4alpha-cMyc interaction in liver regeneration after partial hepatectomy. Front Endocrinol (Lausanne) 2024; 15:1404318. [PMID: 39145310 PMCID: PMC11322135 DOI: 10.3389/fendo.2024.1404318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Hepatocyte nuclear factor 4 alpha (HNF4α) is the master regulator of hepatic differentiation. Recent studies have also revealed the role of HNF4α in hepatocyte proliferation via negatively regulating the expression of proto-mitogenic genes, including cMyc. Here, we aimed to study the interaction between HNF4α-cMyc during liver regeneration after partial hepatectomy (PHX). Methods Wild-type (WT), hepatocyte-specific knockout of HNF4α (HNF4α-KO), cMyc (cMyc-KO), and HNF4α-cMyc double knockout (DKO) mice were subjected to PHX to induce liver regeneration. Blood and liver tissue samples were collected at 0h, 24h, 48h, 7D, and 14D after PHX for further analysis. Results WT, HNF4α-KO, cMyc-KO and DKO mice regained liver weight by 14 days after PHX. The deletion of cMyc did not affect liver regeneration, which was similar to the WT mice. WT and cMyc-KO mice started regaining liver weight as early as 24 hours after PHX, with a peak proliferation response at 48 hours after PHX. HNF4α- KO and DKO showed a delayed response with liver weight increase by day 7 after PHX. The overall hepatocyte proliferation response by DKO mice following PHX was lower than that of other genotypes. Interestingly, the surviving HNF4α-KO and DKO mice showed re-expression of HNF4α at mRNA and protein levels on day 14 after PHX. This was accompanied by a significant increase in the expression of Krt19 and Epcam, hepatic progenitor cell markers, in the DKO mice on day 14 after PHX. Conclusion These data indicate that, in the absence of HNF4α, cMyc contributes to hepatocyte-driven proliferation to compensate for the lost tissue mass. Furthermore, in the absence of both HNF4α and cMyc, HPC-driven proliferation occurs to support liver regeneration.
Collapse
Affiliation(s)
| | | | | | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
4
|
Niu YR, Yu HN, Yan ZH, Yan XH. Multiomics Analysis Reveals Leucine Deprivation Promotes Bile Acid Synthesis by Upregulating Hepatic CYP7A1 and Intestinal Turicibacter sanguinis in Mice. J Nutr 2024; 154:1970-1984. [PMID: 38692354 DOI: 10.1016/j.tjnut.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Leucine, a branched-chain amino acid, participates in the regulation of lipid metabolism and the composition of the intestinal microbiota. However, the related mechanism remains unclear. OBJECTIVES Here, we aimed to reveal the potential mechanisms by which hepatic CYP7A1 (a rate-limiting enzyme for bile acid [BA] synthesis) and gut microbiota coregulate BA synthesis under leucine deprivation. METHODS To this end, 8-wk-old C57BL/6J mice were fed with either regular diets or leucine-free diets for 1 wk. Then, we investigated whether secondary BAs were synthesized by Turicibacter sanguinis in 7-wk-old C57BL/6J germ-free mice gavaged with T. sanguinis for 2 wk by determining BA concentrations in the plasma, liver, and cecum contents using liquid chromatography-tandem mass spectrometry. RESULTS The results showed that leucine deprivation resulted in a significant increase in total BA concentration in the plasma and an increase in the liver, but no difference in total BA was observed in the cecum contents before and after leucine deprivation. Furthermore, leucine deprivation significantly altered BA profiles such as taurocholic acid and ω-muricholic acid in the plasma, liver, and cecum contents. CYP7A1 expression was significantly upregulated in the liver under leucine deprivation. Leucine deprivation also regulated the composition of the gut microbiota; specifically, it significantly upregulated the relative abundance of T. sanguinis, thus enhancing the conversion of primary BAs into secondary BAs by intestinal T. sanguinis in mice. CONCLUSIONS Overall, leucine deprivation regulated BA profiles in enterohepatic circulation by upregulating hepatic CYP7A1 expression and increasing intestinal T. sanguinis abundance. Our findings reveal the contribution of gut microbiota to BA metabolism under dietary leucine deprivation.
Collapse
Affiliation(s)
- Yao-Rong Niu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Hao-Nan Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Zhen-Hong Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Xiang-Hua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Kotulkar M, Cabrera DP, Robarts D, Apte U. Regulation of Hepatic Xenosensor Function by HNF4alpha. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561888. [PMID: 37873133 PMCID: PMC10592787 DOI: 10.1101/2023.10.11.561888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Nuclear receptors including Aryl hydrocarbon Receptor (AhR), Constitutive Androstane Receptor (CAR), Pregnane X Receptor (PXR), and Peroxisome Proliferator-Activated Receptor-alpha (PPARα) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for function of these four major xenosensors. Wild-type (WT) and hepatocyte-specific HNF4α knockout (HNF4α-KO) mice were treated with the mouse-specific activators of AhR (TCDD, 30 µg/kg), CAR (TCPOBOP, 2.5 µg/g), PXR, (PCN, 100 µg/g), and PPARα (WY-14643, 1 mg/kg). Blood and liver tissue samples were collected to study nuclear receptor activation. TCDD (AhR agonist) treatment did not affect the liver-to-body weight ratio (LW/BW) in either WT or HNF4α-KO mice. Further, TCDD activated AhR in both WT and HNF4-KO mice, confirmed by increase in expression of its target genes. TCPOBOP (CAR agonist) significantly increased the LW/BW ratio and CAR target gene expression in WT mice, but not in HNF4α-KO mice. PCN (a mouse PXR agonist) significantly increased LW/BW ratio in both WT and HNF4α-KO mice however, it failed to induce PXR target genes in HNF4 KO mice. The treatment of WY-14643 (PPARα agonist) increased LW/BW ratio and PPARα target gene expression in WT mice but not in HNF4α-KO mice. Together, these data indicate that the function of CAR, PXR, and PPARα but not of AhR was disrupted in HNF4α-KO mice. These results demonstrate that HNF4α function is critical for the activation of hepatic xenosensors, which are critical for toxicological responses.
Collapse
|
6
|
Kotulkar M, Paine-Cabrera D, Abernathy S, Robarts DR, Parkes WS, Lin-Rahardja K, Numata S, Lebofsky M, Jaeschke H, Apte U. Role of HNF4alpha-cMyc interaction in liver regeneration and recovery after acetaminophen-induced acute liver injury. Hepatology 2023; 78:1106-1117. [PMID: 37021787 PMCID: PMC10523339 DOI: 10.1097/hep.0000000000000367] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS Overdose of acetaminophen (APAP) is the major cause of acute liver failure in the western world. We report a novel signaling interaction between hepatocyte nuclear factor 4 alpha (HNF4α) cMyc and nuclear factor erythroid 2-related factor 2 (Nrf2) during liver injury and regeneration after APAP overdose. APPROACH AND RESULTS APAP-induced liver injury and regeneration were studied in male C57BL/6J (WT) mice, hepatocyte-specific HNF4α knockout mice (HNF4α-KO), and HNF4α-cMyc double knockout mice (DKO). C57BL/6J mice treated with 300 mg/kg maintained nuclear HNF4α expression and exhibited liver regeneration, resulting in recovery. However, treatment with 600-mg/kg APAP, where liver regeneration was inhibited and recovery was delayed, showed a rapid decline in HNF4α expression. HNF4α-KO mice developed significantly higher liver injury due to delayed glutathione recovery after APAP overdose. HNF4α-KO mice also exhibited significant induction of cMyc, and the deletion of cMyc in HNF4α-KO mice (DKO mice) reduced the APAP-induced liver injury. The DKO mice had significantly faster glutathione replenishment due to rapid induction in Gclc and Gclm genes. Coimmunoprecipitation and ChIP analyses revealed that HNF4α interacts with Nrf2 and affects its DNA binding. Furthermore, DKO mice showed significantly faster initiation of cell proliferation resulting in rapid liver regeneration and recovery. CONCLUSIONS These data show that HNF4α interacts with Nrf2 and promotes glutathione replenishment aiding in recovery from APAP-induced liver injury, a process inhibited by cMyc. These studies indicate that maintaining the HNF4α function is critical for regeneration and recovery after APAP overdose.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mezler M, Jones RS, Sangaraju D, Goldman DC, Hoffmann M, Heikkinen AT, Mannila J, Chang JH, Foquet L, Pusalkar S, Chothe PP, Scheer N. Analysis of the Bile Acid Composition in a Fibroblast Growth Factor 19-Expressing Liver-Humanized Mouse Model and Its Use for CYP3A4-Mediated Drug-Drug Interaction Studies. Drug Metab Dispos 2023; 51:1391-1402. [PMID: 37524541 DOI: 10.1124/dmd.123.001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.
Collapse
Affiliation(s)
- Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Robert S Jones
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Dewakar Sangaraju
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Devorah C Goldman
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Matthew Hoffmann
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Aki T Heikkinen
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Janne Mannila
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Jae H Chang
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Lander Foquet
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Sandeepraj Pusalkar
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Paresh P Chothe
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Nico Scheer
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| |
Collapse
|
8
|
Meadows V, Yang Z, Basaly V, Guo GL. FXR Friend-ChIPs in the Enterohepatic System. Semin Liver Dis 2023; 43:267-278. [PMID: 37442156 PMCID: PMC10620036 DOI: 10.1055/a-2128-5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey
| |
Collapse
|
9
|
Tecos ME, Steinberger AE, Guo J, Rubin DC, Davidson NO, Warner BW. Disruption of Enterohepatic Circulation of Bile Acids Ameliorates Small Bowel Resection Associated Hepatic Injury. J Pediatr Surg 2023; 58:1074-1078. [PMID: 36914459 PMCID: PMC10355217 DOI: 10.1016/j.jpedsurg.2023.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Massive small bowel resection (SBR) is associated with liver injury and fibrosis. Efforts to elucidate the driving force behind hepatic injury have identified multiple factors, including the generation of toxic bile acid metabolites. METHODS Sham, 50% proximal, and 50% distal SBR were carried out in C57BL/6 mice to determine the effect of jejunal (proximal SBR) versus ileocecal resection (distal SBR) on bile acid metabolism and liver injury. Tissues were harvested at 2 and 10-week postoperative timepoints. RESULTS When compared with 50% proximal SBR, mice that underwent distal SBR exhibited less hepatic oxidative stress as verified by decreased mRNA expression of tumor necrosis factor-α (TNFα, p ≤ 0.0001), nicotinamide adenine dinucleotide phosphate oxidase (NOX, p ≤ 0.0001), and glutathione synthetase (GSS, p ≤ 0.05). Distal SBR mice also exhibited a more hydrophilic bile acid profile with reduced abundance of insoluble bile acids (cholic acid (CA), taurodeoxycholic acid (TCA), and taurolithocholic acid (TLCA)), and increased abundance of soluble bile acids (tauroursodeoxycholic acid (TUDCA)). In contrast with proximal SBR, ileocecal resection alters enterohepatic circulation leading to reduced oxidative stress and promotes physiological bile acid metabolism. CONCLUSION These findings challenge the notion that preservation of the ileocecal region is beneficial in patients with short bowel syndrome. Administration of selected bile acids may present potential therapy to mitigate resection-associated liver injury. LEVEL OF EVIDENCE III-Case-Control Study.
Collapse
Affiliation(s)
- Maria E Tecos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA
| | - Allie E Steinberger
- Department of Surgery, Barnes Jewish Hospital, Washington University in St. Louis School of Medicine, 9901 Wohl Hospital, Campus Box 8109, St. Louis, MO, 63110, USA
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, Campus Box 8124, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, Washington University, Campus Box 8124, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, One Children's Place, Suite 6110 St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
11
|
Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation. Cells 2022; 11:cells11243983. [PMID: 36552746 PMCID: PMC9777420 DOI: 10.3390/cells11243983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4α (HNF4α) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7α-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4α levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile.
Collapse
|
12
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
13
|
Lu H, Lei X, Winkler R, John S, Kumar D, Li W, Alnouti Y. Crosstalk of hepatocyte nuclear factor 4a and glucocorticoid receptor in the regulation of lipid metabolism in mice fed a high-fat-high-sugar diet. Lipids Health Dis 2022; 21:46. [PMID: 35614477 PMCID: PMC9134643 DOI: 10.1186/s12944-022-01654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α) and glucocorticoid receptor (GR), master regulators of liver metabolism, are down-regulated in fatty liver diseases. The present study aimed to elucidate the role of down-regulation of HNF4α and GR in fatty liver and hyperlipidemia. Methods Adult mice with liver-specific heterozygote (HET) and knockout (KO) of HNF4α or GR were fed a high-fat-high-sugar diet (HFHS) for 15 days. Alterations in hepatic and circulating lipids were determined with analytical kits, and changes in hepatic mRNA and protein expression in these mice were quantified by real-time PCR and Western blotting. Serum and hepatic levels of bile acids were quantified by LC-MS/MS. The roles of HNF4α and GR in regulating hepatic gene expression were determined using luciferase reporter assays. Results Compared to HFHS-fed wildtype mice, HNF4α HET mice had down-regulation of lipid catabolic genes, induction of lipogenic genes, and increased hepatic and blood levels of lipids, whereas HNF4α KO mice had fatty liver but mild hypolipidemia, down-regulation of lipid-efflux genes, and induction of genes for uptake, synthesis, and storage of lipids. Serum levels of chenodeoxycholic acid and deoxycholic acid tended to be decreased in the HNF4α HET mice but dramatically increased in the HNF4α KO mice, which was associated with marked down-regulation of cytochrome P450 7a1, the rate-limiting enzyme for bile acid synthesis. Hepatic mRNA and protein expression of sterol-regulatory-element-binding protein-1 (SREBP-1), a master lipogenic regulator, was induced in HFHS-fed HNF4α HET mice. In reporter assays, HNF4α cooperated with the corepressor small heterodimer partner to potently inhibit the transactivation of mouse and human SREBP-1C promoter by liver X receptor. Hepatic nuclear GR proteins tended to be decreased in the HNF4α KO mice. HFHS-fed mice with liver-specific KO of GR had increased hepatic lipids and induction of SREBP-1C and PPARγ, which was associated with a marked decrease in hepatic levels of HNF4α proteins in these mice. In reporter assays, GR and HNF4α synergistically/additively induced lipid catabolic genes. Conclusions induction of lipid catabolic genes and suppression of lipogenic genes by HNF4α and GR may mediate the early resistance to HFHS-induced fatty liver and hyperlipidemia. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01654-6.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Savio John
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
14
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. It refers to a range of liver conditions affecting people who drink little or no alcohol. NAFLD comprises non-alcoholic fatty liver and non-alcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. NASH is featured by steatosis, lobular inflammation, hepatocyte injury, and various degrees of fibrosis. Although much progress has been made over the past decades, the pathogenic mechanism of NAFLD remains to be fully elucidated. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear hormone receptor that is highly expressed in hepatocytes. Hepatic HNF4α expression is markedly reduced in NAFLD patients and mouse models of NASH. HNF4α has been shown to regulate bile acid, lipid, glucose, and drug metabolism. In this review, we summarize the recent advances in the understanding of the pathogenesis of NAFLD with a focus on the regulation of HNF4α and the role of hepatic HNF4α in NAFLD. Several lines of evidence have shown that hepatic HNF4α plays a key role in the initiation and progression of NAFLD. Recent data suggest that hepatic HNF4α may be a promising target for treatment of NAFLD.
Collapse
|
15
|
Kanamori S, Ohashi N, Ishida H, Yamamoto K, Itoh T. HNF4α Is a Covalent Bond-Forming Receptor. J Nutr Sci Vitaminol (Tokyo) 2021; 67:126-129. [PMID: 33952733 DOI: 10.3177/jnsv.67.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HNF4α is a nuclear receptor whose ligands are fatty acids. HNF4α is a target molecule for drug discovery research and thus we tested its covalent binding ability to investigate the possible development of covalent modifiers of HNF4α. Oxidized polyunsaturated fatty acids (oxo-PUFAs) have moderate flexibility and possess a Michael acceptor that participates in conjugate addition reactions with nucleophilic amino acid residues. Thus, oxo-PUFAs were used as probes and their covalent binding abilities to HNF4α were verified. Several oxo-PUFAs, such as 4-oxoDHA, were shown to be covalent modifiers of HNF4α and therefore we concluded that HNF4α can form covalent bonds to ligands.
Collapse
|
16
|
Suriano F, Vieira-Silva S, Falony G, Roumain M, Paquot A, Pelicaen R, Régnier M, Delzenne NM, Raes J, Muccioli GG, Van Hul M, Cani PD. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. MICROBIOME 2021; 9:147. [PMID: 34183063 PMCID: PMC8240277 DOI: 10.1186/s40168-021-01097-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice are commonly used mice models mimicking the conditions of obesity and type 2 diabetes development. However, although ob/ob and db/db mice are similarly gaining weight and developing massive obesity, db/db mice are more diabetic than ob/ob mice. It remains still unclear why targeting the same pathway-leptin signaling-leads to the development of two different phenotypes. Given that gut microbes dialogue with the host via different metabolites (e.g., short-chain fatty acids) but also contribute to the regulation of bile acids metabolism, we investigated whether inflammatory markers, bacterial components, bile acids, short-chain fatty acids, and gut microbes could contribute to explain the specific phenotype discriminating the onset of an obese and/or a diabetic state in ob/ob and db/db mice. RESULTS Six-week-old ob/ob and db/db mice were followed for 7 weeks; they had comparable body weight, fat mass, and lean mass gain, confirming their severely obese status. However, as expected, the glucose metabolism and the glucose-induced insulin secretion were significantly different between ob/ob and db/db mice. Strikingly, the fat distribution was different, with db/db mice having more subcutaneous and ob/ob mice having more epididymal fat. In addition, liver steatosis was more pronounced in the ob/ob mice than in db/db mice. We also found very distinct inflammatory profiles between ob/ob and db/db mice, with a more pronounced inflammatory tone in the liver for ob/ob mice as compared to a higher inflammatory tone in the (subcutaneous) adipose tissue for db/db mice. When analyzing the gut microbiota composition, we found that the quantity of 19 microbial taxa was in some way affected by the genotype. Furthermore, we also show that serum LPS concentration, hepatic bile acid content, and cecal short-chain fatty acid profiles were differently affected by the two genotypes. CONCLUSION Taken together, our results elucidate potential mechanisms implicated in the development of an obese or a diabetic state in two genetic models characterized by an altered leptin signaling. We propose that these differences could be linked to specific inflammatory tones, serum LPS concentration, bile acid metabolism, short-chain fatty acid profile, and gut microbiota composition. Video abstract.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Rudy Pelicaen
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Marion Régnier
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium.
| |
Collapse
|
17
|
Huck I, Morris EM, Thyfault J, Apte U. Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis. Gene Expr 2021; 20:157-168. [PMID: 33691903 PMCID: PMC8201658 DOI: 10.3727/105221621x16153933463538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4 in metabolism, its overall role in whole-body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4 deletion (HNF4-KO) in mice on whole-body energy expenditure (EE) and substrate utilization in fed, fasted, and high-fat diet (HFD) conditions. HNF4-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4-KO mice were able to upregulate lipid oxidation during HFD, suggesting that their metabolic flexibility was intact. However, only hepatocyte-specific HNF4-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic -oxidation in HNF4-KO livers across all feeding conditions. Together, our data suggest that deletion of hepatic HNF4 increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole-body energy expenditure. These data clarify the role of hepatic HNF4 on systemic metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Ian Huck
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - E. Matthew Morris
- †Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- †Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- ‡Research Service, Kansas City VA Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Xu Y, Zhu Y, Hu S, Xu Y, Stroup D, Pan X, Bawa FC, Chen S, Gopoju R, Yin L, Zhang Y. Hepatocyte Nuclear Factor 4α Prevents the Steatosis-to-NASH Progression by Regulating p53 and Bile Acid Signaling (in mice). Hepatology 2021; 73:2251-2265. [PMID: 33098092 PMCID: PMC8062586 DOI: 10.1002/hep.31604] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA,Present address: Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Diane Stroup
- Department of Chemistry and Biochemistry, Kent State University, OH 44272, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
19
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 DOI: 10.1101/2020.05.29.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Nimer N, Choucair I, Wang Z, Nemet I, Li L, Gukasyan J, Weeks TL, Alkhouri N, Zein N, Tang WHW, Fischbach MA, Brown JM, Allayee H, Dasarathy S, Gogonea V, Hazen SL. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism 2021; 116:154457. [PMID: 33275980 PMCID: PMC7856026 DOI: 10.1016/j.metabol.2020.154457] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Metabolomic studies suggest plasma levels of bile acids (BAs) are elevated amongst subjects with non-alcoholic fatty liver disease (NAFLD) compared to healthy controls. However, it remains unclear whether or not specific BAs are associated with the clinically relevant transition from nonalcoholic fatty liver (i.e. simple steatosis) to non-alcoholic steatohepatitis (NASH), or enhanced progression of hepatic fibrosis, or genetic determinants of NAFLD/NASH. METHODS Among sequential subjects (n=102) undergoing diagnostic liver biopsy, we examined the associations of a broad panel of BAs with distinct histopathological features of NAFLD, the presence of NASH, and their associations with genetic variants linked to NAFLD and NASH. RESULTS Plasma BA alterations were observed through the entire spectrum of NAFLD, with several glycine conjugated forms of the BAs demonstrating significant associations with higher grades of inflammation and fibrosis. Plasma 7-Keto-DCA levels showed the strongest associations with advanced stages of hepatic fibrosis [odds ratio(95% confidence interval)], 4.2(1.2-16.4), NASH 24.5(4.1-473), and ballooning 18.7(4.8-91.9). Plasma 7-Keto-LCA levels were associated with NASH 9.4(1.5-185) and ballooning 5.9(1.4-28.8). Genetic variants at several NAFLD/NASH loci were nominally associated with increased levels of 7-Keto- and glycine-conjugated forms of BAs, and the NAFLD risk allele at the TRIB1 locus showed strong tendency toward increased plasma levels of GCA (p=0.02) and GUDCA (p=0.009). CONCLUSIONS Circulating bile acid levels are associated with histopathological and genetic determinants of the transition from simple hepatic steatosis into NASH. Further studies exploring the potential involvement of bile acid metabolism in the development and/or progression of distinct histopathological features of NASH are warranted.
Collapse
Affiliation(s)
- Nisreen Nimer
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Ibrahim Choucair
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Janet Gukasyan
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Taylor L Weeks
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naim Alkhouri
- Texas Liver Institute and University of Texas Health, San Antonio, TX 78215, USA
| | - Nizar Zein
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hooman Allayee
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Srinivasan Dasarathy
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
21
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
22
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
23
|
Singh P, Tung SP, Han EH, Lee IK, Chi YI. Dimerization defective MODY mutations of hepatocyte nuclear factor 4α. Mutat Res 2019; 814:1-6. [PMID: 30648609 DOI: 10.1016/j.mrfmmm.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
HNF4α is a culprit gene product for a monogenic and dominantly-inherited form of diabetes, referred to as MODY1 (Maturity Onset Diabetes of the Young type 1). Reduced HNF4α activities have been linked to impaired insulin secretion and β-cell function. Numerous mutations have been identified from the patients and they have been instructive as to the individual residue's role in protein structure-function and dysfunction. As a member of the nuclear receptor (NR) superfamily, HNF4α is made of characteristic modular domains and it functions exclusively as a homodimer despite its sequence homology to RXR, a common heterodimer partner of non-steroidal NRs. Transcription factors commonly dimerize to enhance their molecular functions mainly by facilitating the recognition of double helix target DNAs that display an intrinsic pseudo-2-fold symmetry and the recruitment of the remainder of the main transcriptional machinery. HNF4α is no exception and its dimerization is maintained by the ligand binding domain (LBD) mainly through the leucine-zipper-like interactions at the stalk of two interacting helices. Although many MODY1 mutations have been previously characterized, including DNA binding disruptors, ligand binding disruptors, coactivator binding disruptors, and protein stability disruptors, protein dimerization disruptors have not been formally reported. In this report, we present a set of data for the two MODY1 mutations found right at the dimerization interface (L332 P and L328del mutations) which clearly exhibit the disruptive effects of directly affecting dimerization, protein stability, and transcriptional activities. These data reinforced the fact that MODY mutations are loss-of-function mutations and HNF4α dimerization is essential for its optimal function and normal physiology.
Collapse
Affiliation(s)
- Puja Singh
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Shu-Ping Tung
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Eun Hee Han
- Drug & Disease Target Group, Division of Life Science, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN, United States.
| |
Collapse
|
24
|
Qu M, Duffy T, Hirota T, Kay SA. Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proc Natl Acad Sci U S A 2018; 115:E12305-E12312. [PMID: 30530698 PMCID: PMC6310821 DOI: 10.1073/pnas.1816411115] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Collapse
Affiliation(s)
- Meng Qu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Tomas Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
25
|
Kitao A, Matsui O, Yoneda N, Kozaka K, Kobayashi S, Koda W, Minami T, Inoue D, Yoshida K, Yamashita T, Yamashita T, Kaneko S, Takamura H, Ohta T, Ikeda H, Sato Y, Nakanuma Y, Harada K, Kita R, Gabata T. Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of β-catenin and hepatocyte nuclear factor 4α in hepatocellular carcinoma. Hepatol Res 2018; 48:205-216. [PMID: 28488786 DOI: 10.1111/hepr.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
AIM The aim of this study is to clarify the correlation of the co-activation of β-catenin and hepatocyte nuclear factor (HNF)4α with the findings of gadoxetic acid-enhanced magnetic resonance imaging (MRI), organic anion transporting polypeptide (OATP)1B3 expression, and histological findings in hepatocellular carcinoma (HCC). METHODS One hundred and ninety-six HCCs surgically resected from 174 patients were enrolled in this study. The HCCs were classified into four groups by immunohistochemical expression of β-catenin, glutamine synthetase (GS), and HNF4α: (i) β-catenin/GS (positive [+]) HNF4α (+); (ii) β-catenin/GS (+) HNF4α (negative [-]); (iii) β-catenin/GS (-) HNF4α (+); and (iv) β-catenin/GS (-) HNF4α (-). We compared the four groups in terms of the enhancement ratio on the hepatobiliary phase of gadoxetic acid-enhanced MRI, immunohistochemical organic anion transporter polypeptide (OATP)1B3 (a main uptake transporter of gadoxetic acid) expression and histological features, overall survival, and no recurrence survival. The Kruskal-Wallis test, Steel-Dwass multiple comparisons test, Fisher's exact test, and log-rank (Mantel-Cox) test were used for statistical analyses. RESULTS Enhancement ratio on gadoxetic acid-enhanced MRI in HCC with β-catenin/GS (+) HNF4α (+) was significantly higher than those of the other three groups (P < 0.001). The OATP1B3 grade was also significantly higher in HCC with β-catenin/GS (+) HNF4α (+) (P < 0.001). Hepatocellular carcinoma with β-catenin/GS (+) HNF4α (+) showed the highest differentiation grade as compared to the other groups (P < 0.004). There were no significant differences in portal vein invasion, macroscopic growth pattern, or prognosis analyses between the four groups. CONCLUSION Co-activation of β-catenin and HNF4α would promote OATP1B3 expression, and consequently higher enhancement ratio on gadoxetic acid-enhanced MRI and higher differentiation grade in HCC.
Collapse
Affiliation(s)
- Azusa Kitao
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Osamu Matsui
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Norihide Yoneda
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Wataru Koda
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuya Minami
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Dai Inoue
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kotaro Yoshida
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroyuki Takamura
- Department of Gaetroenterologic Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuo Ohta
- Department of Gaetroenterologic Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroko Ikeda
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yasuni Nakanuma
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryuichi Kita
- Department of Gastroenterology, Osaka Red Cross Hospital, Osaka, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
26
|
Petrescu AD, Kain J, Liere V, Heavener T, DeMorrow S. Hypothalamus-Pituitary-Adrenal Dysfunction in Cholestatic Liver Disease. Front Endocrinol (Lausanne) 2018; 9:660. [PMID: 30483216 PMCID: PMC6240761 DOI: 10.3389/fendo.2018.00660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
The Hypothalamic-Pituitary-Adrenal (HPA) axis has an important role in maintaining the physiological homeostasis in relation to external and internal stimuli. The HPA axis dysfunctions were extensively studied in neuroendocrine disorders such as depression and chronic fatigue syndrome but less so in hepatic cholestasis, cirrhosis or other liver diseases. The HPA axis controls many functions of the liver through neuroendocrine forward signaling pathways as well as negative feedback mechanisms, in health and disease. This review describes cell and molecular mechanisms of liver and HPA axis physiology and pathology. Evidence is presented from clinical and experimental model studies, demonstrating that dysfunctions of HPA axis are correlated with liver cholestatic disorders. The functional interactions of HPA axis with the liver and immune system in cases of bacterial and viral infections are also discussed. Proinflammatory cytokines stimulate glucocorticoid (GC) release by adrenals but they also inhibit bile acid (BA) efflux from liver. Chronic hepatic inflammation leads to cholestasis and impaired GC metabolism in the liver, so that HPA axis becomes depressed. Recently discovered interactions of GC with self-oscillating transcription factors that generate circadian rhythms of gene expression in brain and liver, in the context of GC replacement therapies, are also outlined.
Collapse
Affiliation(s)
- Anca D. Petrescu
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Jessica Kain
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Victoria Liere
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Trace Heavener
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
- Department of Research Services, Central Texas Veterans Health Care System, Temple, TX, United States
- *Correspondence: Sharon DeMorrow
| |
Collapse
|
27
|
Soubeyrand S, Martinuk A, McPherson R. TRIB1 is a positive regulator of hepatocyte nuclear factor 4-alpha. Sci Rep 2017; 7:5574. [PMID: 28717196 PMCID: PMC5514136 DOI: 10.1038/s41598-017-05768-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 01/06/2023] Open
Abstract
The TRIB1 locus has been linked to both cardiovascular disease and hepatic steatosis. Recent efforts have revealed TRIB1 to be a major regulator of liver function, largely, but not exclusively, via CEBPA degradation. We recently uncovered a functional interaction between TRIB1 and HNF4A, another key regulator of hepatic function, whose molecular underpinnings remained to be clarified. Here we have extended these findings. In hepatoma models, HNF4A levels were found to depend on TRIB1, independently of its impact on CEBPA. Using a reporter assay model, MTTP reporter activity, which depends on HNF4A, positively correlated with TRIB1 levels. Confocal microscopy demonstrated partial colocalization of TRIB1 and HNF4A. Using overexpressed proteins we demonstrate that TRIB1 and HNF4A can form complexes in vivo. Mapping of the interaction interfaces identified two distinct regions within TRIB1 which associated with the N-terminal region of HNF4A. Lastly, the TRIB1-HNF4A interaction resisted competition with a CEPBA-derived peptide, suggesting different binding modalities. Together these findings establish that TRIB1 is required for HNF4A function. This regulatory axis represents a novel CEBPA-independent aspect of TRIB1 function predicted to play an important role in liver physiology.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
| | - Amy Martinuk
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Canada.
| |
Collapse
|
28
|
Morimoto A, Kannari M, Tsuchida Y, Sasaki S, Saito C, Matsuta T, Maeda T, Akiyama M, Nakamura T, Sakaguchi M, Nameki N, Gonzalez FJ, Inoue Y. An HNF4α-microRNA-194/192 signaling axis maintains hepatic cell function. J Biol Chem 2017; 292:10574-10585. [PMID: 28465351 DOI: 10.1074/jbc.m117.785592] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) controls the expression of liver-specific protein-coding genes. However, some microRNAs are also modulated by HNF4α, and it is not known whether they are direct targets of HNF4α and whether they influence hepatic function. In this study, we found that HNF4α regulates microRNAs, indicated by marked down-regulation of miR-194 and miR-192 (miR-194/192) in liver-specific Hnf4a-null (Hnf4aΔH) mice. Transactivation of the shared miR-194/192 promoter was dependent on HNF4α expression, indicating that miR-194/192 is a target gene of HNF4α. Screening of potential mRNAs targeted by miR-194/192 revealed that expression of genes involved in glucose metabolism (glycogenin 1 (Gyg1)), cell adhesion and migration (activated leukocyte cell adhesion molecule (Alcam)), tumorigenesis and tumor progression (Rap2b and epiregulin (Ereg)), protein SUMOylation (Sumo2), epigenetic regulation (Setd5 and Cullin 4B (Cln4b)), and the epithelial-mesenchymal transition (moesin (Msn)) was up-regulated in Hnf4aΔH mice. Moreover, we also found that miR-194/192 binds the 3'-UTR of these mRNAs. siRNA knockdown of HNF4α suppressed miR-194/192 expression in human hepatocellular carcinoma (HCC) cells and resulted in up-regulation of their mRNA targets. Inhibition and overexpression experiments with miR-194/192 revealed that Gyg1, Setd5, Sumo2, Cln4b, and Rap2b are miR-194 targets, whereas Ereg, Alcam, and Msn are miR-192 targets. These findings reveal a novel HNF4α network controlled by miR-194/192 that may play a critical role in maintaining the hepatocyte-differentiated state by inhibiting expression of genes involved in dedifferentiation and tumorigenesis. These insights may contribute to the development of diagnostic markers for early HCC detection, and targeting of the miR-194/192 pathway could be useful for managing HCC.
Collapse
Affiliation(s)
- Aoi Morimoto
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Mana Kannari
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuichi Tsuchida
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Chinatsu Saito
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsuyoshi Matsuta
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Tsukasa Maeda
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Megumi Akiyama
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takahiro Nakamura
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan, and
| | - Nobukazu Nameki
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Laboratory of Molecular Life Science, Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
29
|
Lu H, Lei X, Liu J, Klaassen C. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha. World J Hepatol 2017; 9:191-208. [PMID: 28217257 PMCID: PMC5295159 DOI: 10.4254/wjh.v9.i4.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/02/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4α) in regulating hepatic expression of microRNAs.
METHODS Microarray and real-time PCR were used to determine hepatic expression of microRNAs in young-adult mice lacking Hnf4α expression in liver (Hnf4α-LivKO). Integrative genomics viewer software was used to analyze the public chromatin immunoprecipitation-sequencing datasets for DNA-binding of HNF4α, RNA polymerase-II, and histone modifications to loci of microRNAs in mouse liver and human hepatoma cells. Dual-luciferase reporter assay was conducted to determine effects of HNF4α on the promoters of mouse and human microRNAs as well as effects of microRNAs on the untranslated regions (3’UTR) of two genes in human hepatoma cells.
RESULTS Microarray data indicated that most microRNAs remained unaltered by Hnf4α deficiency in Hnf4α-LivKO mice. However, certain liver-predominant microRNAs were down-regulated similarly in young-adult male and female Hnf4α-LivKO mice. The down-regulation of miR-101, miR-192, miR-193a, miR-194, miR-215, miR-802, and miR-122 as well as induction of miR-34 and miR-29 in male Hnf4α-LivKO mice were confirmed by real-time PCR. Analysis of public chromatin immunoprecipitation-sequencing data indicates that HNF4α directly binds to the promoters of miR-101, miR-122, miR-194-2/miR-192 and miR-193, which is associated with histone marks of active transcription. Luciferase reporter assay showed that HNF4α markedly activated the promoters of mouse and human miR-101b/miR-101-2 and the miR-194/miR-192 cluster. Additionally, miR-192 and miR-194 significantly decreased activities of luciferase reporters for the 3’UTR of histone H3F3 and chromodomain helicase DNA binding protein 1 (CHD1), respectively, suggesting that miR-192 and miR-194 might be important in chromosome remodeling through directly targeting H3F3 and CHD1.
CONCLUSION HNF4α is essential for hepatic basal expression of a group of liver-enriched microRNAs, including miR-101, miR-192, miR-193a, miR-194 and miR-802, through which HNF4α may play a major role in the post-transcriptional regulation of gene expression and maintenance of the epigenome in liver.
Collapse
|
30
|
Baik M, Kim J, Piao MY, Kang HJ, Park SJ, Na SW, Ahn SH, Lee JH. Deletion of liver-specific STAT5 gene alters the expression of bile acid metabolism genes and reduces liver damage in lithogenic diet-fed mice. J Nutr Biochem 2017; 39:59-67. [DOI: 10.1016/j.jnutbio.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
|
31
|
Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 2016; 48:1396-1406. [PMID: 27723756 DOI: 10.1038/ng.3695] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr-/- mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10-8) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.
Collapse
|
32
|
Crosstalk of HNF4 α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm Sin B 2016; 6:393-408. [PMID: 27709008 PMCID: PMC5045537 DOI: 10.1016/j.apsb.2016.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis. Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs), lipids, and glucose provide key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α) plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics, metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation, and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and intracellular signaling pathways to regulate genes essential in liver pathophysiology.
Collapse
|
33
|
Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, Español-Suñer R, Willenbring H, Weaver VM, Chang TT. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016; 64:261-75. [PMID: 26755329 PMCID: PMC5224931 DOI: 10.1002/hep.28450] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. CONCLUSION Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275).
Collapse
Affiliation(s)
- Seema S. Desai
- Department of Surgery, University of California, San Francisco
| | - Jason C. Tung
- Department of Surgery, University of California, San Francisco,Center for Bioengineering and Tissue Regeneration, University of California, San Francisco
| | - Vivian X. Zhou
- Department of Surgery, University of California, San Francisco
| | - James P. Grenert
- Department of Pathology, University of California, San Francisco,Liver Center, University of California, San Francisco
| | - Yann Malato
- Department of Surgery, University of California, San Francisco
| | - Milad Rezvani
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Regina Español-Suñer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Holger Willenbring
- Department of Surgery, University of California, San Francisco,Liver Center, University of California, San Francisco,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Valerie M. Weaver
- Department of Surgery, University of California, San Francisco,Center for Bioengineering and Tissue Regeneration, University of California, San Francisco
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco,Liver Center, University of California, San Francisco
| |
Collapse
|
34
|
Wu W, Patel A, Kyöstilä K, Lohi H, Mladkova N, Kiryluk K, Sun X, Lefkowitch JH, Worman HJ, Gharavi AG. Genome-wide association study in mice identifies loci affecting liver-related phenotypes including Sel1l influencing serum bile acids. Hepatology 2016; 63:1943-56. [PMID: 26857093 DOI: 10.1002/hep.28495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/28/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Using publicly available data from inbred mouse strains, we conducted a genome-wide association study to identify loci that accounted for liver-related phenotypes between C57BL/6J and A/J mice fed a Paigen diet. We confirmed genome-wide significant associations for hepatic cholesterol (chromosome 10A2) and serum total bile acid concentration (chromosome 12E) and identified a new locus for liver inflammation (chromosome 7C). Analysis of consomic mice confirmed that chromosome 12 A/J alleles accounted for the variance in serum total bile acid concentrations and had pleiotropic effects on liver mass, serum cholesterol, and serum alanine aminotransferase activity. Using an affected-only haplotype analysis among strains, we refined the chromosome 12E signal to a 1.95 Mb linkage disequilibrium block containing only one gene, sel-1 suppressor of lin-12-like (Sel1l). RNA sequencing and immunoblotting demonstrated that the risk allele locally conferred reduced expression of SEL1L in liver and distantly down-regulated pathways associated with hepatocyte nuclear factor 1 homeobox A (Hnf1a) and hepatocyte nuclear factor 4A (Hnf4a), known modifiers of bile acid transporters and metabolic traits. Consistent with these data, knockdown of SEL1L in HepG2 cells resulted in reduced HNF1A and HNF4A and increased bile acids in culture media; it further captured multiple molecular signatures observed in consomic mouse livers with reduced SEL1L. Finally, dogs harboring a SEL1L mutation and Sel1l(+/-) mice fed a Paigen diet had significantly increased serum total bile acid concentrations, providing independent confirmation linking SEL1L to bile acid metabolism. CONCLUSION Genetic analyses of inbred mouse strains identified loci affecting different liver-related traits and implicated Sel1l as a significant determinant of serum bile acid concentration. (Hepatology 2016;63:1943-1956).
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ami Patel
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kaisa Kyöstilä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Nikol Mladkova
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Krzysztof Kiryluk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Xiaoyun Sun
- JP Sulzberger Columbia Genome Center, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jay H Lefkowitch
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ali G Gharavi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
35
|
Matsuo S, Ogawa M, Muckenthaler MU, Mizui Y, Sasaki S, Fujimura T, Takizawa M, Ariga N, Ozaki H, Sakaguchi M, Gonzalez FJ, Inoue Y. Hepatocyte Nuclear Factor 4α Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver. J Biol Chem 2015; 290:30855-65. [PMID: 26527688 PMCID: PMC4692214 DOI: 10.1074/jbc.m115.694414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Iron is an essential element in biological systems, but excess iron promotes the formation of reactive oxygen species, resulting in cellular toxicity. Several iron-related genes are highly expressed in the liver, a tissue in which hepatocyte nuclear factor 4α (HNF4α) plays a critical role in controlling gene expression. Therefore, the role of hepatic HNF4α in iron homeostasis was examined using liver-specific HNF4α-null mice (Hnf4aΔH mice). Hnf4aΔH mice exhibit hypoferremia and a significant change in hepatic gene expression. Notably, the expression of transferrin receptor 2 (Tfr2) mRNA was markedly decreased in Hnf4aΔH mice. Promoter analysis of the Tfr2 gene showed that the basal promoter was located at a GC-rich region upstream of the transcription start site, a region that can be transactivated in an HNF4α-independent manner. HNF4α-dependent expression of Tfr2 was mediated by a proximal promoter containing two HNF4α-binding sites located between the transcription start site and the translation start site. Both the GC-rich region of the basal promoter and the HNF4α-binding sites were required for maximal transactivation. Moreover, siRNA knockdown of HNF4α suppressed TFR2 expression in human HCC cells. These results suggest that Tfr2 is a novel target gene for HNF4α, and hepatic HNF4α plays a critical role in iron homeostasis.
Collapse
Affiliation(s)
- Shunsuke Matsuo
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Ogawa
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Martina U Muckenthaler
- the Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yumiko Mizui
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takafumi Fujimura
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Takizawa
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nagayuki Ariga
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Hiroaki Ozaki
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan, and
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
36
|
Zhang P, Ma D, Wang Y, Zhang M, Qiang X, Liao M, Liu X, Wu H, Zhang Y. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol 2015; 74:225-32. [PMID: 25455889 DOI: 10.1016/j.fct.2014.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022]
Abstract
Alcohol consumption is customary in many cultures and it is a common human behavior worldwide. Binge ethanol and chronic alcohol consumption, two usual drinking patterns of human beings, produce a state of oxidative stress in liver and disturb the liver function. However, a safe and effective therapy for alcoholic liver disease in humans is still elusive. This study identified the natural product berberine as a potential agent for treating or preventing ethanol-induced liver injury. We demonstrated that berberine attenuated oxidative stress resulted from binge drinking in liver by reducing hepatic lipid peroxidation, glutathione exhaust and mitochondrial oxidative damage. Furthermore, berberine also prevented the oxidative stress and macrosteatosis in response to chronic ethanol exposure in mice. Either the total cytochrome P450 2E1 or the mitochondria-located cytochrome P450 2E1, which is implicated in ethanol-mediated oxidative stress, was suppressed by berberine. On the other hand, berberine significantly blunted the lipid accumulation in liver due to chronic alcohol consumption, at least partially, through restoring peroxisome proliferator-activated receptor α/peroxisome proliferator-activated receptor-gamma Co-activator-1α and hepatocyte nuclear factor 4α/microsomal triglyceride transfer protein pathways. These findings suggested that berberine could serve as a potential agent for preventing or treating human alcoholic liver disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Probing the effect of MODY mutations near the co-activator-binding pocket of HNF4α. Biosci Rep 2015; 31:411-9. [PMID: 21323639 DOI: 10.1042/bsr20110013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HNF4α (hepatocyte nuclear factor 4α) is a culprit gene product for a monogenic and dominantly inherited form of diabetes, referred to as MODY (maturity onset diabetes of the young). As a member of the NR (nuclear receptor) superfamily, HNF4α recruits transcriptional co-activators such as SRC-1α (steroid receptor co-activator-1α) and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) through the LXXLL-binding motifs for its transactivation, and our recent crystal structures of the complex provided the molecular details and the mechanistic insights into these co-activator recruitments. Several mutations have been identified from the MODY patients and, among these, point mutations can be very instructive site-specific measures of protein function and structure. Thus, in the present study, we probed the functional effects of the two MODY point mutations (D206Y and M364R) found directly near the LXXLL motif-binding site by conducting a series of experiments on their structural integrity and specific functional roles such as overall transcription, ligand selectivity, target gene recognition and co-activator recruitment. While the D206Y mutation has a subtle effect, the M364R mutation significantly impaired the overall transactivation by HNF4α. These functional disruptions are mainly due to their reduced ability to recruit co-activators and lowered protein stability (only with M364R mutation), while their DNA-binding activities and ligand selectivities are preserved. These results confirmed our structural predictions and proved that MODY mutations are loss-of-function mutations leading to impaired β-cell function. These findings should help target selective residues for correcting mutational defects or modulating the overall activity of HNF4α as a means of therapeutic intervention.
Collapse
|
38
|
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is an orphan nuclear receptor commonly known as the master regulator of hepatic differentiation, owing to the large number of hepatocyte-specific genes it regulates. Whereas the role of HNF4α in hepatocyte differentiation is well recognized and extensively studied, its role in regulation of cell proliferation is relatively less known. Recent studies have revealed that HNF4α inhibits proliferation not only of hepatocytes but also cells in colon and kidney. Further, a growing number of studies have demonstrated that inhibition or loss of HNF4α promotes tumorigenesis in the liver and colon, and reexpression of HNF4α results in decreased cancer growth. Studies using tissue-specific conditional knockout mice, knock-in studies, and combinatorial bioinformatics of RNA/ChIP-sequencing data indicate that the mechanisms of HNF4α-mediated inhibition of cell proliferation are multifold, involving epigenetic repression of promitogenic genes, significant cross talk with other cell cycle regulators including c-Myc and cyclin D1, and regulation of miRNAs. Furthermore, studies indicate that posttranslational modifications of HNF4α may change its activity and may be at the core of its dual role as a differentiation factor and repressor of proliferation. This review summarizes recent findings on the role of HNF4α in cell proliferation and highlights the newly understood function of this old receptor.
Collapse
Affiliation(s)
- Chad Walesky
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- †Department of Medicine – Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
39
|
PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun 2014; 5:4573. [PMID: 25183423 PMCID: PMC4164778 DOI: 10.1038/ncomms5573] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Bile acids play a pivotal role in the pathological development of inflammatory bowel disease (IBD). However, the mechanism of bile acid dysregulation in IBD remains unanswered. Here we show that intestinal peroxisome proliferator-activated receptor α (PPARα)-UDP-glucuronosyltransferases (UGTs) signalling is an important determinant of bile acid homeostasis. Dextran sulphate sodium (DSS)-induced colitis leads to accumulation of bile acids in inflamed colon tissues via activation of the intestinal peroxisome PPARα-UGTs pathway. UGTs accelerate the metabolic elimination of bile acids, and thereby decrease their intracellular levels in the small intestine. Reduced intracellular bile acids results in repressed farnesoid X receptor (FXR)-FGF15 signalling, leading to upregulation of hepatic CYP7A1, thus promoting the de novo bile acid synthesis. Both knockout of PPARα and treatment with recombinant FGF19 markedly attenuate DSS-induced colitis. Thus, we propose that intestinal PPARα-UGTs and downstream FXR-FGF15 signalling play vital roles in control of bile acid homeostasis and the pathological development of colitis. Bile acids have been linked to the development of inflammatory bowel diseases, such as colitis. Here the authors show that bile acid levels in mice are controlled by a circular feedback system involving the nuclear receptors PPARα and FXR, and that this system is dysregulated in colitis.
Collapse
|
40
|
Abstract
OBJECTIVE To perform comprehensive network and pathway analyses of the genes known to cause genetic hearing loss. STUDY DESIGN In silico analysis of deafness genes using ingenuity pathway analysis (IPA). METHODS Genes relevant for hearing and deafness were identified through PubMed literature searches and the Hereditary Hearing Loss Homepage. The genes were assembled into 3 groups: 63 genes that cause nonsyndromic deafness, 107 genes that cause nonsyndromic or syndromic sensorineural deafness, and 112 genes associated with otic capsule development and malformations. Each group of genes was analyzed using IPA to discover the most interconnected, that is, "nodal" molecules, within the most statistically significant networks (p < 10). RESULTS The number of networks that met our criterion for significance was 1 for Group 1 and 2 for Groups 2 and 3. Nodal molecules of these networks were as follows: transforming growth factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase (ERK 1/2) and the G protein coupled receptors (GPCR) for Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) for Group 3. The nodal molecules included not only those known to be associated with deafness (GPCR), or with predisposition to otosclerosis (TGFB1), but also novel genes that have not been described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). CONCLUSION A number of molecules that are likely to be key mediators of genetic hearing loss were identified through three different network and pathway analyses. The molecules included new candidate genes for deafness. Therapies targeting these molecules may be useful to treat deafness.
Collapse
|
41
|
Chang TT, Hughes-Fulford M. Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates. Biomaterials 2013; 35:2162-71. [PMID: 24332390 DOI: 10.1016/j.biomaterials.2013.11.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) culture of hepatocytes leads to improved and prolonged synthetic and metabolic functions, but the underlying molecular mechanisms are unknown. In order to investigate the role of 3D cell-cell interactions in maintaining hepatocyte differentiated functions ex vivo, primary mouse hepatocytes were cultured either as monolayers on tissue culture dishes (TCD) or as 3D aggregates in rotating wall vessel (RWV) bioreactors. Global gene expression analyses revealed that genes upregulated in 3D culture were distinct from those upregulated during liver development and liver regeneration. Instead, they represented a diverse array of hepatocyte-specific functional genes with significant over-representation of hepatocyte nuclear factor 4α (Hnf4a) binding sites in their promoters. Expression of Hnf4a and many of its downstream target genes were significantly increased in RWV cultures as compared to TCD. Conversely, there was concomitant suppression of mesenchymal and cytoskeletal genes in RWV cultures that were induced in TCDs. These findings illustrate the importance of 3D cell-cell interactions in maintaining fundamental molecular pathways of hepatocyte function and serve as a basis for rational design of biomaterials that aim to optimize hepatocyte functions ex vivo for biomedical applications.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA 94143, USA; Liver Center, University of California, San Francisco, CA 94143, USA.
| | - Millie Hughes-Fulford
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| |
Collapse
|
42
|
Abstract
Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR).
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
43
|
Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol 2013; 19:7341-7360. [PMID: 24259965 PMCID: PMC3831216 DOI: 10.3748/wjg.v19.i42.7341] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/17/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract.
Collapse
|
44
|
Ellis ECS, Nauglers S, Parini P, Mörk LM, Jorns C, Zemack H, Sandblom AL, Björkhem I, Ericzon BG, Wilson EM, Strom SC, Grompe M. Mice with chimeric livers are an improved model for human lipoprotein metabolism. PLoS One 2013; 8:e78550. [PMID: 24223822 PMCID: PMC3817217 DOI: 10.1371/journal.pone.0078550] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 09/19/2013] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. DESIGN FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. RESULTS Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. CONCLUSION Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.
Collapse
Affiliation(s)
- Ewa C. S. Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC) Division of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Scott Nauglers
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health Science University, Portland, Oregon, United States of America
| | - Paolo Parini
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa-Mari Mörk
- Department of Clinical Science, Intervention and Technology (CLINTEC) Division of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Science, Intervention and Technology (CLINTEC) Division of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helen Zemack
- Department of Clinical Science, Intervention and Technology (CLINTEC) Division of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anita Lövgren Sandblom
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo-Göran Ericzon
- Department of Clinical Science, Intervention and Technology (CLINTEC) Division of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Stephen C. Strom
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health Science University, Portland, Oregon, United States of America
| |
Collapse
|
45
|
Walesky C, Edwards G, Borude P, Gunewardena S, O’Neil M, Yoo B, Apte U. Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology 2013; 57:2480-90. [PMID: 23315968 PMCID: PMC3669646 DOI: 10.1002/hep.26251] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/13/2012] [Indexed: 12/12/2022]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4α-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4α knockdown mouse model. Hepatocyte-specific deletion of HNF4α in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4α were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4α deletion. To determine whether deletion of HNF4α affects cancer pathogenesis, HNF4α knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4α significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4α-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4α knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4α in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.
Collapse
Affiliation(s)
- Chad Walesky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Genea Edwards
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Prachi Borude
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
,Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS
| | - Maura O’Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Byunggil Yoo
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
46
|
Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368:17-29. [PMID: 22609541 PMCID: PMC3491147 DOI: 10.1016/j.mce.2012.05.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 02/07/2023]
Abstract
Enterohepatic circulation serves to capture bile acids and other steroid metabolites produced in the liver and secreted to the intestine, for reabsorption back into the circulation and reuptake to the liver. This process is under tight regulation by nuclear receptor signaling. Bile acids, produced from cholesterol, can alter gene expression in the liver and small intestine via activating the nuclear receptors farnesoid X receptor (FXR; NR1H4), pregnane X receptor (PXR; NR1I2), vitamin D receptor (VDR; NR1I1), G protein coupled receptor TGR5, and other cell signaling pathways (JNK1/2, AKT and ERK1/2). Among these controls, FXR is known to be a major bile acid-responsive ligand-activated transcription factor and a crucial control element for maintaining bile acid homeostasis. FXR has a high affinity for several major endogenous bile acids, notably cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. By responding to excess bile acids, FXR is a bridge between the liver and small intestine to control bile acid levels and regulate bile acid synthesis and enterohepatic flow. FXR is highly expressed in the liver and gut, relative to other tissues, and contributes to the maintenance of cholesterol/bile acid homeostasis by regulating a variety of metabolic enzymes and transporters. FXR activation also affects lipid and glucose metabolism, and can influence drug metabolism.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Correspondence: Frank J. Gonzalez, Laboratory of Metabolism, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, Tel: 301-496-9067, Fax: 301-496-8419,
| |
Collapse
|
47
|
Hepatocyte nuclear factor 4 alpha and farnesoid X receptor co-regulates gene transcription in mouse livers on a genome-wide scale. Pharm Res 2013; 30:2188-98. [PMID: 23462932 DOI: 10.1007/s11095-013-1006-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/06/2013] [Indexed: 01/06/2023]
Abstract
PURPOSE Farnesoid X receptor (Fxr) is a ligand-activated nuclear receptor critical for liver function. Reports indicate that the functions of Fxr in the liver may overlap with those of hepatocyte nuclear factor 4α (Hnf4α), but studies of their precise genome-wide interaction to regulate gene transcription in the liver are lacking. Thus, we compared the genome-wide binding of Fxr and Hnf4α in the liver of mice and characterized their cooperative activity on binding to and activating target gene transcription. METHODS Genome-wide ChIP-Seq data of Fxr and Hnf4α in mouse liver were analyzed by MACS, BEDTools, and DAVID. Co-immunoprecipitation, ChIP-qPCR, and luciferase assays were done to test for protein-protein interaction and cooperative binding. RESULTS ChIP-seq analysis showed nearly 50% binding sites of Fxr and Hnf4α in mouse liver overlap and Hnf4α bound to shared target sites upstream and in close proximity to Fxr. Moreover, genes co-bound by Fxr and Hnf4α are enriched in complement and coagulation cascades and drug metabolism. A direct Fxr-Hnf4α protein interaction dependent on Fxr activity was detected and transcriptional assays suggest that Hnf4α can increase Fxr transcriptional activity. Conversely, binding assays showed Hnf4α can be either Fxr-dependent or -independent at different shared binding sites. CONCLUSION Our results showed that Fxr cooperates with Hnf4α in the liver to modulate gene transcription. This study provides the first evidence on a genome-wide scale of both cooperative and independent interactions between Fxr and Hnf4α in regulating gene transcription in the liver.
Collapse
|
48
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Walesky C, Gunewardena S, Terwilliger EF, Edwards G, Borude P, Apte U. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G26-37. [PMID: 23104559 PMCID: PMC3543634 DOI: 10.1152/ajpgi.00064.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.
Collapse
Affiliation(s)
- Chad Walesky
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Sumedha Gunewardena
- 2Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Ernest F. Terwilliger
- 3Division of Experimental Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts
| | - Genea Edwards
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Prachi Borude
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Udayan Apte
- 1Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
50
|
Chen EQ, Gong DY, Leng XH, Bai L, Liu C, Wang LC, Tang H. Inhibiting the expression of hepatocyte nuclear factor 4 alpha attenuates lipopolysaccharide/D-galactosamine-induced fulminant hepatic failure in mice. Hepatobiliary Pancreat Dis Int 2012; 11:624-9. [PMID: 23232634 DOI: 10.1016/s1499-3872(12)60235-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor 4 alpha (HNF4alpha) plays an important role in regulating cytokine-induced inflammatory responses. This study aimed to investigate the role of HNF4alpha in the development of fulminant hepatic failure (FHF) induced by lipopolysaccharide/D-galactosamine (LPS/D-GalN). METHODS The FHF model was induced by simultaneous intraperitoneal injection of LPS/D-GalN in mice. Three days prior to LPS/D-GalN administration, HNF4alpha short-hairpin interfering RNA expression plasmid or physiological saline was injected via the tail vein with a hydrodynamics-based procedure. The degree of hepatic damage and cumulative survival rate were subsequently assessed. RESULTS The expression of HNF4alpha was increased in the early stage after LPS/D-GalN administration. Inhibiting the expression of HNF4alpha reduced serum levels of alanine aminotransferase and aspartate aminotransferase, alleviated histological injury, and improved the survival of mice with FHF. In addition, both serum and hepatic tumor necrosis factor alpha expression were suppressed when HNF4alpha expression was inhibited in mice with FHF. CONCLUSION Inhibiting HNF4alpha expression protects mice from FHF induced by LPS/D-GalN, but the exact mechanism behind this needs further investigation.
Collapse
Affiliation(s)
- En-Qiang Chen
- Center for Infectious Diseases, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|