1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
3
|
Hofstaedter CE, O’Keefe IP, Met CM, Wu L, Vanderwoude J, Shin S, Diggle SP, Riquelme SA, Rasko DA, Doi Y, Harro JM, Kopp BT, Ernst RK. Pseudomonas aeruginosa Lipid A Structural Variants Induce Altered Immune Responses. Am J Respir Cell Mol Biol 2024; 71:207-218. [PMID: 38656811 PMCID: PMC11299085 DOI: 10.1165/rcmb.2024-0059oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Pseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection that is not seen in any other disease state. Lipid A, the membrane anchor of LPS (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent Toll-like receptor 4 (TLR4) agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4 and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of the P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human BAL fluid. This structure triggers increased proinflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CF transmembrane conductance regulator function. It is interesting that there is a CF-specific reduction in IL-8 secretion within the epithelial-cell compartment that only occurs in CF bronchial epithelial cells when infected with CF-adapted P. aeruginosa that lacks PagL-mediated lipid A deacylation. Taken together, we show that P. aeruginosa alters its lipid A structure during acute lung infection and that this lipid A structure induces stronger signaling through TLR4.
Collapse
Affiliation(s)
| | | | | | - Ling Wu
- Department of Microbiology and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - David A. Rasko
- Institute for Genome Sciences
- Department of Microbiology and Immunology, and
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | | | - Benjamin T. Kopp
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia
| | | |
Collapse
|
4
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
5
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
6
|
Goel S, Feisal MR, Danmaliki GI, Yu S, Liu PB, Bishop RE, West FG, Hwang PM. Probing amino acid side chains of the integral membrane protein PagP by solution NMR: Side chain immobilization facilitates association of secondary structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184281. [PMID: 38218576 DOI: 10.1016/j.bbamem.2024.184281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Solution NMR spectroscopy of large protein systems is hampered by rapid signal decay, so most multidimensional studies focus on long-lived 1H-13C magnetization in methyl groups and/or backbone amide 1H-15N magnetization in an otherwise perdeuterated environment. Herein we demonstrate that it is possible to biosynthetically incorporate additional 1H-12C groups that possess long-lived magnetization using cost-effective partially deuterated or unlabeled amino acid precursors added to Escherichia coli growth media. This approach is applied to the outer membrane enzyme PagP in membrane-mimetic dodecylphosphocholine micelles. We were able to obtain chemical shift assignments for a majority of side chain 1H positions in PagP using nuclear Overhauser enhancements (NOEs) to connect them to previously assigned backbone 1H-15N groups and newly assigned 1H-13C methyl groups. Side chain methyl-to-aromatic NOEs were particularly important for confirming that the amphipathic α-helix of PagP packs against its eight-stranded β-barrel, as indicated by previous X-ray crystal structures. Interestingly, aromatic NOEs suggest that some aromatic residues in PagP that are buried in the membrane bilayer are highly mobile in the micellar environment, like Phe138 and Phe159. In contrast, Tyr87 in the middle of the bilayer is quite rigid, held in place by a hydrogen bonded network extending to the surface that resembles a classic catalytic triad: Tyr87-His67-Asp61. This hydrogen bonded arrangement of residues is not known to have any catalytic activity, but we postulate that its role is to immobilize Tyr87 to facilitate packing of the amphipathic α-helix against the β-barrel.
Collapse
Affiliation(s)
- Shaista Goel
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - M Rafid Feisal
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Shaohui Yu
- Department of Chemistry, University of Alberta
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Russell E Bishop
- Department of Biochemistry and Biomedical Sciences, and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | | | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
8
|
Yeow J, Luo M, Chng SS. Molecular mechanism of phospholipid transport at the bacterial outer membrane interface. Nat Commun 2023; 14:8285. [PMID: 38092770 PMCID: PMC10719372 DOI: 10.1038/s41467-023-44144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer with outer leaflet lipopolysaccharides and inner leaflet phospholipids (PLs). This unique lipid asymmetry renders the OM impermeable to external insults, including antibiotics and bile salts. To maintain this barrier, the OmpC-Mla system removes mislocalized PLs from the OM outer leaflet, and transports them to the inner membrane (IM); in the first step, the OmpC-MlaA complex transfers PLs to the periplasmic chaperone MlaC, but mechanistic details are lacking. Here, we biochemically and structurally characterize the MlaA-MlaC transient complex. We map the interaction surfaces between MlaA and MlaC in Escherichia coli, and show that electrostatic interactions are important for MlaC recruitment to the OM. We further demonstrate that interactions with MlaC modulate conformational states in MlaA. Finally, we solve a 2.9-Å cryo-EM structure of a disulfide-trapped OmpC-MlaA-MlaC complex in nanodiscs, reinforcing the mechanism of MlaC recruitment, and highlighting membrane thinning as a plausible strategy for directing lipids for transport. Our work offers critical insights into retrograde PL transport by the OmpC-Mla system in maintaining OM lipid asymmetry.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, 117456, Singapore.
| |
Collapse
|
9
|
Wang Z, Zhao A, Qiao J, Yu J, He F, Bi Y, Yu L, Wang X. Engineering Escherichia coli MG1655 to Efficiently Produce 3-Deacyl-4'-monophosphoryl Lipid A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13376-13390. [PMID: 37656614 DOI: 10.1021/acs.jafc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Monophosphoryl lipid A, derived from Salmonella minnesota R595, has been used in various adjuvant formulations. Escherichia coli can produce lipid A, but its structure is different. In this study, E. coli MG1655 has been engineered to efficiently produce the monophosphoryl lipid A. First, 126 genes relevant to the biosynthesis of the fimbriae, flagella, and ECA were deleted in MG1655, resulting in WQM027. Second, the genes pldA, mlaA, and mlaC related to the phospholipid transport system, the gene ptsG related to the carbohydrate phosphotransferase system, and the gene eptA encoding phosphoethanolamine transferase for lipid A modification were further deleted from WQM027, resulting in MW020. Third, lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in pFT24, resulting in pTEPL. pTEPL was transformed into MW020, resulting in MW020/pTEPL. Finally, fabI encoding an enoyl-ACP reductase was deleted from the genome of MW020/pTEPL, resulting in MW021/pTEPL. MW021/pTEPL could produce 85.31 mg/L of lipid A species after 26 h of fed-batch fermentation. Mainly two monophosphoryl lipid A species were produced in MW021/pTEPL, one is 3-deacyl-2-acyloxyacyl-4'-monophosphoryl lipid A and the other is 3-deacyl-4'-monophosphoryl lipid A. E. coli MW021/pTEPL constructed in this study could be an ideal host for the industrial production of monophosphoryl lipid A.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fenfang He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yibing Bi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Wang Z, Zhao A, Wang C, Huang D, Yu J, Yu L, Wu Y, Wang X. Metabolic engineering of Escherichia coli to efficiently produce monophosphoryl lipid A. Biotechnol Appl Biochem 2023. [PMID: 36659840 DOI: 10.1002/bab.2443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Monophosphoryl lipid A (MPL), mainly isolated from Salmonella minnesota R595, has been used as adjuvant in several vaccines. In this study, an Escherichia coli strain that can efficiently produce the MPL has been constructed. The gene clusters related to the biosynthesis of O-antigen, core oligosaccharide, enterobacterial common antigen, and colanic acid were sequentially removed to save the carbon source and to increase the activity of PagP in E. coli MG1655. Then, the genes pldA, mlaA, and mlaC related to the phospholipid transport system were further deleted, resulting in the strain MW012. Finally, the genes lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in MW012 to modify the structure of lipid A, resulting in the strain MW012/pWEPL. Lipid A species were isolated from MW012/pWEPL and analyzed by thin-layer chromatography and liquid chromatography-mass spectrometry. The results showed that mainly two MPL species were produced in E. coli MW012/pWEPL, one is hexa-acylated, and the other is penta-acylated. More importantly, the proportion of the hexa-acylated MPL, which is the most effective component of lipid A vaccine adjuvant, reached 75%. E. coli MW012/pWEPL constructed in this study provided a good alternative for the production of lipid A vaccine adjuvant MPL.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zeczycki TN, Milton ME, Jung D, Thompson RJ, Jaimes FE, Hondros AD, Palethorpe S, Melander C, Cavanagh J. 2-Aminoimidazole Analogs Target PhoP Altering DNA Binding Activity and Affect Outer Membrane Stability in Gram-Negative Bacteria. Biochemistry 2022; 61:2948-2960. [DOI: 10.1021/acs.biochem.2c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - David Jung
- Agile Sciences Inc., 617 Hutton Street, Raleigh, North Carolina27606, United States
| | - Richele J. Thompson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Felicia E. Jaimes
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Alexander D. Hondros
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Samantha Palethorpe
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
12
|
Sun L, Zhang Y, Cai T, Li X, Li N, Xie Z, Yang F, You X. CrrAB regulates PagP-mediated glycerophosphoglycerol palmitoylation in the outer membrane of Klebsiella pneumoniae. J Lipid Res 2022; 63:100251. [PMID: 35841948 PMCID: PMC9403492 DOI: 10.1016/j.jlr.2022.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates CrrAB activation not only stimulates LPS modification, but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly up-regulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species, and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides (CAMP) resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the outer membrane GP contents of K. pneumoniae through upregulation of PagP, which functions along with LPS to form an outer membrane barrier critical for bacterial survival.
Collapse
Affiliation(s)
- Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Murtha AN, Kazi MI, Schargel RD, Cross T, Fihn C, Cattoir V, Carlson EE, Boll JM, Dörr T. High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathog 2022; 18:e1010307. [PMID: 35130322 PMCID: PMC8853513 DOI: 10.1371/journal.ppat.1010307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of β-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the β-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed. Treating an infection with an antibiotic often fails, resulting in a tremendous public health burden. One understudied likely reason for treatment failure is the development of “antibiotic tolerance”, the ability of bacteria to survive normally lethal exposure to an antibiotic. Here, we describe a molecular mechanism promoting tolerance. A bacterial stress sensor (PhoPQ) is activated in response to antibiotic (meropenem) treatment and consequently strengthens a bacterial protective “shell” to enhance survival. We also identify inhibitors of this mechanism, opening the door to developing compounds that help antibiotics work better against tolerant bacteria.
Collapse
Affiliation(s)
- Andrew N. Murtha
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Misha I. Kazi
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Richard D. Schargel
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Trevor Cross
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Conrad Fihn
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Antimicrobial Resistance (Lab Enterococci), Rennes University Hospital, Rennes, France; Inserm Unit U1230, University of Rennes 1, Rennes, France
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Boll
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
- * E-mail: (JMB); (TD)
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail: (JMB); (TD)
| |
Collapse
|
14
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
15
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Lenka S, Singh D, Paul S, Gayen A, Chandra M. S. boulardii Fails to Hold Its Cell Wall Integrity against Nonpathogenic E. coli: Are Probiotic Yeasts Losing the Battle? ACS Infect Dis 2021; 7:733-745. [PMID: 33703881 DOI: 10.1021/acsinfecdis.0c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Probiotic yeast Saccharomyces boulardii exerts direct probiotic action on pathogenic E. coli by trapping them on surfaces and inactivating toxic lipopolysaccharides. Using optical dark-field microscopy, we show that nonpathogenic E. coli cells also readily bind probiotic S. boulardii. More importantly, the adhered nonpathogenic E. coli progressively damage S. boulardii cell walls and lyse them. Co-cultured methylene blue-supplemented agar-plate assay indicates that rough lipopolysaccharides might be playing a key role in S. boulardii cell wall damage. When experiments are repeated with lipopolysaccharide-depleted E. coli and also lipopolysaccharide-deficient E. coli, adhesion decreases substantially. The co-cultured assay further reveals that free lipopolysaccharides, released from E. coli, are also causing damage to S. boulardii walls like adhered E. coli. These new findings contradict the known S. boulardii-E. coli interaction mechanisms. We confirm that E. coli cells do not bind or damage human erythrocyte cell walls; therefore, they have not developed pathogenicity. The combined results demonstrate the first example of nonpathogenic E. coli being harmful to probiotic yeast S. boulardii. This finding is important because gut microbial flora contain large numbers of nonpathogenic E. coli. If they bind or damage probiotic S. boulardii cell walls, then the probiotic efficiency toward pathogenic E. coli will be compromised.
Collapse
Affiliation(s)
- Satyajit Lenka
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Deepak Singh
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Sandip Paul
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Anindita Gayen
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| | - Manabendra Chandra
- Department of Chemistry Indian Institute of Technology Kanpur UP-208016, India
| |
Collapse
|
17
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Structure-Function Characterization of the Conserved Regulatory Mechanism of the Escherichia coli M48 Metalloprotease BepA. J Bacteriol 2020; 203:JB.00434-20. [PMID: 33106348 PMCID: PMC7950410 DOI: 10.1128/jb.00434-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
M48 metalloproteases are widely distributed in all domains of life. E. coli possesses four members of this family located in multiple cellular compartments. The functions of these proteases are not well understood. Recent investigations revealed that one family member, BepA, has an important role in the maturation of a central component of the lipopolysaccharide (LPS) biogenesis machinery. Here, we present the structure of BepA and the results of a structure-guided mutagenesis strategy, which reveal the key residues required for activity that inform how all M48 metalloproteases function. The asymmetric Gram-negative outer membrane (OM) is the first line of defense for bacteria against environmental insults and attack by antimicrobials. The key component of the OM is lipopolysaccharide, which is transported to the surface by the essential lipopolysaccharide transport (Lpt) system. Correct folding of the Lpt system component LptD is regulated by a periplasmic metalloprotease, BepA. Here, we present the crystal structure of BepA from Escherichia coli, solved to a resolution of 2.18 Å, in which the M48 protease active site is occluded by an active-site plug. Informed by our structure, we demonstrate that free movement of the active-site plug is essential for BepA function, suggesting that the protein is autoregulated by the active-site plug, which is conserved throughout the M48 metalloprotease family. Targeted mutagenesis of conserved residues reveals that the negative pocket and the tetratricopeptide repeat (TPR) cavity are required for function and degradation of the BAM complex component BamA under conditions of stress. Last, we show that loss of BepA causes disruption of OM lipid asymmetry, leading to surface exposed phospholipid. IMPORTANCE M48 metalloproteases are widely distributed in all domains of life. E. coli possesses four members of this family located in multiple cellular compartments. The functions of these proteases are not well understood. Recent investigations revealed that one family member, BepA, has an important role in the maturation of a central component of the lipopolysaccharide (LPS) biogenesis machinery. Here, we present the structure of BepA and the results of a structure-guided mutagenesis strategy, which reveal the key residues required for activity that inform how all M48 metalloproteases function.
Collapse
|
19
|
R 93P Substitution in the PmrB HAMP Domain Contributes to Colistin Heteroresistance in Escherichia coli Isolates from Swine. Antimicrob Agents Chemother 2020; 64:AAC.01509-20. [PMID: 32868331 DOI: 10.1128/aac.01509-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/19/2020] [Indexed: 02/04/2023] Open
Abstract
Here, the mechanisms of colistin heteroresistance (CHR) were assessed in 12 Escherichia coli isolates from swine in China. CHR was investigated by population analysis profile tests. CHR stability was studied by culturing isolates for five overnight incubation periods in colistin-free medium. Subsequently, the mcr-1 gene and mutations in PmrAB, PhoPQ, and MgrB were screened in parental isolates and resistant subpopulations. Additionally, the expression levels of phoPQ, its target gene pagP, and its negative regulator gene mgrB, as well as pmrAB and its target genes pmrHFIJKLM and pmrC, were determined by real-time relative quantitative PCR. Eleven of the 12 isolates were confirmed to show CHR, with 17 resistant subpopulations. Also, 11 of the 17 subpopulations (64.71%) harbored point mutations in PmrB and/or PhoQ, differing from their parental isolates. However, only one stable resistant subpopulation (EPF42-4) was identified; it harbored an arginine-to-proline substitution at position 93 (R93P) within the PmrB HAMP (histidine kinase, adenylyl cyclase, methyl-binding protein, and phosphatase) domain. Compared to the pmrB expression levels in the parental isolate EPF42 and E. coli K-12 MG1655, remarkable pmrB overexpression was observed in EPF42-4, which showed upregulated pmrA, pmrK, and pmrC expression. Structural analysis demonstrated that the R93P substitution promotes conformational changes in the HAMP domain, leading to an acceleration in its signal transduction ability and the activation of PmrB expression. In conclusion, point mutations in PmrB and/or PhoQ were primarily associated with CHR. The R93P substitution resulted in the establishment of stable resistant subpopulations in E. coli showing CHR.
Collapse
|
20
|
Clairfeuille T, Buchholz KR, Li Q, Verschueren E, Liu P, Sangaraju D, Park S, Noland CL, Storek KM, Nickerson NN, Martin L, Dela Vega T, Miu A, Reeder J, Ruiz-Gonzalez M, Swem D, Han G, DePonte DP, Hunter MS, Gati C, Shahidi-Latham S, Xu M, Skelton N, Sellers BD, Skippington E, Sandoval W, Hanan EJ, Payandeh J, Rutherford ST. Structure of the essential inner membrane lipopolysaccharide-PbgA complex. Nature 2020; 584:479-483. [PMID: 32788728 DOI: 10.1038/s41586-020-2597-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.
Collapse
Affiliation(s)
| | - Kerry R Buchholz
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Qingling Li
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Erik Verschueren
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Peter Liu
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Dewakar Sangaraju
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Summer Park
- Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Cameron L Noland
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Kelly M Storek
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | | | - Lynn Martin
- BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Trisha Dela Vega
- BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Anh Miu
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Janina Reeder
- Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA
| | - Maria Ruiz-Gonzalez
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Danielle Swem
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Guanghui Han
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Cornelius Gati
- Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Stanford University, Department of Structural Biology, Stanford, CA, USA
| | | | - Min Xu
- Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas Skelton
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin D Sellers
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Elizabeth Skippington
- Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Emily J Hanan
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Structural Biology, Genentech Inc., South San Francisco, CA, USA. .,Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| | | |
Collapse
|
21
|
|
22
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
23
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
24
|
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry, with lipopolysaccharides (LPS) residing in the outer leaflet and phospholipids (PLs) in the inner leaflet. This asymmetric bilayer protects the bacterium against intrusion of many toxic substances, including antibiotics and detergents, yet allows acquisition of nutrients necessary for growth. To build the OM and ensure its proper function, the cell produces OM constituents in the cytoplasm or inner membrane and transports these components across the aqueous periplasmic space separating the two membranes. Of note, the processes by which the most basic membrane building blocks, i.e. PLs, are shuttled across the cell envelope remain elusive. This review highlights our current understanding (or lack thereof) of bacterial PL trafficking, with a focus on recent developments in the field. We adopt a mechanistic approach and draw parallels and comparisons with well-characterized systems, particularly OM lipoprotein and LPS transport, to illustrate key challenges in intermembrane lipid trafficking. Pathways that transport PLs across the bacterial cell envelope are fundamental to OM biogenesis and homeostasis and are potential molecular targets that could be exploited for antibiotic development.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Abstract
The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles with other bacteria or the immune system greatly depend on the structure and composition of the bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune system, for which the glycolipid was commonly known as endotoxin. It was later discovered that LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these important properties of LPS have driven a vast and still prolific body of literature for more than a hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis and physiology, mostly using Escherichia coli and Salmonella as model systems. In this review, we will focus on the fundamental knowledge we have gained from studies of the complex structure of the LPS molecule and the biochemical pathways for its synthesis, as well as the transport of LPS across the bacterial envelope and its assembly at the cell surface.
Collapse
|
26
|
Kamischke C, Fan J, Bergeron J, Kulasekara HD, Dalebroux ZD, Burrell A, Kollman JM, Miller SI. The Acinetobacter baumannii Mla system and glycerophospholipid transport to the outer membrane. eLife 2019; 8:e40171. [PMID: 30638443 PMCID: PMC6365058 DOI: 10.7554/elife.40171] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial therapeutic targets.
Collapse
Affiliation(s)
- Cassandra Kamischke
- Department of Microbiology, University of Washington, Seattle, United States
| | - Junping Fan
- Department of Microbiology, University of Washington, Seattle, United States
| | - Julien Bergeron
- Department of Biochemistry, University of Washington, Seattle, United States
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | | | - Zachary D Dalebroux
- Department of Microbiology, University of Washington, Seattle, United States
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
27
|
|
28
|
Ercan B, Low WY, Liu X, Chng SS. Characterization of Interactions and Phospholipid Transfer between Substrate Binding Proteins of the OmpC-Mla System. Biochemistry 2018; 58:114-119. [PMID: 30284446 DOI: 10.1021/acs.biochem.8b00897] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is a permeability barrier that impedes the entry of external insults, such as antibiotics and bile salts. This barrier function depends critically on the asymmetric lipid distribution across the bilayer, with lipopolysaccharides (LPS) facing outside and phospholipids (PLs) facing inside. In Escherichia coli, the OmpC-Mla system is believed to maintain OM lipid asymmetry by removing surface exposed PLs and shuttling them back to the inner membrane (IM). How proteins in the pathway interact to mediate PL transport across the periplasm is not known. Evidence for direct transfer of PLs between these proteins is also lacking. In this study, we mapped the interaction surfaces between the two PL-binding proteins, MlaC and MlaD, using site-specific in vivo photo-cross-linking, and obtained a physical picture for how these proteins may transfer PLs. Furthermore, we demonstrated using purified proteins that MlaD spontaneously transfers PLs to MlaC, suggesting that the latter has a higher affinity for PLs. Our work provides insights into the mechanism of bacterial intermembrane lipid transport important for the maintenance of OM lipid asymmetry.
Collapse
Affiliation(s)
- Bilge Ercan
- Department of Chemistry , National University of Singapore , Singapore 117543
| | - Wen-Yi Low
- Department of Chemistry , National University of Singapore , Singapore 117543
| | - Xuejun Liu
- School of Pharmacy , University College London , London WC1N 1AX , United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry , National University of Singapore , Singapore 117543.,Singapore Center for Environmental Life Sciences Engineering (SCELSE-NUS) , Singapore 117456
| |
Collapse
|
29
|
da Silva Xavier A, da Silva FP, Vidigal PMP, Lima TTM, de Souza FO, Alfenas-Zerbini P. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria. Arch Virol 2018; 163:3275-3290. [DOI: 10.1007/s00705-018-4006-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
30
|
Abstract
Biofilms are often described as protective shelters that preserve bacteria from hostile surroundings. However, biofilm bacteria are also exposed to various stresses and need to adjust to the heterogeneous physicochemical conditions prevailing within biofilms. In Gram-negative bacteria, such adaptations can result in modifications of the lipopolysaccharide, a major component of the outer membrane characterized by a highly dynamic structure responding to environmental changes. We previously showed that Gram-negative biofilm bacteria undergo an increase in lipid A palmitoylation mediated by the PagP enzyme, contributing to increased resistance to host defenses. Here we describe a regulatory pathway leading to transcriptional induction of pagP in response to specific conditions created in the biofilm environment. We show that pagP expression is induced via the Rcs envelope stress system independently of the Rcs phosphorelay cascade and that it requires the GadE auxiliary regulator. Moreover, we identify an increase in osmolarity (i.e., ionic stress) as a signal able to induce pagP expression in an RcsB-dependent manner. Consistently, we show that the biofilm is a hyperosmolar environment and that RcsB-dependent pagP induction can be dampened in the presence of an osmoprotectant. These results provide new insights into the adaptive mechanisms of bacterial differentiation in biofilm.IMPORTANCE The development of the dense bacterial communities called biofilms creates a highly heterogeneous environment in which bacteria are subjected to a variety of physicochemical stresses. We investigated the mechanisms of a widespread and biofilm-associated chemical modification of the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer membranes. This modification corresponds to the incorporation, mediated by the enzyme PagP, of a palmitate chain into lipid A (palmitoylation) that reduces bacterial recognition by host immune responses. Using biochemical and genetic approaches, we demonstrate that a significant part of biofilm-associated lipid A palmitoylation is triggered upon induction of pagP transcription by the hyperosmolar biofilm environment. pagP induction is regulated by RcsB, the response regulator of the Rcs stress response pathway, and is not observed under planktonic conditions. Our report provides new insights into how physiological adaptations to local biofilm microenvironments can contribute to decreases in susceptibility to antimicrobial agents and host immune defenses.
Collapse
|
31
|
Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. Proc Natl Acad Sci U S A 2018; 115:E8518-E8527. [PMID: 30087182 DOI: 10.1073/pnas.1806714115] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is a critical barrier that prevents entry of noxious compounds. Integral to this functionality is the presence of lipopolysaccharide (LPS) or lipooligosaccharide (LOS), a molecule that is located exclusively in the outer leaflet of the outer membrane. Its lipid anchor, lipid A, is a glycolipid whose hydrophobicity and net negative charge are primarily responsible for the robustness of the membrane. Because of this, lipid A is a hallmark of Gram-negative physiology and is generally essential for survival. Rare exceptions have been described, including Acinetobacter baumannii, which can survive in the absence of lipid A, albeit with significant growth and membrane permeability defects. Here, we show by an evolution experiment that LOS-deficient A. baumannii can rapidly improve fitness over the course of only 120 generations. We identified two factors which negatively contribute to fitness in the absence of LOS, Mla and PldA. These proteins are involved in glycerophospholipid transport (Mla) and lipid degradation (PldA); both are active only on mislocalized, surface-exposed glycerophospholipids. Elimination of these two mechanisms was sufficient to cause a drastic fitness improvement in LOS-deficient A. baumannii The LOS-deficient double mutant grows as robustly as LOS-positive wild-type bacteria while remaining resistant to the last-resort polymyxin antibiotics. These data provide strong biological evidence for the directionality of Mla-mediated glycerophospholipid transport in Gram-negative bacteria and furthers our knowledge of asymmetry-maintenance mechanisms in the context of the outer membrane barrier.
Collapse
|
32
|
Yeow J, Tan KW, Holdbrook DA, Chong ZS, Marzinek JK, Bond PJ, Chng SS. The architecture of the OmpC-MlaA complex sheds light on the maintenance of outer membrane lipid asymmetry in Escherichia coli. J Biol Chem 2018; 293:11325-11340. [PMID: 29848551 DOI: 10.1074/jbc.ra118.002441] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Indexed: 12/16/2022] Open
Abstract
A distinctive feature of the Gram-negative bacterial cell envelope is the asymmetric outer membrane (OM), where lipopolysaccharides and phospholipids (PLs) reside in the outer and inner leaflets, respectively. This unique lipid asymmetry renders the OM impermeable to external insults, including antibiotics and bile salts. In Escherichia coli, the complex comprising osmoporin OmpC and the OM lipoprotein MlaA is believed to maintain lipid asymmetry by removing mislocalized PLs from the outer leaflet of the OM. How this complex performs this function is unknown. Here, we defined the molecular architecture of the OmpC-MlaA complex to gain insights into its role in PL transport. Using in vivo photo-cross-linking and molecular dynamics simulations, we established that MlaA interacts extensively with OmpC and is located entirely within the lipid bilayer. In addition, MlaA forms a hydrophilic channel, likely enabling PL translocation across the OM. We further showed that flexibility in a hairpin loop adjacent to the channel is critical in modulating MlaA activity. Finally, we demonstrated that OmpC plays a functional role in maintaining OM lipid asymmetry together with MlaA. Our work offers glimpses into how the OmpC-MlaA complex transports PLs across the OM and has important implications for future antibacterial drug development.
Collapse
Affiliation(s)
- Jiang Yeow
- Department of Chemistry, National University of Singapore, Singapore 117543; National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore 117456
| | - Kang Wei Tan
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Daniel A Holdbrook
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671
| | - Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671; Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore 138671; Department of Biological Sciences, National University of Singapore, Singapore 117543.
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543; Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456.
| |
Collapse
|
33
|
Lin Y, Bogdanov M, Lu S, Guan Z, Margolin W, Weiss J, Zheng L. The phospholipid-repair system LplT/Aas in Gram-negative bacteria protects the bacterial membrane envelope from host phospholipase A 2 attack. J Biol Chem 2018; 293:3386-3398. [PMID: 29348168 PMCID: PMC5836115 DOI: 10.1074/jbc.ra117.001231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Indexed: 11/06/2022] Open
Abstract
Secretory phospholipases A2 (sPLA2s) are potent components of mammalian innate-immunity antibacterial mechanisms. sPLA2 enzymes attack bacteria by hydrolyzing bacterial membrane phospholipids, causing membrane disorganization and cell lysis. However, most Gram-negative bacteria are naturally resistant to sPLA2 Here we report a novel resistance mechanism to mammalian sPLA2 in Escherichia coli, mediated by a phospholipid repair system consisting of the lysophospholipid transporter LplT and the acyltransferase Aas in the cytoplasmic membrane. Mutation of the lplT or aas gene abolished bacterial lysophospholipid acylation activity and drastically increased bacterial susceptibility to the combined actions of inflammatory fluid components and sPLA2, resulting in bulk phospholipid degradation and loss of colony-forming ability. sPLA2-mediated hydrolysis of the three major bacterial phospholipids exhibited distinctive kinetics and deacylation of cardiolipin to its monoacyl-derivative closely paralleled bacterial death. Characterization of the membrane envelope in lplT- or aas-knockout mutant bacteria revealed reduced membrane packing and disruption of lipid asymmetry with more phosphatidylethanolamine present in the outer leaflet of the outer membrane. Moreover, modest accumulation of lysophospholipids in these mutant bacteria destabilized the inner membrane and rendered outer membrane-depleted spheroplasts much more sensitive to sPLA2 These findings indicated that LplT/Aas inactivation perturbs both the outer and inner membranes by bypassing bacterial membrane maintenance mechanisms to trigger specific interfacial activation of sPLA2 We conclude that the LplT/Aas system is important for maintaining the integrity of the membrane envelope in Gram-negative bacteria. Our insights may help inform new therapeutic strategies to enhance host sPLA2 antimicrobial activity.
Collapse
Affiliation(s)
- Yibin Lin
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology and
| | | | - Shuo Lu
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology and
| | - Ziqiang Guan
- the Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, and
| | - William Margolin
- Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Jerrold Weiss
- the Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Lei Zheng
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology and
| |
Collapse
|
34
|
Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli. J Bacteriol 2017; 200:JB.00487-17. [PMID: 29109183 DOI: 10.1128/jb.00487-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.
Collapse
|
35
|
Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404-1413. [PMID: 27956138 PMCID: PMC6162059 DOI: 10.1016/j.bbalip.2016.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Lysophospholipids (LPLs) are metabolic intermediates in bacterial phospholipid turnover. Distinct from their diacyl counterparts, these inverted cone-shaped molecules share physical characteristics of detergents, enabling modification of local membrane properties such as curvature. The functions of LPLs as cellular growth factors or potent lipid mediators have been extensively demonstrated in eukaryotic cells but are still undefined in bacteria. In the envelope of Gram-negative bacteria, LPLs are derived from multiple endogenous and exogenous sources. Although several flippases that move non-glycerophospholipids across the bacterial inner membrane were characterized, lysophospholipid transporter LplT appears to be the first example of a bacterial protein capable of facilitating rapid retrograde translocation of lyso forms of glycerophospholipids across the cytoplasmic membrane in Gram-negative bacteria. LplT transports lyso forms of the three bacterial membrane phospholipids with comparable efficiency, but excludes other lysolipid species. Once a LPL is flipped by LplT to the cytoplasmic side of the inner membrane, its diacyl form is effectively regenerated by the action of a peripheral enzyme, acyl-ACP synthetase/LPL acyltransferase (Aas). LplT-Aas also mediates a novel cardiolipin remodeling by converting its two lyso derivatives, diacyl or deacylated cardiolipin, to a triacyl form. This coupled remodeling system provides a unique bacterial membrane phospholipid repair mechanism. Strict selectivity of LplT for lyso lipids allows this system to fulfill efficient lipid repair in an environment containing mostly diacyl phospholipids. A rocker-switch model engaged by a pair of symmetric ion-locks may facilitate alternating substrate access to drive LPL flipping into bacterial cells. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | - Yibin Lin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuo Lu
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiazhe Zhang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
36
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
37
|
Isom GL, Davies NJ, Chong ZS, Bryant JA, Jamshad M, Sharif M, Cunningham AF, Knowles TJ, Chng SS, Cole JA, Henderson IR. MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis. Sci Rep 2017; 7:8608. [PMID: 28819315 PMCID: PMC5561183 DOI: 10.1038/s41598-017-09111-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial proteins with MCE domains were first described as being important for Mammalian Cell Entry. More recent evidence suggests they are components of lipid ABC transporters. In Escherichia coli, the single-domain protein MlaD is known to be part of an inner membrane transporter that is important for maintenance of outer membrane lipid asymmetry. Here we describe two multi MCE domain-containing proteins in Escherichia coli, PqiB and YebT, the latter of which is an orthologue of MAM-7 that was previously reported to be an outer membrane protein. We show that all three MCE domain-containing proteins localise to the inner membrane. Bioinformatic analyses revealed that MCE domains are widely distributed across bacterial phyla but multi MCE domain-containing proteins evolved in Proteobacteria from single-domain proteins. Mutants defective in mlaD, pqiAB and yebST were shown to have distinct but partially overlapping phenotypes, but the primary functions of PqiB and YebT differ from MlaD. Complementing our previous findings that all three proteins bind phospholipids, results presented here indicate that multi-domain proteins evolved in Proteobacteria for specific functions in maintaining cell envelope homeostasis.
Collapse
Affiliation(s)
- Georgia L Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Jamshad
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Maria Sharif
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Adam F Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Knowles
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jeffrey A Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
38
|
Abstract
The importance of the polymorphic-phase behavior of lipid A structural variations in determining their endotoxic activities has been recognized previously, but any potential role for lipid A polymorphism in controlling outer membrane structure and function has been largely ignored until now. In a recent article in mBio [7(5):e01532-16, https://doi.org/10.1128/mBio.01532-16], Katherine E. Bonnington and Meta J. Kuehn of Duke University's Department of Biochemistry make a compelling case for considering how the molecular shapes of the various lipid A structural subtypes found in the outer membrane contribute to the process of outer membrane vesicle (OMV) formation.
Collapse
|
39
|
May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1386-1393. [PMID: 27742351 DOI: 10.1016/j.bbalip.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is positioned at the frontline of the cell's interaction with its environment and provides a barrier against influx of external toxins while still allowing import of nutrients and excretion of wastes. It is a remarkable asymmetric bilayer with a glycolipid surface-exposed leaflet and a glycerophospholipid inner leaflet. Lipid asymmetry is key to OM barrier function and several different systems actively maintain this lipid asymmetry. All OM components are synthesized in the cytosol before being secreted and assembled into a contiguous membrane on the other side of the cell wall. Work in recent years has uncovered the pathways that transport and assemble most of the OM components. However, our understanding of how phospholipids are delivered to the OM remains notably limited. Here we will review seminal works in phospholipid transfer performed some 40years ago and place more recent insights in their context. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Kerrie L May
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Abstract
The presence of palmitate in a minor fraction of lipid A has been known since the chemical structure of lipid A was first elucidated, but the functional importance in bacterial pathogenesis of regulated lipid A palmitoylation has become clear only recently. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP. The isolation of pagP mutants from pathogenic Gram-negative bacteria has revealed that palmitoylated lipid A can both protect the bacterium from certain host immune defenses and attenuate the ability of lipid A to activate those same defenses through the TLR4 signal transduction pathway. The mechanisms by which bacteria regulate the incorporation of palmitate into lipid A strikingly reflect the corresponding organism's pathogenic lifestyle. Variations on these themes can be illustrated with the known pagP homologs from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is now lending itself both as a target for the development of anti-infective agents, and as a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E. Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada,
| | - Sang-Hyun Kim
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed El Zoeiby
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Iyer BR, Mahalakshmi R. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP. Biochemistry 2016; 55:4960-70. [PMID: 27525547 DOI: 10.1021/acs.biochem.6b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|
42
|
Thong S, Ercan B, Torta F, Fong ZY, Wong HYA, Wenk MR, Chng SS. Defining key roles for auxiliary proteins in an ABC transporter that maintains bacterial outer membrane lipid asymmetry. eLife 2016; 5. [PMID: 27529189 PMCID: PMC5016091 DOI: 10.7554/elife.19042] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/14/2016] [Indexed: 01/16/2023] Open
Abstract
In Gram-negative bacteria, lipid asymmetry is critical for the function of the outer membrane (OM) as a selective permeability barrier, but how it is established and maintained is poorly understood. Here, we characterize a non-canonical ATP-binding cassette (ABC) transporter in Escherichia coli that provides energy for maintaining OM lipid asymmetry via the transport of aberrantly localized phospholipids (PLs) from the OM to the inner membrane (IM). We establish that the transporter comprises canonical components, MlaF and MlaE, and auxiliary proteins, MlaD and MlaB, of previously unknown functions. We further demonstrate that MlaD forms extremely stable hexamers within the complex, functions in substrate binding with strong affinity for PLs, and modulates ATP hydrolytic activity. In addition, MlaB plays critical roles in both the assembly and activity of the transporter. Our work provides mechanistic insights into how the MlaFEDB complex participates in ensuring active retrograde PL transport to maintain OM lipid asymmetry. DOI:http://dx.doi.org/10.7554/eLife.19042.001 Escherichia coli are bacteria that can cause vomiting and diarrhoea in humans and other mammals. Each E. coli cell is surrounded by two membranes, which are each made of two layers of fat molecules known as lipids. The outer membrane prevents the entry of toxic compounds and allows E. coli to withstand damaging agents from outside the cell, such as antibiotics. The outer membrane’s ability to act as an effective barrier depends on an asymmetric, or uneven, distribution of lipid molecules across its two layers. The inside layer is dominated by phospholipids, whereas the outside layer is comprised mainly of lipids with attached sugars. The distribution of the two lipid types is maintained by a molecular machine with components that can be found in both the inner and outer membranes. This machine is thought to remove phospholipids from the outside layer of the outer membrane and transport them back to the inner membrane. A group (or”complex”) of proteins known as MIaFEDB operates as a part of this machine at the inner membrane. MlaFEDB is believed to use energy derived from the breakdown of a molecule called ATP to help ensure that phospholipids removed from the outside layer of the outer membrane are reinserted into the inner membrane. It was proposed that the complex contains four proteins, but it was not clear exactly how these components are arranged. Now, Thong et al. reveal how MlaFEDB is organized and characterize the roles of the individual protein components. The experiments confirm that the MlaFEDB complex is made up of four proteins, including two core components and two support proteins (called MlaB and MlaD). There are six copies of MlaD in the complex. In addition, MlaD has a strong affinity for phospholipids and plays a role in controlling the rate at which energy is harnessed through the breakdown of ATP. Further experiments show that the other support protein MlaB is necessary for both the proper assembly and activity of the complex, likely through its interaction with one of the core components. The next step following on from this work is to directly observe MlaFEDB in action to find out how it uses energy to insert lipids into the inner membrane. In the long term, more information about the structure of the complex would be needed to further understand how it works at the molecular level. DOI:http://dx.doi.org/10.7554/eLife.19042.002
Collapse
Affiliation(s)
- Shuhua Thong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Bilge Ercan
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Zhen Yang Fong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hui Yi Alvina Wong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Singapore Center on Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
43
|
Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci U S A 2016; 113:E1565-74. [PMID: 26929379 DOI: 10.1073/pnas.1601375113] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gram-negative bacteria balance synthesis of the outer membrane (OM), cell wall, and cytoplasmic contents during growth via unknown mechanisms. Here, we show that a dominant mutation (designated mlaA*, maintenance of lipid asymmetry) that alters MlaA, a lipoprotein that removes phospholipids from the outer leaflet of the OM of Escherichia coli, increases OM permeability, lipopolysaccharide levels, drug sensitivity, and cell death in stationary phase. Surprisingly, single-cell imaging revealed that death occurs after protracted loss of OM material through vesiculation and blebbing at cell-division sites and compensatory shrinkage of the inner membrane, eventually resulting in rupture and slow leakage of cytoplasmic contents. The death of mlaA* cells was linked to fatty acid depletion and was not affected by membrane depolarization, suggesting that lipids flow from the inner membrane to the OM in an energy-independent manner. Suppressor analysis suggested that the dominant mlaA* mutation activates phospholipase A, resulting in increased levels of lipopolysaccharide and OM vesiculation that ultimately undermine the integrity of the cell envelope by depleting the inner membrane of phospholipids. This novel cell-death pathway suggests that balanced synthesis across both membranes is key to the mechanical integrity of the Gram-negative cell envelope.
Collapse
|
44
|
Vassallo CN, Wall D. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage. Bioessays 2016; 38:306-15. [PMID: 26898360 DOI: 10.1002/bies.201500132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle.
Collapse
Affiliation(s)
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
45
|
Mutant Alleles of lptD Increase the Permeability of Pseudomonas aeruginosa and Define Determinants of Intrinsic Resistance to Antibiotics. Antimicrob Agents Chemother 2015; 60:845-54. [PMID: 26596941 DOI: 10.1128/aac.01747-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 01/11/2023] Open
Abstract
Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens.
Collapse
|
46
|
Chong ZS, Woo WF, Chng SS. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol Microbiol 2015; 98:1133-46. [PMID: 26314242 DOI: 10.1111/mmi.13202] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
Gram-negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi-component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC-MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.
Collapse
Affiliation(s)
- Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, 117543
| | - Wei-Fen Woo
- Department of Chemistry, National University of Singapore, Singapore, 117543
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, 117543.,Singapore Center on Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456
| |
Collapse
|
47
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
48
|
Houser JR, Barnhart C, Boutz DR, Carroll SM, Dasgupta A, Michener JK, Needham BD, Papoulas O, Sridhara V, Sydykova DK, Marx CJ, Trent MS, Barrick JE, Marcotte EM, Wilke CO. Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation. PLoS Comput Biol 2015; 11:e1004400. [PMID: 26275208 PMCID: PMC4537216 DOI: 10.1371/journal.pcbi.1004400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/11/2015] [Indexed: 12/29/2022] Open
Abstract
How do bacteria regulate their cellular physiology in response to starvation? Here, we present a detailed characterization of Escherichia coli growth and starvation over a time-course lasting two weeks. We have measured multiple cellular components, including RNA and proteins at deep genomic coverage, as well as lipid modifications and flux through central metabolism. Our study focuses on the physiological response of E. coli in stationary phase as a result of being starved for glucose, not on the genetic adaptation of E. coli to utilize alternative nutrients. In our analysis, we have taken advantage of the temporal correlations within and among RNA and protein abundances to identify systematic trends in gene regulation. Specifically, we have developed a general computational strategy for classifying expression-profile time courses into distinct categories in an unbiased manner. We have also developed, from dynamic models of gene expression, a framework to characterize protein degradation patterns based on the observed temporal relationships between mRNA and protein abundances. By comparing and contrasting our transcriptomic and proteomic data, we have identified several broad physiological trends in the E. coli starvation response. Strikingly, mRNAs are widely down-regulated in response to glucose starvation, presumably as a strategy for reducing new protein synthesis. By contrast, protein abundances display more varied responses. The abundances of many proteins involved in energy-intensive processes mirror the corresponding mRNA profiles while proteins involved in nutrient metabolism remain abundant even though their corresponding mRNAs are down-regulated. Bacteria frequently experience starvation conditions in their natural environments. Yet how they modify their physiology in response to these conditions remains poorly understood. Here, we performed a detailed, two-week starvation experiment in E. coli. We exhaustively monitored changes in cellular components, such as RNA and protein abundances, over time. We subsequently compared and contrasted these measurements using novel computational approaches we developed specifically for analyzing gene-expression time-course data. Using these approaches, we could identify systematic trends in the E. coli starvation response. In particular, we found that cells systematically limit mRNA and protein production, degrade proteins involved in energy-intensive processes, and maintain or increase the amount of proteins involved in energy production. Thus, the bacteria assume a cellular state in which their ongoing energy use is limited while they are poised to take advantage of any nutrients that may become available.
Collapse
Affiliation(s)
- John R. Houser
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Craig Barnhart
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel R. Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sean M. Carroll
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, Massachusetts, United States of America
| | - Aurko Dasgupta
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Joshua K. Michener
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, Massachusetts, United States of America
| | - Brittany D. Needham
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ophelia Papoulas
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Viswanadham Sridhara
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dariya K. Sydykova
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, Massachusetts, United States of America
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Boston, Massachusetts, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - M. Stephen Trent
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jeffrey E. Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (JEB); (EMM); (COW)
| | - Edward M. Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (JEB); (EMM); (COW)
| | - Claus O. Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, United States of America
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (JEB); (EMM); (COW)
| |
Collapse
|
49
|
Liu Q, Li Y, Zhao X, Yang X, Liu Q, Kong Q. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure. Mar Drugs 2015; 13:3388-406. [PMID: 26023843 PMCID: PMC4483635 DOI: 10.3390/md13063388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
50
|
Biofilms formed by gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. mBio 2014; 5:mBio.01116-14. [PMID: 25139899 PMCID: PMC4147861 DOI: 10.1128/mbio.01116-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. Bacterial communities called biofilms display characteristic properties compared to isolated (planktonic) bacteria, suggesting that some molecules could be more particularly produced under biofilm conditions. We investigated biofilm-associated modifications occurring in the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer membrane. We showed that all tested commensal and pathogenic biofilm bacteria display high incorporation of a palmitate acyl chain into the lipid A part of LPS. This lipid A palmitoylation is mediated by the PagP enzyme, whose expression in biofilm is controlled by the regulatory proteins H-NS and SlyA. We also showed that lipid A palmitoylation in biofilm bacteria reduces host inflammatory response and enhances their survival in an animal model of biofilm infections. While these results provide new insights into the biofilm lifestyle, they also suggest that the level of lipid A palmitoylation could be used as an indicator to monitor the development of biofilm infections on medical surfaces.
Collapse
|