1
|
Janach GMS, Reetz O, Döhne N, Stadler K, Grosser S, Byvaltcev E, Bräuer AU, Strauss U. Interferon-γ acutely augments inhibition of neocortical layer 5 pyramidal neurons. J Neuroinflammation 2020; 17:69. [PMID: 32087716 PMCID: PMC7035745 DOI: 10.1186/s12974-020-1722-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ, a type II IFN) is present in the central nervous system (CNS) under various conditions. Evidence is emerging that, in addition to its immunological role, IFN-γ modulates neuronal morphology, function, and development in several brain regions. Previously, we have shown that raising levels of IFN-β (a type I IFN) lead to increased neuronal excitability of neocortical layer 5 pyramidal neurons. Because of shared non-canonical signaling pathways of both cytokines, we hypothesized a similar neocortical role of acutely applied IFN-γ. METHODS We used semi-quantitative RT-PCR, immunoblotting, and immunohistochemistry to analyze neuronal expression of IFN-γ receptors and performed whole-cell patch-clamp recordings in layer 5 pyramidal neurons to investigate sub- and suprathreshold excitability, properties of hyperpolarization-activated cyclic nucleotide-gated current (Ih), and inhibitory neurotransmission under the influence of acutely applied IFN-γ. RESULTS We show that IFN-γ receptors are present in the membrane of rat's neocortical layer 5 pyramidal neurons. As expected from this and the putative overlap in IFN type I and II alternative signaling pathways, IFN-γ diminished Ih, mirroring the effect of type I IFNs, suggesting a likewise activation of protein kinase C (PKC). In contrast, IFN-γ did neither alter subthreshold nor suprathreshold neuronal excitability, pointing to augmented inhibitory transmission by IFN-γ. Indeed, IFN-γ increased electrically evoked inhibitory postsynaptic currents (IPSCs) on neocortical layer 5 pyramidal neurons. Furthermore, amplitudes of spontaneous IPSCs and miniature IPSCs were elevated by IFN-γ, whereas their frequency remained unchanged. CONCLUSIONS The expression of IFN-γ receptors on layer 5 neocortical pyramidal neurons together with the acute augmentation of inhibition in the neocortex by direct application of IFN-γ highlights an additional interaction between the CNS and immune system. Our results strengthen our understanding of the role of IFN-γ in neocortical neurotransmission and emphasize its impact beyond its immunological properties, particularly in the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Olivia Reetz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Konstantin Stadler
- Industrial Ecology Programme, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sabine Grosser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja U Bräuer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell Biology & Neurobiology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Zanin-Zhorov A, Kumari S, Hippen KL, Merkel SC, MacMillan ML, Blazar BR, Dustin ML. Human in vitro-induced regulatory T cells display Dlgh1dependent and PKC-θ restrained suppressive activity. Sci Rep 2017; 7:4258. [PMID: 28652577 PMCID: PMC5484704 DOI: 10.1038/s41598-017-04053-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In vitro induced human regulatory T cells (iTregs) have demonstrated in vivo therapeutic utility, but pathways regulating their function have not been elucidated. Here, we report that human iTregs generated in vitro from naïve cord blood cells preferentially recruit Disc large homolog 1 (Dlgh1) and exclude protein kinase C (PKC)-θ from immunological synapses formed on supported lipid bilayers with laterally mobile ICAM-1 and anti-CD3 mAb. Also, iTregs display elevated Dlgh1 overall and Dlgh1-dependent p38 phosphorylation, higher levels of phosphatase and tensin homolog (PTEN), and diminished Akt phosphorylation. Pharmacological interruption of PKC-θ increases and Dlgh1 silencing decreases the ability of iTregs to suppress interferon-γ production by CD4+CD25- effector T cells (Teff). Comparison with expanded cord blood-derived CD4+CD25hi tTreg and expanded Teffs from the same donors indicate that iTreg are intermediate between expanded CD4+CD25hi tTregs and Teffs, whereas modulation of suppressive activities by PKC-θ and Dlgh1 signaling pathways are shared.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA. .,Kadmon Corporation, LLC, New York, NY, 10016, USA.
| | - Sudha Kumari
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Koch institute of Integrative Cancer Research, MIT, Cambridge, MA-02139, USA
| | - Keli L Hippen
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Sarah C Merkel
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Margaret L MacMillan
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Bruce R Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Michael L Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA. .,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK.
| |
Collapse
|
3
|
Wei J, Lian H, Zhong B, Shu HB. Parafibromin Is a Component of IFN-γ–Triggered Signaling Pathways That Facilitates JAK1/2-Mediated Tyrosine Phosphorylation of STAT1. THE JOURNAL OF IMMUNOLOGY 2015; 195:2870-8. [DOI: 10.4049/jimmunol.1501111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/09/2015] [Indexed: 01/14/2023]
|
4
|
Abstract
Type-I interferon (IFN)-induced activation of the mammalian target of rapamycin (mTOR) signaling pathway has been implicated in translational control of mRNAs encoding interferon-stimulated genes (ISGs). However, mTOR-sensitive translatomes commonly include mRNAs with a 5’ terminal oligopyrimidine tract (TOP), such as those encoding ribosomal proteins, but not ISGs. Because these translatomes were obtained under conditions when ISG expression is not induced, we examined the mTOR-sensitive translatome in human WISH cells stimulated with IFN β. The mTOR inhibitor Torin1 resulted in a repression of global protein synthesis, including that of ISG products, and translation of all but 3 ISG mRNAs (TLR3, NT5C3A, and RNF19B) was not selectively more sensitive to mTOR inhibition. Detailed studies of NT5C3A revealed an IFN-induced change in transcription start site resulting in a switch from a non-TOP to a TOP-like transcript variant and mTOR sensitive translation. Thus, we show that, in the cell model used, translation of the vast majority of ISG mRNAs is not selectively sensitive to mTOR activity and describe an uncharacterized mechanism wherein the 5’-UTR of an mRNA is altered in response to a cytokine, resulting in a shift from mTOR-insensitive to mTOR-sensitive translation.
Collapse
|
5
|
Gonnella R, Granato M, Farina A, Santarelli R, Faggioni A, Cirone M. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1586-95. [PMID: 25827954 DOI: 10.1016/j.bbamcr.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 01/14/2023]
Abstract
PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death.
Collapse
Affiliation(s)
- Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy.
| |
Collapse
|
6
|
Comet NR, Aguiló JI, Rathoré MG, Catalán E, Garaude J, Uzé G, Naval J, Pardo J, Villalba M, Anel A. IFNα signaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology 2014; 3:e948705. [PMID: 25960930 DOI: 10.4161/21624011.2014.948705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ-/-) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity ex vivo. Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset. In the present work, we sought to analyze whether interleukin-15 (IL-15) and/or interferon-α (IFNα) mediate PKC-θ-dependent antitumor NK cell function. We found that IL-15 improves NK cell viability, granzyme B expression, degranulation capacity and interferon-γ (IFNγ) secretion independently of PKC-θ. In contrast, we found that IFNα improves the degranulation capability of NK cells against target cancer cells in a PKC-θ-dependent fashion both ex vivo and in vivo. Furthermore, IFNα induces PKC-θ auto-phosphorylation in NK cells, in a signal transduction pathway involving both phosphatidylinositol-3-kinase (PI3K) and phospholipase-C (PLC) activation. PKC-θ dependence was further implicated in IFNα-induced transcriptional upregulation of chemokine (C-X-C motif) ligand 10 (CXCL10), a signal transducer and activator of transcription-1 (STAT-1)-dependent target of IFNα. The absence of PKC-θ did not affect IFNα-induced STAT-1 Tyr701 phosphorylation but affected the increase in STAT-1 phosphorylation on Ser727, attenuating CXCL10 secretion. This connection between IFNα and PKC-θ in NK cells may be exploited in NK cell-based tumor immunotherapy.
Collapse
Key Words
- CDK8, cyclin-dependent kinase 8
- CXCL10
- CXCL10, (C-X-C motif) ligand 10/CXCL10
- FCS, fetal calf serum
- IFN-α, IL-15
- IFNA1
- IFNα, interferon-α
- IFNγ, interferon-γ, IFNG
- IL-15, interleukin-15/IL15
- MACS, magnetic cell separation
- MEF, murine embryonic fibroblast
- MHC-I, major histocompability complex class I/MHC-I
- NK cells
- NK, natural killer
- PI3K, phosphatidylinositol-3-kinase
- PKC-θ
- PKC-θ, protein kinase C-θ, PRKCQ
- PLC, phospholipase-C
- Poly I:C, poly-inosinic:cytidilic acid
- RT-PCR, real-time polymerase chain reaction
- STAT-1, signal transducer and activator of transcription-1/STAT1.
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Natalia R Comet
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Juan Ignacio Aguiló
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Moeez G Rathoré
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Elena Catalán
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Johan Garaude
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Gilles Uzé
- CNRS UMR 5235; Université de Montpellier II; Place Eugene Bataillon ; Montpellier, France
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group; IIS Aragón; Biomedical Research Center of Aragón (CIBA); Nanoscience Institute of Aragon (INA); Zaragoza, Spain ; Aragón I+D Foundation (ARAID) ; Zaragoza, Spain
| | - Martín Villalba
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France ; Institut de Recherche en Biothérapie (IRB); CHU Montpellier ; Montpellier, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| |
Collapse
|
7
|
Pal D, Basu A. The unique protein kinase Cη: implications for breast cancer (review). Int J Oncol 2014; 45:493-8. [PMID: 24841225 DOI: 10.3892/ijo.2014.2443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/18/2014] [Indexed: 11/05/2022] Open
Abstract
Deregulation of key signal transduction pathways that govern important cellular processes leads to cancer. The development of effective therapeutics for cancer warrants a comprehensive understanding of the signaling pathways that are deregulated in cancer. The protein kinase C (PKC) family has served as an attractive target for cancer therapy for decades owing to its crucial roles in several cellular processes. PKCη is a novel member of the PKC family that plays critical roles in various cellular processes such as growth, proliferation, differentiation and cell death. The regulation of PKCη appears to be unique compared to other PKC isozymes, and there are conflicting reports regarding its role in cancer. This review focuses on the unique aspects of PKCη in terms of its structure, regulation and subcellular distribution and speculates on how these features could account for its distinct functions. We have also discussed the functional implications of PKCη in cancer with particular emphasis on breast cancer.
Collapse
Affiliation(s)
- Deepanwita Pal
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center and Institute for Cancer Research, Fort Worth, TX 76107, USA
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center and Institute for Cancer Research, Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Palomo J, Fauconnier M, Coquard L, Gilles M, Meme S, Szeremeta F, Fick L, Franetich JF, Jacobs M, Togbe D, Beloeil JC, Mazier D, Ryffel B, Quesniaux VF. Type I interferons contribute to experimental cerebral malaria development in response to sporozoite or blood-stagePlasmodium bergheiANKA. Eur J Immunol 2013; 43:2683-95. [DOI: 10.1002/eji.201343327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 04/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Jennifer Palomo
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Mathilde Fauconnier
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Laurie Coquard
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Maïlys Gilles
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| | - Sandra Meme
- CNRS, Centre de Biophysique Moléculaire; Orléans France
| | | | - Lizette Fick
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | - Jean-François Franetich
- Université Pierre et Marie Curie-Paris 6, UMR S945; Paris France
- Institut National de la Santé et de la Recherche Médicale U945; Paris France
- Groupe Hospitalier Pitié-Salpêtrière Service Parasitologie-Mycologie; Paris France
| | - Muazzam Jacobs
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | | | | | - Dominique Mazier
- Université Pierre et Marie Curie-Paris 6, UMR S945; Paris France
- Institut National de la Santé et de la Recherche Médicale U945; Paris France
- Groupe Hospitalier Pitié-Salpêtrière Service Parasitologie-Mycologie; Paris France
| | - Bernhard Ryffel
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
- Institute of Infectious Disease and Molecular Medicine; Cape Town South Africa
| | - Valerie F.J. Quesniaux
- CNRS, UMR7355; Orléans France
- Experimental and Molecular Immunology and Neurogenetics; University of Orleans; Orléans France
| |
Collapse
|
9
|
Nawa T, Ishida H, Tatsumi T, Li W, Shimizu S, Kodama T, Hikita H, Hosui A, Miyagi T, Kanto T, Hiramatsu N, Hayashi N, Takehara T. Interferon-α suppresses hepatitis B virus enhancer II activity via the protein kinase C pathway. Virology 2012; 432:452-9. [PMID: 22832122 DOI: 10.1016/j.virol.2012.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/03/2012] [Accepted: 07/01/2012] [Indexed: 12/31/2022]
Abstract
HBV has two enhancer (En) regions each of which promotes its own transcription. En II regulates production of pregenomic RNA, a key product of HBV replication, more strongly than En I. Although IFN-α has been found to suppress En I activity, its effect on En II activity has not been examined. Here we used luciferase assay to demonstrate that IFN-α suppresses En II activity. Analysis with several deletion/mutation constructs identified two major segments, nt 1703-1727 and nt 1746-1770, within the En II sequence as being responsible for the suppressive effects of IFN-α. Pre-treatment with protein kinase C (PKC) inhibitors blocked this effect regardless of the expression levels of phospho-STAT1 and Mx upon IFN-α stimulation. These results indicate that IFN-α suppresses En II activity via the PKC pathway, which may be an alternative suppressive pathway for HBV replication. (136 words).
Collapse
Affiliation(s)
- Takatoshi Nawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Chuang HC, Li JP, Tan TH. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Front Immunol 2012; 3:197. [PMID: 22798961 PMCID: PMC3393885 DOI: 10.3389/fimmu.2012.00197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023] Open
Abstract
Protein kinase C (PKC)-θ is a serine/threonine kinase belonging to the calcium-independent novel PKC subfamily; its expression is restricted to certain tissues and cell types, including T cells. The signals delivered from T cell receptor (TCR) and CD28 costimulatory molecules trigger PKC-θ catalytic activation and membrane translocation to the immunological synapse, leading to activation of NF-κB, AP-1, and NF-AT. These transcription factors are important for T cell survival, activation, and differentiation. Phosphorylation of PKC-θ at multiple Ser/Thr/Tyr residues is induced in T cells during TCR signaling. Some phosphorylation sites play critical roles in the regulation of PKC-θ function and downstream signaling. The regulation mechanisms for PKC-θ phosphorylation sites are now being revealed. In this review, we discuss the current understanding of the regulation of PKC-θ function by phosphorylation during TCR signaling.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
11
|
Lee JY, Choi AY, Oh YT, Choe W, Yeo EJ, Ha J, Kang I. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells. Cell Signal 2012; 24:1195-207. [PMID: 22330070 DOI: 10.1016/j.cellsig.2012.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/17/2022]
Abstract
AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, is known to be activated during T cell activation. T cell activation by T cell receptor (TCR) engagement or its pharmacological mimics, PMA plus ionomycin (PMA/Io), induces immunomodulatory FasL and cyclooxygenase-2 (COX-2) expression. In this study, we examined the role and mechanisms of AMPK in PMA/Io-induced expression of FasL and COX-2 in Jurkat T human leukemic cells. Inhibition of AMPK by a pharmacological agent, compound C, or AMPKα1 siRNA suppressed expression of FasL and COX-2 mRNAs and proteins in PMA/Io-activated Jurkat cells. It also reduced secretion of FasL protein and prostaglandin E2, a main product of COX-2, in Jurkat cells and peripheral blood lymphocytes activated with PMA/Io or monoclonal anti-CD3 plus anti-CD28. Consistently, inhibition of AMPK blocked promoter activities of FasL and COX-2 in activated Jurkat cells. As protein kinase C theta (PKCθ) is a central molecule for TCR signaling, we examined any possible cross-talk between AMPK and PKCθ in activated T cells. Of particular importance, we found that inhibition of AMPK blocked phosphorylation and activation of PKCθ, suggesting that AMPK is an upstream kinase of PKCθ. Moreover, we showed that AMPK was directly associated with PKCθ and phosphorylated Thr538 of PKCθ in PMA/Io-stimulated Jurkat cells. We also showed that inhibition of PKCθ by rottlerin or dominant negative PKCθ reduced AMPK-mediated transcriptional activation of NF-AT and AP-1 in activated Jurkat cells. Taken together, these results suggest that AMPK regulates expression of FasL and COX-2 via the PKCθ and NF-AT and AP-1 pathways in activated Jurkat cells.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Zanin-Zhorov A, Lin J, Scher J, Kumari S, Blair D, Hippen KL, Blazar BR, Abramson SB, Lafaille JJ, Dustin ML. Scaffold protein Disc large homolog 1 is required for T-cell receptor-induced activation of regulatory T-cell function. Proc Natl Acad Sci U S A 2012; 109:1625-30. [PMID: 22307621 PMCID: PMC3277153 DOI: 10.1073/pnas.1110120109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Foxp3(+)CD4(+)CD25(high) regulatory T cell (Treg) suppression of inflammation depends on T-cell receptor-mediated Nuclear Factor of Activated T cells c1 (NFATc1) activation with reduced Akt activity. We investigated the role of the scaffold protein Disc large homolog 1 (Dlgh1) in linking the T-cell receptor to this unique signaling outcome. The Treg immunological synapse (IS) recruited fourfold more Dlgh1 than conventional CD4(+) T-cell IS. Tregs isolated from patients with active rheumatoid arthritis, or treated with tumor necrosis factor-α, displayed reduced function and diminished Dlgh1 recruitment to the IS. Furthermore, Dlgh1 silencing abrogated Treg function, impaired NFATc1 activation, reduced phosphatase and tensin homolog levels, and increased Akt activation. Dlgh1 operates independently of the negative feedback pathway mediated by the related adapter protein Carma1 and thus presents an array of unique targets to selectively manipulate Treg function.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Jiqiang Lin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Jose Scher
- Division of Rheumatology, New York University School of Medicine and New York University Hospital for Joint Diseases, New York, NY 10003; and
| | - Sudha Kumari
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - David Blair
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Keli L. Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Steven B. Abramson
- Division of Rheumatology, New York University School of Medicine and New York University Hospital for Joint Diseases, New York, NY 10003; and
| | - Juan J. Lafaille
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
13
|
Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem 2011; 286:35733-35741. [PMID: 21865166 DOI: 10.1074/jbc.m111.263608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Juan Qian
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
14
|
Joshi S, Sharma B, Kaur S, Majchrzak B, Ueda T, Fukunaga R, Verma AK, Fish EN, Platanias LC. Essential role for Mnk kinases in type II interferon (IFNgamma) signaling and its suppressive effects on normal hematopoiesis. J Biol Chem 2011; 286:6017-26. [PMID: 21149447 PMCID: PMC3057839 DOI: 10.1074/jbc.m110.197921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.
Collapse
Affiliation(s)
- Sonali Joshi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Bhumika Sharma
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Surinder Kaur
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Beata Majchrzak
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Takeshi Ueda
- the Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 737-8553 Japan
| | - Rikiro Fukunaga
- the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan, and
| | - Amit K. Verma
- the Division of Hematology-Oncology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eleanor N. Fish
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Leonidas C. Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| |
Collapse
|
15
|
Fauconnier M, Bourigault ML, Meme S, Szeremeta F, Palomo J, Danneels A, Charron S, Fick L, Jacobs M, Beloeil JC, Ryffel B, Quesniaux VFJ. Protein kinase C-theta is required for development of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:212-21. [PMID: 21224058 DOI: 10.1016/j.ajpath.2010.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
Cerebral malaria is the most severe neurologic complication in children and young adults infected with Plasmodium falciparum. T-cell activation is required for development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (CM). To characterize the T-cell activation pathway involved, the role of protein kinase C-theta (PKC-θ) in experimental CM development was examined. PKC-θ-deficient mice are resistant to CM development. In the absence of PKC-θ, no neurologic sign of CM developed after blood stage PbA infection. Resistance of PKC-θ-deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and magnetic resonance angiography, whereas wild-type mice developed distinct microvascular pathology. Recruitment and activation of CD8(+) T cells, and ICAM-1 and CD69 expression were reduced in the brain of resistant mice; however, the pulmonary inflammation and edema associated with PbA infection were still present in the absence of functional PKC-θ. Resistant PKC-θ-deficient mice developed high parasitemia, and died at 3 weeks with severe anemia. Therefore, PKC-θ signaling is crucial for recruitment of CD8(+) T cells and development of brain microvascular pathology resulting in fatal experimental CM, and may represent a novel therapeutic target of CM.
Collapse
Affiliation(s)
- Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orléans, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, Sawicki KT, Munshi HG, Platanias LC. Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem 2010; 285:40333-41. [PMID: 20956525 DOI: 10.1074/jbc.m110.151076] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IFNα exerts potent inhibitory activities against malignant melanoma cells in vitro and in vivo, but the mechanisms by which it generates its antitumor effects remain unknown. We examined the effects of interferon α (IFNα) on the expression of human members of the Schlafen (SLFN) family of genes, a group of cell cycle regulators that mediate growth-inhibitory responses. Using quantitative RT-real time PCR, we found detectable basal expression of all the different human SLFN genes examined (SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14), in malignant melanoma cells and primary normal human melanocytes, but SLFN5 basal expression was suppressed in all analyzed melanoma cell lines. Treatment of melanoma cells with IFNα resulted in induction of expression of SLFN5 in malignant cells, suggesting a potential involvement of this gene in the antitumor effects of IFNα. Importantly, stable knockdown of SLFN5 in malignant melanoma cells resulted in increased anchorage-independent growth, as evidenced by enhanced colony formation in soft agar assays. Moreover, SLFN5 knockdown also resulted in increased invasion in three-dimensional collagen, suggesting a dual role for SLFN5 in the regulation of invasion and anchorage-independent growth of melanoma cells. Altogether, our findings suggest an important role for the SLFN family of proteins in the generation of the anti-melanoma effects of IFNα and for the first time directly implicate a member of the human SLFN family in the regulation of cell invasion.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H Lurie Comprehensive Cancer Center and Division of Hematology Oncology, Northwestern University Medical School and Jesse Brown Veteran Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
When Toll-like receptor and T-cell receptor signals collide: a mechanism for enhanced CD8 T-cell effector function. Blood 2010; 116:3494-504. [PMID: 20696947 DOI: 10.1182/blood-2010-02-268169] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Emerging reports reveal that activating Toll-like receptor-2 (TLR2)-MyD88 signals in CD8 T lymphocytes enhances cytokine production and cytotoxicity; however, the signaling pathway remains undefined. In the present study, we examined the physiologic significance and molecular mechanisms involved in this process. We found that TLR2 engagement on T-cell receptor transgenic CD8 OT-1 T cells increased T-bet transcription factor levels consequently, augmenting effector transcript and protein levels both in vivo and in vitro. In contrast, TLR2 agonist did not costimulate TLR2(-/-)OT-1 or MyD88(-/-)OT-1 T cells. Elevated T-bet levels in TLR2-MyD88-activated T cells was a consequence of increased biosynthesis resulting from the enhanced activation of the mammalian target of the rapamycin (mTOR) pathway. Inhibiting mTOR, Akt, or protein kinase C in T cells abolished the costimulatory effects of the TLR2 agonist. In vivo, activating TLR2-MyD88 signals in T cells increased effector-molecule levels and enhanced the clearance of Listeria monocytogenes-Ova. These results help define a signaling pathway linking the TLR-MyD88 and mTOR pathway in an Akt- and protein kinase C-dependent manner. These results highlight a critical role for MyD88 signaling in T-cell activation and cytotoxicity. Furthermore, these findings offer the opportunity for improving the efficacy of vaccines and T cell-based immunotherapies by targeting TLR-MyD88 signaling within T cells.
Collapse
|
18
|
Zanin-Zhorov A, Ding Y, Kumari S, Attur M, Hippen KL, Brown M, Blazar BR, Abramson SB, Lafaille JJ, Dustin ML. Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 2010; 328:372-6. [PMID: 20339032 PMCID: PMC2905626 DOI: 10.1126/science.1186068] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cell receptor (TCR)-dependent regulatory T cell (Treg) activity controls effector T cell (Teff) function and is inhibited by the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Protein kinase C-theta (PKC-theta) recruitment to the immunological synapse is required for full Teff activation. In contrast, PKC-theta was sequestered away from the Treg immunological synapse. Furthermore, PKC-theta blockade enhanced Treg function, demonstrating PKC-theta inhibits Treg-mediated suppression. Inhibition of PKC-theta protected Treg from inactivation by TNF-alpha, restored activity of defective Treg from rheumatoid arthritis patients, and enhanced protection of mice from inflammatory colitis. Treg freed of PKC-theta-mediated inhibition can function in the presence of inflammatory cytokines and thus have therapeutic potential in control of inflammatory diseases.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY10016, USA
| | - Yi Ding
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY10016, USA
| | - Sudha Kumari
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY10016, USA
| | - Mukundan Attur
- Division of Rheumatology, New York University School of Medicine and New York University Hospital for Joint Diseases, New York, NY 10003, USA
| | - Keli L. Hippen
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Bone, Blood and Marrow Transplantation, Minneapolis, USA
| | | | - Bruce R. Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Bone, Blood and Marrow Transplantation, Minneapolis, USA
| | - Steven B. Abramson
- Division of Rheumatology, New York University School of Medicine and New York University Hospital for Joint Diseases, New York, NY 10003, USA
| | - Juan J. Lafaille
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY10016, USA
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY10016, USA
| |
Collapse
|
19
|
Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 2009; 50:1-14. [PMID: 20036577 DOI: 10.1016/j.cyto.2009.11.021] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 11/02/2009] [Accepted: 11/24/2009] [Indexed: 01/19/2023]
Abstract
Interferon-gamma (IFNgamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NFkappaB) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFNgamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of a subset of only GAS containing immune genes were modulated by IFNgamma. As a significant correlation exists between GAS containing immune genes and IFNgamma-regulated gene expression, this strategy may identify novel IFNgamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFNgamma in mediating a plethora of functions: anti-microbial responses, antigen processing, inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge on IFNgamma mediated signaling and functions.
Collapse
Affiliation(s)
- Banishree Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
20
|
Chaurasiya SK, Srivastava KK. Downregulation of protein kinase C-alpha enhances intracellular survival of Mycobacteria: role of PknG. BMC Microbiol 2009; 9:271. [PMID: 20030858 PMCID: PMC2816201 DOI: 10.1186/1471-2180-9-271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/24/2009] [Indexed: 11/10/2022] Open
Abstract
Background Intracellular trafficking of mycobacteria is comprehensively dependent on the unusual regulation of host proteins. Recently, we have reported that infection of macrophages by Mycobacterium tuberculosis H37Rv (Rv) selectively downregulates the expression of PKCα while infection by Mycobacterium smegmatis (MS) does not. Results Based on our earlier study, we have extrapolated for the first time that knockdown of PKCα, impairs phagocytosis of mycobacteria by macrophages while their intracellular survival is drastically increased. Mycobacterium bovis BCG (BCG) and Mycobacterium tuberculosis H37Ra (Ra) have also been shown to downregulate the expression of PKCα during the infection. Since PknG is uniquely expressed in BCG, Ra, Rv but not in MS and has been reported to promote intracellular survival of mycobacteria, led us to believe that PknG may be involved in such downregulation of PKCα. THP-1 cells infected with recombinant MS expressing PknG (MS-G), showed significant reduction in PKCα expression. In normal THP-1 cells survival of MS-G was enhanced as compared to MS, while their behavior in PKCα deficient cells could not be distinguished. The results strongly demonstrate that pathogenic mycobacteria recognize and then inhibit PKCα to circumvent phagocytosis and the hostile environment of macrophages. We emphasize that, this inhibition is controlled by PknG. Conclusions All together, our data reveal a mechanism that shows substantial interdependence of PKCα with PknG, in sustaining mycobacterial infection.
Collapse
|
21
|
Redig AJ, Sassano A, Majchrzak-Kita B, Katsoulidis E, Liu H, Altman JK, Fish EN, Wickrema A, Platanias LC. Activation of protein kinase C{eta} by type I interferons. J Biol Chem 2009; 284:10301-14. [PMID: 19211565 DOI: 10.1074/jbc.m807254200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Type I interferons (IFNs) are cytokines with diverse biological properties, including antiviral, growth inhibitory, and immunomodulatory effects. Although several signaling pathways are activated during engagement of the type I IFN receptor and participate in the induction of IFN responses, the mechanisms of generation of specific signals for distinct biological effects remain to be elucidated. We provide evidence that a novel member of the protein kinase C (PKC) family of proteins is rapidly phosphorylated and activated during engagement of the type I IFN receptor. In contrast to other members of the PKC family that are also regulated by IFN receptors, PKCeta does not regulate IFN-inducible transcription of interferon-stimulated genes or generation of antiviral responses. However, its function promotes cell cycle arrest and is essential for the generation of the suppressive effects of IFNalpha on normal and leukemic human myeloid (colony-forming unit-granulocyte macrophage) bone marrow progenitors. Altogether, our studies establish PKCeta as a unique element in IFN signaling that plays a key and essential role in the generation of the regulatory effects of type I IFNs on normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Coley SM, Ford ML, Hanna SC, Wagener ME, Kirk AD, Larsen CP. IFN-gamma dictates allograft fate via opposing effects on the graft and on recipient CD8 T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:225-33. [PMID: 19109153 PMCID: PMC2683416 DOI: 10.4049/jimmunol.182.1.225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8 T cells are necessary for costimulation blockade-resistant rejection. However, the mechanism by which CD8 T cells mediate rejection in the absence of major costimulatory signals is poorly understood. IFN-gamma promotes CD8 T cell-mediated immune responses, but IFN-gamma-deficient mice show early graft loss despite costimulation blockade. In contrast, we found that IFN-gamma receptor knockout mice show dramatically prolonged graft survival under costimulation blockade. To investigate this paradox, we addressed the effects of IFN-gamma on T cell alloresponses in vivo independent of the effects of IFN-gamma on graft survival. We identified a donor-specific CD8 T cell breakthrough response temporally correlated with costimulation blockade-resistant rejection. Neither IFN-gamma receptor knockout recipients nor IFN-gamma-deficient recipients showed a CD8 breakthrough response. Graft death on IFN-gamma-deficient recipients despite costimulation blockade could be explained by the lack of IFN-gamma available to act on the graft. Indeed, the presence of IFN-gamma was necessary for graft survival on IFN-gamma receptor knockout recipients, as either IFN-gamma neutralization or the lack of the IFN-gamma receptor on the graft precipitated early graft loss. Thus, IFN-gamma is required both for the recipient to mount a donor-specific CD8 T cell response under costimulation blockade as well as for the graft to survive after allotransplantation.
Collapse
Affiliation(s)
- Shana M. Coley
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Mandy L. Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Samantha C. Hanna
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Maylene E. Wagener
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Allan D. Kirk
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Christian P. Larsen
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| |
Collapse
|
23
|
Passalacqua M, Pedrazzi M, Sparatore B, Patrone M, Pontremoli S, Melloni E. Functional role of the charge at the T538 residue in the control of protein kinase Cθ. Arch Biochem Biophys 2009; 481:202-9. [DOI: 10.1016/j.abb.2008.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
24
|
Gust TC, Neubrandt L, Merz C, Asadullah K, Zügel U, von Bonin A. RNA interference-mediated gene silencing in murine T cells: in vitro and in vivo validation of proinflammatory target genes. Cell Commun Signal 2008; 6:3. [PMID: 18684324 PMCID: PMC2517589 DOI: 10.1186/1478-811x-6-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/06/2008] [Indexed: 11/15/2022] Open
Abstract
Background T cells play a central role in many inflammatory diseases, hence the identification and validation of T cell-specific target genes will increase the understanding of T cell function in pathologic inflammatory situations. RNA interference (RNAi), with its ability to induce specific gene silencing in mammalian cells, represents a powerful technology to investigate and validate the function of pharmaceutical target genes in vitro and in vivo. The aim of the present study was to systematically explore RNAi-mediated gene-silencing of known T cell-specific model signaling molecules in primary murine T cells in vitro and in vivo. Results We demonstrate that siRNA delivery and subsequent silencing of T cell specific genes is substantially increased, if murine T cells were activated prior siRNA transfection. Silencing of ZAP70, p56Lck as well as PLC-γ1 protein expression resulted in impaired function of T cells in vitro. Furthermore, delayed type hypersensitivity (DTH) was ameliorated in vivo after adoptive transfer of ZAP70-silenced T cells. Coclusion The combination of RNAi-mediated gene silencing and adoptive transfer of gene-silenced T cells, thus, may allow the identification and analysis of T cell-specific targets for therapeutic intervention. Additionally, this model system may represent an alternative to conventional time consuming and cost intensive gene targeting approaches.
Collapse
Affiliation(s)
- Tatjana C Gust
- Common Mechanism Research, Bayer Schering Pharma AG, Muellerstrasse 178, 13342, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Differential regulation of protein kinase C isoforms of macrophages by pathogenic and non-pathogenic mycobacteria. Mol Cell Biochem 2008; 318:167-74. [PMID: 18649046 DOI: 10.1007/s11010-008-9866-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Given the fact that Mycobacterium tuberculosis (Mtb) may respond to the intracellular milieu of the macrophage with the induction of environmentally regulated genes required for survival and growth of the bacteria we assumed that the protein kinases may also be the factors in Mycobacterium-macrophage interaction. Since, protein kinases play a major role in various critical cellular processes including regulation of immune responses, we describe the fate of expression and phosphorylation of protein kinase C in macrophage cell lines exposed to Mtb H37Rv and raised the question whether the change in the events of expression and phosphorylation are the results of direct interaction of bacilli with macrophages and/or, are also indirectly mediated by specific cytokines that are induced in response to exposure. Our results show that only novel PKCs are phosphorylated during infection of macrophages by pathogenic and non-pathogenic mycobacteria and the alteration is a result of direct host-bacilli association which is independent of cytokines as mediators. Expression of PKC-alpha (conventional PKC isoform) was down regulated by Mtb H37Rv. In contrast the non-pathogenic fast grower Mycobacterium smegmatis (MS) increased the expression and phosphorylation of PKC-alpha. PKC-alpha was also increased in macrophages treated with serum of mice immunized with Mtb H37Rv. The study has shown that pathogenic and non-pathogenic mycobacteria categorically select the type of protein kinases C for activation/deactivation.
Collapse
|
26
|
Katsoulidis E, Sassano A, Majchrzak-Kita B, Carayol N, Yoon P, Jordan A, Druker BJ, Fish EN, Platanias LC. Suppression of interferon (IFN)-inducible genes and IFN-mediated functional responses in BCR-ABL-expressing cells. J Biol Chem 2008; 283:10793-803. [PMID: 18287094 PMCID: PMC2447623 DOI: 10.1074/jbc.m706816200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The interferons (IFNs) are cytokines that play key roles in host defense against viral infections and immune surveillance against cancer. We report that BCR-ABL transformation of hematopoietic cells results in suppression of IFN-dependent responses, including transcription of IFN-inducible genes and generation of IFN-mediated antiviral effects. BCR-ABL transformation suppresses expression of several IFN-regulated genes containing IFN-sensitive response element (ISRE) or GAS elements in their promoters, including Isg15, Irf1, Irf9, and Ifit2 (interferon-induced protein with tetratricopeptide repeats 2). Suppression of transcription of ISRE-containing genes is also seen in cells expressing various BCR-ABL kinase domain mutants, including T315I, H396P, Y253F, and E255K, but not kinase-defective BCR-ABL. Such effects are associated with impaired IFN-dependent phosphorylation of Stat1 on Tyr(701) and Stat3 on Tyr(705) and defective binding of Stat complexes to ISRE or GAS elements. Beyond suppression of Stat activities, BCR-ABL inhibits IFN-inducible phosphorylation/activation of the p38 MAPK, suggesting a dual mechanism by which this abnormal fusion protein blocks IFN transcriptional responses. The inhibitory activities of BCR-ABL ultimately result in impaired IFNalpha-mediated protection against encephalomyocarditis virus infection and reversal of IFN-dependent growth suppression. Altogether, our data provide evidence for a novel mechanism by which BCR-ABL impairs host defenses and promotes malignant transformation, involving dual suppression of IFN-activated signaling pathways.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Lakeside Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hsiao YM, Huang YL, Tang SC, Shieh GJ, Lai JY, Wang PH, Ying TH, Ko JL. Effect of a fungal immunomodulatory protein from Ganoderma tsugae on cell cycle and interferon-gamma production through phosphatidylinositol 3-kinase signal pathway. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Belguise K, Sonenshein GE. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2008; 117:4009-21. [PMID: 18037997 DOI: 10.1172/jci32424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/19/2007] [Indexed: 12/14/2022] Open
Abstract
The vast majority of primary human breast cancer tissues display aberrant nuclear NF-kappaB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor alpha (ERalpha) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCtheta-Akt pathway that leads to downregulation of ERalpha synthesis and derepression of c-Rel. ERalpha levels were lower in c-Rel-induced mammary tumors compared with normal mammary gland tissue. PKCtheta induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2alpha-driven mouse mammary tumor-derived cell lines. RNA expression levels of PKCtheta and c-Rel target genes were inversely correlated with ERalpha levels in human breast cancer specimens. PKCtheta activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERalpha and p27(Kip1). Thus we have shown that activation of PKCtheta inhibits the FOXO3a/ERalpha/p27(Kip1) axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.
Collapse
Affiliation(s)
- Karine Belguise
- Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
29
|
Page KM, Chaudhary D, Goldman SJ, Kasaian MT. Natural killer cells from protein kinase C theta-/- mice stimulated with interleukin-12 are deficient in production of interferon-gamma. J Leukoc Biol 2008; 83:1267-76. [PMID: 18263766 DOI: 10.1189/jlb.1107745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein kinase C theta (PKCtheta) is expressed in NK cells, but its functional role has not been defined. Here, we demonstrate involvement of PKCtheta in IL-12-induced NK cell IFN-gamma production. NK cells from PKCtheta(-/-) mice produced less IFN-gamma in response to IL-12 than those from wild-type (WT) mice. IL-12-induced NK cell cytotoxicity was unaffected, and NK cells from PKCtheta(-/-) mice did not display reduced IFN-gamma production in response to IL-18, indicating a specific role for PKCtheta in IL-12-induced IFN-gamma production. Under the conditions tested, T cells did not produce IFN-gamma in response to IL-12 or affect the ability of NK cells to produce the cytokine. PKCtheta deficiency did not affect NK cell numbers, granularity, viability, or cytotoxic activity in response to polyinosinic:polycytydylic acid. NK cells from PKCtheta(-/-) mice exhibited normal expression of IL-12Rbeta1 and STAT4 proteins and normal induction of STAT4 phosphorylation in response to IL-12. Phosphorylation of threonine 538 within the catalytic domain of PKCtheta was detectable in NK cells from WT mice but was not enhanced by IL-12. Transcription of IFN-gamma increased similarly in NK cells from WT and PKCtheta(-/-) mice in response to IL-12, and there was no difference in IFN-gamma mRNA stability. Taken together, these findings indicate a role for PKCtheta in the post-transcriptional regulation of IL-12-induced IFN-gamma production.
Collapse
Affiliation(s)
- Karen M Page
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
30
|
Interleukin-21 regulates expression of key Epstein-Barr virus oncoproteins, EBNA2 and LMP1, in infected human B cells. Virology 2008; 374:100-13. [PMID: 18222514 DOI: 10.1016/j.virol.2007.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/27/2007] [Accepted: 12/11/2007] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV) persists for the life of the host by accessing the long-lived memory B cell pool. It has been proposed that EBV uses different combinations of viral proteins, known as latency types, to drive infected B cells to make the transition from resting B cells to memory cells. This process is normally antigen-driven. A major unresolved question is what factors coordinate expression of EBV latency proteins. We have recently described novel type III latency EBV+ B cell lines (OCI-BCLs) that were induced to differentiate into late plasmablasts/early plasma cells in culture with interleukin-21 (IL-21), mimicking normal B cell development. The objective of this study was to determine whether IL-21-mediated signals also regulate the expression of key EBV latent proteins during this window of development. Here we show that IL-21-reduced gene and protein expression of growth-transforming EBV nuclear antigen 2 (EBNA2) in OCI-BCLs. By contrast, the expression of CD40-like, latent membrane protein 1 (LMP1) strongly increased in these cells suggesting an EBNA2-independent mode of regulation. Same results were also observed in Burkitt's lymphoma line Jijoye and B95-8 transformed lymphoblastoid cell lines. The effect of IL-21 on EBNA2 and LMP1 expression was attenuated by a pharmacological JAK inhibitor indicating involvement of JAK/STAT signalling in this process. Our study also shows that IL-21 induced transcription of ebna1 from the viral Q promoter (Qp).
Collapse
|
31
|
Freeley M, Park J, Yang KJ, Wange RL, Volkov Y, Kelleher D, Long A. Loss of PTEN expression does not contribute to PDK-1 activity and PKC activation-loop phosphorylation in Jurkat leukaemic T cells. Cell Signal 2007; 19:2444-57. [PMID: 17826953 DOI: 10.1016/j.cellsig.2007.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/13/2007] [Accepted: 07/23/2007] [Indexed: 02/06/2023]
Abstract
Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms. It is unknown however if the loss of PTEN in Jurkat cells also results in unregulated PDK-1 activity and whether such loss impacts on activation-loop phosphorylation of other putative PDK-1 substrates such as PKC. In this study we have addressed if loss of PTEN in Jurkat T cells affects PDK-1 catalytic activity and intracellular localisation. We demonstrate that reducing the level of 3'-phosphoinositides in Jurkat cells with pharmacological inhibitors of PI3-kinase or expression of PTEN does not affect PDK-1 activity, Ser241 phosphorylation or intracellular localisation. In support of this finding, we show that the levels of PKC activation-loop phosphorylation are unaffected by reductions in the levels of 3'-phosphoinositides. Instead, the dephosphorylation that occurs on PKB/Akt at Thr308 following reductions in 3'-phosphoinositides is dependent on PP2A-like phosphatase activity. Our finding that PDK-1 functions independently of 3'-phosphoinositides in T cells is also confirmed by studies in HuT-78 T cells, a PTEN-expressing cell line with undetectable levels of 3'-phosphoinositides. We conclude therefore that loss of PTEN expression in Jurkat T cells does not impact on the PDK-1/PKC pathway and that only a subset of kinases, such as PKB/Akt, are perturbed as a consequence PTEN loss.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hindley A, Kolch W. Raf-1 and B-Raf promote protein kinase C θ interaction with BAD. Cell Signal 2007; 19:547-55. [PMID: 17011751 DOI: 10.1016/j.cellsig.2006.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/13/2006] [Accepted: 08/13/2006] [Indexed: 01/19/2023]
Abstract
PKCtheta regulates the proliferation, survival and differentiation of T-cells. Here we show that PKCtheta interacts with Raf-1 and B-Raf kinases. Raf-1 enhanced the kinase activity of associated PKCtheta, while PKCtheta reduced the catalytic activity of associated Raf-1. In contrast, B-Raf binding did not affect PKCtheta kinase activity, and PKCtheta did not change B-Raf activity. Coexpression of mutationally activated Raf-1 in cells enhanced the phosphorylation of T538 in the PKCtheta activation loop. PKCtheta and Raf cooperated in terms of binding to BAD, a pro-apoptotic Bcl-2 family protein that is inactivated by phosphorylation. While neither Raf-1 nor B-Raf could phosphorylate BAD, they enhanced the ability of PKCtheta to interact with BAD and to phosphorylate BAD in vitro and in vivo, suggesting a new role for Raf proteins in T-cells by targeting PKCtheta to interact with and phosphorylate BAD.
Collapse
Affiliation(s)
- Alison Hindley
- Signalling and Proteomics Laboratory, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
33
|
Gruber T, Freeley M, Thuille N, Heit I, Shaw S, Long A, Baier G. Comment on "PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation". Science 2006; 312:55; author reply 55. [PMID: 16601177 DOI: 10.1126/science.1115362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We observe that protein kinase C (PKC) is phosphorylated on the activation loop at threonine 538 (Thr-538) before T cell activation. Our results are inconsistent with the conclusions of Lee et al. (Reports, 1 April 2005, p. 114) that the Thr-538 phosphorylation of PKC is regulated by T cell receptor activation. Other mechanisms, such as autophosphorylation of Thr-219, might orchestrate the cellular function of PKC in T cells.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | |
Collapse
|
34
|
Katsoulidis E, Li Y, Mears H, Platanias LC. The p38 mitogen-activated protein kinase pathway in interferon signal transduction. J Interferon Cytokine Res 2006; 25:749-56. [PMID: 16375603 DOI: 10.1089/jir.2005.25.749] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interferons (IFNs) are cytokines that regulate a variety of biologic effects, including cellular antiviral responses, inhibition of proliferation, induction of differentiation, and immunoregulation, via different mechanisms. In order to mediate such pleiotropic effects, IFNs trigger numerous signaling events. One way for IFNs to regulate cellular functions is through activation of mitogen-activated protein (MAP) kinases. Three major cascades of MAP kinases are known. The c-Jun NH(2)-terminal kinase (JNK) cascade, the extracellular signal-regulated kinase (ERK) cascade, and the p38 MAP kinase cascade. ERK and p38 MAP kinases are activated in response to type I IFNs and participate in the regulation of cellular responses. In this review we discuss recent findings on the role of the p38 MAP kinase pathway and its function in mediating IFN-dependent biologic effects. We further dissect and discuss the roles of upstream and downstream components of the p38 MAP kinase in the control of cellular responses triggered by IFNs.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 303 East Superior Street, Lurie 3-125, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
35
|
Warwar N, Efendic S, Ostenson CG, Haber EP, Cerasi E, Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat. Diabetes 2006; 55:590-9. [PMID: 16505220 DOI: 10.2337/diabetes.55.03.06.db05-0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose metabolism affects most major signal pathways in pancreatic beta-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCalpha staining was strongly associated with insulin staining, jointly accumulating in the vicinity of the plasma membrane during early first-phase insulin response. The signal declined before the onset of second phase and reappeared during second-phase insulin release as foci, only weekly associated with insulin staining; this signal persisted for at least 15 min after glucose stimulation. In the GK rat, glucose had minimal effect on beta-cell PKCalpha. In control beta-cells, PKCdelta stained as granulated foci with partial association with insulin staining; however, no glucose-dependent translocation was observed. In the GK rat, only minimal staining for PKCdelta was observed, increasing exclusively during early first-phase secretion. In Wistar beta-cells, PKCepsilon concentrated near the nucleus, strongly associated with insulin staining, with dynamics resembling that of biphasic insulin response, but persisting for 15 min after cessation of stimulation. In GK rats, PKCepsilon staining lacked glucose-dependent changes or association with insulin. PKCzeta exhibited bimodal dynamics in control beta-cells: during early first phase, accumulation near the cell membrane was observed, dispersing thereafter. This was followed by a gradual accumulation near the nucleus; 15 min after glucose stimulus, clear PKCzeta staining was observed within the nucleus. In the GK rat, a similar response was only occasionally observed. In control beta-cells, glucose stimulation led to a transient recruitment of PKCtheta, associated with first-phase insulin release, not seen in GK beta-cell. Data from this and related studies support a role for PKCalpha in glucose-induced insulin granule recruitment for exocytosis; a role for PKCepsilon in activation of insulin granules for exocytosis and/or in the glucose-generated time-dependent potentiation signal for insulin release; and a dual function for PKCzeta in initiating insulin release and in a regulatory role in the transcriptional machinery. Furthermore, diminished levels and/or activation of PKCalpha, PKCepsilon, PKCtheta, and PKCzeta could be part of the defective signals downstream to glucose metabolism responsible for the deranged insulin secretion in the GK rat.
Collapse
Affiliation(s)
- Nasim Warwar
- Endocrinology and Metabolism Service, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Solomou EE, Keyvanfar K, Young NS. T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood 2006; 107:3983-91. [PMID: 16434488 PMCID: PMC1895294 DOI: 10.1182/blood-2005-10-4201] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In aplastic anemia, immune destruction of hematopoietic cells results in bone marrow failure. Type 1 cytokines, especially IFN-gamma, have been implicated in the pathophysiology of T-cell-mediated, Fas-mediated stem cell apoptosis of hematopoietic cells. Here, we show that the transcription factor T-bet (T-box expressed in T cells) is increased in T cells from patients with aplastic anemia. Patients' T-bet bound directly to the proximal site of the IFN-gamma promoter without any prior stimulation, in contrast to healthy controls. Increased levels of Itk kinase participated in T-bet up-regulation and active transcription of the IFN-gamma gene observed in these patients. Blocking PKC-, a kinase that lies downstream of Itk kinase, decreased T-bet protein and IFN-gamma intracellular levels. These data suggest that the increased IFN-gamma levels observed in aplastic anemia patients are the result of active transcription of the IFN-gamma gene by T-bet. Blocking the transcription of the IFN-gamma gene with kinase inhibitors might lead to the development of novel therapeutic agents for patients with aplastic anemia and other autoimmune diseases.
Collapse
Affiliation(s)
- Elena E Solomou
- Hematology Branch, National Heart, Lung, and Blood Institute/NIH, Bldg 10, CRC, Rm 3E5216, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
37
|
Lin YY, Hung CF, Wu TC. Functional Studies of Lymphocytes Using RNAi Technology. Transfus Med Hemother 2006. [DOI: 10.1159/000090204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Li G, Lucas JJ, Gelfand EW. Protein kinase C α, βI, and βII isozymes regulate cytokine production in mast cells through MEKK2/ERK5-dependent and -independent pathways. Cell Immunol 2005; 238:10-8. [PMID: 16430878 DOI: 10.1016/j.cellimm.2005.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 11/19/2022]
Abstract
Regulation of MAPK pathways by PKC isoforms was examined in murine bone marrow-derived mast cells (BMMCs). The PKCalpha, betaI, and betaII isoforms showed the most robust activation after FcepsilonR1-mediated stimulation by anti-ovalbumin specific IgE and ovalbumin (IgE-ova). PKCalpha, betaI, and betaII were all involved in activation of JNK, MEKK2, and ERK5, with differential relative contributions of each isoform to specific MAPK pathway components. BMMCs from mice lacking MEKK2 showed reduced production (50-60%) of IL-6, IL-13, and TNF-alpha after stimulation, demonstrating MEKK2-dependent and -independent pathways for cytokine production. Cytokine production was stimulated by over-expression of PKC in cells from MEKK2-deficient and wild-type mice. Activation of ERK5 did not occur in BMMCs lacking MEKK2, indicating that MEKK2-independent cytokine production was also ERK5-independent. Since MAPK modules differentially regulate mast cell functions, including degranulation and cytokine production, it is suggested that specific functions could be targeted by inhibiting specific PKC isoforms.
Collapse
Affiliation(s)
- Guiming Li
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
39
|
Freeley M, Volkov Y, Kelleher D, Long A. Stimulus-induced phosphorylation of PKC theta at the C-terminal hydrophobic-motif in human T lymphocytes. Biochem Biophys Res Commun 2005; 334:619-30. [PMID: 16009340 DOI: 10.1016/j.bbrc.2005.06.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases whose activity is controlled, in part, by phosphorylation on three conserved residues that are located on the catalytic domain of the enzyme, known as the activation-loop, the turn-motif, and the C-terminal hydrophobic-motif sites. Using a panel of phospho-specific antibodies, we have determined that PKC beta(I) and delta are constitutively phosphorylated on all three sites in unstimulated and activated T cells. Although PKC theta is constitutively phosphorylated at the activation-loop and turn-motif sites in T cells, PMA or anti-CD3/CD28 stimulation results in an increase in phosphorylation at the hydrophobic-motif (Ser695), an event that coincides with translocation of the enzyme from the cytosol/cytoskeleton to the membrane. Studies on the stimulus-induced phosphorylation of PKC theta demonstrate that an upstream kinase activity involving a conventional PKC isoform(s) and the PI3-kinase pathway, rather than autophosphorylation or the rapamycin-sensitive mTOR pathway, regulates this site in T lymphocytes. However, hydrophobic-motif phosphorylation does not appear to control membrane translocation, suggesting that this site may control other aspects of PKC theta signalling.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Biochemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | | | | | | |
Collapse
|
40
|
Hu X, Park-Min KH, Ho HH, Ivashkiv LB. IFN-gamma-primed macrophages exhibit increased CCR2-dependent migration and altered IFN-gamma responses mediated by Stat1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:3637-47. [PMID: 16148108 DOI: 10.4049/jimmunol.175.6.3637] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Priming of macrophages with IFN-gamma increases cellular responsiveness to inflammatory stimuli, including IFN-gamma itself. We described previously that priming with subactivating concentrations of IFN-gamma increased Stat1 expression and resulted in enhanced activation of Stat1 and of a subset of IFN-gamma-responsive genes when primed macrophages were restimulated with low doses of IFN-gamma. In this study, we determined the effects of IFN-gamma priming on the macrophage transcriptome and on transcriptional responses to high saturating concentrations of IFN-gamma. At baseline, primed macrophages expressed a small subset of IFN-gamma-inducible genes, including CCR2, and exhibited increased migration in response to CCL2. Activation of gene expression by high concentrations of IFN-gamma was altered in primed macrophages, such that activation of a subset of IFN-gamma-inducible genes was attenuated. A majority of genes in this "less induced" category corresponded to genes that are induced by IFN-gamma via Stat1-independent but Stat3-dependent pathways and have been implicated in inflammatory tissue destruction. One mechanism of attenuation of gene expression was down-regulation of Stat3 function by increased levels of Stat1. These results reveal that priming enhances migration to inflammatory chemokines and identify IFN-gamma-inducible genes whose expression is attenuated by high levels of Stat1. The increase in Stat1 expression during priming provides a mechanism by which physiological regulation of the relative abundance of Stat1 and Stat3 impacts on gene expression. Our results also suggest that, in addition to inducing hypersensitivity to inflammatory stimuli, IFN priming delivers a homeostatic signal by attenuating IFN-gamma induction of certain tissue-destructive genes.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Arthritis and Tissue Degeneration Program, Department of Medicine, Hospital for Special Surgery, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
41
|
Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S. Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 2005; 162:112-21. [PMID: 15833366 DOI: 10.1016/j.jneuroim.2005.01.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 02/05/2023]
Abstract
Interferon (IFN)-gamma plays a pivotal role in the pathogenesis of multiple sclerosis (MS), while IFN-beta may be able to modify the clinical course of the disease, eventually also by counterbalancing IFN-gamma-mediated effects. Catecholamines (CA) exert important effects on the immune response, both as transmitters between the nervous and the immune system, as well as autocrine/paracrine mediators in immune cells, and several lines of evidence support their involvement in MS. In particular, dysregulated production of CA seems to occur in peripheral blood mononuclear cells (PBMCs) of MS patients. We assessed the effects of IFN-beta and IFN-gamma on endogenous CA in PBMCs. In cultured PBMCs stimulated with phytohaemagglutinin (PHA), IFN-beta increased CA production and induced CA release in the culture medium, while IFN-gamma decreased both CA production and the expression of mRNA for the CA-synthesizing enzyme tyrosine hydroxylase. Coincubation with both IFNs prevented the inhibitory effect of IFN-gamma, as well as the stimulatory effect of IFN-beta. IFNs are the first physiological compounds shown to affect endogenous CA in PBMCs: in view of the role of CA-dependent mechanisms in the immune response, these findings may help to better understand the mechanisms of action of IFN-beta as an immunomodulatory drug in MS.
Collapse
Affiliation(s)
- Marco Cosentino
- Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100 Varese VA, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Interferons are cytokines that have antiviral, antiproliferative and immunomodulatory effects. Because of these important properties, in the past two decades, major research efforts have been undertaken to understand the signalling mechanisms through which these cytokines induce their effects. Since the original discovery of the classical JAK (Janus activated kinase)-STAT (signal transducer and activator of transcription) pathway of signalling, it has become clear that the coordination and cooperation of multiple distinct signalling cascades - including the mitogen-activated protein kinase p38 cascade and the phosphatidylinositol 3-kinase cascade - are required for the generation of responses to interferons. It is anticipated that an increased understanding of the contributions of these recently identified pathways will advance our current thinking about how interferons work.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 710 North Fairbanks Court, Olson 8250, Chicago, Illinois 60611, USA.
| |
Collapse
|
43
|
Abstract
RNA interference (RNAi) is a conserved biologic response to double-stranded RNA that results in the sequence-specific silencing of target gene expression. Over the past 5 years, an intensive research effort has facilitated the rapid movement of RNAi from a relatively obscure biologic phenomenon to a valuable tool used to silence target gene expression and perform large-scale functional genomic screens. In fact, recent studies reported in this journal and others have demonstrated success using RNAi to address the role of oncogene expression in leukemia cell lines and to validate the therapeutic potential of RNAi for treating these blood disorders. In order to advance these applications and gain an appreciation for the future of RNAi both in basic research and in the treatment of diseases caused by aberrant gene expression, it is important to have an understanding of the process of RNAi and its limitations.
Collapse
Affiliation(s)
- Carol A Sledz
- Department of Cancer Biology NB40, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | |
Collapse
|
44
|
Subramaniam PS, Johnson HM. The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence. FEBS Lett 2005; 578:207-10. [PMID: 15589821 DOI: 10.1016/j.febslet.2004.10.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 10/17/2004] [Accepted: 10/28/2004] [Indexed: 11/26/2022]
Abstract
A nuclear localization sequence (NLS) in the type II interferon (IFN) IFN gamma, which is responsible for the nuclear translocation of both the ligand and the alpha-subunit (IFNGR1) of the receptor complex, has previously been characterized and its role in signaling examined in detail. We have now identified an NLS in the type I IFN receptor (IFNAR) common subunit IFNAR1 from humans and show that the human IFNAR1 subunit can translocate to the nucleus following human IFN beta stimulation. An NLS in human IFNAR1 is located in the extracellular domain of IFNAR1 within the sequence (382)RKIIEKKT (numbered for the precursor form). Nuclear import by the NLS functions in a conventional fashion requiring cytosolic import factors, is energy-dependent and inhibited by the prototypical NLS of the SV40 large T-antigen. These studies provide a mechanism for nuclear import of IFNAR1, as well as for type I IFN ligands, and a starting point for studying an alternate role for IFNAR1 in nuclear signaling within the type I IFN system.
Collapse
Affiliation(s)
- Prem S Subramaniam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
45
|
Li Y, Batra S, Sassano A, Majchrzak B, Levy DE, Gaestel M, Fish EN, Davis RJ, Platanias LC. Activation of mitogen-activated protein kinase kinase (MKK) 3 and MKK6 by type I interferons. J Biol Chem 2005; 280:10001-10. [PMID: 15644321 DOI: 10.1074/jbc.m410972200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There is accumulating evidence that the p38 MAP kinase pathway plays important roles in Type I interferon (IFN) signaling, but the mechanisms regulating p38 activation during engagement of the Type I IFN receptor remain to be defined. We sought to identify the events that lead to activation of the p38 MAP kinase in response to Type I IFNs. Our data demonstrate that treatment of sensitive cell lines with IFNalpha results in activation of both MAP kinase kinase 3 (MKK3) and MAP kinase kinase 6 (MKK6). Such IFN-inducible activation of MKK3 and MKK6 is essential for downstream phosphorylation and activation of the p38 MAP kinase, as shown by studies using mouse embryonic fibroblasts (MEFs) with targeted disruption of the Mkk3 and Mkk6 genes (MKK3-/- MKK6-/-). Similarly, IFN-dependent activation of the downstream effectors of p38, MAPKAPK-2 and MAPKAPK-3, is not detectable in cells lacking Mkk3 and Mkk6, demonstrating that the function of these MAP kinase kinases is required for full activation of the p38 pathway. To define the functional relevance of MKK3/6 engagement in Type I IFN signaling, IFN-inducible gene transcription was evaluated in the MKK3/MKK6 double knock-out cells. IFNalpha- and IFNbeta-dependent transcription via either interferon-stimulated response element or IFNgamma activated site elements was defective in MKK3 -/-/MKK6 -/- MEFs in luciferase reporter assays. In addition, IFN-dependent induction of two genes known to be of importance in the generation of IFN responses, Isg15 and Irf-9, was diminished in the absence of Mkk3 and Mkk6. The effects of Mkk3 and Mkk6 on IFN-dependent transcription were unrelated to any effects on the phosphorylation and activation of STAT proteins, indicating the presence of a STAT-independent mechanism. Altogether, our findings demonstrate that MKK3 and MKK6 are rapidly activated during engagement of the Type I IFN receptor and play important roles in Type I IFN signaling and the generation of IFN responses.
Collapse
Affiliation(s)
- Yongzhong Li
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, 710 North Fairbanks St., Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|