1
|
Sales D, Lin E, Stoffel V, Dickson S, Khan ZK, Beld J, Jain P. Apigenin improves cytotoxicity of antiretroviral drugs against HTLV-1 infected cells through the modulation of AhR signaling. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:49-62. [PMID: 37027342 PMCID: PMC10070013 DOI: 10.1515/nipt-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/19/2023]
Abstract
Objectives HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory autoimmune disease characterized by high levels of infected immortalized T cells in circulation, which makes it difficult for antiretroviral (ART) drugs to work effectively. In previous studies, we established that Apigenin, a flavonoid, can exert immunomodulatory effects to reduce neuroinflammation. Flavonoids are natural ligands for the aryl hydrocarbon receptor (AhR), which is a ligand activated endogenous receptor involved in the xenobiotic response. Consequently, we tested Apigenin's synergy in combination with ART against the survival of HTLV-1-infected cells. Methods First, we established a direct protein-protein interaction between Apigenin and AhR. We then demonstrated that Apigenin and its derivative VY-3-68 enter activated T cells, drive nuclear shuttling of AhR, and modulate its signaling both at RNA and protein level. Results In HTLV-1 producing cells with high AhR expression, Apigenin cooperates with ARTs such as Lopinavir (LPN) and Zidovudine (AZT), to impart cytotoxicity by exhibiting a major shift in IC50 that was reversed upon AhR knockdown. Mechanistically, Apigenin treatment led to an overall downregulation of NF-κB and several other pro-cancer genes involved in survival. Conclusions This study suggest the potential combinatorial use of Apigenin with current first-line antiretrovirals for the benefit of patients affected by HTLV-1 associated pathologies.
Collapse
Affiliation(s)
- Dominic Sales
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Victoria Stoffel
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shallyn Dickson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Nacarino-Palma A, Rico-Leo EM, Campisi J, Ramanathan A, González-Rico FJ, Rejano-Gordillo CM, Ordiales-Talavero A, Merino JM, Fernández-Salguero PM. Aryl hydrocarbon receptor blocks aging-induced senescence in the liver and fibroblast cells. Aging (Albany NY) 2022; 14:4281-4304. [PMID: 35619220 PMCID: PMC9186759 DOI: 10.18632/aging.204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/06/2022] [Indexed: 01/10/2023]
Abstract
Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers β-galactosidase (SA-β-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-β-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.
Collapse
Affiliation(s)
- Ana Nacarino-Palma
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Eva M Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Claudia M Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz 06071, Spain
| |
Collapse
|
3
|
AhR promotes phosphorylation of ARNT isoform 1 in human T cell malignancies as a switch for optimal AhR activity. Proc Natl Acad Sci U S A 2022; 119:e2114336119. [PMID: 35290121 PMCID: PMC8944900 DOI: 10.1073/pnas.2114336119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor present in immune cells as a long and short isoform, referred to as isoforms 1 and 3, respectively. However, investigation into potential ARNT isoform–specific immune functions is lacking despite the well-established heterodimerization requirement of ARNT with, and for the activity of, the aryl hydrocarbon receptor (AhR), a critical mediator of immune homeostasis. Here, using global and targeted transcriptomics analyses, we show that the relative ARNT isoform 1:3 ratio in human T cell lymphoma cells dictates the amplitude and direction of AhR target gene regulation. Specifically, shifting the ARNT isoform 1:3 ratio lower by suppressing isoform 1 enhances, or higher by suppressing isoform 3 abrogates, AhR responsiveness to ligand activation through preprograming a cellular genetic background that directs explicit gene expression patterns. Moreover, the fluctuations in gene expression patterns that accompany a decrease or increase in the ARNT isoform 1:3 ratio are associated with inflammation or immunosuppression, respectively. Molecular studies identified the unique casein kinase 2 (CK2) phosphorylation site within isoform 1 as an essential parameter to the mechanism of ARNT isoform–specific regulation of AhR signaling. Notably, CK2-mediated phosphorylation of ARNT isoform 1 is dependent on ligand-induced AhR nuclear translocation and is required for optimal AhR target gene regulation. These observations reveal ARNT as a central modulator of AhR activity predicated on the status of the ARNT isoform ratio and suggest that ARNT-based therapies are a viable option for tuning the immune system to target immune disorders.
Collapse
|
4
|
O'Donnell EF, Jang HS, Liefwalker DF, Kerkvliet NI, Kolluri SK. Discovery and Mechanistic Characterization of a Select Modulator of AhR-regulated Transcription (SMAhRT) with Anti-cancer Effects. Apoptosis 2021; 26:307-322. [PMID: 33893898 DOI: 10.1007/s10495-021-01666-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and a member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of proteins. The AhR was cloned and characterized for its role in mediating the toxicity of dioxins. Subsequent research has identified the role of AhR in suppression of cancer cell growth. We hypothesized that the AhR is a molecular target for therapeutic intervention in cancer, and that activation of the AhR by unique AhR ligands in cancer cells could have anti-cancer effects including induction of cell death. This study describes the discovery and characterization of a new class of anti-cancer agents targeting the AhR, that we designate as Select Modulators of AhR-regulated Transcription (SMAhRTs). We employed two independent small molecule screening approaches to identify potential SMAhRTs. We report the identification of CGS-15943 that activates AhR signaling and induces apoptosis in an AhR-dependent manner in liver and breast cancer cells. Investigation of the downstream signaling pathway of this newly identified SMAhRT revealed upregulation of Fas-ligand (FasL), which is required for AhR-mediated apoptosis. Our results provide a basis for further development of a new class of anti-cancer therapeutics targeting an underappreciated molecular target, the AhR.
Collapse
Affiliation(s)
- Edmond Francis O'Donnell
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Davis, CA, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Daniel F Liefwalker
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA.
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
5
|
Cheng X, Haeberle S, Shytaj IL, Gama-Brambila RA, Theobald J, Ghafoory S, Wölker J, Basu U, Schmidt C, Timm A, Taškova K, Bauer AS, Hoheisel J, Tsopoulidis N, Fackler OT, Savarino A, Andrade-Navarro MA, Ott I, Lusic M, Hadaschik EN, Wölfl S. NHC-gold compounds mediate immune suppression through induction of AHR-TGFβ1 signalling in vitro and in scurfy mice. Commun Biol 2020; 3:10. [PMID: 31909202 PMCID: PMC6941985 DOI: 10.1038/s42003-019-0716-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar N-heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFβ1 signaling and suppresses CD4+ T-cell activation in vitro, in human and mouse T cells. Conversely, genetic knockdown or chemical inhibition of AHR activity or of TGFβ1-SMAD-mediated signaling offsets the MC3-mediated immunosuppression. In scurfy mice, a mouse model of human immunodysregulation polyendocrinopathy enteropathy X-linked syndrome, MC3 treatment reduced autoimmune phenotypes and extended lifespan from 24 to 58 days. Our findings suggest that the immunosuppressive activity of gold compounds can be improved by introducing planar NHC ligands to activate the AHR-associated immunosuppressive pathway, thus expanding their potential clinical application for autoimmune diseases.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Stefanie Haeberle
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Iart Luca Shytaj
- Department of Infectious Diseases Integrative Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Rodrigo. A. Gama-Brambila
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Jessica Wölker
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Annika Timm
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Katerina Taškova
- Biozentrum I, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | | | - Jörg Hoheisel
- Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Andrea Savarino
- Present Address: Department of Infectious and Immune-Mediated Diseases, Italian Institute of Health, Rome, Italy
| | - Miguel A. Andrade-Navarro
- Biozentrum I, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Marina Lusic
- Department of Infectious Diseases Integrative Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Eva N. Hadaschik
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Stefan. Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. The effects of β-naphthoflavone on rat placental development. J Toxicol Pathol 2019; 32:275-282. [PMID: 31719754 PMCID: PMC6831496 DOI: 10.1293/tox.2019-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
The morphological effects of β-naphthoflavone (β-NF) on placental development in
pregnant rats were examined. β-NF, administered to pregnant rats intraperitoneally at 15
mg/kg bw from gestation day (GD) 9 to GD 14, had no effect on maternal body weight gain,
mortality, or clinical sign. In the β-NF-exposed rats, intrauterine growth retardation
(IUGR) rates increased on GDs 17 and 21, although there was no effect on fetal mortality
rate, fetal or placental weight, or external fetal abnormality. Histopathologically, β-NF
induced apoptosis and inhibition of cell proliferation of the trophoblastic septa in the
labyrinth zone, resulting in its poor development. In the basal zone, β-NF induced
spongiotrophoblast apoptosis and delayed glycogen islet regression, resulting in their
cystic degeneration. β-NF-induced CYP1A1 expression was detected in the endothelial cells
of the fetal capillaries in the labyrinth zone and in the endothelial cells of the spiral
arteries in the metrial gland, but not in any trophoblasts. This indicates that CYP1A1 is
inducible in the endothelial cells of the fetal capillaries in the labyrinth zone, and
that these cells have an important role in metabolizing CYP1A1 inducers crossing the
placental barrier.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Naho Tsuji
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Chisato Hayakawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Veterinary Clinical Pathology, Faculty of Veterinary Medicine Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
7
|
De A, Jacobson BA, Peterson MS, Jay-Dixon J, Kratzke MG, Sadiq AA, Patel MR, Kratzke RA. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma. Invest New Drugs 2017; 36:217-229. [PMID: 29116477 DOI: 10.1007/s10637-017-0535-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022]
Abstract
Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.
Collapse
Affiliation(s)
- Arpita De
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mark S Peterson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Joe Jay-Dixon
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marian G Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ahad A Sadiq
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Kimura E, Kubo KI, Endo T, Ling W, Nakajima K, Kakeyama M, Tohyama C. Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse. PLoS One 2017; 12:e0183497. [PMID: 28820910 PMCID: PMC5562321 DOI: 10.1371/journal.pone.0183497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/05/2017] [Indexed: 11/24/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mammalian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate nervous system development in both invertebrates and vertebrates, but the functions that AhR signaling pathway may have for mammalian cerebral cortex development remains elusive. Although the endogenous ligand involved in brain developmental process has not been identified, the environmental pollutant dioxin potently binds AhR and induces abnormalities in higher brain function of laboratory animals. Thus, we studied how activation of AhR signaling influences cortical development in mice. To this end, we produced mice expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-independent activation of downstream genes, or AhR, which requires its ligands for activation. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each transfected into neural stems cells in the developing cerebrum by in utero electroporation on embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III pyramidal neurons and impaired neuronal positioning in the developing somatosensory cortex. The effects of CA-AhR were observed for dendrite development but not for the commissural fiber projection, suggesting a preferential influence on dendrites. The present results indicate that over-activation of AhR perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.
Collapse
Affiliation(s)
- Eiki Kimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wenting Ling
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Neuroscience and Preventive Medicine, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
9
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
10
|
|
11
|
Kimura E, Kubo KI, Endo T, Nakajima K, Kakeyama M, Tohyama C. Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse. J Toxicol Sci 2017; 42:25-30. [PMID: 28070106 DOI: 10.2131/jts.42.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.
Collapse
Affiliation(s)
- Eiki Kimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | |
Collapse
|
12
|
Mohammadi-Bardbori A, Bastan F, Akbarizadeh AR. The highly bioactive molecule and signal substance 6-formylindolo[3,2-b]carbazole (FICZ) plays bi-functional roles in cell growth and apoptosis in vitro. Arch Toxicol 2017; 91:3365-3372. [DOI: 10.1007/s00204-017-1950-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
|
13
|
Jagannathan L, Jose CC, Tanwar VS, Bhattacharya S, Cuddapah S. Identification of a unique gene expression signature in mercury and 2,3,7,8-tetrachlorodibenzo- p-dioxin co-exposed cells. Toxicol Res (Camb) 2017; 6:312-323. [PMID: 29057067 DOI: 10.1039/c6tx00432f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mercury (Hg) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are major environmental contaminants that commonly co-occur in the environment. Both Hg and TCDD are associated with a number of human diseases including cancers. While the individual toxicological effects of Hg and TCDD have been extensively investigated, studies on co-exposure are limited to a few genes and pathways. Therefore, a significant knowledge gap exists in the understanding of the deleterious effects of co-exposure to Hg and TCDD. Due to the prevalence of Hg and TCDD co-contamination in the environment and the major human health hazards they pose, it is important to obtain a fuller understanding of genome-wide effects of Hg and TCDD co-exposure. In this study, by performing a comprehensive transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) exposed to Hg and TCDD individually and in combination, we have uncovered a subset of genes with altered expression only in the co-exposed cells. We also identified the additive as well as antagonistic effects of Hg and TCDD on gene expression. Moreover, we found that co-exposure impacted several biological and disease processes not affected by Hg or TCDD individually. Our studies show that the consequences of Hg and TCDD co-exposure on the transcriptional program and biological processes could be substantially different from single exposures, thus providing new insights into the co-exposure-specific pathogenic processes.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Vinay Singh Tanwar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Sudin Bhattacharya
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| |
Collapse
|
14
|
AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse. Sci Rep 2016; 6:26386. [PMID: 27197834 PMCID: PMC4873754 DOI: 10.1038/srep26386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals.
Collapse
|
15
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
16
|
Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. Neurotoxicol Teratol 2015; 52:42-50. [PMID: 26526904 DOI: 10.1016/j.ntt.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 09/26/2015] [Accepted: 10/21/2015] [Indexed: 11/20/2022]
Abstract
Increased prevalence of mental disorders cannot be solely attributed to genetic factors and is considered at least partly attributable to chemical exposure. Among various environmental chemicals, in utero and lactational dioxin exposure has been extensively studied and is known to induce higher brain function abnormalities in both humans and laboratory animals. However, how the perinatal dioxin exposure affects neuromorphological alterations has remained largely unknown. Therefore, in this study, we initially studied whether and how the over-expression of aryl hydrocarbon receptor (AhR), a dioxin receptor, would affect the dendritic growth in the hippocampus of the developing brain. Transfecting a constitutively active AhR plasmid into the hippocampus via in utero electroporation on gestational day (GD) 14 induced abnormal dendritic branch growth. Further, we observed that 14-day-old mice born to dams administered with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 μg/kg) on GD 12.5 exhibited disrupted dendritic branch growth in both the hippocampus and amygdala. Finally, we observed that 16-month-old mice born to dams exposed to perinatal TCDD as described above exhibited significantly reduced spine densities. These results indicated that abnormal micromorphology observed in the developing brain may persist until adulthood and may induce abnormal higher brain function later in life.
Collapse
|
17
|
Oliveira LH, Schiavinato JL, Fráguas MS, Lucena-Araujo AR, Haddad R, Araújo AG, Dalmazzo LF, Rego EM, Covas DT, Zago MA, Panepucci RA. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 2015; 106:1264-77. [PMID: 26251039 PMCID: PMC4637998 DOI: 10.1111/cas.12766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.
Collapse
Affiliation(s)
- Lucila H Oliveira
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Josiane L Schiavinato
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Mariane S Fráguas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | | | - Rodrigo Haddad
- School of Ceilandia, University of BrasiliaBrasilia, Brazil
| | - Amélia G Araújo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Leandro F Dalmazzo
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Eduardo M Rego
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Dimas T Covas
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Marco A Zago
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| | - Rodrigo A Panepucci
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Department of Genetics, Medical School of Ribeirão Preto, University of São PauloSão Paulo, Brazil
- Center for Cell Based Therapy, Regional Blood CenterRibeirão Preto, Brazil
| |
Collapse
|
18
|
Ghatrehsamani M, Soleimani M, Esfahani BAM, Shirzad H, Hakemi MG, Mossahebimohammadi M, Eskandari N, Adib M. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes. Adv Biomed Res 2015; 4:216. [PMID: 26605245 PMCID: PMC4627181 DOI: 10.4103/2277-9175.166163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/10/2015] [Indexed: 11/11/2022] Open
Abstract
Background: Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Materials and Methods: Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. Result: In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P < 0.05). Furthermore, there was no significant difference between the mean percent of cell death in TNF-α administered group and TCDD administered group (P > 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). Conclusion: TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.
Collapse
Affiliation(s)
- Mahdi Ghatrehsamani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | | | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mazdak G Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Mossahebimohammadi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Minoo Adib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology 2015; 333:37-44. [DOI: 10.1016/j.tox.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
20
|
Abstract
As the increasing prevalence of diabetes reaches epidemic proportions worldwide, diabetic nephropathy and associated end‐stage renal failure will be an unavoidable major health burden to not only individuals with diabetes and their families, but also to the health systems both in developed and developing countries. Over the past decade, a large body of research has focused on diabetic nephropathy ranging from studies in molecular signaling, hemodynamic regulation and pharmaceutical intervention to clinical outcomes. It is likely that the pathophysiology of diabetic nephropathy involves a multifactorial interaction between metabolic and hemodynamic factors. Metabolic factors involve glucose‐dependent pathways, such as advanced glycation end‐products and their receptors. Hemodynamic factors include various vasoactive hormones, such as components of the renin–angiotensin system. It is likely that these metabolic and hemodynamic factors interact through shared molecular and signaling pathways, such as nuclear factor kappa‐light‐chain‐enhancer of activated B cells and protein kinase C with associated reactive oxygen species generation. It is likely that these contributing factors cause pathological damage not only to the glomerulus, in particular podocytes, but also to the tubulointerstitium. Specific inhibitors of the various pathways are now available and these emerging pharmaceutical interventions might have potential implications for the prevention and treatment of diabetic nephropathy. The mainstay of therapy remains the achievement of optimal glycemic and blood pressure control in order to slow the progression of diabetic nephropathy. Agents that interrupt the renin–angiotensin system have been shown to be particularly useful as renoprotective agents in both hypertensive and normotensive type 1 and type 2 diabetic subjects. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00131.x, 2011)
Collapse
Affiliation(s)
- Zemin Cao
- Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, and Department of Immunology, Monash University, AMREP, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, and Department of Immunology, Monash University, AMREP, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis 2014; 5:e1038. [PMID: 24481452 PMCID: PMC4040680 DOI: 10.1038/cddis.2013.549] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022]
Abstract
Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the AhR as a molecular target for the treatment of hormone-independent breast cancers.
Collapse
|
22
|
Vega L, Elizondo G. Aryl hydrocarbon receptor as a new therapeutic target for cancer and immune disorders. World J Pharmacol 2013; 2:107-114. [DOI: 10.5497/wjp.v2.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/20/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was discovered more than three decades ago, and initially was characterized as a transcription factor with a role in xenobiotic metabolism. However, based on subsequent observations that AhR remains active under physiological conditions, exhibits constitutive expression during development, and has a high degree of conservation among species, it was hypothesized that AhR is responsible for functions in addition to its role in detoxification. Correspondingly, recent studies have elucidated novel physiological roles for this ligand-dependent transcription factor that link it to several pathways associated with disease development. In this review, studies are presented that support a role for AhR in cell proliferation, apoptosis, and immune homeostasis, thereby highlighting the therapeutic potential of this receptor for cancer and immune disorders.
Collapse
|
23
|
Safe S, Lee SO, Jin UH. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 2013; 135:1-16. [PMID: 23771949 PMCID: PMC3748760 DOI: 10.1093/toxsci/kft128] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/03/2013] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
24
|
Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Muñoz J, Carvajal-González JM, Mulero-Navarro S, García-Pardo A, Teixidó J, Fernandez-Salguero PM. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cell Signal 2013; 25:848-59. [DOI: 10.1016/j.cellsig.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
25
|
Choi JJ, Choi YJ, Chen L, Zhang B, Eum SY, Abreu MT, Toborek M. Lipopolysaccharide potentiates polychlorinated biphenyl-induced disruption of the blood-brain barrier via TLR4/IRF-3 signaling. Toxicology 2012; 302:212-20. [PMID: 22906770 DOI: 10.1016/j.tox.2012.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 01/22/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) is associated with numerous adverse health effects. Although the main route of exposure to PCBs is through the gastrointestinal tract, little is known about the contribution of the gut to the health effects of PCBs. We hypothesize that PCBs can disrupt intestinal integrity, causing lipopolysaccharide (LPS) translocation into the bloodstream and potentiation of the systemic toxicity of PCBs. C57BL/6 mice were exposed to individual PCB congeners by oral gavage, followed by the assessment of small intestine morphology and plasma levels of proinflammatory mediators. In addition, mice and human brain endothelial cells were exposed to PCB118 in the presence or absence of LPS to evaluate the contribution of LPS to PCB-induced toxicity at the blood-brain barrier (BBB) level. Oral administration of PCB153, PCB118, or PCB126 disrupted intestinal morphology and increased plasma levels of LPS and proinflammatory cytokines. Direct injection of LPS and PCB118 into the cerebral microvasculature resulted in synergistic disruption of BBB integrity and decreased expression of tight junction proteins in brain microvessels. In vitro experiments confirmed these effects and indicated that stimulation of the toll-like receptor 4 (TLR4) pathway can be responsible for these effects via activation of interferon regulatory factor-3 (IRF-3). These results indicate that LPS may be a contributing factor in PCB-induced dysfunction of the brain endothelium via stimulation of the TLR4/IRF-3 pathway.
Collapse
Affiliation(s)
- Jeong June Choi
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
To KK, Yu L, Liu S, Fu J, Cho CH. Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol Carcinog 2011; 51:449-64. [DOI: 10.1002/mc.20810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/12/2011] [Indexed: 12/15/2022]
|
27
|
Kalmes M, Hennen J, Clemens J, Blömeke B. Impact of aryl hydrocarbon receptor (AhR) knockdown on cell cycle progression in human HaCaT keratinocytes. Biol Chem 2011; 392:643-51. [PMID: 21627536 DOI: 10.1515/bc.2011.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract While activation of the aryl hydrocarbon receptor (AhR) by exogenous ligands is well investigated, its physiological function is less understood. By extending research in AhR biology, evidence appeared that the receptor generally plays an important role in cell physiology. In keratinocytes, little is known about endogenous functions of the AhR. In order to expand this knowledge, we analyzed the impact of AhR knockdown on cell cycle progression in HaCaT cells and showed that proliferation of siAhR HaCaT cells was significantly decreased. In line with that result, western blot analysis revealed that protein level of the cyclin dependent kinase inhibitor p27(KIP1) was increased, whereas protein level of the cyclin dependent kinase (CDK) 2 was reduced. CDK4 and CDK6 protein levels remained unchanged, whereas protein level of the retinoblastoma protein (pRB) was reduced. By measuring ethoxyresorufin-O-deethylase (EROD) activity we showed that endogenous cytochrome P450 1 (CYP1), especially CYP1A1 is required for normal cell cycle in HaCaT cells, as well. To the best of our knowledge, we provide evidence for the first time in human skin cells, that in the absence of exogenous ligands, the AhR promotes cell cycle progression in HaCaT cells and one can speculate that this is the physiological function of this receptor in keratinocytes.
Collapse
Affiliation(s)
- Michaela Kalmes
- Department of Environmental Toxicology, University of Trier, Germany
| | | | | | | |
Collapse
|
28
|
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 2011; 41:292-320. [PMID: 21323611 DOI: 10.3109/10408444.2010.524635] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous ligands of the aryl hydrocarbon receptor (AhR) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are highly toxic pollutants ubiquitously present in the environment. They cause a variety of toxic effects to different organs and tissues. Among other effects, TCDD exposure to laboratory animals leads to thymus atrophy and immunosuppression on the one hand, and to tumor formation on the other. Apoptosis appears to be involved in both these toxic effects: AhR activation by TCDD was discussed to induce apoptosis of immune cells, leading to the depletion of thymocytes and ultimately immunosuppression. This mechanism could help to explain the highly immunotoxic actions of TCDD but it is nevertheless under debate whether this is the mode of action for immunosuppression by this class of chemical substances. In other cell types, especially liver cells, TCDD inhibits apoptosis induced by genotoxic treatment. In initiation-promotion studies, TCDD was shown to be a potent liver tumor promoter. Among other theories it was hypothesized that TCDD acts as a tumor promoter by preventing initiated cells from undergoing apoptosis. The exact mechanisms of apoptosis inhibition by TCDD are not fully understood, but both in vivo and in vitro studies consistently showed an involvement of the tumor suppressor p53 in this effect. Various strings of evidence have been established linking apoptosis to the detrimental effects of exogenous activation of the AhR. Within this article, studies elucidating the effects of TCDD and related substances on apoptosis signaling, be it inducing or repressing, is to be reviewed.
Collapse
Affiliation(s)
- Martin Chopra
- Institute of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
29
|
Toh BH, Tu Y, Cao Z, Cooper ME, Chai Z. Role of Cell Division Autoantigen 1 (CDA1) in Cell Proliferation and Fibrosis. Genes (Basel) 2010; 1:335-48. [PMID: 24710090 PMCID: PMC3966230 DOI: 10.3390/genes1030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/03/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022] Open
Abstract
Cell Division Autoantigen 1 (CDA1) was discovered following screening a human expression library with serum from a patient with Discoid Lupus Erythematosus. CDA1, encoded by TSPYL2 on the X chromosome, shares anti-proliferative, pro‑fibrotic properties with TGF-β. It inhibits cell growth through p53, pERK1/2, p21‑mediated pathways, is implicated in tumorigenesis, the DNA damage response. Its pro-fibrotic property is mediated through cross-talk with TGF-β that results in upregulation of extracellular matrix proteins. The latter properties have identified a key role for CDA1 in diabetes associated atherosclerosis. These dual properties place CDA1 as an attractive molecular target for treating tumors, vascular fibrosis including atherosclerosis, other vascular disorders associated with enhanced TGF-β action, tissue scarring.
Collapse
Affiliation(s)
- Ban-Hock Toh
- Autoimmunity Laboratory, Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Yugang Tu
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Zemin Cao
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Mark E Cooper
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| | - Zhonglin Chai
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
30
|
Pham Y, Tu Y, Wu T, Allen TJ, Calkin AC, Watson AM, Li J, Jandeleit-Dahm KA, Toh BH, Cao Z, Cooper ME, Chai Z. Cell division autoantigen 1 plays a profibrotic role by modulating downstream signalling of TGF-beta in a murine diabetic model of atherosclerosis. Diabetologia 2010; 53:170-9. [PMID: 19847393 DOI: 10.1007/s00125-009-1555-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/27/2009] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Excess accumulation of vascular extracellular matrix (ECM) is an important pathological process in cardiovascular diseases including diabetes-associated atherosclerosis. We explored how a recently identified molecule, cell division autoantigen 1 (CDA1), influences the profibrotic TGF-beta pathway leading to vascular ECM accumulation. METHODS Expression levels of genes encoding for CDA1, TGF-beta and connective tissue growth factor (CTGF) were examined in aorta from Apoe(-/-) mice with or without diabetes. We used retroviral and adenoviral constructs to knockdown or overexpress Tspyl2, the gene encoding CDA1, in mouse vascular smooth muscle cells (VSMCs) with or without TGF-beta treatment in order to demonstrate the role of CDA1 in TGF-beta signalling. RESULTS In vivo studies indicated that the mRNA levels of CDA1-encoding gene Tspyl2 and protein levels of CDA1 were elevated in the aorta of diabetic Apoe(-/-) mice, accompanied by increased levels of Tgf-beta (also known as Tgfb1), Ctgf and ECM accumulation. In vitro studies in vascular cells showed that TGF-beta treatment rapidly increased CDA1 protein levels, which then amplified TGF-beta signalling leading to upregulation of ECM genes. Knockdown of CDA1-encoding gene Tspyl2 to reduce cellular CDA1 level markedly attenuated TGF-beta-stimulated MAD homologue 3 (drosophila; SMAD3) phosphorylation and transcriptional activities. CDA1 overproduction increased and Tspyl2 knockdown decreased expression of TGF-beta receptor type I, TbetarI (also known as Tgfbr1), but not TGF-beta receptor type II, TbetarII (also known as Tgfbr2), providing a mechanism for CDA1's action in modulating TGF-beta signalling. Knockdown of CDA1-encoding gene Tspyl2 also blocked the profibrotic effect of TGF-beta in VSMCs. CONCLUSIONS/INTERPRETATION CDA1 plays an important role in vascular ECM accumulation by amplifying TGF-beta signalling. This is critical for the profibrotic effect of TGF-beta in the vasculature. CDA1 is therefore a potential target for attenuating vascular ECM accumulation caused by enhanced TGF-beta action, as seen in diabetic atherosclerosis.
Collapse
Affiliation(s)
- Y Pham
- Diabetes and Metabolism Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kawakami T, Ito T, Ohsako S, Shiizaki K, Murakami Y, Hirowatari K, Sato M, Tohyama C. Possible involvement of arylhydrocarbon receptor variants in TCDD-induced thymic atrophy and XRE-dependent transcriptional activity in Wistar Hannover GALAS rats. J Toxicol Sci 2009; 34:209-20. [PMID: 19336978 DOI: 10.2131/jts.34.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wistar Hannover Global Alliance for Laboratory Animal Standardization (WH GALAS) rats have been distributed for international standardization of preclinical and toxicological research. Han/Wistar (Kuopio) rats are exceptionally resistant to acute toxicities caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and mediated by the aryl hydrocarbon receptor (AhR), and they have a mutated AhR, named AhR(hw/hw). We found that the WH GALAS rat has either of the three AhR allele, AhR(wt/wt), AhRwt/hw and AhRhw/hw. We administered TCDD (0, 5 and 10 microg/kg) to Long-Evans (L-E) rats having AhR(wt/wt) and two WH GALAS rat strains having either AhR(wt/wt) or AhR(hw/hw), and examined the weights of their body, liver and thymus 168 hr post-administration. WH GALAS AhR(hw/hw) strain was more resistant to TCDD-induced effects on thymus weight than L-E and WH GALAS AhR(wt/wt) strains. In order to study differences in susceptibility of thymic atrophy among the strains, we examined CYP1A1 mRNA and AhR protein levels between L-E and WH GALAS strains. However, no significant difference was observed in the amount of AhR protein or CYP1A1 mRNA in the thymus. Next, we carried out in vitro assays to examine the transactivation activities of AhR variants and found that the AhR deletion variant (AhRdv) transcribed from AhR(hw/hw) significantly enhanced transactivation activity of the synthesized xenobiotic response element. All AhR variants similarly suppressed the growth of Jurkat T cells upon TCDD exposure. This study suggests that WH GALAS rat having different AhR alleles is an interesting experimental animal model but should be utilized with caution for preclinical research on chemicals having AhR agonistic activities.
Collapse
Affiliation(s)
- Takashige Kawakami
- Environmental Health Sciences Division, National Institute for Environmental Studies, Ibaraki
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ishimaru N, Takagi A, Kohashi M, Yamada A, Arakaki R, Kanno J, Hayashi Y. Neonatal exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmunity due to the disruption of T cell tolerance. THE JOURNAL OF IMMUNOLOGY 2009; 182:6576-86. [PMID: 19414813 DOI: 10.4049/jimmunol.0802289] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to influence immune responses, the effects of low-dose TCDD on the development of autoimmunity are unclear. In this study, using NFS/sld mice as a model for human Sjögren's syndrome, in which the lesions are induced by the thymectomy on day 3 after birth, the autoimmune lesions in the salivary glands, and in later phase, inflammatory cell infiltrations in the other organs were developed by neonatal exposure to nonapoptotic dosage of TCDD without thymectomy on day 3 after birth. We found disruption of thymic selection, but not thymic atrophy, in TCDD-administered mice. The endogenous expression of aryl hydrocarbon receptor in the neonatal thymus was significantly higher than that in the adult thymus, suggesting that the neonatal thymus may be much more sensitive to TCDD compared with the adult thymus. In addition, the production of T(H)1 cytokines such as IL-2 and IFN-gamma from splenic CD4(+) T cells and the autoantibodies relevant for Sjögren's syndrome in the sera from TCDD-exposed mice were significantly increased compared with those in control mice. These results suggest that TCDD/aryl hydrocarbon receptor signaling in the neonatal thymus plays an important role in the early thymic differentiation related to autoimmunity.
Collapse
Affiliation(s)
- Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M, Tritschler I. Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells. Oncogene 2009; 28:2593-605. [DOI: 10.1038/onc.2009.104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Nohara K, Suzuki T, Ao K, Murai H, Miyamoto Y, Inouye K, Pan X, Motohashi H, Fujii-Kuriyama Y, Yamamoto M, Tohyama C. Constitutively active aryl hydrocarbon receptor expressed in T cells increases immunization-induced IFN-gamma production in mice but does not suppress T(h)2-cytokine production or antibody production. Int Immunol 2009; 21:769-77. [PMID: 19461128 DOI: 10.1093/intimm/dxp045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) has been implicated in various immune functions. Our previous studies have shown that AhR activation by exposure of ovalbumin (OVA)-immunized mice to the potent ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases immunization-induced IFN-gamma production in the spleen and suppresses the production of T(h)2 cytokines and OVA-specific antibodies. In the present study, we used transgenic (Tg) mice that express a constitutively active mutant of aryl hydrocarbon receptor (CA-AhR) specifically in T-lineage cells to clarify the role of AhR activation in T cells in these reactions. The results of this study clearly demonstrated that AhR activation only in the T cells augments IFN-gamma production upon OVA immunization. By contrast, production of T(h)2 cytokines and antibodies were not significantly suppressed by CA-AhR in the T cells. These results suggest that suppression of T(h)2 cytokines and antibodies production require AhR activation not only in T cells but also in other cell types as caused by TCDD exposure. Alternatively, these results may indicate that IFN-gamma augmentation and T(h)2 cytokines and antibodies suppression depend on different ways of functions of AhR in the T cells and that CA-AhR does not replicate the suppressive effect of TCDD-activated AhR on T(h)2 cytokines and antibodies. Expression of CA-AhR in the T cells was also shown to increase the percentage of CD25(+) cells among CD4(+) cells in the thymus and spleen. Thus, studies using T-cell-specific CA-AhR Tg mice provide a way to dissect the role of AhR in individual cell types and how the AhR functions.
Collapse
Affiliation(s)
- Keiko Nohara
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kobayashi D, Ahmed S, Ishida M, Kasai S, Kikuchi H. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT. Toxicology 2009; 258:25-32. [DOI: 10.1016/j.tox.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/28/2008] [Accepted: 01/05/2009] [Indexed: 11/26/2022]
|
36
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Roman AC, Sauzeau V, Merino JM, Bustelo XR, Fernandez-Salguero PM. The dioxin receptor regulates the constitutive expression of the vav3 proto-oncogene and modulates cell shape and adhesion. Mol Biol Cell 2009; 20:1715-27. [PMID: 19158396 DOI: 10.1091/mbc.e08-05-0451] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The dioxin receptor (AhR) modulates cell plasticity and migration, although the signaling involved remains unknown. Here, we report a mechanism that integrates AhR into these cytoskeleton-related functions. Immortalized and mouse embryonic fibroblasts lacking AhR (AhR-/-) had increased cell area due to spread cytoplasms that reverted to wild-type morphology upon AhR re-expression. The AhR-null phenotype included increased F-actin stress fibers, depolarized focal adhesions, and enhanced spreading and adhesion. The cytoskeleton alterations of AhR-/- cells were due to down-regulation of constitutive Vav3 expression, a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases and a novel transcriptional target of AhR. AhR was recruited to the vav3 promoter and maintained constitutive mRNA expression in a ligand-independent manner. Consistently, AhR-/- fibroblasts had reduced Rac1 activity and increased activation of the RhoA/Rho kinase (Rock) pathway. Pharmacological inhibition of Rac1 shifted AhR+/+ fibroblasts to the null phenotype, whereas Rock inhibition changed AhR-null cells to the AhR+/+ morphology. Knockdown of vav3 transcripts by small interfering RNA induced cytoskeleton defects and changes in adhesion and spreading mimicking those of AhR-null cells. Moreover, vav3-/- MEFs, as AhR-/- mouse embryonic fibroblasts, had increased cell area and enhanced stress fibers. By modulating Vav3-dependent signaling, AhR could regulate cell shape, adhesion, and migration under physiological conditions and, perhaps, in certain pathological states.
Collapse
Affiliation(s)
- Jose M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Hahn ME, Allan LL, Sherr DH. Regulation of constitutive and inducible AHR signaling: complex interactions involving the AHR repressor. Biochem Pharmacol 2008; 77:485-97. [PMID: 18848529 DOI: 10.1016/j.bcp.2008.09.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/13/2023]
Abstract
The AHR is well known for regulating responses to an array of environmental chemicals. A growing body of evidence supports the hypothesis that the AHR also plays perhaps an even more important role in modulating critical aspects of cell function including cell growth, death, and migration. As these and other important AHR activities continue to be elucidated, it becomes apparent that attention now must be directed towards the mechanisms through which the AHR itself is regulated. Here, we review what is known of and what biological outcomes have been attributed to the AHR repressor (AHRR), an evolutionarily conserved bHLH-PAS protein that inhibits both xenobiotic-induced and constitutively active AHR transcriptional activity in multiple species. We discuss the structure and evolution of the AHRR and the dominant paradigm of a xenobiotic-inducible negative feedback loop comprised of AHR-mediated transcriptional up-regulation of AHRR and the subsequent AHRR-mediated suppression of AHR activity. We highlight the role of the AHRR in limiting AHR activity in the absence of xenobiotic AHR ligands and the important contribution of constitutively repressive AHRR to cancer biology. In this context, we also suggest a new hypothesis proposing that, under some circumstances, constitutively active AHR may repress AHRR transcription, resulting in unbridled AHR activity. We also review the predominant hypotheses on the molecular mechanisms through which AHRR inhibits AHR as well as novel mechanisms through which the AHRR may exert AHR-independent effects. Collectively, this discussion emphasizes the importance of this understudied bHLH-PAS protein in tissue development, normal cell biology, xenobiotic responsiveness, and AHR-regulated malignancy.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | |
Collapse
|
38
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Yang X, Solomon S, Fraser LR, Trombino AF, Liu D, Sonenshein GE, Hestermann EV, Sherr DH. Constitutive regulation of CYP1B1 by the aryl hydrocarbon receptor (AhR) in pre-malignant and malignant mammary tissue. J Cell Biochem 2008; 104:402-17. [PMID: 18059014 DOI: 10.1002/jcb.21630] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a receptor/transcription factor which regulates cytochrome P450 (CYP) gene transcription and which is activated by environmental carcinogens, some of which are associated with increased breast cancer risk. Here, we show that the AhR is over-expressed and constitutively active in human and rodent mammary tumors, suggesting its ongoing contribution to tumorigenesis regardless of tumor etiology. AhR regulation of CYP1A1 and CYP1B1 was studied to determine if constitutively active AhR effects the same transcriptional outcomes as environmental chemical-activated AhR. Elevated AhR and CYP1B1 but not CYP1A1 before tumor formation in a rat model of mammary tumorigenesis suggested differential CYP1B1 regulation by a constitutively active AhR. This hypothesis was tested with human mammary gland cell lines which hyper-express AhR and CYP1B1 but which express little or no CYP1A1. CYP1B1 expression was diminished by repression of AhR activity or by AhR knockdown, demonstrating AhR control of basal CYP1B1 levels. ChIP assays demonstrated constitutive AhR binding to both CYP1A1 and CYP1B1 promoters, demonstrating that differential CYP1A1 and CYP1B1 regulation by constitutively active AhR does not result from different amounts of promoter-bound AhR. While increasing AhR binding to both CYP1A1 and CYP1B1, 2,3,7,8-tetrachlorodibenzo-p-dioxin induced CYP1A1 mRNA in both a malignant and non-malignant line but increased only CYP1B1 mRNA in the malignant line, again demonstrating that the level of promoter binding does not necessarily correlate with gene mRNA levels. These studies suggest that constitutively active AhR mediates different molecular outcomes than environmental chemical-activated AhR, and further implicate the AhR in mammary tumorigenesis.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pang PH, Lin YH, Lee YH, Hou HH, Hsu SP, Juan SH. Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells. J Cell Physiol 2008; 215:161-71. [PMID: 18022818 DOI: 10.1002/jcp.21299] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously reported that 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, inhibits the proliferation of human umbilical vascular endothelial cells (HUVECs; Juan et al., 2006, Eur J Pharmacol 530: 1-8). Herein, pretreatment of HUVECs with p21 or p27 small interfering (si)RNA reduced 3MC-induced elimination of [(3)H]thymidine incorporation, demonstrating their essential roles in the antiproliferation of HUVECs. The molecular mechanisms of p21 and p27 involved in the antiproliferative effects of 3MC were elucidated in this study. 3MC time- and concentration-dependently increased p21 and p27 levels, and decreased the protein level of CDK2 with no apparent alteration of p53. Interestingly, 3MC-mediated p21 and p27 inductions were eliminated by resveratrol, an AhR antagonist, suggesting their AhR dependency, further confirmed by AhR siRNA. Among the relevant pathways, p38MAPK activation sustained the levels of p21 and p27 induced by 3MC, which was eliminated by AhR antagonists and N-acetylcysteine (NAC), an antioxidant. 3MC concentration-dependently enhanced not only the consensus dioxin-responsive element (DRE)-driven luciferase activity, but also the binding activity of the AhR to the putative DRE derived from the p21 and p27 promoters. A deletion of the DRE (-285/-270) in p21 (-2,300/+8) only partially alleviated the 3MC-induced luciferase activity unless NAC was added, suggesting that there may be a DRE-independent mechanism associated with oxidative stress. However, a deletion of the DRE (-660/-645) in p27 (-1,358/-100) almost completely abrogated the activation. Our study demonstrated that both the functional DRE and the phosphorylation of p38MAPK are essential for the induction of p21 and p27, resulting in the antiproliferative action of 3MC in HUVECs.
Collapse
Affiliation(s)
- Pai-Huei Pang
- Department of Ophthalmology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, Sherr DH. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem 2008; 387:1175-87. [PMID: 16972784 DOI: 10.1515/bc.2006.145] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily conserved transcription factor bound and activated by ubiquitous environmental pollutants. Historically, the AhR has been studied for its transcriptional regulation of genes encoding cytochrome P450 enzymes, which metabolize many of these chemicals into mutagenic and toxic intermediates. However, recent studies demonstrate that the AhR plays an important role in the biology of several cell types in the absence of environmental chemicals. Here, this paradigm shift is discussed in the context of a putative role for the AhR in mammary gland tumorigenesis. Data demonstrating high levels of constitutively active AhR in mammary tumors are summarized. Particular focus is placed on the likelihood that the AhR contributes to ongoing mammary tumor cell growth and on the possibility that the AhR inhibits apoptosis while promoting transition to an invasive, metastatic phenotype. A working model is proposed that may help explain the sometimes contradictory outcomes observed after AhR manipulation and that serves as a blueprint for the design of therapeutics which target the AhR in breast cancer. The theme that malignant cells reveal the functions for which the AhR has been evolutionarily conserved is presented throughout this discussion.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Shi LZ, Faith NG, Nakayama Y, Suresh M, Steinberg H, Czuprynski CJ. The aryl hydrocarbon receptor is required for optimal resistance to Listeria monocytogenes infection in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:6952-62. [PMID: 17982086 PMCID: PMC2701311 DOI: 10.4049/jimmunol.179.10.6952] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is part of a powerful signaling system that is triggered by xenobiotic agents such as polychlorinated hydrocarbons and polycyclic aromatic hydrocarbons. Although activation of the AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin or certain polycyclic aromatic hydrocarbons can lead to immunosuppression, there is also increasing evidence that the AhR regulates certain normal developmental processes. In this study, we asked whether the AhR plays a role in host resistance using murine listeriosis as an experimental system. Our data clearly demonstrate that AhR null C57BL/6J mice (AhR(-/-)) are more susceptible to listeriosis than AhR heterozygous (AhR(+/-)) littermates when inoculated i.v. with log-phase Listeria monocytogenes. AhR(-/-) mice exhibited greater numbers of CFU of L. monocytogenes in the spleen and liver, and greater histopathological changes in the liver than AhR(+/-) mice. Serum levels of IL-6, MCP-1, IFN-gamma, and TNF-alpha were comparable between L. monocytogenes-infected AhR(-/-) and AhR(+/-) mice. Increased levels of IL-12 and IL-10 were observed in L. monocytogenes-infected AhR(-/-) mice. No significant difference was found between AhR(+/-) and AhR(-/-) macrophages ex vivo with regard to their ability to ingest and inhibit intracellular growth of L. monocytogenes. Intracellular cytokine staining of CD4(+) and CD8(+) splenocytes for IFN-gamma and TNF-alpha revealed comparable T cell-mediated responses in AhR(-/-) and AhR(+/-) mice. Previously infected AhR(-/-) and AhR(+/-) mice both exhibited enhanced resistance to reinfection with L. monocytogenes. These data provide the first evidence that AhR is required for optimal resistance but is not essential for adaptive immune response to L. monocytogenes infection.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| | - Nancy G. Faith
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| | - Yumi Nakayama
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| | - Howard Steinberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison 2015 Linden Drive, Madison, WI 53705
| |
Collapse
|
43
|
Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 2007; 581:3608-15. [PMID: 17412325 DOI: 10.1016/j.febslet.2007.03.046] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon (dioxin) receptor (AhR) has been studied for several decades largely because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Albeit this is a major issue in basic and clinical research, an increasing number of investigators are turning their efforts to try to understand the physiology of the AhR under normal cellular conditions. This is an exciting area that covers cell proliferation and differentiation, endogenous mechanisms of activation, gene regulation, tumor development and cell motility and migration, among others. In this review, we will attempt to summarize the studies supporting the implication of the AhR in those endogenous cellular processes.
Collapse
|
44
|
Tu Y, Wu W, Wu T, Cao Z, Wilkins R, Toh BH, Cooper ME, Chai Z. Antiproliferative autoantigen CDA1 transcriptionally up-regulates p21(Waf1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J Biol Chem 2007; 282:11722-31. [PMID: 17317670 DOI: 10.1074/jbc.m609623200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that overexpression of cell division autoantigen 1 (CDA1) in HeLa cells arrests cell growth and inhibits DNA synthesis at S-phase. Here we show that CDA1-induced arrest of cell growth is accompanied by increases in protein and mRNA levels of the cyclin-dependent kinase (Cdk) inhibitor protein, p21(Waf1/Cip1) (p21). Both p21 induction and cell growth arrest are reversed when CDA1 expression is inhibited. CDA1 also increases p53 protein, but not its mRNA, in a time- and dose-dependent manner. MDM2, a ubiquitin ligase regulating p53 degradation, is inactivated by CDA1, suggesting that p53 protein accumulation is due to decreased protein degradation. Knockdown of p53, using siRNA targeting two sites of p53 mRNA, abrogates transcriptional induction of p21 by CDA1. Deletion of the p53 responsive element in the distal region of p21 promoter attenuates promoter activity in response to CDA1. DNA damage caused by camptothecin treatment increases mRNA and protein levels of CDA1, accompanied by induction of p53. The DNA damage-induced p53 induction is markedly attenuated by CDA1 knockdown. CDA1 induces phosphorylation of ERK1/2(p44/42), an activity blocked by PD98059 and U0126, inhibitors of the upstream kinase MEK1/2. The MEK inhibitors also block induction of p21 mRNA and abrogate p21 promoter activity stimulated by CDA1. Cell cycle kinases, Cdk1, -2, -4, and -6 are inhibited by CDA1 overexpression. We conclude that CDA1 induces p53- and MEK/ERK1/2 MAPK-dependent expression of p21 by acting through the p53 responsive element in the p21 promoter and that this contributes to its antiproliferative activity.
Collapse
Affiliation(s)
- Yugang Tu
- Diabetes and Metabolism Division, Baker Heart Research Institute, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bock KW, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 2006; 72:393-404. [PMID: 16545780 DOI: 10.1016/j.bcp.2006.01.017] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of chemosensors and developmental regulators. It represents a multifunctional molecular switch regulating endo- and xenobiotic metabolism as well as cell proliferation and differentiation. Physiologic functions of the AhR are beginning to be understood, including functions in vascular development, and in detoxification of endo- and xenobiotics. The AhR is also recognized as the culprit for most toxic responses observed after exposure to dioxins and related compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The non-metabolizable AhR agonist TCDD has to be distinguished from the myriad of metabolizable agonists present as dietary contaminants and plant constituents as well as endogenous toxins. The hypothesis is emerging that the diverse tissue-specific, TCDD-mediated toxicities are due to sustained and inappropriate AhR activation leading to deregulated physiologic functions. In support of this hypothesis recent observations in the context of some TCDD-mediated toxic responses are discussed, such as chloracne, cleft palate, thymus involution and in particular carcinogenesis. Major open questions are addressed, such as ligand-independent AhR activation by phosphorylation and the large differences in species-dependent susceptibility to toxic responses. Though important issues remain unresolved, the commentary is intended to stimulate efforts to understand dioxin-mediated toxic responses with emphasis on carcinogenesis in comparison with AhR-mediated physiologic functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
46
|
Mulero-Navarro S, Carvajal-Gonzalez JM, Herranz M, Ballestar E, Fraga MF, Ropero S, Esteller M, Fernandez-Salguero PM. The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis 2006; 27:1099-104. [PMID: 16410262 DOI: 10.1093/carcin/bgi344] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor aryl hydrocarbon receptor (AhR) has relevant functions in cell proliferation. Interestingly, the AhR can either promote or inhibit proliferation depending on the cell phenotype. Although recent data reveal potential pathways for AhR signaling in cell proliferation, the mechanisms that regulate its activity in tumor cells remain unknown. Here, we have analyzed promoter hypermethylation as a potential mechanism controlling AhR expression in human tumor cells. AhR promoter CpG methylation was sporadic in a panel of 19 tumor cell lines except for the chronic myeloid leukemia (CML) K562 and the acute lymphoblastic leukemia (ALL) REH. When compared with normal lymphocytes, REH had very low constitutive AhR expression that could be attributed to promoter hypermethylation since treatment with the DNA demethylating agent 5-aza-2'-deoxycitidine (AZA) significantly increased AhR mRNA and protein. These results in leukemia-derived cell lines were further confirmed in primary ALL, where 33% of the patients (7/21) had AhR promoter hypermethylation. Chromatin immunoprecipitation (ChIP) showed that methylation impaired binding of the transcription factor Sp1 to the AhR promoter, thus providing a mechanism for AhR downregulation in REH cells. Therefore, promoter hypermethylation represents a novel epigenetic mechanism downregulating AhR activity in hematological malignancies such as ALL.
Collapse
Affiliation(s)
- S Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalmes M, Neumeyer A, Rio P, Hanenberg H, Fritsche E, Blömeke B. Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT). Biol Chem 2006; 387:1201-7. [PMID: 16972787 DOI: 10.1515/bc.2006.148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fragrances such as eugenol (4-allyl-2-methoxyphenol) and isoeugenol (2-methoxy-4-propenylphenol), naturally found in reasonable quantities in the essential oils of different spices, are not only common causes of contact dermatitis but also known for their antiproliferative actions. Previously, we found a cell cycle arrest and an arylhydrocarbon receptor (AhR)-mediated activation of cytochromes in immortalized keratinocytes (HaCaT) induced by both compounds. In the present study we investigated whether the cell cycle arrest of eugenol and isoeugenol is mediated by the AhR in HaCaT cells. Analysis of the cell cycle status by fluorescence-activated cell sorting (FACS) revealed an arrest of cells (32-34%) in the G0/G1 phase induced by both compounds. This was found in synchronized HaCaT cells, natural HaCaT, and siRNA AhR transfected HaCaT. The induced G0/G1 arrests were reduced in the presence of the highly selective AhR antagonist 3'-methoxy-4'-nitroflavone (MNF). In summary, these results, together with our previous findings that both compounds induce translocation of the AhR into the nucleus, provide good evidence that the effects of eugenol and isoeugenol in skin and keratinocytes are mediated by the AhR. Furthermore, these data suggest that the known growth suppressive effects of these compounds in some skin cells may be mediated by AhR interactions.
Collapse
Affiliation(s)
- Michaela Kalmes
- Department for Ecotoxicology and Toxicology, University of Trier, D-54296 Trier, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Frericks M, Temchura VV, Majora M, Stutte S, Esser C. Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice. Biol Chem 2006; 387:1219-26. [PMID: 16972790 DOI: 10.1515/bc.2006.151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ligand-activated aryl hydrocarbon receptor (AHR) is known to modulate many genes in a highly cell-specific manner, either directly or indirectly via secondary effects. In contrast, little is known about the effects of AHR deficiency on gene expression balance. We compared the transcriptome of CD4 T cells from AHR-/- mice and wild-type mice; 390 genes, many of them immunotypic, were deregulated in AHR-deficient CD4 cells. TCDD-induced transcriptome changes correlated with the AHR expression level in immune cells. However, there was little overlap in AHR-dependent transcripts found in T lineage cells or dendritic cells. Our results demonstrate flexible gene accessibility for the AHR in immune cells. The idea of a universal battery of AHR-responsive genes is not tenable.
Collapse
Affiliation(s)
- Markus Frericks
- Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University of Düsseldorf, Auf'm Hennekamp 50, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
Pancreatic ductal adenocarcinoma is one of the most fatal malignancies. Intensive investigation of molecular pathogenesis might lead to identifying useful molecules for diagnosis and treatment of the disease. Pancreatic ductal adenocarcinoma harbors complicated aberrations of alleles including losses of 1p, 6q, 9p, 12q, 17p, 18q, and 21q, and gains of 8q and 20q. Pancreatic cancer is usually initiated by mutation of KRAS and aberrant expression of SHH. Overexpression of AURKA mapping on 20q13.2 may significantly enhance overt tumorigenesity. Aberrations of tumor suppressor genes synergistically accelerate progression of the carcinogenic pathway through pancreatic intraepithelial neoplasia (PanIN) to invasive ductal adenocarcinoma. Abrogation of CDKN2A occurs in low-grade/early PanIN, whereas aberrations of TP53 and SMAD4 occur in high-grade/late PanIN. SMAD4 may play suppressive roles in tumorigenesis by inhibition of angiogenesis. Loss of 18q precedes SMAD4 inactivation, and restoration of chromosome 18 in pancreatic cancer cells results in tumor suppressive phenotypes regardless of SMAD4 status, indicating the possible existence of a tumor suppressor gene(s) other than SMAD4 on 18q. DUSP6 at 12q21-q22 is frequently abrogated by loss of expression in invasive ductal adenocarcinomas despite fairly preserved expression in PanIN, which suggests that DUSP6 works as a tumor suppressor in pancreatic carcinogenesis. Restoration of chromosome 12 also suppresses growths of pancreatic cancer cells despite the recovery of expression of DUSP6; the existence of yet another tumor suppressor gene on 12q is strongly suggested. Understanding the molecular mechanisms of pancreatic carcinogenesis will likely provide novel clues for preventing, detecting, and ultimately curing this life-threatening disease.
Collapse
Affiliation(s)
- Toru Furukawa
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | |
Collapse
|
50
|
Nagai H, Kubo M, Abe R, Yamamoto M, Nohara K. Constitutive activation of the aryl hydrocarbon receptor in T-lineage cells induces thymus involution independently of the Fas/Fas ligand signaling pathway. Int Immunopharmacol 2005; 6:279-86. [PMID: 16399633 DOI: 10.1016/j.intimp.2005.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 07/27/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022]
Abstract
Thymus involution is one of the most prominent consequences of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The characteristic features of TCDD-induced thymic changes include reductions in the number of the thymocytes and in the ratio of CD4 to CD8 T cells in the thymus. While these changes have been shown to be caused by activation of a transcription factor, the aryl hydrocarbon receptor (AhR), the down-stream biological events that induce the thymic changes have not been determined. In the present study, we examined the involvement of Fas/Fas ligand (FasL)-dependent apoptosis, a likely mechanism suggested by previous studies, in the thymocyte loss by AhR activation of thymocytes. We recently generated transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T-lineage cells. These Tg mice reproduced the thymus involution caused by TCDD at relatively high doses. In this study, we crossed the T-cell-specific CA-AhR Tg mice with Faslpr mice, which have the homozygous defective fas (lpr) gene, or with FasLgld mice, which have the homozygous mutated fas ligand (gld) gene, to generate mice that are defective in Fas/FasL signaling and express the CA-AhR in T lineage cells. Faslpr and FasLgld CA-AhR Tg mice showed the same extent of thymocyte reduction as Faswt and FasLwt CA-AhR Tg mice. The ratio of CD4 to CD8 T cells in thymocytes was also not affected by the absence of Fas or FasL in the CA-AhR Tg mice. These results show that strong activation of the AhR in thymocytes induces thymus involution independently of Fas/FasL signaling.
Collapse
Affiliation(s)
- Haruko Nagai
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | | | | | |
Collapse
|