1
|
Aomine Y, Shimo Y, Sakurai K, Abe M, Macpherson T, Ozawa T, Hikida T. Sex-dependent differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. J Neurochem 2025; 169:e16227. [PMID: 39289039 DOI: 10.1111/jnc.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein-protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic-related genes in males and increased expression of innate immunity-related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex-dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Suita, Japan
| | - Yuto Shimo
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuka Abe
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Arias-Badia M, Pai CCS, Chen P, Chang A, Lwin YM, Srinath A, Gotts JE, Glantz SA, Fong L. E-cigarette exposure disrupts antitumor immunity and promotes metastasis. Front Immunol 2024; 15:1444020. [PMID: 39221247 PMCID: PMC11365074 DOI: 10.3389/fimmu.2024.1444020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) are thought to pose low risk of cancer because the components of e-cigarette liquid are not carcinogens. We analyzed the effects of the two major components, PG/VG and nicotine, on tumor development in preclinical models. We found that PG/VG promoted tumor cell migration in migration assays and contributed to more aggressive, metastatic, and immunosuppressive tumors in vivo, aggravated by the presence of nicotine. Whole body exposure of mice to PG/VG and nicotine rendered animals more susceptible to developing tumors with high frequencies of infiltrating proinflammatory macrophages expressing IL-6 and TNFα. Moreover, tumor-infiltrating and circulating T cells in e-cigarette exposed mice showed increased levels of immune checkpoints including CTLA4 and PD-1. Treatment with anti-CTLA4 antibody was able to abrogate metastasis with no detrimental effects on its ability to induce tumor regression in exposed mice. These findings suggest that the major components used in e-cigarette fluid can impact tumor development through induced immunosuppression.
Collapse
Affiliation(s)
- Marcel Arias-Badia
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Chien-Chun Steven Pai
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - PeiXi Chen
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Anthony Chang
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yee May Lwin
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aahir Srinath
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Gotts
- Kaiser Permanente San Francisco Medical Center, San Francisco, CA, United States
| | - Stanton A. Glantz
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
3
|
Quero J, Paesa M, Morales C, Mendoza G, Osada J, Teixeira JA, Ferreira-Santos P, Rodríguez-Yoldi MJ. Biological Properties of Boletus edulis Extract on Caco-2 Cells: Antioxidant, Anticancer, and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:908. [PMID: 39199154 PMCID: PMC11352050 DOI: 10.3390/antiox13080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Boletus edulis (BE) is a mushroom well known for its taste, nutritional value, and medicinal properties. The objective of this work was to study the biological effects of BE extracts on human colon carcinoma cells (Caco-2), evaluating parameters related to oxidative stress and inflammation. In this study, a hydroethanolic extract of BE was obtained by ohmic heating green technology. The obtained BE extracts are mainly composed of sugars (mainly trehalose), phenolic compounds (taxifolin, rutin, and ellagic acid), and minerals (K, P, Mg, Na, Ca, Zn, Se, etc.). The results showed that BE extracts were able to reduce cancer cell proliferation by the induction of cell cycle arrest at the G0/G1 stage, as well as cell death by autophagy and apoptosis, the alteration of mitochondrial membrane potential, and caspase-3 activation. The extracts modified the redox balance of the cell by increasing the ROS levels associated with a decrease in the thioredoxin reductase activity. Similarly, BE extracts attenuated Caco-2 inflammation by reducing both iNOS and COX-2 mRNA expression and COX-2 protein expression. In addition, BE extracts protected the intestine from the oxidative stress induced by H2O2. Therefore, this study provides information on the potential use of BE bioactive compounds as anticancer therapeutic agents and as functional ingredients to prevent oxidative stress in the intestinal barrier.
Collapse
Affiliation(s)
- Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Mónica Paesa
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain;
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Carmen Morales
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Gracia Mendoza
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Jesús Osada
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain;
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), As Lagoas, 32004 Ourense, Spain
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
5
|
Tang M, Zhang M, Fu Y, Chen L, Li D, Zhang H, Yang Z, Wang C, Xiu P, Wilksch JJ, Luo Y, Han J, Yang H, Wang H. Terahertz label-free detection of nicotine-induced neural cell changes and the underlying mechanisms. Biosens Bioelectron 2023; 241:115697. [PMID: 37751650 DOI: 10.1016/j.bios.2023.115697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
Nicotine exposure can lead to neurological impairments and brain tumors, and a label-free and nondestructive detection technique is urgently required by the scientific community to assess the effects of nicotine on neural cells. Herein, a terahertz (THz) time-domain attenuated total reflection (TD-ATR) spectroscopy approach is reported, by which the effects of nicotine on normal and cancerous neural cells, i.e., HEB and U87 cells, are successfully investigated in a label/stain-free and nondestructive manner. The obtained THz absorption coefficients of HEB cells exposed to low-dose nicotine and high-dose nicotine are smaller and larger, respectively, than the untreated cells. In contrast, the THz absorption coefficients of U87 cells treated by nicotine are always smaller than the untreated cells. The THz absorption coefficients can be well related to the proliferation properties (cell number and compositional changes) and morphological changes of neural cells, by which different types of neural cells are differentiated and the viabilities of neural cells treated by nicotine are reliably assessed. Collectively, this work sheds new insights on the effects of nicotine on neural cells, and provides a useful tool (THz TD-ATR spectroscopy) for the study of chemical-cell interactions.
Collapse
Affiliation(s)
- Mingjie Tang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingkun Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ying Fu
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ligang Chen
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Dandan Li
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hua Zhang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhongbo Yang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chunlei Wang
- Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Jonathan J Wilksch
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Jiaguang Han
- Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Haijun Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Huabin Wang
- Research Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
6
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
7
|
Oulasvirta E, Koroknay-Pál P, Numminen J, Hafez A, Raj R, Jahromi BR, Niemelä M, Laakso A. Recurrence of brain arteriovenous malformations in pediatric patients: a long-term follow-up study. Acta Neurochir (Wien) 2023; 165:1565-1573. [PMID: 37140647 DOI: 10.1007/s00701-023-05612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Previously thought to be congenital, AVMs have shown evidence of de-novo formation and continued growth, thus shifting thoughts on their pathophysiology. Pediatric AVM patients have been reported to be more prone to develop AVM recurrence after a seemingly complete cure. Therefore, we assessed the risk of AVM treated in childhood to recur in adulthood after a long-term follow-up in our own cohort. METHODS Control DS-angiography was arranged during 2021-2022 as part of a new protocol for all AVM patients who were under 21 years of age at the time of their treatment and in whom the treatment had occurred at least five years earlier. Angiography was offered only to patients under 50 years of age at the time of the new protocol. The complete eradication of AVM after the primary treatment had been originally confirmed with DSA in every patient. RESULTS A total of 42 patients participated in the late DSA control, and 41 of them were included in this analysis after excluding the patient diagnosed with HHT. The median age at the time of admission for AVM treatment was 14.6 (IQR 12-19, range 7-21 years) years. The median age at the time of the late follow-up DSA was 33.8 years (IQR 29.8-38.6, range 19.4-47.9 years). Two recurrent sporadic AVMs and one recurrent AVM in a patient with hereditary hemorrhagic telangiectasia (HHT) were detected. The recurrence rate was 4.9% for sporadic AVMs and 7.1% if HHT-AVM was included. All the recurrent AVMs had originally bled and been treated microsurgically. The patients with sporadic AVM recurrence had been smoking their whole adult lives. CONCLUSIONS Pediatric and adolescent patients are prone to develop recurrent AVMs, even after complete AVM obliteration verified by angiography. Therefore, imaging follow-up is recommended.
Collapse
Affiliation(s)
- Elias Oulasvirta
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Päivi Koroknay-Pál
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Numminen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ahmad Hafez
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Velázquez-Ulloa NA, Heres-Pulido ME, Santos-Cruz LF, Durán-Díaz A, Castañeda-Partida L, Browning A, Carmona-Alvarado C, Estrada-Guzmán JC, Ferderer G, Garfias M, Gómez-Loza B, Magaña-Acosta MJ, Perry HH, Dueñas-García IE. Complex interactions between nicotine and resveratrol in the Drosophila melanogaster wing spot test. Heliyon 2022; 8:e09744. [PMID: 35770151 PMCID: PMC9234589 DOI: 10.1016/j.heliyon.2022.e09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC’s effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC’s genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC’s genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC’s genotoxicity in vivo at specific concentrations. Moreover, NIC’s genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC’s damage or protecting against it. Nicotine was genotoxic at specific concentrations in the Drosophila wing spot test. Resveratrol protected against nicotine’s genotoxic effects at some concentrations. Resveratrol increased nicotine’s genotoxicity at specific concentrations. Nicotine and resveratrol have a complex interaction in vivo. Studying chemicals in combination in vivo may uncover unexpected interactions.
Collapse
Affiliation(s)
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Browning
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - C Carmona-Alvarado
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J C Estrada-Guzmán
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - G Ferderer
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - M Garfias
- Biology Department, Lewis & Clark College, Portland, OR, USA.,Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - B Gómez-Loza
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M J Magaña-Acosta
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.,Department of Developmental Genetics & Molecular Physiology, Universidad Nacional Autónoma de México. Av Universidad, 2001, Col Chamilpa, Cuernavaca, Mexico
| | - H H Perry
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - I E Dueñas-García
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
9
|
Chen H, Padia R, Li T, Li Y, Li B, Jin L, Huang S. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer 2021; 7:91. [PMID: 34244488 PMCID: PMC8270897 DOI: 10.1038/s41523-021-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.
Collapse
Affiliation(s)
- Haoming Chen
- grid.8547.e0000 0001 0125 2443The Ministry of Education Key Laboratory of Contemporary Anthropology, College of Life Science, Fudan University, Shanghai, China
| | - Ravi Padia
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Tao Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Yue Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Bin Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Lingtao Jin
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Shuang Huang
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| |
Collapse
|
10
|
Pezzuto A, D'Ascanio M, Ricci A, Pagliuca A, Carico E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: A review. Thorac Cancer 2020; 11:3060-3070. [PMID: 32945604 PMCID: PMC7606016 DOI: 10.1111/1759-7714.13651] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC) is the leading cause of cancer death and in most cases it is often diagnosed at an advanced stage. Many genetic and microenvironmental factors are able to modify the cell cycle inducing carcinogenesis and tumor growth. Among the metabolic and genetic factors that come into play in carcinogenesis and tumor cell differentiation and growth there are two different proteins that should be considered which are glucose transporters (GLUTs) and p16INK4 The first are glucose transporters which are strongly involved in tumor metabolism, notably accelerating cancer cell metabolism both in aerobic and anaerobic conditions. There are different subtypes of GLUT family factors of which GLUT 1 is the most important and widely expressed. By contrast, p16 is mainly a tumor‐suppressor protein that acts on cyclin‐dependent kinase favoring cell cycle arrest in the G1 phase. Our search focused on the action of the aforementioned factors.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Michela D'Ascanio
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alberto Ricci
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| | - Alessandra Pagliuca
- Cardiovascular-Pulmonary Science Department, Sant' Andrea Hospital-Sapienza University, Rome, Italy
| | - Elisabetta Carico
- Clinical and Molecular Medicine Department, Sant' Andrea Hospital- Sapienza University, Rome, Italy
| |
Collapse
|
11
|
Aguayo F, Muñoz JP, Perez-Dominguez F, Carrillo-Beltrán D, Oliva C, Calaf GM, Blanco R, Nuñez-Acurio D. High-Risk Human Papillomavirus and Tobacco Smoke Interactions in Epithelial Carcinogenesis. Cancers (Basel) 2020; 12:E2201. [PMID: 32781676 PMCID: PMC7465661 DOI: 10.3390/cancers12082201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical, anogenital, and some head and neck cancers (HNC) are etiologically associated with high-risk human papillomavirus (HR-HPV) infection, even though additional cofactors are necessary. Epidemiological studies have established that tobacco smoke (TS) is a cofactor for cervical carcinogenesis because women who smoke are more susceptible to cervical cancer when compared to non-smokers. Even though such a relationship has not been established in HPV-related HNC, a group of HPV positive patients with this malignancy are smokers. TS is a complex mixture of more than 4500 chemical compounds and approximately 60 of them show oncogenic properties such as benzo[α]pyrene (BaP) and nitrosamines, among others. Some of these compounds have been evaluated for carcinogenesis through experimental settings in collaboration with HR-HPV. Here, we conducted a comprehensive review of the suggested molecular mechanisms involved in cooperation with both HR-HPV and TS for epithelial carcinogenesis. Furthermore, we propose interaction models in which TS collaborates with HR-HPV to promote epithelial cancer initiation, promotion, and progression. More studies are warranted to clarify interactions between oncogenic viruses and chemical or physical environmental factors for epithelial carcinogenesis.
Collapse
Affiliation(s)
- Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago 8330024, Chile
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Francisco Perez-Dominguez
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Diego Carrillo-Beltrán
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Carolina Oliva
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Rances Blanco
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Daniela Nuñez-Acurio
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| |
Collapse
|
12
|
Nicotine exposure potentiates lung tumorigenesis by perturbing cellular surveillance. Br J Cancer 2020; 122:904-911. [PMID: 32001831 PMCID: PMC7078213 DOI: 10.1038/s41416-020-0730-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nicotine is a major tobacco component and found at circulating concentrations in smokers' bloodstreams. Although considered a non-carcinogenic substance, nicotine rapidly defuses to tissues after being inhaled, inviting effects on cellular physiology, particularly in the lung. Widespread increased use of nicotine-based e-cigarettes, especially in younger adults, creates an urgent need for improved understanding of nicotine's potential to impact human health. METHODS Biological and biochemistry methods were used to interrogate the potential for nicotine to weaken the genetic integrity of murine and human-lung epithelial cells. RESULTS We demonstrate that nicotine potentiates the growth of the lung epithelial cells in a dose-response fashion. Nicotine elicits an acute increase in reactive oxygen species (ROS), which persists at moderately high levels throughout the duration of nicotine exposure. The aberrant increases in ROS appear to induce ER stress and UPR activation, as reflected by BIP upregulation and PERK phosphorylation. Furthermore, prolonged nicotine exposure interferes with p53 function triggered by sodium arsenite. Unless p53 is suppressed, persistent nicotine exposure does not induce colony formation by lung epithelial cells in soft agar. CONCLUSION The data suggest that nicotine treatment, by perturbing intracellular redox state and altering p53 function, can create a pro-tumorigenic environment in lung epithelium. The results suggest caution in using nicotine replacement therapies and e-cigarettes.
Collapse
|
13
|
Gavilan J, Mennickent D, Ramirez-Molina O, Triviño S, Perez C, Silva-Grecchi T, Godoy PA, Becerra J, Aguayo LG, Moraga-Cid G, Martin VS, Yevenes GE, Castro PA, Guzman L, Fuentealba J. 17 Oxo Sparteine and Lupanine, Obtained from Cytisus scoparius, Exert a Neuroprotection against Soluble Oligomers of Amyloid-β Toxicity by Nicotinic Acetylcholine Receptors. J Alzheimers Dis 2019; 67:343-356. [DOI: 10.3233/jad-180945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Javiera Gavilan
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
| | - Daniela Mennickent
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
| | - Oscar Ramirez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
| | - Sergio Triviño
- Departamento de Botánica, Laboratorio de Química de Productos Naturales, Universidad de Concepción, Chile
| | - Claudia Perez
- Departamento de Botánica, Laboratorio de Química de Productos Naturales, Universidad de Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
| | - Pamela A. Godoy
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
| | - Jose Becerra
- Departamento de Botánica, Laboratorio de Química de Productos Naturales, Universidad de Concepción, Chile
| | - Luis G. Aguayo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Victoria San Martin
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Gonzalo E. Yevenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Patricio A. Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Leonardo Guzman
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Universidad de Concepción, Chile
- Centro de Investigaciones Avanzadas en Biomedicina-U. de Concepcion (CIAB UdeC), Chile
| |
Collapse
|
14
|
Lemieszek MK, Marques PS, Ribeiro M, Ferreira D, Marques G, Chaves R, Pożarowski P, Nunes FM, Rzeski W. Mushroom small RNAs as potential anticancer agents: a closer look at Cantharellus cibarius proapoptotic and antiproliferative effects in colon cancer cells. Food Funct 2019; 10:2739-2751. [DOI: 10.1039/c8fo02378f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Screening aimed at the evaluation of the presence of small RNAs with anticancer properties in Boletus spretus, B. pinophilus and Cantharellus cibarius, was conducted.
Collapse
Affiliation(s)
| | - Patrícia S. Marques
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Miguel Ribeiro
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Daniela Ferreira
- CAG – Laboratory of Cytogenomics and Animal Genomics
- Department of Genetics and Biotechnology
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Guilhermina Marques
- CITAB, Department of Agronomy
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Raquel Chaves
- CAG – Laboratory of Cytogenomics and Animal Genomics
- Department of Genetics and Biotechnology
- University of Trás-os-Montes e Alto Douro
- Vila Real
- Portugal
| | - Piotr Pożarowski
- Department of Clinical Immunology
- Medical University of Lublin
- Lublin
- Poland
| | - Fernando M. Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Rural Health
- Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
15
|
Nishioka T, Tada H, Ibaragi S, Chen C, Sasano T. Nicotine exposure induces the proliferation of oral cancer cells through the α7 subunit of the nicotinic acetylcholine receptor. Biochem Biophys Res Commun 2018; 509:514-520. [PMID: 30598264 DOI: 10.1016/j.bbrc.2018.12.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Oral cancer and smoking are closely related, because the oral cavity, which is the route of ingestion of tobacco smoke, is in direct contact with the oral mucosa. Nicotine, one of the components of tobacco, can diffuse rapidly to the central nervous system and is responsible for tobacco addiction. Nicotine is present in high concentrations in the bloodstream of smokers; while the addictive effects of this alkaloid have extensively been studied, its effect on tumorigenesis is not clear yet. Therefore, in this study, we examined the effect of nicotine on cell proliferation and the signaling pathways it activates. The human oral squamous cell carcinoma cell line HSC-2 was used as a model system. We demonstrated the correlation between nicotine and epidermal growth factor receptor (EGFR) signaling. Nicotine treatment induced HSC-2 cell proliferation and migration and the phosphorylation of EGFR. Furthermore, nicotine treatment activated the EGFR downstream effectors phosphatidylinositol-3 kinase/AKT and p44/42 mitogen-activated protein kinases (ERK), which, in turn, promoted cell proliferation. Overall, our study suggests that nicotine promotes cell growth and migration through epidermal growth factor (EGF) signaling and plays an important role in oral cancer progression.
Collapse
Affiliation(s)
- Takashi Nishioka
- Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Takashi Sasano
- Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
16
|
Liu DH, An M, Bao BL, Ren F, Xia P. Nicotine inhibits CD24 expression in Lewis lung carcinoma cells by upregulation of RAS expression. Int J Oncol 2018; 53:815-822. [PMID: 29845249 DOI: 10.3892/ijo.2018.4415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of ddifferentiation 24 (CD24) is a widely used cancer stem cell (CSC) marker in numerous cancer types. However, a number of studies have shown that CD24 is a prognostic marker, but not a CSC marker for lung adenocarcinoma. In the present study, firstly, bioinformatic analyses were used to identify the CD24 mRNA levels in the subtypes of lung cancer. Secondly, CD24high and CD24low cells were isolated from the side population of Lewis lung carcinoma (LLC) cells using flow cytometry. Furthermore, the stemness of CD24high and CD24low cells were determined in vivo and in vitro. Lastly, the mechanism(s) of nicotine-inhibited CD24 expression in LLC cells were assessed. The main findings of this study are that: i) CD24 could be used as a prognostic marker for human lung adenocarcinoma; ii) the in vitro and in vivo experiments did not determine a significant influence of CD24 on the tumorgenicity of LLC cells; and iii) nicotine inhibited CD24 expression in LLC cells by upregulation of RAS. However, the detailed mechanism(s) of these results require further analysis.
Collapse
Affiliation(s)
- Da-Hua Liu
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Min An
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou, Liaoning 121000, P.R. China
| | - Bai-Li Bao
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou, Liaoning 121000, P.R. China
| | - Fu Ren
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Pu Xia
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
17
|
Paulo JA, Jedrychowski MP, Chouchani ET, Kazak L, Gygi SP. Multiplexed Isobaric Tag-Based Profiling of Seven Murine Tissues Following In Vivo Nicotine Treatment Using a Minimalistic Proteomics Strategy. Proteomics 2018; 18:e1700326. [PMID: 29660237 PMCID: PMC5992107 DOI: 10.1002/pmic.201700326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Nicotine is a major addictive compound in tobacco and a component of smoking-related products, such as e-cigarettes. Once internalized, nicotine can perturb many cellular pathways and can induce alterations in proteins across different cell types; however, the mechanisms thereof remain undetermined. The authors hypothesize that both tissue-specific and global protein abundance alterations result from nicotine exposure. Presented here is the first proteomic profiling of multiple tissues from mice treated orally with nicotine. Proteins extracted from seven tissues (brain, heart, kidney, liver, lung, pancreas, and spleen) from treated (n = 5) and untreated control (n = 5) mice are assembled into a TMT10-plex experiment. A minimalistic proteomics strategy is employed using TMT reagents efficiently and centrifugation-based reversed-phase columns to streamline sample preparation. Combined, over 11 000 non-redundant proteins from over 138 000 different peptides are quantified in seven TMT10-plex experiments. Between 7 and 126 proteins are significantly altered in tissues from nicotine-exposed mice, 11 which are altered in two or more tissues. Our data showcase the vast extent of nicotine exposure across murine tissue.
Collapse
Affiliation(s)
- Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Mark P. Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
| | - Edward T. Chouchani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
| | - Lawrence Kazak
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
18
|
Chang YW, Singh KP. Duration-dependent effects of nicotine exposure on growth and AKT activation in human kidney epithelial cells. Mol Cell Biochem 2018; 448:51-60. [PMID: 29396723 DOI: 10.1007/s11010-018-3312-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/27/2018] [Indexed: 01/06/2023]
Abstract
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
19
|
Lemieszek MK, Ribeiro M, Marques G, Nunes FM, Pożarowski P, Rzeski W. New insights into the molecular mechanism of Boletus edulis ribonucleic acid fraction (BE3) concerning antiproliferative activity on human colon cancer cells. Food Funct 2017; 8:1830-1839. [DOI: 10.1039/c6fo01626j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Geng H, Zhao L, Liang Z, Zhang Z, Xie D, Bi L, Wang Y, Zhang T, Cheng L, Yu D, Zhong C. Cigarette smoke extract-induced proliferation of normal human urothelial cells via the MAPK/AP-1 pathway. Oncol Lett 2016; 13:469-475. [PMID: 28123584 DOI: 10.3892/ol.2016.5407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer (BC) is universally acknowledged as a significant public health issue, worldwide. Numerous studies have demonstrated that cigarette smoke is the primary risk factor for BC. However, the mechanism of cigarette smoke-induced BC has not been fully elucidated. Sustained epithelial cell hyperplasia has been identified as a preneoplastic lesion during the formation of BC. The aim of the present study was to investigate whether exposure to cigarette smoke extract (CSE) induced proliferation in normal human urothelial SV-HUC-1 cells. Furthermore, the role of the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway in the CSE-induced proliferation of SV-HUC-1 cells was also investigated. The present study revealed that the expression of phosphorylated-extracellular signal regulated protein kinase (ERK)1/2, Jun N-terminal kinase (JNK) and p38 was significantly increased following exposure to CSE in SV-HUC-1 cells. Furthermore, CSE increased the expression of the proliferation markers, cyclin D1 and proliferating cell nuclear antigen. By contrast, CSE attenuated the expression of p21. In addition, the inhibitors of ERK1/2 and JNK reversed the aforementioned effects of CSE. However, p38 inhibition did not reverse CSE-induced proliferation. In conclusion, the results of the present study demonstrated that exposure to CSE induced proliferation in normal human urothelial cells. Furthermore, the results also indicated that the ERK1/2 and JNK pathways are important for the regulation of proliferation via the AP-1 proteins.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Zhao
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhaofeng Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhiqiang Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dongdong Xie
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Cheng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
21
|
Aoyama Y, Toriumi K, Mouri A, Hattori T, Ueda E, Shimato A, Sakakibara N, Soh Y, Mamiya T, Nagai T, Kim HC, Hiramatsu M, Nabeshima T, Yamada K. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex. Neuropsychopharmacology 2016; 41:578-89. [PMID: 26105135 PMCID: PMC5130133 DOI: 10.1038/npp.2015.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/22/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022]
Abstract
Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring.
Collapse
Affiliation(s)
- Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazuya Toriumi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Tomoya Hattori
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Eriko Ueda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akane Shimato
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Nami Sakakibara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuka Soh
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hyoung-Chun Kim
- Department of Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan, Tel: +81 52 839 2756, Fax: +81 52 839 2756, E-mail:
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan, Tel: +81 52 744 2674, Fax: +81 52 744 2979, E-mail:
| |
Collapse
|
22
|
Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment - A Review. Front Oncol 2015; 5:196. [PMID: 26380225 PMCID: PMC4553893 DOI: 10.3389/fonc.2015.00196] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Tobacco use is considered the single most important man-made cause of cancer that can be avoided. The evidence that nicotine is involved in cancer development is reviewed and discussed in this paper. Both tobacco smoke and tobacco products for oral use contain a number of carcinogenic substances, such as polycyclic hydrocarbons and tobacco-specific N-nitrosamines (TSNA), which undoubtedly contribute to tobacco related cancer. Recent studies have shown that nicotine can affect several important steps in the development of cancer, and suggest that it may cause aggravation and recurrence of the disease. TSNA may be formed from nicotine in the body. The role of nicotine as the major addictive component of tobacco products may have distracted our attention from toxicological effects on cell growth, angiogenesis, and tumor malignancy. Effects on cancer disease are important aspects in the evaluation of possible long-term effects from sources of nicotine, such as e-cigarettes and products for nicotine replacement therapy, which both have a potential for life-long use.
Collapse
Affiliation(s)
- Tore Sanner
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tom K. Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
23
|
Association of CCND1 overexpression with KRAS and PTEN alterations in specific subtypes of non-small cell lung carcinoma and its influence on patients' outcome. Tumour Biol 2015; 36:8773-80. [PMID: 26055143 DOI: 10.1007/s13277-015-3620-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Cyclin D1 is one of the major cellular oncogenes, overexpressed in number of human cancers, including non-small cell lung carcinoma (NSCLC). However, it does not exert tumorigenic activity by itself, but rather cooperates with other altered oncogenes and tumor suppressors. Therefore, in the present study, we have examined mutual role of cyclin D1, KRAS, and PTEN alterations in the pathogenesis of NSCLC and their potential to serve as multiple molecular markers for this disease. CCND1 gene amplification and gene expression were analyzed in relation to mutational status of KRAS gene as well as to PTEN alterations (loss of heterozygosity and promoter hypermethylation) in NSCLC patient samples. Moreover, the effect of these co-alterations on patient survival was examined. Amplified CCND1 gene was exclusively associated with increased gene expression. Statistical analyses also revealed significant association between CCND1 overexpression and KRAS mutations in the whole group and in the groups of patients with adenocarcinoma, grade 1/2, and stage I/II. In addition, CCND1 overexpression was significantly related to PTEN promoter hypermethylation in the whole group and in the group of patients with squamous cell carcinoma and lymph node invasion. These joint alterations also significantly shortened patients' survival and were shown to be an independent factor for adverse prognosis. Overall results point that cyclin D1 expression cooperates with KRAS and PTEN alterations in pathogenesis of NSCLC, and they could serve as potential multiple molecular markers for specific subgroups of NSCLC patients as well as prognostic markers for this type of cancer.
Collapse
|
24
|
Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 2014; 12:14-23. [PMID: 24398389 PMCID: PMC3915512 DOI: 10.1158/1541-7786.mcr-13-0541] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tobacco smoke contains multiple classes of established carcinogens including benzo(a)pyrenes, polycyclic aromatic hydrocarbons, and tobacco-specific nitrosamines. Most of these compounds exert their genotoxic effects by forming DNA adducts and generation of reactive oxygen species, causing mutations in vital genes such as K-Ras and p53. In addition, tobacco-specific nitrosamines can activate nicotinic acetylcholine receptors (nAChR) and to a certain extent β-adrenergic receptors (β-AR), promoting cell proliferation. Furthermore, it has been demonstrated that nicotine, the major addictive component of tobacco smoke, can induce cell-cycle progression, angiogenesis, and metastasis of lung and pancreatic cancers. These effects occur mainly through the α7-nAChRs, with possible contribution from the β-ARs and/or epidermal growth factor receptors. This review article will discuss the molecular mechanisms by which nicotine and its oncogenic derivatives such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine induce cell-cycle progression and promote tumor growth. A variety of signaling cascades are induced by nicotine through nAChRs, including the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, phosphoinositide 3-kinase/AKT pathway, and janus-activated kinase/STAT signaling. In addition, studies have shown that nAChR activation induces Src kinase in a β-arrestin-1-dependent manner, leading to the inactivation of Rb protein and resulting in the expression of E2F1-regulated proliferative genes. Such nAChR-mediated signaling events enhance the proliferation of cells and render them resistant to apoptosis induced by various agents. These observations highlight the role of nAChRs in promoting the growth and metastasis of tumors and raise the possibility of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612.
| | | |
Collapse
|
25
|
Ben-Yehudah A, Campanaro BM, Wakefield LM, Kinney TN, Brekosky J, Eisinger VM, Castro CA, Carlisle DL. Nicotine exposure during differentiation causes inhibition of N-myc expression. Respir Res 2013; 14:119. [PMID: 24499207 PMCID: PMC3828478 DOI: 10.1186/1465-9921-14-119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background The ability of chemicals to disrupt neonatal development can be studied using embryonic stem cells (ESC). One such chemical is nicotine. Prenatal nicotine exposure is known to affect postnatal lung function, although the mechanisms by which it has this effect are not clear. Since fibroblasts are a critical component of the developing lung, providing structure and secreting paracrine factors that are essential to epithelialization, this study focuses on the differentiation of ESC into fibroblasts using a directed differentiation protocol. Methods Fibroblasts obtained from non-human primate ESC (nhpESC) differentiation were analyzed by immunohistochemistry, immunostaining, Affymetrix gene expression array, qPCR, and immunoblotting. Results Results of these analyses demonstrated that although nhpESCs differentiate into fibroblasts in the presence of nicotine and appear normal by some measures, including H&E and SMA staining, they have an altered gene expression profile. Network analysis of expression changes demonstrated an over-representation of cell-cycle related genes with downregulation of N-myc as a central regulator in the pathway. Further investigation demonstrated that cells differentiated in the presence of nicotine had decreased N-myc mRNA and protein expression and longer doubling times, a biological effect consistent with downregulation of N-myc. Conclusions This study is the first to use primate ESC to demonstrate that nicotine can affect cellular differentiation from pluripotency into fibroblasts, and in particular, mediate N-myc expression in differentiating ESCs. Given the crucial role of fibroblasts throughout the body, this has important implications for the effect of cigarette smoke exposure on human development not only in the lung, but in organogenesis in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diane L Carlisle
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Warren GW, Singh AK. Nicotine and lung cancer. J Carcinog 2013; 12:1. [PMID: 23599683 PMCID: PMC3622363 DOI: 10.4103/1477-3163.106680] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/13/2012] [Indexed: 01/07/2023] Open
Abstract
Tobacco use in cancer patients is associated with increased cancer treatment failure and decreased survival. Nicotine is one of over 7,000 compounds in tobacco smoke and nicotine is the principal chemical associated with addiction. The purpose of this article is to review the tumor promoting activities of nicotine. Nicotine and its metabolites can promote tumor growth through increased proliferation, angiogenesis, migration, invasion, epithelial to mesenchymal transition, and stimulation of autocrine loops associated with tumor growth. Furthermore, nicotine can decrease the biologic effectiveness of conventional cancer treatments such as chemotherapy and radiotherapy. Common mechanisms appear to involve activation of nicotinic acetylcholine receptors and beta-adrenergic receptors leading to downstream activation of parallel signal transduction pathways that facilitate tumor progression and resistance to treatment. Data suggest that nicotine may be an important mechanism by which tobacco promotes tumor development, progression, and resistance to cancer treatment.
Collapse
Affiliation(s)
- Graham W Warren
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA and Roswell Park Cancer Institute, Buffalo, NY, USA ; Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA and Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
27
|
Lemieszek MK, Cardoso C, Ferreira Milheiro Nunes FH, Ramos Novo Amorim de Barros AI, Marques G, Pożarowski P, Rzeski W. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells. Food Funct 2013; 4:575-85. [DOI: 10.1039/c2fo30324h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Wen J, Fu JH, Zhang W, Guo M. Lung carcinoma signaling pathways activated by smoking. CHINESE JOURNAL OF CANCER 2012; 30:551-8. [PMID: 21801603 PMCID: PMC4013405 DOI: 10.5732/cjc.011.10059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | |
Collapse
|
29
|
Wittel UA, Momi N, Seifert G, Wiech T, Hopt UT, Batra SK. The pathobiological impact of cigarette smoke on pancreatic cancer development (review). Int J Oncol 2012; 41:5-14. [PMID: 22446714 PMCID: PMC3589138 DOI: 10.3892/ijo.2012.1414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Uwe A Wittel
- Department of General- and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Maritz GS, Mutemwa M. Tobacco smoking: patterns, health consequences for adults, and the long-term health of the offspring. Glob J Health Sci 2012; 4:62-75. [PMID: 22980343 PMCID: PMC4776909 DOI: 10.5539/gjhs.v4n4p62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 01/30/2023] Open
Abstract
Tobacco use started several centuries ago and increased markedly after the invention of the cigarette making machine. Once people start smoking they find it difficult to quit the habit. This is due to the addictive effect of nicotine in tobacco smoke. Various epidemiologic and laboratory studies clearly showed that smoking is associated with various diseases such as heart diseases, asthma and emphysema and the associated increase in morbidity and mortality of smokers. Several studies implicate nicotine as the causative factor in tobacco smoke. Apart from nicotine, various carcinogens also occur in tobacco smoke resulting in an increase in the incidence of cancer in smokers. While the smoking habit is decreasing in developed countries, tobacco use increases in the developing countries. Smoking prevalence is also highest in poor communities and amongst those with low education levels. It is important to note that, although ther is a decline in the number of smokers in the developed countries, there is a three to four decades lag between the peak in smoking prevalence and the subsequent peak in smoking related mortality. It has been shown that maternal smoking induces respiratory diseases in the offspring. There is also evidence that parental smoking may program the offspring to develop certain diseases later in life. Various studies showed that maternal nicotine exposure during pregnancy and lactation via tobacco smoke of nicotine replacement therapy (NRT), program the offspring to develop compromised lung structure later in life with the consequent compromised lung function. This implies that NRT is not an option to assist pregnant or lactating smokers to quit the habit. Even paternal smoking may have an adverse effect on the health of the offspring since it has been shown that 2nd and 3rd hand smoking have adverse health consequences for those exposed to it.
Collapse
Affiliation(s)
- Gert S Maritz
- Department of Medical Biosciences, University of the Western cape, Bellville.
| | | |
Collapse
|
31
|
Benes FM. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia. Handb Exp Pharmacol 2012:401-17. [PMID: 23027422 DOI: 10.1007/978-3-642-25758-2_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of microcircuitry within this region.
Collapse
|
32
|
[The Fetal Tobacco Syndrome - A statement of the Austrian Societies for General- and Family Medicine (ÖGAM), Gynecology and Obstetrics (ÖGGG), Hygiene, Microbiology and Preventive Medicine (ÖGHMP), Pediatrics and Adolescence Medicine (ÖGKJ) as well as Pneumology (ÖGP)]. Wien Klin Wochenschr 2011; 124:129-45. [PMID: 22189489 DOI: 10.1007/s00508-011-0106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/13/2011] [Indexed: 10/14/2022]
Abstract
Over more than 50 years, the nocuous effects of smoking in pregnancy on the fetus are well known. In the first years of science the focus was primarily on restricted fetal growth while in more recent years over 10.000 studies investigated the incomparably big sum of detrimental effects for the unborn's health. In this statement we want to present the recent scientific findings on this topic. The statement is aimed to show all doctors who treat pregnant women the present situation and evidence. In the beginning we give a short overview about the epidemiological situation in Europe. Then we present step by step the health effects with regards to pathophysiology and clinics. Furthermore the reader will learn about possibilities for smoking cessation in pregnancy. The problem of passive-smoking in pregnancy will be dealt with in a separate chapter. At present there is strong evidence that pregnant smoking has a detrimental effect on birth-weight, placenta-associated disease, stillbirth, sudden infant death syndrome (SIDS), childhood overweight, clefts, lung function, asthma, cardiovascular diseases and mental developmental disorders. These factors can be summarized by the term Fetal Tobacco Syndrome. There is supply for more studies for less investigated health effects. Pregnancy is a chance to stop smoking as most women show a high motivation in this period. Hence doctors of all disciplines should inform pregnant women about the detrimental effects of smoking on their unborn child and show them possibilities for smoking cessation.
Collapse
|
33
|
Zeng DX, Xu YJ, Liu XS, Wang R, Xiang M. Cigarette smoke extract induced rat pulmonary artery smooth muscle cells proliferation via PKCα-mediated cyclin D1 expression. J Cell Biochem 2011; 112:2082-8. [PMID: 21465534 DOI: 10.1002/jcb.23131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cigarette smoke could induce pulmonary smooth muscle cells (PASMCs) proliferation. Although our previous study had implied the involvement of protein kinase Cα (PKCα), the molecular mechanism underlying PKCα pathway in this process is still unknown. In this study, rat PASMCs were stimulated by cigarette smoke extract (CSE) or PMA (a special activator to PKCα). Two percent CSE and PMA significantly enhanced cyclin D1 expression and cells proliferation. But cyclin D1-specific siRNA successfully inhibited DNA synthesis in CSE-treated or PMA-treated cells. On the other hand, PKCα-specific siRNA significantly suppressed cyclin D1 expression in CSE-treated cells. Moreover, PKCα-specific siRNA resulted in a cell-cycle arrest in G0/G1 and decreased cells number significantly. We conclude that CSE induced rat PASMCs proliferation at least partly via PKCα-mediated cyclin D1 expression.
Collapse
Affiliation(s)
- Da-Xiong Zeng
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
34
|
Maier CR, Hollander MC, Hobbs EA, Dogan I, Linnoila RI, Dennis PA. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer. Cancer Prev Res (Phila) 2011; 4:1743-51. [PMID: 22027685 DOI: 10.1158/1940-6207.capr-11-0365] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiologic levels of nicotine on lung tumor formation, tumor growth, or metastasis. Nicotine administered in drinking water did not enhance lung tumorigenesis after treatment with the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Tumors that develop in this model have mutations in K-ras, which is commonly observed in smoking-related, human lung adenocarcinomas. In a transgenic model of mutant K-ras-driven lung cancer, nicotine did not increase tumor number or size and did not affect overall survival. Likewise, in a syngeneic model using lung cancer cell lines derived from NNK-treated mice, oral nicotine did not enhance tumor growth or metastasis. These data show that nicotine does not enhance lung tumorigenesis when given to achieve levels comparable with those of NRT, suggesting that nicotine has a dose threshold, below which it has no appreciable effect. These studies are consistent with epidemiologic data showing that NRT does not enhance lung cancer risk in former smokers.
Collapse
Affiliation(s)
- Colleen R Maier
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nicotine overrides DNA damage-induced G1/S restriction in lung cells. PLoS One 2011; 6:e18619. [PMID: 21559516 PMCID: PMC3084701 DOI: 10.1371/journal.pone.0018619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis) and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP) and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1) arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.
Collapse
|
36
|
From smoking to cancers: novel targets to neuronal nicotinic acetylcholine receptors. JOURNAL OF ONCOLOGY 2011; 2011:693424. [PMID: 21772846 PMCID: PMC3136181 DOI: 10.1155/2011/693424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 03/17/2011] [Indexed: 12/11/2022]
Abstract
Cigarette smoking bears a strong etiological association with many neovascularization-related diseases, including cancer, cardiovascular disease, and age-related macular degeneration. Cigarette smoke is a complex mixture of many compounds, including nicotine, which is the major active and addictive component of tobacco. Nicotine and its specific metabolized carcinogens directly bind to nicotinic acetylcholine receptors (nAChRs) on cell membranes and trigger the nAChR signal cascade. The nAChRs were originally thought to be ligand-gated ion channels that modulate physiological processes ranging from neurotransmission to cancer signaling. For several decades, the nAChRs served as a prototypic molecule for neurotransmitter receptors; however, they are now important therapeutic targets for various diseases, including Alzheimer's and Parkinson's diseases, schizophrenia, and even cancer. This paper describes recent advances in our understanding of the assembly, activity, and biological functions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands.
Collapse
|
37
|
Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. JOURNAL OF ONCOLOGY 2011; 2011:654931. [PMID: 21559255 PMCID: PMC3087891 DOI: 10.1155/2011/654931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/24/2011] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic) effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1) receptors, (2) cell cycle regulators, (3) signaling pathways, (4) apoptosis mediators, (5) angiogenic factors, and (6) invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.
Collapse
|
38
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Puliyappadamba VT, Cheriyan VT, Thulasidasan AKT, Bava SV, Vinod BS, Prabhu PR, Varghese R, Bevin A, Venugopal S, Anto RJ. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer 2010; 9:220. [PMID: 20727180 PMCID: PMC2936340 DOI: 10.1186/1476-4598-9-220] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/20/2010] [Indexed: 12/23/2022] Open
Abstract
Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.
Collapse
Affiliation(s)
- Vineshkumar T Puliyappadamba
- Integrated Cancer Research Program, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat 2010; 125:73-87. [DOI: 10.1007/s10549-010-0821-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/24/2010] [Indexed: 01/25/2023]
|
41
|
Xu J, Xu F, Lin Y. Cigarette smoke synergizes lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α secretion from macrophages via substance P-mediated nuclear factor-κB activation. Am J Respir Cell Mol Biol 2010; 44:302-8. [PMID: 20160043 DOI: 10.1165/rcmb.2009-0288oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A recent study has indicated that alveolar macrophages from smokers incubated with lipopolysaccharide (LPS) secrete much more IL-1β and TNF-α than those from healthy nonsmokers, but the mechanisms underlying this augmented secretion by cigarette smoke (CS) remain unknown. CS and LPS reportedly promote macrophages' secreting substance P (SP) that could up-regulate these cytokines' secretion from macrophages by acting on neurokinin 1 receptor (NK1R). Moreover, NF-κB from macrophages participates in NK1R intracellular signaling and synthesis of these cytokines. The present in vitro study was undertaken to examine whether CS is able to synergize these cytokines' response to LPS in macrophages, and if so, whether an amplified SP secretion is responsible for this synergistic cytokines' response via a NK1R-driven NF-κB pathway. THP-1-derived and MH-S macrophages were exposed to control medium and CS condensate (CSC) without or with LPS. We found that LPS, CSC, and CSC+LPS significantly increased IL-1β, TNF-α, and SP secretion and that SP secretion markedly preceded cytokines' secretion. CSC+LPS-induced responses were markedly greater than the sum of the responses to CSC and LPS alone, suggesting a synergistic effect. Blocking NK1R reduced the responses of IL-1β, TNF-α, and NF-κB activation to CSC+LPS by 41, 40, and 46%, respectively. NF-κB inhibitors decreased the CSC+LPS-induced cytokines' responses by 70%. Our findings suggest that CS amplifies the LPS-induced macrophages' secretion of IL-1β and TNF-α through synergizing SP secretion, which activates NF-κB via binding with NK1R.
Collapse
Affiliation(s)
- Junyang Xu
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
42
|
Abstract
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires1428, Argentina,
| | - Eric Lau
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA,
| | - Ze'ev Ronai
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 2009; 7:20. [PMID: 19712465 PMCID: PMC2744676 DOI: 10.1186/1478-811x-7-20] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/27/2009] [Indexed: 11/14/2022] Open
Abstract
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | | |
Collapse
|
44
|
Maritz GS. Are nicotine replacement therapy, varenicline or bupropion options for pregnant mothers to quit smoking? Effects on the respiratory system of the offspring. Ther Adv Respir Dis 2009; 3:193-210. [PMID: 19706643 DOI: 10.1177/1753465809343712] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nicotine occurs in tobacco smoke. It is a habit-forming substance and is prescribed by health professionals to assist smokers to quit smoking. It is rapidly absorbed from the lungs of smokers. It crosses the placenta and accumulates in the developing fetus. Nicotine induces formation of oxygen radicals and at the same time also reduces the antioxidant capacity of the lungs. Nicotine and the oxidants cause point mutations in the DNA molecule thereby changing the program that controls lung growth and maintenance of lung structure. The data available indicate that maternal nicotine exposure induces a persistent inhibition of glycolysis and a drastically increased AMP level. These metabolic changes are thought to contribute to the faster aging of the lungs of the offspring of mothers that are exposed to nicotine via the placenta and mother's milk. The lungs of these animals are more susceptible to damage as shown by the gradual deterioration of the lung parenchyma. The rapid metabolic and structural aging of the lungs of the animals exposed to nicotine via the placenta and mother's milk, and thus during phases of lung development characterized by rapid cell division, is likely due to 'programming' induced by nicotine. Since varenicline, a partial nicotine agonist, has basically the same structure as nicotine, and also binds to acetylcholine receptors in competition with nicotine (but with largely the same effect), it is not advisable to use nicotine or varenicline during gestation and lactation. Furthermore, the use of individual vitamin supplements is also not advisable because of the negative impact on the program that controls maintenance of lung structural and functional integrity and aging. A more appropriate smoking cessation program will also include a mixture of antioxidant nutrients such as in tomato juice.
Collapse
Affiliation(s)
- Gert S Maritz
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
45
|
Chipitsyna G, Gong Q, Anandanadesan R, Alnajar A, Batra SK, Wittel UA, Cullen DM, Akhter MP, Denhardt DT, Yeo CJ, Arafat HA. Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells. Int J Cancer 2009; 125:276-85. [PMID: 19358273 PMCID: PMC4465299 DOI: 10.1002/ijc.24388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with etiological association with cigarette smoking. Nicotine, an important component of cigarettes, exists at high concentrations in the bloodstream of smokers. Osteopontin (OPN) is a secreted phosphoprotein that confers on cancer cells a migratory phenotype and activates signaling pathways that induce cell survival, proliferation, invasion, and metastasis. Here, we investigated the potential molecular basis of nicotine's role in PDA through studying its effect on OPN. Nicotine significantly (p < 0.02) increased OPN mRNA and protein secretion in PDA cells through activation of the OPN gene promoter. The OPN mRNA induction was inhibited by the nicotinic acetylcholine receptor antagonist, mechamylamine. Further, the tyrosine kinase inhibitor genistein inhibited the nicotine-mediated induction of OPN, suggesting that mitogen activated protein kinase signaling mechanism is involved. Nicotine activated the phosphorylation of ERK1/2, but not p38 or c-Jun NH2-terminal MAP kinases. Inhibition of ERK1/2 activation reduced the nicotine-induced OPN synthesis. Rats exposed to cigarette smoke showed a dose-dependent increase in pancreatic OPN that paralleled the rise of pancreatic and plasma nicotine levels. Analysis of cancer tissue from invasive PDA patients, the majority of whom were smokers, showed the presence of significant amounts of OPN in the malignant ducts and the surrounding pancreatic acini. Our data suggest that nicotine may contribute to PDA pathogenesis through upregulation of OPN. They provide the first insight into a nicotine-initiated signal transduction pathway that regulates OPN as a possible tumorigenic mechanism in PDA.
Collapse
Affiliation(s)
- Galina Chipitsyna
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Qiaoke Gong
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Rathai Anandanadesan
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Amer Alnajar
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE
| | - Uwe A. Wittel
- Department of Biochemistry and Molecular Biology, Nebraska Medical Center, Omaha, NE
| | | | | | - David T. Denhardt
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ
| | - Charles J. Yeo
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Hwyda A. Arafat
- Department of Surgery, Jefferson Pancreatic, Biliary & related Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
46
|
Site-specific regulation of cell cycle and DNA repair in post-mitotic GABA cells in schizophrenic versus bipolars. Proc Natl Acad Sci U S A 2009; 106:11731-6. [PMID: 19564623 DOI: 10.1073/pnas.0903066106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GABA cell dysfunction in both schizophrenia (SZ) and bipolar disorder (BD) involves decreased GAD(67) expression, although this change involves fundamentally different networks of genes in the 2 disorders. One gene that is common to these 2 networks is cyclin D2, a key component of cell cycle regulation that shows increased expression in SZ, but decreased expression in BD. Because of the importance of cell cycle regulation in maintaining functional differentiation and DNA repair, the current study has examined the genes involved in the G(1) and G(2) checkpoints to generate new hypotheses regarding the regulation of the GABA cell phenotype in the hippocampus of SZ and BD. The results have demonstrated significant changes in cell cycle regulation in both SZ and BD and these changes include the transcriptional complex (TC) that controls the expression of E2F/DP-1 target genes critical for progression to G(2)/M. The methyl-CpG binding domain protein (MBD4) that is pivotal for DNA repair, is significantly up-regulated in the stratum oriens (SO) of CA3/2 and CA1 in SZs and BDs. However, other genes associated with the TC, and the G(1) and G(2) checkpoints, show complex changes in expression in the SO of CA3/2 and CA1 of both SZs and BDS. Overall, the patterns of expression observed have suggested that the regulation of functional differentiation and/or genomic integrity of hippocampal GABA cells varies according to diagnosis and their location within the trisynaptic pathway.
Collapse
|
47
|
Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, Chen CY. Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res 2008; 68:8473-81. [PMID: 18922921 DOI: 10.1158/0008-5472.can-08-0131] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotine, one of the major components in tobacco, is at high concentrations in the bloodstream of cigarette smokers. However, the mechanisms of how nicotine affects tumor development and whether nicotine is a potential carcinogen for malignancies induced by secondhand smoking are not fully understood yet. Here, we investigate the signaling pathways by which nicotine potentiates tumorigenesis in human mammary epithelial-like MCF10A or cancerous MCF7 cells. We show that human MCF10A and MCF7 cells both express four subunits of nicotine acetylcholine receptor (nAChR). The treatment of these cells with nicotine enhances the activity of protein kinase C (PKC) alpha without altering the expression level of this kinase. Nicotine also stimulates [(3)H]thymidine incorporation into the genome of these cells as well as forces serum-starved cells to enter S phase of the cell cycle, resulting in growth promotion. Importantly, on nicotine treatment, the mobility of MCF10A and MCF7 cells is enhanced, which can be blocked by the addition of nAChR or PKC inhibitor. Experiments using small interfering RNA knockdown or ectopic expression of cdc42 showed that cdc42 functions as a downstream effector of PKC and is crucial in the regulation of nicotine-mediated migratory activity in the cells. Together, our findings suggest that nicotine, through interacting with its receptor, initiates a signaling cascade that involves PKC and cdc42 and consequently promotes migration in mammary epithelial or tumor cells.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sato T, Abe T, Nakamoto N, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata Y, Kobayashi A, Yoda T. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun 2008; 377:126-30. [PMID: 18835254 DOI: 10.1016/j.bbrc.2008.09.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 01/15/2023]
Abstract
Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells.
Collapse
Affiliation(s)
- Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen J, Higby R, Tian D, Tan D, Johnson MD, Xiao Y, Kellar KJ, Feng S, Shields PG. Toxicological analysis of low-nicotine and nicotine-free cigarettes. Toxicology 2008; 249:194-203. [PMID: 18599178 PMCID: PMC2573966 DOI: 10.1016/j.tox.2008.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/04/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Low-nicotine and nicotine-free cigarettes are commercially available under the brand-name Quest. Some consumers may believe that these are safer cigarettes, and they may smoke more cigarettes or inhale more smoke to compensate for low nicotine yields. Thus, we have studied the toxicological effects of these two cigarettes and compared them with the Kentucky reference cigarette 2R4F. Also, the availability of nicotine-free cigarettes allows for the assessing the role of nicotine in cigarette smoke. In addition to nicotine, some tobacco-specific nitrosamines, aldehydes, and volatile organic compounds were also reduced in the Quest cigarettes compared to the 2R4F. However, aromatic amines were higher in the nicotine-free compared with low nicotine cigarettes. The Ames test revealed that cigarette smoke condensates from the nicotine-free (CSC-F), low nicotine (CSC-L) and 2R4F (CSC-R) cigarettes had a similar mutagenic potency. Exposure to any CSC caused a similar dose-dependent LDH leakage from normal human bronchial epithelial cells. However, CSC-F had more inhibitory effects on the cell growth than CSC-L and CSC-R. Adding nicotine to the CSC-F attenuated this inhibition. Both Quest CSCs decreased gap junction intercellular communication and caused cell cycle arrest. CSC exposure increased cytoplasmic nucleosomes, sub-G1/G0 population and apoptotic comet tails. Proapoptotic protein Bax increased independent of p53 induction after exposure to CSC-F. In conclusion, these studies are not consistent with a perception that low-nicotine or nicotine-free cigarettes may have less toxicity in human cells. Nicotine, as it exists in CSC, attenuates cytotoxicity possibly in part through inhibition of apoptotic pathways.
Collapse
Affiliation(s)
- Jinguo Chen
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | | | - Defa Tian
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Duanjun Tan
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Yingxian Xiao
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Kenneth J Kellar
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Shibao Feng
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| | - Peter G. Shields
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC
| |
Collapse
|
50
|
Abstract
Nicotine is found in tobacco smoke. It is a habit forming substance and is prescribed by health professionals to assist smokers to quit smoking. It is rapidly absorbed from the lungs of smokers. It crosses the placenta and accumulates in the developing fetus. Nicotine induces formation of oxygen radicals and at the same time also reduces the antioxidant capacity of the lungs. Nicotine and the oxidants cause point mutations in the DNA molecule, thereby changing the program that controls lung growth and maintenance of lung structure. The data available indicate that maternal nicotine exposure induces a persistent inhibition of glycolysis and a drastically increased cAMP level. These metabolic changes are thought to contribute to the faster aging of the lungs of the offspring of mothers that are exposed to nicotine via the placenta and mother's milk. The lungs of these animals are more susceptible to damage as shown by the gradual deterioration of the lung parenchyma. The rapid metabolic and structural aging of the lungs of the animals that were exposed to nicotine via the placenta and mother's milk, and thus during phases of lung development characterized by rapid cell division, is likely due to "programming" induced by nicotine. It is, therefore, not advisable to use nicotine during gestation and lactation.
Collapse
Affiliation(s)
- Gert S Maritz
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|