1
|
Semicheva A, Ersoy U, Vasilaki A, Myrtziou I, Kanakis I. Defining the Most Potent Osteoinductive Culture Conditions for MC3T3-E1 Cells Reveals No Implication of Oxidative Stress or Energy Metabolism. Int J Mol Sci 2024; 25:4180. [PMID: 38673767 PMCID: PMC11050066 DOI: 10.3390/ijms25084180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and β-glycerophosphate (βGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 μg.mL-1/2 mM Asc/βGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.
Collapse
Affiliation(s)
- Alexandra Semicheva
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ioannis Kanakis
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| |
Collapse
|
2
|
Zhao D, He J, Zhao X, Sheng X, Feng Z, Wang X, Zhang C, Wang S, Geng B, Xia Y. A novel lncRNA GM15416 regulates osteoblast apoptosis and differentiation through the c-Fos/Fas axis and mitigates osteoporosis. Int J Biol Macromol 2024; 254:127824. [PMID: 37924900 DOI: 10.1016/j.ijbiomac.2023.127824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Osteoporosis (OP) is a common systemic bone disorder, and the programmed cell death of osteoblasts is closely linked to the development of osteoporosis. Previous studies have shown that c-fos can cause osteoblast apoptosis. Furthermore, it has been demonstrated that long non-coding RNA (lncRNA) plays a pervasive role in regulating the biology of osteoblasts. Nevertheless, the precise role and mechanism of long non-coding RNA (lncRNA) in relation to c-Fos at the transcriptional level in osteoblast cell death remain uncertain. Compared with normal osteoblasts, serum deprivation resulted in significant upregulation of the transcription factor c-Fos and apoptosis-related Fas proteins in osteoblasts. In addition, the expression of lncRNA GM15416 related to c-Fos was significantly increased. The results showed that overexpression of c-Fos leads to an increase in downstream Fas protein, which subsequently leads to osteoblast apoptosis and hinders osteogenesis. On the contrary, a decrease in lncRNA GM15416 expression leads to a decrease in c-Fos/Fas expression, which hinders osteoblast apoptosis and promotes osteogenesis. Our results suggest that lncRNA GM15416 exerts inhibitory effects on osteoblast apoptosis and acts as a preventive factor against osteoporosis. As a result, GM15416 emerges as an important lncRNA associated with osteoporosis and holds potential as a future therapeutic target.
Collapse
Affiliation(s)
- Dacheng Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Pain Department of the Second Hospital of Lanzhou University, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, Pr China
| | - Jinwen He
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xiaobing Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xiaoyun Sheng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Zhiwei Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Xingwen Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Chengjun Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Shenghong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China.
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Gansu Province Clinical Medical Research Center for Orthopedics, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China; Key Laboratory of Bone and joint Disease research of Gansu Province, No. 82 Cuiying Gate, Chengguan District, Lanzhou 730030, Gansu, PR China.
| |
Collapse
|
3
|
Nasir NJN, Arifin N, Noordin KBA, Yusop N. Bone repair and key signalling pathways for cell-based bone regenerative therapy: A review. J Taibah Univ Med Sci 2023; 18:1350-1363. [PMID: 37305024 PMCID: PMC10248876 DOI: 10.1016/j.jtumed.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Advances in cell-based regenerative therapy create new opportunities for the treatment of bone-related disorders and injuries, by improving the reparative phase of bone healing. Apart from the classical approach of bone grafting, the application of cell-based therapies, particularly stem cells (SCs), has gained a lot of attention in recent years. SCs play an important role in regenerative therapy due to their excellent ability to differentiate into bone-forming cells. Regeneration of new bone is regulated by a wide variety of signalling molecules and intracellular networks, which are responsible for coordinating cellular processes. The activated signalling cascade is significantly involved in cell survival, proliferation, apoptosis, and interaction with the microenvironment and other types of cells within the healing site. Despite the increasing evidence from studies conducted on signalling pathways associated with bone formation, the exact mechanism involved in controlling the differentiation stage of transplanted cells is not well understood. Identifying the key activated pathways involved in bone regeneration may allow for precise manipulation of the relevant signalling molecules within the progenitor cell population to accelerate the healing process. The in-depth knowledge of molecular mechanisms would be advantageous in improving the efficiency of personalised medicine and targeted therapy in regenerative medicine. In this review, we briefly introduce the theory of bone repair mechanism and bone tissue engineering followed by an overview of relevant signalling pathways that have been identified to play an important role in cell-based bone regenerative therapy.
Collapse
Affiliation(s)
- Nur Julia N. Nasir
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Khairul Bariah A.A. Noordin
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Lu W, Li X, Yang Y, Yi J, Xie L, Zhao Z, Li Y. PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling. J Periodontal Res 2021; 56:885-896. [PMID: 33856055 DOI: 10.1111/jre.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to evaluate the effects of local application of parathyroid hormone (PTH) or parathyroid hormone-related protein (PTHrP) on osteogenesis and osteoclastogenesis during orthodontic tooth movement (OTM). BACKGROUND Periodontal bone remodeling is the crucial biological process in the OTM that involves both bone resorption and formation, with the former more important as the initiator. PTH or PTHrP both play dual roles in bone remodeling regulation, and the balance may shift to the bone resorption side when they are given continuously, suggesting them as potential candidate medicine for OTM acceleration. METHODS A total of 40 rats underwent orthodontic mesialization of the maxillary first molars and received no micro-perforation (MOP), or MOP followed by injection of temperature-sensitive hydrogel containing PTH, PTHrP, or normal saline. The rats were sacrificed after 2-week OTM, except for the relapse groups, which had one more week of observation after removal of the force appliances. The amount of tooth movement, rate of relapse after OTM, and effects on the bone remodeling were assessed through micro-computed tomography (μCT) analysis, alkaline phosphatase (ALP) assay, alizarin red staining, tartrate-resistant acid phosphatase (TRAP) staining, immunohistochemistry (IHC) analysis, Western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR). The effects of PTHrP on the osteogenic differentiation of human periodontal ligament cells (hPDLCs) were explored in vitro. RESULTS The cumulative release of PTH or PTHrP from PECE hydrogels was beyond 75% at 14 days in a sustained manner. After the intervention in vivo, the distance of OTM in the PTH (0.78 ± 0.06 mm) or PTHrP (0.81 ± 0.04 mm) group was significantly larger than that of the MOP only (0.51 ± 0.04 mm) or the no MOP (0.46 ± 0.05 mm) group. Moreover, PTH injection significantly reduced the rate of relapse after OTM (25.7 ± 4.3%) compared to the control (69.6 ± 6.1%). μCT analysis showed decreased BV/TV, BS/BV, and Tb.N, while increased Tb.Sp of alveolar bone in the PTH or PTHrP group. There were also more TRAP-positive osteoclasts in the PTH or PTHrP group with a significantly enhanced ratio of receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG). The protein expressions of PTH/PTHrP type 1 receptor (PTHR1), alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), and β-catenin were significantly increased in the PTH or PTHrP group, as well as the gene expressions of Pth1r, Bglap, and Alpl. There was no significant difference between the effects of PTH and PTHrP. Nevertheless, inhibition of PTHrP on the osteogenic differentiation of hPDLCs was detected in vitro with decreased expression of OCN, RUNX2, COL-1, and ALP. CONCLUSION Local injection of either PTH or PTHrP carried by controlled release PECE hydrogel similarly enhances OTM in rats through regulating periodontal bone remodeling, which deserves further study for potential clinical application.
Collapse
Affiliation(s)
- Wenxin Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue Li
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianru Yi
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
7
|
Yu W, Zhu C, Xu W, Jiang L, Jiang S. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling. Int J Mol Sci 2016; 17:ijms17122150. [PMID: 28009825 PMCID: PMC5187950 DOI: 10.3390/ijms17122150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Chao Zhu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Wenning Xu
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Leisheng Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Shengdan Jiang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
8
|
Thouverey C, Caverzasio J. Suppression of p38α MAPK Signaling in Osteoblast Lineage Cells Impairs Bone Anabolic Action of Parathyroid Hormone. J Bone Miner Res 2016; 31:985-93. [PMID: 26643857 DOI: 10.1002/jbmr.2762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/27/2015] [Accepted: 12/04/2015] [Indexed: 11/06/2022]
Abstract
Intermittent parathyroid hormone administration (iPTH) increases bone mass and strength by stimulating osteoblast number and activity. PTH exerts its anabolic effects through cAMP/protein kinase A (PKA) signaling pathway in mature osteoblasts and osteocytes. Here, we show that inactivation of the p38α MAPK-encoding gene with the use of an osteocalcin-cre transgene prevents iPTH bone anabolic action. Indeed, iPTH fails to increase insulin-like growth factor 1 expression, osteoblast number and activity, and bone formation in mice lacking p38α in osteoblasts and osteocytes. Moreover, iPTH-induced expression of receptor activator of NF-κB ligand (RANKL) and subsequent increased bone resorption are suppressed in those mice. Finally, we found that PTH activates p38α MAPK downstream of cAMP/PKA signaling pathway in mature osteoblasts. Our findings identify p38α MAPK as a key component of PTH signaling in osteoblast lineage cells and highlight its requirement in iPTH osteoanabolic activity. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Chang KH, Sengupta A, Nayak RC, Duran A, Lee SJ, Pratt RG, Wellendorf AM, Hill SE, Watkins M, Gonzalez-Nieto D, Aronow BJ, Starczynowski DT, Civitelli R, Diaz-Meco MT, Moscat J, Cancelas JA. p62 is required for stem cell/progenitor retention through inhibition of IKK/NF-κB/Ccl4 signaling at the bone marrow macrophage-osteoblast niche. Cell Rep 2014; 9:2084-97. [PMID: 25533346 PMCID: PMC4277497 DOI: 10.1016/j.celrep.2014.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022] Open
Abstract
In the bone marrow (BM), hematopoietic progenitors (HPs) reside in specific anatomical niches near osteoblasts (Obs), macrophages (MΦs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of Ob NF-κB signaling. Consequently, Ob p62-deficient mice lose bone, Ob Ccl4 expression, and HP chemotaxis toward Cxcl12, resulting in egress of short-term hematopoietic stem cells and myeloid progenitors. Finally, Ccl4 expression and myeloid progenitor egress are reversed by deficiency of the p62 PB1-binding partner Nbr1. A functional "MΦ-Ob niche" is required for myeloid progenitor/short-term stem cell retention, in which Ob p62 is required to maintain NF-κB signaling repression, osteogenesis, and BM progenitor retention.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA
| | - Amitava Sengupta
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Stem Cell and Leukemia Lab, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700032, West Bengal, India
| | - Ramesh C Nayak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Angeles Duran
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sang Jun Lee
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ronald G Pratt
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sarah E Hill
- Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA
| | - Marcus Watkins
- Division of Bone and Mineral Diseases, Departments of Internal Medicine and Cell Biology and Physiology, Washington University School of Medicine, One Brookings Drive, St. Louis, MO 63110, USA
| | - Daniel Gonzalez-Nieto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Bioengineering and Telemedicine Group, Center for Biomedical Technology, Universidad-Politécnica de Madrid, Pozuelo de Alarcon 28223, Spain
| | - Bruce J Aronow
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Departments of Internal Medicine and Cell Biology and Physiology, Washington University School of Medicine, One Brookings Drive, St. Louis, MO 63110, USA
| | - Maria T Diaz-Meco
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
10
|
Felthaus O, Gosau M, Klein S, Prantl L, Reichert TE, Schmalz G, Morsczeck C. Dexamethasone-related osteogenic differentiation of dental follicle cells depends on ZBTB16 but not Runx2. Cell Tissue Res 2014; 357:695-705. [PMID: 24816988 DOI: 10.1007/s00441-014-1891-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
Dental follicle cells (DFCs) can be artificially differentiated into mineralizing cells. With a dexamethasone-based differentiation protocol, transcription factors ZBTB16 and NR4A3 are highly upregulated but Runx2 and other osteogenic marker genes are not. Previous studies have suggested the involvement of a Runx2-independent differentiation pathway. The objective of this study is to further elucidate this mechanism. Differentiation of DFCs was examined by alkaline phosphatase (ALP) staining and ALP activity measurement, by Alizarin Red S staining and by real-time reverse transcription plus the polymerase chain reaction. ZBTB16 was overexpressed by using a transient transfection method. Resulting genome-wide gene expression changes were assessed by microarray. ZBTB16 and Runx2 were inhibited by short interfering RNA transfection. Promoter binding of ZBTB16 was evaluated by chromatin immunoprecipitation. Downregulation of Runx2 had no effect on dexamethasone-induced differentiation but was effective on BMP2-induced differentiation. Downregulation of ZBTB16, however, impaired dexamethasone-induced differentiation. Genes that were upregulated by dexamethasone induction were also upregulated by ZBTB16 overexpression. Genes that were not upregulated during dexamethasone-induced differentiation were also not regulated by ZBTB16 overexpression. ZBTB16 bound directly to the promoter regions of osterix and NR4A3 but not that of Runx2. Overexpression of ZBTB16 led to changes in the gene expression profile, whereby upregulated genes were overrepresented in osteogenesis-associated biological processes. Our findings suggest that, in DFCs, a Runx2-independent differentiation mechanism exists that is regulated by ZBTB16.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Cranio- and Maxillofacial Surgery, University Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Kim JM, Lee JE, Ho Ryu S, Suh PG. Chlormadinone acetate promotes osteoblast differentiation of human mesenchymal stem cells through the ERK signaling pathway. Eur J Pharmacol 2014; 726:1-8. [DOI: 10.1016/j.ejphar.2014.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
|
12
|
Dushyanthen S, Cossigny DAF, Quan GMY. The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. CANCER GROWTH AND METASTASIS 2013; 6:61-80. [PMID: 24665208 PMCID: PMC3941153 DOI: 10.4137/cgm.s12769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is one of the most common cancers arising in men and has a high propensity for bone metastasis, particularly to the spine. At this stage, it often causes severe morbidity due to pathological fracture and/or metastatic epidural spinal cord compression which, if untreated, inevitably leads to intractable pain, neurological deficit, and paralysis. Unfortunately, the underlying molecular mechanisms driving growth of secondary PC in the bony vertebral column remain largely unknown. Further investigation is warranted in order to identify therapeutic targets in the future. This review summarizes the current understanding of PC bone metastasis in the spine, highlighting interactions between key tumor and bone-derived factors which influence tumor progression, especially the functional roles of osteoblasts and osteoclasts in the bone microenvironment through their interactions with metastatic PC cells and the critical pathway RANK/RANKL/OPG in bone destruction.
Collapse
Affiliation(s)
- Sathana Dushyanthen
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Davina A F Cossigny
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Gerald M Y Quan
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| |
Collapse
|
13
|
Akiyama H, Otani M, Sato S, Toyosawa S, Furukawa S, Wakisaka S, Maeda T. A novel adipokine C1q/TNF-related protein 1 (CTRP1) regulates chondrocyte proliferation and maturation through the ERK1/2 signaling pathway. Mol Cell Endocrinol 2013; 369:63-71. [PMID: 23348620 DOI: 10.1016/j.mce.2013.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/19/2012] [Accepted: 01/07/2013] [Indexed: 01/22/2023]
Abstract
Adipose tissue-derived adipokines play important roles as regulators of skeletal growth and development. CTRP1, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the CTRP1 in chondrocyte proliferation and maturation using a mouse chondrocytic cell line, N1511. The CTRP1 protein was strongly expressed and predominantly distributed in the reserve and proliferative chondrocytes in the fetal growth plate and its mRNA decreased during the maturation of N1511 chondrocytes. Recombinant CTRP1 promoted proliferation of immature proliferating N1511 chondrocytes in a dose-dependent manner, whereas it inhibited maturation of maturing N1511 chondrocytes. The stimulatory effect of CTRP1 on chondrocyte proliferation was associated with activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway. On the other hand, the inhibitory effect of CTRP1 on chondrocyte maturation is associated with suppression of the ERK1/2 pathway. These results suggest a novel physiological role for CTRP1 in endochondral ossification.
Collapse
Affiliation(s)
- Hironori Akiyama
- Department of Radiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Mahalingam CD, Sampathi BR, Sharma S, Datta T, Das V, Abou-Samra AB, Datta NS. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs. J Endocrinol 2013; 216. [PMID: 23197743 PMCID: PMC3796767 DOI: 10.1530/joe-12-0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
BIODEGRADABLE THERMO-SENSITIVE HYDROGELS FOR CONTROLLED DELIVERY OF PARATHYROID HORMONE RELATED PEPTIDE. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Tawfeek HA, Abou-Samra AB. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression. Am J Physiol Endocrinol Metab 2012; 302:E1363-72. [PMID: 22414806 PMCID: PMC3378071 DOI: 10.1152/ajpendo.00034.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0-40 min) of LLCP-K(1) cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression.
Collapse
Affiliation(s)
- Hesham A Tawfeek
- Center for Orthopaedic Research, Columbia University, 650 West 168th St., New York, NY 10032, USA.
| | | |
Collapse
|
17
|
Choi YJ, Lee JY, Lee SJ, Chung CP, Park YJ. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP). Biochem Biophys Res Commun 2012; 419:326-32. [PMID: 22342728 DOI: 10.1016/j.bbrc.2012.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/03/2012] [Indexed: 11/15/2022]
Abstract
Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor γ. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a novel CBP could be a useful candidate for regenerating bone and treating osteoporosis, which result from an imbalance in osteogenesis and adipogenesis differentiation.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 2011; 211:145-56. [PMID: 21852324 PMCID: PMC3783352 DOI: 10.1530/joe-11-0144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lozano D, Fernández-de-Castro L, Portal-Núñez S, López-Herradón A, Dapía S, Gómez-Barrena E, Esbrit P. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia. Br J Pharmacol 2011; 162:1424-38. [PMID: 21175568 DOI: 10.1111/j.1476-5381.2010.01155.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH(1) receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario.
Collapse
Affiliation(s)
- D Lozano
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Datta NS. Osteoporotic fracture and parathyroid hormone. World J Orthop 2011; 2:67-74. [PMID: 22474638 PMCID: PMC3302045 DOI: 10.5312/wjo.v2.i8.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/19/2011] [Accepted: 06/01/2011] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and age-related bone loss is associated with changes in bone remodeling characterized by decreased bone formation relative to bone resorption, resulting in bone fragility and increased risk of fractures. Stimulating the function of bone-forming osteoblasts, is the preferred pharmacological intervention for osteoporosis. Recombinant parathyroid hormone (PTH), PTH(1-34), is an anabolic agent with proven benefits to bone strength and has been characterized as a potential therapy for skeletal repair. In spite of PTH's clinical use, safety is a major consideration for long-term treatment. Studies have demonstrated that intermittent PTH treatment enhances and accelerates the skeletal repair process via a number of mechanisms. Recent research into the molecular mechanism of PTH action on bone tissue has led to the development of PTH analogs to control osteoporotic fractures. This review summarizes a number of advances made in the field of PTH and bone fracture to combat these injuries in humans and in animal models. The ultimate goal of providing an alternative to PTH, currently the sole anabolic therapy in clinical use, to promote bone formation and improve bone strength in the aging population is yet to be achieved.
Collapse
|
21
|
Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, Frenkel B, Shohami E, Bab I. CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 2011; 26:308-16. [PMID: 20803555 PMCID: PMC3179350 DOI: 10.1002/jbmr.228] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CB2 is a Gi protein-coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss. Activation of CB2 stimulates osteoblast proliferation and bone marrow derived colony-forming units osteoblastic. Here we show that selective and nonselective CB2 agonists are mitogenic in MC3T3 E1 and newborn mouse calvarial osteoblastic cultures. The CB2 mitogenic signaling depends critically on the stimulation of Erk1/2 phosphorylation and de novo synthesis of MAP kinase-activated protein kinase 2 (Mapkapk2) mRNA and protein. Further downstream, CB2 activation enhances CREB transcriptional activity and cyclin D1 mRNA expression. The CB2-induced stimulation of CREB and cyclin D1 is inhibitable by pertussis toxin, the MEK-Erk1/2 inhibitors PD098059 and U0126, and Mapkapk2 siRNA. These data demonstrate that in osteoblasts CB2 targets a Gi protein-cyclin D1 mitogenic axis. Erk1/2 phosphorylation and Mapkapk2 protein synthesis are critical intermediates in this axis.
Collapse
Affiliation(s)
- Orr Ofek
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Datta NS, Samra TA, Mahalingam CD, Datta T, Abou-Samra AB. Role of PTH1R internalization in osteoblasts and bone mass using a phosphorylation-deficient knock-in mouse model. J Endocrinol 2010; 207:355-65. [PMID: 20929987 PMCID: PMC3771320 DOI: 10.1677/joe-10-0227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation, internalization, and desensitization of G protein-coupled receptors, such as the parathyroid hormone (PTH) and PTH-related peptide (PTHrP) receptor (PTH1R), are well characterized and known to regulate the cellular responsiveness in vitro. However, the role of PTH1R receptor phosphorylation in bone formation and osteoblast functions has not yet been elucidated. In previous studies, we demonstrated impaired internalization and sustained cAMP stimulation of a phosphorylation-deficient (pd) PTH1R in vitro, and exaggerated cAMP and calcemic responses to s.c. PTH infusion in pdPTH1R knock-in mouse model. In this study, we examined the impact of impaired PTH1R phosphorylation on the skeletal phenotype of mice maintained on normal, low, and high calcium diets. The low calcium diet moderately reduced (P<0.05) bone volume and trabecular number, and increased trabecular spacing in both wild-type (WT) and pd mice. The effects, however, seem to be less pronounced in the female pd compared to WT mice. In primary calvarial osteoblasts isolated from 2-week-old pd or WT mice, PTH and PTHrP decreased phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2), a member of mitogen-activated protein kinase, and cyclin D1, a G₁/S phase cyclin, in vitro. In contrast to WT osteoblasts, down-regulation of cyclin D1 was sustained for longer periods of time in osteoblasts isolated from the pd mice. Our results suggest that adaptive responses of intracellular signaling pathways in the pd mice may be important for maintaining bone homeostasis.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
23
|
Jilka RL, Almeida M, Ambrogini E, Han L, Roberson PK, Weinstein RS, Manolagas SC. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell 2010; 9:851-67. [PMID: 20698835 DOI: 10.1111/j.1474-9726.2010.00616.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Because of recent insights into the pathogenesis of age-related bone loss, we investigated whether intermittent parathyroid hormone (PTH) administration antagonizes the molecular mechanisms of the adverse effects of aging on bone. Parathyroid hormone produced a greater increase in vertebral trabecular bone mineral density and bone volume as well as a greater expansion of the endocortical bone surface in the femur of 26- when compared to 6 -month-old female C57BL/6 mice. Moreover, PTH increased trabecular connectivity in vertebrae, and the toughness of both vertebrae and femora in old, but not young, mice. Parathyroid hormone also increased the rate of bone formation and reduced osteoblast apoptosis to a greater extent in the old mice. Most strikingly, PTH reduced reactive oxygen species, p66(Shc) phosphorylation, and expression of the lipoxygenase Alox15, and it increased glutathione and stimulated Wnt signaling in bone of old mice. Parathyroid hormone also antagonized the effects of oxidative stress on p66(Shc) phosphorylation, Forkhead Box O transcriptional activity, osteoblast apoptosis, and Wnt signaling in vitro. In contrast, administration of the antioxidants N-acetyl cysteine or pegylated catalase reduced osteoblast progenitors and attenuated proliferation and Wnt signaling. These results suggest that PTH has a greater bone anabolic efficacy in old age because in addition to its other positive actions on bone formation, it antagonizes the age-associated increase in oxidative stress and its adverse effects on the birth and survival of osteoblasts. On the other hand, ordinary antioxidants cannot restore bone mass in old age because they slow remodeling and attenuate osteoblastogenesis by interfering with Wnt signaling.
Collapse
Affiliation(s)
- Robert L Jilka
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, Baek JH. BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem 2010; 285:36410-9. [PMID: 20851880 DOI: 10.1074/jbc.m110.142307] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Runx2 is a critical transcription factor for osteoblast differentiation. Regulation of Runx2 expression levels and transcriptional activity is important for bone morphogenetic protein (BMP)-induced osteoblast differentiation. Previous studies have shown that extracellular signal-regulated kinase (Erk) activation enhances the transcriptional activity of Runx2 and that BMP-induced Runx2 acetylation increases Runx2 stability and transcriptional activity. Because BMP signaling induces Erk activation in osteoblasts, we sought to investigate whether BMP-induced Erk signaling regulates Runx2 acetylation and stability. Erk activation by overexpression of constitutively active MEK1 increased Runx2 transcriptional activity, whereas U0126, an inhibitor of MEK1/2, suppressed basal Runx2 transcriptional activity and BMP-induced Runx2 acetylation and stabilization. Overexpression of constitutively active MEK1 stabilized Runx2 protein via up-regulation of acetylation and down-regulation of ubiquitination. Erk activation increased p300 protein levels and histone acetyltransferase activity. Knockdown of p300 using siRNA diminished Erk-induced Runx2 stabilization. Overexpression of Smad5 increased Runx2 acetylation and stabilization. Erk activation further increased Smad-induced Runx2 acetylation and stabilization, whereas U0126 suppressed these functions. On the other hand, knockdown of Smad1 and Smad5 by siRNA suppressed both basal and Erk-induced Runx2 protein levels. Erk activation enhanced the association of Runx2 with p300 and Smad1. Taken together these results indicate that Erk signaling increases Runx2 stability and transcriptional activity, partly via increasing p300 protein levels and histone acetyltransferase activity and subsequently increasing Runx2 acetylation by p300. In addition to the canonical Smad pathway, a BMP-induced non-Smad Erk signaling pathway cooperatively regulates osteoblast differentiation partly via increasing the stability and transcriptional activity of Runx2.
Collapse
Affiliation(s)
- Ji Hae Jun
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Guo Y, Yuan W, Wang L, Shang M, Peng Y. Parathyroid hormone-potentiated connective tissue growth factor expression in human renal proximal tubular cells through activating the MAPK and NF-kappaB signalling pathways. Nephrol Dial Transplant 2010; 26:839-47. [PMID: 20810452 DOI: 10.1093/ndt/gfq521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Secondary hyperparathyroidism is a universal complication of chronic renal diseases. One of the pathological consequences of hyperparathyroidism is impairment of the renal interstitium and tubules. However, the molecular mechanism of renal tubular interstitial impairment induced by parathyroid hormone (PTH) remains unclear. Enhanced and prolonged expression of connective tissue growth factor (CTGF) has been associated with fibrosis and inflammation in the kidney. The purpose of this study was to investigate the effects of PTH on CTGF expression patterns in human proximal tubular cell line-HK-2 cells. METHODS We treated cells with various concentrations of PTH for the indicated periods of time in the presence or absence of the mitogen-activated protein kinase (MAPK) inhibitor (PD98059) or the NF-κB inhibitor (PDTC). RESULTS Quantitative real-time RT-PCR analysis revealed that PTH at a concentration of 10(-12)-10(-10) M increased the mRNA levels of CTGF, which was similar to the trends of CTGF protein levels detected by immunoblotting assay. Our data clearly show the ability of human proximal tubular HK-2 cells to produce CTGF after the treatment with PTH. In addition, we showed that PTH induced the phosphorylation of MAPK p42 and p44, and increased NF-κB-binding activities in the PTH-treated cells. Moreover, both PD98059 and PDTC inhibited the effect of PTH on the expression of CTGF, which strongly suggests that these pathways play important roles in the PTH-induced CTGF upregulation in renal tubular cells. CONCLUSIONS Our results indicated for the first time that PTH may enhance the expression of CTGF in human kidney proximal tubular cells, suggesting that PTH may play an important role in the fibrotic and inflammatory process that is a hallmark for progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
26
|
Funaki C, Hodges RR, Dartt DA. Identification of the Raf-1 signaling pathway used by cAMP to inhibit p42/p44 MAPK in rat lacrimal gland acini: role in potentiation of protein secretion. Invest Ophthalmol Vis Sci 2010; 51:6321-8. [PMID: 20671279 DOI: 10.1167/iovs.10-5690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The lacrimal gland is primarily responsible for the aqueous portion of the tear film. Simultaneous addition of cholinergic agonists or growth factors with cAMP-dependent agonists potentiates secretion. Recent investigations revealed that cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity stimulated by cholinergic agonists and growth factors that could account for this potentiation. In this study the authors identify the signal transduction pathway used by cAMP to inhibit MAPK activity. METHODS Rat lacrimal gland acini were incubated with H89, an inhibitor of protein kinase A, before the addition of dibutyryl cAMP (dbcAMP, 10(-3) M) for 30 minutes. Basal MAPK and CREB activity and MAPK activity after stimulation with the cholinergic agonist carbachol (Cch) or epidermal growth factor (EGF) for 5 minutes was determined. The effect of dbcAMP on EGF receptor activity and basal and stimulated Ras, Raf-1, mitogen-activated protein kinase kinase (MEK), and MAPK activity was determined. The effect of a Rap-1 inhibitor, GGTI-298, on MAPK activity after the addition of dbcAMP was also determined. RESULTS H89 relieved the inhibition of cAMP on MAPK activity and inhibited CREB activity. Incubation with dbcAMP did not have any effect either on the EGF receptor or on Ras but significantly inhibited both basal and Raf-1 and MEK activity stimulated with Cch or EGF. GGTI-298 did not have any effect on cAMP-dependent decrease in MAPK activity. CONCLUSIONS The authors conclude that cAMP mediates the inhibition of MAPK by PKA in a Raf-1-dependent manner.
Collapse
Affiliation(s)
- Chika Funaki
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
27
|
Zhao SH, Wu XT, Guo WC, Du YM, Yu L, Tang J. N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for Parathyroid Hormone-Related Protein 1–34. Int J Pharm 2010; 393:268-72. [DOI: 10.1016/j.ijpharm.2010.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/13/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
|
28
|
Datta NS, Kolailat R, Fite A, Pettway G, Abou-Samra AB. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell Signal 2010; 22:457-66. [PMID: 19892016 DOI: 10.1016/j.cellsig.2009.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/22/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.
Collapse
Affiliation(s)
- Nabanita S Datta
- Wayne State University School of Medicine, Department Internal Medicine, Division Endocrinology, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
29
|
Tseng W, Lu J, Bishop GA, Watson AD, Sage AP, Demer L, Tintut Y. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res 2009; 51:1010-6. [PMID: 19965598 DOI: 10.1194/jlr.m001099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological evidence suggests that cardiovascular disease is associated with osteoporosis, independent of age. Bone resorptive surface is increased in mice on a high-fat diet, and osteoclastic differentiation of bone marrow preosteoclasts is promoted by oxidized phospholipids. Because osteoclastic differentiation requires cytokines produced by osteoblasts, we hypothesized that the stimulatory mechanism of oxidized phospholipids is via induction of osteoclast-regulating cytokines in osteoblasts. To investigate the effects of oxidized phospholipids on expression of such cytokines, murine calvarial preosteoblasts, MC3T3-E1, were treated with oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (ox-PAPC), an active component of oxidized lipoproteins. Results showed that ox-PAPC increased expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha. IL-6 expression was also elevated in calvarial tissues from hyperlipidemic but not in wild-type mice. Ox-PAPC also induced IL-6 protein levels in both MC3T3-E1 and primary calvarial cells. Promoter-reporter assay analysis showed that ox-PAPC, but not PAPC, induced murine IL-6 promoter activity. Effects of ox-PAPC on IL-6 expression and the promoter activity were attenuated by H89, a PKA inhibitor. Analysis of deletion and mutant IL-6 promoter constructs suggested that CAAT/enhancer binding protein (C/EBP) partly mediates the ox-PAPC effects. Taken together, the data suggest that oxidized phospholipids induce IL-6 expression in osteoblasts in part via C/EBP.
Collapse
Affiliation(s)
- Wendy Tseng
- Department of Physiological Science, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One 2009; 4:e7583. [PMID: 19851510 PMCID: PMC2762317 DOI: 10.1371/journal.pone.0007583] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 10/05/2009] [Indexed: 12/14/2022] Open
Abstract
Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton.
Collapse
|
31
|
Lai LP, Mitchell J. Parathyroid hormone inhibits phosphorylation of mitogen-activated protein kinase (MAPK) ERK1/2 through inhibition of c-Raf and activation of MKP-1 in osteoblastic cells. Cell Biochem Funct 2009; 27:269-75. [PMID: 19384851 DOI: 10.1002/cbf.1568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parathyroid hormone (PTH) regulation of mitogen-activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106-01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase-1 (MKP-1) resulted in 30-40% inhibition of pERK1/2; however MKP-1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c-Raf phosphorylation at serine 338 (ser(338)) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively-active c-Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor-c-Raf were seen when cells were treated with PTH(1-34) or PTH(1-31) analogues that stimulate cAMP, but not with PTH(3-34), PTH(7-34) or PTH(18-48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c-Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c-Raf activity and that stimulation of MKP-1 may contribute to maintaining pERK1/2 inhibition over prolonged time.
Collapse
Affiliation(s)
- Lick Pui Lai
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Room 4342, Toronto, Ontario, Canada M5S 1A8, Canada
| | | |
Collapse
|
32
|
Abstract
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding the control of osteoblast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division Endocrinology, Department Internal Medicine, Wayne State University School of Medicine, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
33
|
Van Kolen K, Dautzenberg FM, Verstraeten K, Royaux I, De Hoogt R, Gutknecht E, Peeters PJ. Corticotropin releasing factor-induced ERK phosphorylation in AtT20 cells occurs via a cAMP-dependent mechanism requiring EPAC2. Neuropharmacology 2009; 58:135-44. [PMID: 19573542 DOI: 10.1016/j.neuropharm.2009.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
CRF-induced ERK phosphorylation has been shown to be an important mechanism underlying expression of pro-opiomelanocortin, a key precursor molecule in the hypothalamic pituitary adrenal axis. In AtT20 cells, CRF signalling has been investigated but the mechanism behind CRF-induced ERK activity is not fully understood. This paper elucidates the signalling cascade involved in this phenomenon. Involvement of CRF(1) receptor on ERK phosphorylation was shown by using CRF and urocortin 1. The lack of inhibitory effect of pertussis toxin and BAPTA-AM excluded involvement of G(i)-coupling and calcium mobilization respectively. In contrast, the process is suggested to be driven by cAMP since treatment of AtT20 cells with forskolin triggered strong ERK phosphorylation. Treatment with PKA inhibitors had a minor effect on CRF-induced ERK signalling while phosphorylation of CREB was completely abolished. This ruled out involvement of PKA and suggested a role for exchange protein directly activated by cAMP (EPAC). Moreover, an activator of EPACs 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate mimicked CRF-induced ERK phosphorylation. Gene expression analysis showed high levels of EPAC2 mRNA and protein but low levels of EPAC1. Knockdown of EPAC2 expression by the use of specific siRNAs abolished CRF- and forskolin-induced ERK phosphorylation. The current study demonstrates a clear cAMP-dependent but PKA-independent mechanism underlying CRF-induced ERK activity that proceeds via EPAC2 signalling. Further research will provide more insight in the role of EPAC2 in CRF signalling.
Collapse
Affiliation(s)
- Kristof Van Kolen
- CNS Discovery Research, Johnson & Johnson Pharmaceutical Research and Development, Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
He H, Ping F. The SIE, SRE, CRE, and FAP-1 four intracellular signal pathways between stimulus and the expression of c-fos promoter. J Cell Biochem 2009; 106:764-8. [PMID: 19199340 DOI: 10.1002/jcb.22058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-fos gene has a close relationship with the osteoblasts. Mechanical signal effect on osteoblasts would change the expression level of c-fos. Authors introduce the signal pathways of four cis-response elements on the promoter of c-fos, that is, CRE (cAMP responsive element), FAP-1 (Fbs-AP-1 site), SRE (serum response element), and SIE (sis-inducible element), as the regulatory mechanism for c-fos gene expression following various stimuli.
Collapse
Affiliation(s)
- Hong He
- Department of Stomatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | |
Collapse
|
35
|
Yoshida T, Clark MF, Stern PH. The small GTPase RhoA is crucial for MC3T3-E1 osteoblastic cell survival. J Cell Biochem 2009; 106:896-902. [PMID: 19184980 DOI: 10.1002/jcb.22059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum-starved MC3T3-E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase-3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase-3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl transferase I inhibitor GGTI-2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1-34, a potent anti-apoptotic agent, completely antagonized the stimulatory effects of GGTI-2166, dominant negative RhoA, and Y27632, on caspase-3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1-34 are independent of this pathway.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
36
|
Abstract
The compliance of the extracellular matrix (ECM) regulates osteogenic differentiation by modulating extracellular signal-regulated kinase (ERK) activity. However, the molecular mechanism linking ECM compliance to the ERK-mitogen-activated protein kinase (MAPK) pathway remains unclear. Furthermore, RhoA has been widely implicated in integrin-mediated signaling and mechanotransduction. We studied the relationship between RhoA and ERK-MAPK signaling to determine their roles in the regulation of osteogenesis by ECM compliance. Inhibition of RhoA and ROCK in MC3T3-E1 pre-osteoblasts cultured on substrates of varying compliance reduced ERK activity, whereas constitutively active RhoA enhanced it. The expression of RUNX2, a potent osteogenic transcription factor, was increased on stiffer matrices and correlated with elevated ERK activity. Inhibition of RhoA, ROCK, or the MAPK pathway diminished RUNX2 activity and delayed the onset of osteogenesis as shown by altered osteocalcin (OCN) and bone sialoprotein (BSP) gene expression, alkaline phosphatase (ALP) activity, and matrix mineralization. These data establish that one possible mechanism by which ECM rigidity regulates osteogenic differentiation involves MAPK activation downstream of the RhoA-ROCK signaling pathway.
Collapse
|
37
|
Zheng F, Liang H, Liu R, Quan JX, Li XX, Dai CL, Guo G, Zhang JY, Wang BL. Parathyroid hormone-related protein regulates osteoclast inhibitory lectin expression via multiple signaling pathways in osteoblast-like cells. Endocrine 2009; 35:47-56. [PMID: 18987998 DOI: 10.1007/s12020-008-9118-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/24/2008] [Accepted: 10/10/2008] [Indexed: 12/24/2022]
Abstract
Osteoclast inhibitory lectin (OCIL) is a recently identified inhibitor of osteoclast formation. A variety of osteotropic factors regulate OCIL expression in osteoblastic cells, however, little information is available to date concerning how this gene is controlled. Using real-time RT-PCR, we examined the regulation of OCIL expression by PTHrp and the signaling pathways used. We demonstrated in rat osteoblast-like UMR-106 cells, rat calvarial primary osteoblastic cells, and murine MC3T3-E1 cells, PTHrp(1-34) increased OCIL expression. In UMR-106 cells, the increase began and reached maximum later than RANKL induction and OPG suppression. cAMP/PKA signaling activators PTH(1-31), forskolin and dibutyryl cAMP (db-cAMP), and calcium ionophore A23187 all increased OCIL levels. In contrast, PKC activator phorbol-12-myristate-13-acetate reduced OCIL expression in short term but induced OCIL mRNA in long term. PKA inhibitor KT5720, mitogen-activated protein kinase (MAPK) cascade inhibitor PD98059, calmodulin antagonist W-7, and Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) inhibitor KN-62 all significantly blunted PTHrp-stimulated OCIL expression. Moreover, PD98059 blocked the stimulation of OCIL by FSK or db-cAMP but not that by A23187. In primarily cultured osteoblasts, the PTHrp induction of OCIL was blocked by KT5720, W-7, and PD98059 as well. The data established that PTHrp(1-34) regulates OCIL expression in vitro through cAMP/PKA, Ca(2+)/CaMK II, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H. Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 2008; 283:16259-67. [PMID: 18390540 DOI: 10.1074/jbc.m800668200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), recognized as essential in the developing nervous system, is involved in differentiation and proliferation in non-neuronal cells, such as endothelial cells, osteoblasts, and periodontal ligament cells. We have focused on the application of BDNF to the regeneration of periodontal tissue and indicated that BDNF promotes the regeneration of experimentally created periodontal defects. Cementoblasts form cementum, mineralized tissue, which is key to establishing a functional periodontium. The application of BDNF to the regeneration of periodontal tissue requires elucidation of the mechanism by which BDNF regulates the functions of cementoblasts. In this study, we examined how BDNF regulates the mRNA expression of bone/cementum-related proteins (alkaline phosphatase (ALP), osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2)) in cultures of immortalized human cementoblast-like (HCEM) cells. BDNF elevated the mRNA levels of ALP, OPN, and BMP-2 in HCEM cells. Small interfering RNA (siRNA) for TRKB, a high affinity receptor of BDNF, siRNA for ELK-1, which is a downstream target of ERK1/2, and PD98059, an ERK inhibitor, obviated the increase in the mRNA levels. BDNF increased the levels of phosphorylated ERK1/2 and Elk-1, and the blocking of BDNF signaling by treatment with siRNA for TRKB and PD98059 suppressed the phosphorylation of ERK1/2 and Elk-1. Furthermore, BDNF increased the levels of phosphorylated c-Raf, which activates the ERK signaling pathway. These findings provide the first evidence that the TrkB-c-Raf-ERK1/2-Elk-1 signaling pathway is required for the BDNF-induced mRNA expression of ALP, OPN, and BMP-2 in HCEM cells.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 34-8553, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kennedy A, Chung S, LaPoint K, Fabiyi O, McIntosh MK. Trans-10, cis-12 conjugated linoleic acid antagonizes ligand-dependent PPARgamma activity in primary cultures of human adipocytes. J Nutr 2008; 138:455-61. [PMID: 18287349 PMCID: PMC2366092 DOI: 10.1093/jn/138.3.455] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) causes human adipocyte delipidation, insulin resistance, and inflammation in part by attenuating PPARgamma target gene expression. We hypothesized that CLA antagonizes the activity of PPARgamma in an isomer-specific manner. 10,12 CLA, but not cis-9, trans-11 (9,11) CLA, suppressed ligand-stimulated activation of a peroxisome proliferator response element-luciferase reporter. This decreased activation of PPARgamma by 10,12 CLA was accompanied by an increase in PPARgamma and extracellular signal-related kinase (ERK)1/2 phosphorylation, followed by decreased PPARgamma protein levels. To investigate if 10,12 CLA-mediated delipidation was preventable with a PPARgamma ligand (BRL), cultures were treated for 1 wk with 10,12 CLA or 10,12 CLA + BRL and adipogenic gene and protein expression, glucose uptake, and triglyceride (TG) were measured. BRL cosupplementation completely prevented 10,12 CLA suppression of adipocyte fatty acid-binding protein, lipoprotein lipase, and perilipin mRNA levels without preventing reductions in PPARgamma or insulin-dependent glucose transporter 4 (GLUT4) expression, glucose uptake, or TG. Lastly, we investigated the impact of CLA withdrawal in the absence or presence of BRL for 2 wk. CLA withdrawal did not rescue CLA-mediated reductions in adipogenic gene and protein expression. In contrast, BRL supplementation for 2 wk following CLA withdrawal rescued mRNA levels of PPARgamma target genes. However, the levels of PPARgamma and GLUT4 protein and TG were only partially rescued by BRL. Collectively, we demonstrate for the first time, to our knowledge, that 10,12 CLA antagonizes ligand-dependent PPARgamma activity, possibly via PPARgamma phosphorylation by ERK.
Collapse
Affiliation(s)
- Arion Kennedy
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Soonkyu Chung
- Department of Pathology, Wake Forest University, School of Medicine, Winston Salem, NC 27157
| | - Kathleen LaPoint
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Oluwatoyin Fabiyi
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| | - Michael K. McIntosh
- Department of Nutrition, University of North Carolina, Greensboro, NC 27402−6170
| |
Collapse
|
40
|
Roscioni SS, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:345-57. [PMID: 18176800 DOI: 10.1007/s00210-007-0246-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022]
Abstract
Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II) are cyclic AMP-activated guanine nucleotide exchange factors for Ras-like GTPases. Since their discovery about 10 years ago, it is now accepted that Epac proteins are novel cAMP sensors that regulate several pivotal cellular processes, including calcium handling, cell proliferation, cell survival, cell differentiation, cell polarization, cell-cell adhesion events, gene transcription, secretion, ion transport, and neuronal signaling. Recent studies even indicated that Epac proteins might play a role in the regulation of inflammation and the development of cardiac hypertrophy. Meanwhile, a plethora of diverse effectors of Epac proteins have been assigned, such as Ras and Rho GTPases, phospholiase C-epsilon, phospholipase D, mitogen-activated protein kinases, protein kinase B/Akt, ion channels, secretory-granule associated proteins and regulators of the actin-microtubule network, the latter probably involved in the spatiotemporal dynamics of Epac-related signaling. This review highlights multi-faceted effectors and diverse biological functions driven by Epac proteins that might explain certain controversial signaling properties of cAMP.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes. Mol Cell Biol 2007; 28:344-57. [PMID: 17967876 DOI: 10.1128/mcb.00617-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) and the parathyroid hormone-PTHrP receptor increase chondrocyte proliferation and delay chondrocyte maturation in endochondral bone development at least partly through cyclic AMP (cAMP)-dependent signaling pathways. Because data suggest that the ability of cAMP to stimulate cell proliferation involves the mitogen-activated protein kinase kinase kinase B-Raf, we hypothesized that B-Raf might mediate the proliferative action of PTHrP in chondrocytes. Though B-Raf is expressed in proliferative chondrocytes, its conditional removal from cartilage did not affect chondrocyte proliferation and maturation or PTHrP-induced chondrocyte proliferation and PTHrP-delayed maturation. Similar results were obtained by conditionally removing B-Raf from osteoblasts. Because A-raf and B-raf are expressed similarly in cartilage, we speculated that they may fulfill redundant functions in this tissue. Surprisingly, mice with chondrocytes deficient in both A-Raf and B-Raf exhibited normal endochondral bone development. Activated extracellular signal-regulated kinase (ERK) was detected primarily in hypertrophic chondrocytes, where C-raf is expressed, and the suppression of ERK activation in these cells by PTHrP or a MEK inhibitor coincided with a delay in chondrocyte maturation. Taken together, these results demonstrate that B-Raf and A-Raf are dispensable for endochondral bone development and they indicate that the main role of ERK in cartilage is to stimulate not cell proliferation, but rather chondrocyte maturation.
Collapse
|
42
|
Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK. Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 2007; 22:951-64. [PMID: 17501623 DOI: 10.1359/jbmr.070328] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED PTHrP induced a proliferative cyclin D1 activation in low-density osteoblastic cells. The process was PKA and MAPK dependent and involved both AP-1 and CRE sites. In ectopic ossicles generated from implanted bone marrow stromal cells, PTH upregulated cyclin D1 after acute or intermittent anabolic treatment. These data suggest a positive role of PTH and PTHrP in the cell cycle of early osteoblasts. INTRODUCTION The mechanisms underlying the actions of PTH and its related protein (PTHrP) in osteoblast proliferation, differentiation, and bone remodeling remain unclear. The action of PTH or PTHrP on the cell cycle during osteoblast proliferation was studied. MATERIALS AND METHODS Mouse calvarial MC3T3-E1 clone 4 cells were synchronized by serum starvation and induced with 100 nM PTHrP for 2-24 h under defined low serum conditions. Western blot, real-time PCR, EMSAs, and promoter/luciferase assays were performed to evaluate cyclin D1 expression. Pharmacological inhibitors were used to determine the relevant signaling pathways. Ectopic ossicles generated from implanted bone marrow stromal cells were treated with acute (a single 8- or 12-h injection) or intermittent anabolic PTH treatment for 7 days, and RNA and histologic analysis were performed. RESULTS PTHrP upregulated cyclin D1 and CDK1 and decreased p27 expression. Cyclin D1 promoter/luciferase assays showed that the PTHrP regulation involved both activator protein-1 (AP-1) and cyclic AMP response element binding protein (CRE) sites. AP-1 and CRE double mutants completely abolished the PTHrP effect of cyclin D1 transcription. Upregulation of cyclin D1 was found to be protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) dependent in proliferating MC3T3-E1 cells. In vivo expression of cyclin D1 in ectopic ossicles was upregulated after a single 12-h PTH injection or intermittent anabolic PTH treatment for 7 days in early developing ossicles. CONCLUSIONS These data indicate that PTH and PTHrP induce cyclin D1 expression in early osteoblastic cells and their action is developmental stage specific.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078,, USA.
| | | | | | | | | |
Collapse
|
43
|
Fang Y, Olah ME. Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 2007; 322:1189-200. [PMID: 17565009 DOI: 10.1124/jpet.107.119933] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A critical process in angiogenesis is endothelial cell proliferation, which requires activation of extracellular signal-regulated kinase (ERK)1/2. This study analyzed the pathway responsible for adenosine-induced ERK1/2 phosphorylation in human umbilical vein endothelial cells (HUVEC). Characterization with adenosine receptor (AR) agonists and antagonists and the AR mRNA profile demonstrated that stimulation of the A(2B)AR can mediate ERK1/2 phosphorylation in HUVEC. The lack of sensitivity of A(2B)AR-mediated ERK1/2 phosphorylation to 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X) and 3-[1-[3-(amidinothio)propyl]-1H-in-dol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (bisindolylmaleimide IX) (Ro31-8220) indicated that protein kinase C stimulation is not required. The response did not involve transactivation of receptors for epidermal growth factor or vascular endothelial growth factor (VEGF). The A(2B)AR-mediated response required functional G(alphas) and was mimicked by forskolin and 8-bromoadenosine 3',5'-cyclic monophosphate. However, ERK1/2 phosphorylation induced by A(2B)AR stimulation and forskolin was insensitive to protein kinase A inhibitors. It was hypothesized that the A(2B)AR-mediated ERK1/2 activation may involve exchange protein activated by cAMP (Epac), a cAMP-activated guanine nucleotide exchange factor for Rap GTPases. Reverse Transcription-polymerase chain reaction analysis detected Epac1 but not Epac2 in HUVEC. 8-(p-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP), an Epac activator, stimulated ERK1/2 phosphorylation. Overexpression of Epac1 enhanced A(2B)AR-mediated and forskolin-induced ERK1/2 phosphorylation, whereas response to VEGF was unaffected. Inhibition of Epac1 expression with small interfering RNA substantially reduced A(2B)AR-mediated and forskolin-induced ERK1/2 phosphorylation and abolished that by 8CPT-2Me-cAMP. A(2B)AR stimulation and forskolin activated Rap1. Expression of a dominant-negative Ras protein did not affect either forskolin-induced or A(2B)AR-mediated ERK1/2 phosphorylation. In summary, Epac1 activation in HUVEC results in ERK1/2 activation, and this protein, at least in part, mediates response to the physiologically relevant event of A(2B)AR stimulation.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Ohio, USA
| | | |
Collapse
|
44
|
Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. ACTA ACUST UNITED AC 2007; 176:709-18. [PMID: 17325210 PMCID: PMC2064027 DOI: 10.1083/jcb.200610046] [Citation(s) in RCA: 398] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/- animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/- mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK-MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
45
|
Addison WN, Azari F, Sørensen ES, Kaartinen MT, McKee MD. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 2007; 282:15872-83. [PMID: 17383965 DOI: 10.1074/jbc.m701116200] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.
Collapse
Affiliation(s)
- William N Addison
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
46
|
Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR, Pilz RB. Guanosine 3',5'-cyclic monophosphate (cGMP)/cGMP-dependent protein kinase induce interleukin-6 transcription in osteoblasts. Mol Endocrinol 2007; 21:1148-62. [PMID: 17341596 DOI: 10.1210/me.2005-0389] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Natriuretic peptides and nitric oxide (NO) activate the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway and play an important role in bone development and adult bone homeostasis. The cytokine IL-6 regulates bone turnover and osteoclast and osteoblast differentiation. We found that C-type natriuretic peptide and the NO donor Deta-NONOate induced IL-6 mRNA expression in primary human osteoblasts, an effect mimicked by the membrane-permeable cGMP analog 8-chlorophenylthio-cGMP (8-CPT-cGMP). Similar results were obtained in rat UMR106 osteosarcoma cells, where C-type natriuretic peptide and 8-CPT-cGMP stimulated transcription of the human IL-6 promoter and increased IL-6 secretion into the medium. Cotransfection of type I PKG enhanced the cGMP effect on the IL-6 promoter, whereas small interfering RNA-mediated silencing of PKG I expression prevented the cGMP effect on IL-6 mRNA expression. Step-wise deletion of the IL-6 promoter demonstrated a cAMP response element to be critical for transcriptional effects of cGMP, and experiments with dominant interfering proteins showed that cGMP activation of the promoter required cAMP response element binding-related proteins, and, to a lesser extent, proteins of the CAAT enhancer-binding protein and activator protein-1 (Fos/Jun) families. 8-CPT-cGMP induced nuclear translocation of type I PKG and increased cAMP response element binding-related protein phosphorylation on Ser(133). PKG regulation of the IL-6 promoter appeared to be of physiological significance, because inhibitors of the NO/cGMP/PKG signaling pathway largely prevented fluid shear stress-induced increases of IL-6 mRNA in UMR106 cells.
Collapse
Affiliation(s)
- Kate E Broderick
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0652, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Aaron Schindeler
- Department of Orthopaedic Research and Biotechnology, The Children's Hospital at Westmeade, Sydney, Australia.
| | | |
Collapse
|
48
|
Weber JM, Forsythe SR, Christianson CA, Frisch BJ, Gigliotti BJ, Jordan CT, Milner LA, Guzman ML, Calvi LM. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 2006; 39:485-93. [PMID: 16647886 DOI: 10.1016/j.bone.2006.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/06/2006] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that activation of the Parathyroid Hormone Receptor (PTH1R) in osteoblastic cells increases the Notch ligand Jagged1 and expands hematopoietic stem cells (HSC) through Notch signaling. However, regulation of Jagged1 by PTH in osteoblasts is poorly understood. The present study demonstrates that PTH treatment increases Jagged1 levels in a subpopulation of osteoblastic cells in vivo and in UMR106 osteoblastic cells in vitro. Since PTH(1-34) activates both Adenylate Cyclase/Protein Kinase A (AC/PKA) and Protein Kinase C (PKC) downstream of the PTH1R in osteoblastic cells, we independently determined the effect of either pathway on Jagged1. Activation of AC with Forskolin or PKA with PTH(1-31) or cell-permeable cAMP analogues increased osteoblastic Jagged1. This PTH-dependent Jagged1 increase was blocked by H89 and PKI, specific PKA inhibitors. In contrast, PKC activation with phorbol ester (PMA) or PTH(13-34) did not stimulate Jagged1 expression, and PTH-dependent Jagged1 stimulation was not blocked by Gö6976, a conventional PKC inhibitor. Therefore, PTH treatment stimulates osteoblastic Jagged1 mainly through the AC/PKA signaling pathway downstream of the PTH1R. Since Jagged1/Notch signaling has been implicated not only in stromal-HSC interactions but also in osteoblastic differentiation, Jagged1 may play a critical role in mediating the PTH-dependent expansion of HSC, as well as the anabolic effect of PTH in bone.
Collapse
Affiliation(s)
- Jonathan M Weber
- Endocrine Division, Department of Medicine, University of Rochester School of Medicine, 601 Elmwood Avenue Box 693 Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aghaloo TL, Pirih FQ, Shi A, Bezouglaia O, Tetradis S. Parathyroid hormone induces mitogen-activated kinase phosphatase 1 in murine osteoblasts primarily through cAMP-protein kinase A signaling. J Periodontol 2006; 77:21-30. [PMID: 16579699 DOI: 10.1902/jop.2006.77.1.21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) regulates osteoblast function by binding to the PTH receptor 1 (PTHR1) to activate downstream signaling to induce expression of primary response genes (PRGs), which affect various aspects of the osteoblast phenotype. We previously identified PTH-induced PRGs in MC3T3-E1 cells, including mitogen-activated protein kinase (MAPK) phosphatase 1 (mkp1), which dephosphorylates members of the MAPK family. The aim of this study was to explore the molecular mechanisms of PTH's induction of mkp1 in primary mouse osteoblasts. METHODS Northern and Western analyses were used to determine mkp1 mRNA and protein expression. In vivo experiments were also performed to determine PTH's effect on mkp1 in mouse calvariae and long bones. RESULTS A total of 10 nM PTH and PTH-related protein (PTHrP) maximally induced mkp1 mRNA levels after 1 hour in osteoblasts. PTH also increased mkp1 protein expression, and induced mkp1 mRNA independent of new protein synthesis. PTHR1 triggers protein kinase A (PKA), PKC, and calcium pathways. Although PKA and PKC agonists induced mkp1 mRNA levels, only cyclic adenosine 3':5'-monophosphate (cAMP)-PKA inhibition blocked PTH-induced mkp1 mRNA levels. These data suggest that PTH-induced mkp1 mRNA levels are primarily mediated through the cAMP-PKA pathway. Further, prostaglandin E2 (PGE2), which activates cAMP-PKA and PKC, induced mkp1 mRNA to a greater extent than PGF2alpha and fluprostenol, which activate PKC signaling only. Finally, PTH maximally induced mkp1 mRNA levels in mouse calvariae and long bones in vivo at 0.5 hours. CONCLUSIONS mkp1's in vitro and in vivo induction in PTH-target tissues suggests its involvement in some of the effects of PTH on osteoblast function. mkp1 may be an important target gene in the anabolic effect of PTH on osteoblasts.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California, Los Angeles, School of Dentistry, Los Angeles, CA 90095-1668, USA.
| | | | | | | | | |
Collapse
|
50
|
Yu X, Milas J, Watanabe N, Rao N, Murthy S, Potter OL, Wenning MJ, Clapp WD, Hock JM. Neurofibromatosis type 1 gene haploinsufficiency reduces AP-1 gene expression without abrogating the anabolic effect of parathyroid hormone. Calcif Tissue Int 2006; 78:162-70. [PMID: 16525748 DOI: 10.1007/s00223-005-0201-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 12/21/2005] [Indexed: 11/24/2022]
Abstract
Approximately 50% of neurofibromatosis type 1 (NF1) patients exhibit skeletal pathology, such as premature osteoporosis or pseudoarthroses. Loss of neurofibromin deregulates Ras signal transduction to affect generation of mitogen-activated protein kinase and Akt, both of which have been implicated in parathyroid hormone (PTH) anabolic mechanisms. Our aim was to determine if loss of neurofibromin impaired the anabolic effect of PTH on bone mass. Nf1 heterozygote (Nf1(+/-)) and wild type (Nf1(+/+)) mice were treated with recombinant human PTH(1-34) or vehicle once daily for 3-28 days. PTH enhanced mRNA expression of c-fos, junB, and fra2 in the distal femur metaphyses of both genotypes; expression of these transcripts was consistently lower in PTH-treated Nf1(+/-) mice. Despite lowered c-fos expression in Nf1(+/-) mice, PTH increased bone mass equivalently in both genotypes by 28 days. Ex vivo, Nf1 heterozygosity was associated with increased inducible osteoclasts in PTH-treated bone marrow cells and impairment of the actin stress fiber and cyclic adenosine monophosphate response to PTH in osteoprogenitors. Lower c-fos expression was previously thought to abrogate PTH responsiveness. Our results suggest crosstalk might occur between Ras signal transduction and the protein kinase A pathway in Nf1(+/-) mice. Ras signal transduction does not appear to be essential for the anabolic actions of PTH on bone. Because PTH was effective in the absence of Nf1, it may offer a useful approach to treat osteoporosis in NF1 patients.
Collapse
Affiliation(s)
- X Yu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|