1
|
Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways. J Immunol Res 2020; 2020:4598476. [PMID: 33123602 PMCID: PMC7584946 DOI: 10.1155/2020/4598476] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors with potent antitumor activity. However, tumor cells can create an immunosuppressive microenvironment to escape immune surveillance. Although accumulating evidence indicates that microenvironmental hypoxia plays an important role in favoring tumor development and immune evasion, it remains unclear by what means hypoxia directly impairs NK cell antitumor activity. In this study, we confirmed that hypoxic NK cells showed significantly lower cytotoxicity against tumor cells. Consistent with this finding, we found that the reduction in NK cell cytotoxicity resulting from hypoxia correlated to the lower expression of granzyme B, IFN-γ, and degranulation marker CD107a, as well as activating receptors including NKp30, NKp46, and NKG2D expressed on the surface of NK cells. More importantly, we further demonstrated that a reduction in the phosphorylation levels of ERK and STAT3 secondary to hypoxia was strongly associated with the attenuated NK cell cytotoxicity. Focusing on the mechanism responsible for reduced phosphorylation levels of ERK and STAT3, we reveal that the activation of protein tyrosine phosphatase SHP-1 (Src homology region 2 domain-containing phosphatase-1) following hypoxia might play an essential role in this process. By knocking down SHP-1 or blocking its activity using a specific inhibitor TPI-1, we were able to partially restore NK cell cytotoxicity under hypoxia. Taken together, we demonstrate that hypoxia could impair NK cell cytotoxicity by decreasing the phosphorylation levels of ERK and STAT3 in a SHP-1-dependent manner. Therefore, targeting SHP-1 could provide an approach to enhance NK cell-based tumor immunotherapy.
Collapse
|
2
|
An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1. J Virol 2017; 91:JVI.00530-17. [PMID: 28794034 DOI: 10.1128/jvi.00530-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis.IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell.
Collapse
|
3
|
Sagar D, Singh NP, Ginwala R, Huang X, Philip R, Nagarkatti M, Nagarkatti P, Neumann K, Ruland J, Andrews AM, Ramirez SH, Khan ZK, Jain P. Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity. Sci Rep 2017; 7:2707. [PMID: 28578388 PMCID: PMC5457463 DOI: 10.1038/s41598-017-03027-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanism of dendritic cells (DCs) recruitment across the blood brain barrier (BBB) during neuroinflammation has been the least explored amongst all leukocytes. For cells of myeloid origin, while integrins function at the level of adhesion, the importance of lectins remains unknown. Here, we identified functions of one C-type lectin receptor, CLEC12A, in facilitating DC binding and transmigration across the BBB in response to CCL2 chemotaxis. To test function of CLEC12A in an animal model of multiple sclerosis (MS), we administered blocking antibody to CLEC12A that significantly ameliorated disease scores in MOG35–55-induced progressive, as well as PLP138–151-induced relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice. The decline in both progression and relapse of EAE occurred as a result of reduced demyelination and myeloid cell infiltration into the CNS tissue. DC numbers were restored in the spleen of C57BL/6 and peripheral blood of SJL/J mice along with a decreased TH17 phenotype within CD4+ T-cells. The effects of CLEC12A blocking were further validated using CLEC12A knockout (KO) animals wherein EAE disease induction was delayed and reduced disease severity was observed. These studies reveal the utility of a DC-specific mechanism in designing new therapeutics for MS.
Collapse
Affiliation(s)
- Divya Sagar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaofang Huang
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Ramila Philip
- Immunotope Inc., Pennsylvania Biotechnology Center, Doylestown, PA, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA.,William Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Konstantin Neumann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Ras-guanine-nucleotide-releasing factors 1 and 2 interact with PLCγ at focal adhesions to enable IL-1-induced Ca(2+) signalling, ERK activation and MMP-3 expression. Biochem J 2013; 449:771-82. [PMID: 23145787 DOI: 10.1042/bj20121170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IL (interleukin)-1 signalling in anchorage-dependent cells involves focal-adhesion-restricted and Ca2+-dependent Ras and ERK (extracellular-signal-regulated kinase) activation that leads to MMP (matrix metalloproteinase) release and extracellular matrix remodelling. Ras activity is regulated, in part, by the Ca2+-responsive Ras GRFs (guanine-nucleotide-releasing factors) 1 and 2, but the mechanisms that link and localize IL-1-induced Ca2+ signalling to focal adhesions are not defined. In the present study we characterized the role of Ras-GRF1/2 in Ca2+ and Ras→ERK signalling after IL-1 stimulation. By immunoprecipitation we found that Ras-GRF1/2 associates with PLCγ1 (phospholipase Cγ1). This association enables PLCγ1 recruitment to focal adhesions and is required for Ras signalling, ERK activation and MMP-3 release downstream of IL-1 stimulation. Depletion of PLCγ1 by siRNA (small interfering RNA) abolished IL-1-induced Ras activation and MMP-3 expression. Buffering of cytosolic Ca2+ reduced Ras interactions with Ras-GRF1/2 and blocked MMP-3 release. The results of the present study show that, in addition to their functions as Ras-exchange factors, Ras-GRF1 and -GRF2 may act as adaptors that bind PLCγ1 and restrict Ca2+ signalling to the vicinity of focal adhesions, indicating a new role for these GRFs that is required for IL-1 induction of the Ras→ERK pathway and MMP-3 expression.
Collapse
|
5
|
Rajshankar D, Downey GP, McCulloch CA. IL-1β enhances cell adhesion to degraded fibronectin. FASEB J 2012; 26:4429-44. [PMID: 22829527 PMCID: PMC3475244 DOI: 10.1096/fj.12-207381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/10/2012] [Indexed: 01/01/2023]
Abstract
IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attaching to native or MMP3-degraded fibronectin. IL-1β increased cell attachment, resistance to shear force and the numbers of focal adhesions containing activated β(1) integrins. IL-1β-enhanced attachment required FAK, kindlins 1/2, and talin. MMP3-degraded fibronectin-inhibited IL-1β-enhanced cell adhesion and promoted spontaneous ERK activation that was independent of IL-1β treatment. We conclude that IL-1β enhances the adhesion of anchorage-dependent cells to MMP3-degraded fibronectin, which, in turn, is associated with deregulated cellular responses to IL-1β. These data point to a novel role of IL-1β as a proadhesive signaling molecule in inflammation that employs kindlins and talin to regulate adhesion.
Collapse
Affiliation(s)
| | - Gregory P. Downey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA; and
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Integrated Department of Immunology, University of Colorado, Aurora, Colorado, USA
| | | |
Collapse
|
6
|
Lie PPY, Cheng CY, Mruk DD. The biology of interleukin-1: emerging concepts in the regulation of the actin cytoskeleton and cell junction dynamics. Cell Mol Life Sci 2012; 69:487-500. [PMID: 21744066 PMCID: PMC3297025 DOI: 10.1007/s00018-011-0760-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 01/28/2023]
Abstract
Interleukin (IL)-1 is a proinflammatory cytokine with important roles in innate immunity, as well as in normal tissue homeostasis. Interestingly, recent studies have also shown IL-1 to function in the dynamics of the actin cytoskeleton and cell junctions. For example, treatment of different epithelia with IL-1α often results in the restructuring of the actin network and cell junctions, thereby leading to junction disassembly. In this review, we highlight new and interesting findings that show IL-1 to be a critical player of restructuring events in the seminiferous epithelium of the testis during spermatogenesis.
Collapse
Affiliation(s)
- Pearl P. Y. Lie
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| | - Dolores D. Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
7
|
Calò LA, Bordin L, Davis PA, Pagnin E, Dal Maso L, Rossi GP, Pessina AC, Clari G. PLCβ1-SHP-2 complex, PLCβ1 tyrosine dephosphorylation and SHP-2 phosphatase activity: a new part of Angiotensin II signaling? J Biomed Sci 2011; 18:38. [PMID: 21663700 PMCID: PMC3120746 DOI: 10.1186/1423-0127-18-38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiotensin II (Ang II) signaling occurs via two major receptors which activate non-receptor tyrosin kinases that then interact with protein tyrosin-phosphatases (PTPs) to regulate cell function. SHP-2 is one such important PTP that also functions as an adaptor to promote downstream signaling pathway. Its role in Ang II signaling remains to be clarified. RESULTS Using cultured normal human fibroblasts, immunoprecipitation and western blots, we show for the first time that SHP-2 and PLCβ1 are present as a preformed complex. Complex PLCβ1 is tyr-phosphorylated basally and Ang II increased SHP-2-PLCβ1 complexes and caused complex associated PLCβ1 tyr-phosphorylation to decline while complex associated SHP-2's tyr-phosphorylation increased and did so via the Ang II type 1 receptors as shown by Ang II type 1 receptor blocker losartan's effects. Moreover, Ang II induced both increased complex phosphatase activity and decreased complex associated PLCβ1 tyr-phosphorylation, the latter response required regulator of G protein signaling (RGS)-2. CONCLUSIONS Ang II signals are shown for the first time to involve a preformed SHP-2-PLCβ1 complex. Changes in the complex's PLCβ1 tyr-phosphorylation and SHP-2's tyr-phosphorylation as well as SHP-2-PLCβ1 complex formation are the result of Ang II type 1 receptor activation with changes in complex associated PLCβ1 tyr-phosphorylation requiring RGS-2. These findings might significantly expand the number and complexity of Ang II signaling pathways. Further studies are needed to delineate the role/s of this complex in the Ang II signaling system.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Department of Clinical and Experimental Medicine, Clinica Medica University of Padova, School of Medicine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Correia MP, Costa AV, Uhrberg M, Cardoso EM, Arosa FA. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology 2010; 216:604-12. [PMID: 20956026 DOI: 10.1016/j.imbio.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 02/08/2023]
Abstract
During the last years several authors have described a small population of CD8+ T cells expressing NK receptors (NKRs). Although their origin remains largely unknown, we have recently demonstrated that IL-15 is capable of inducing NKR expression in purified human CD8+CD56- T cells. In this study we show that IL-15-driven NKR induction in CD8+ T cells was linked with CD56 de novo acquisition, consistent with an effector-memory phenotype, increased anti-apoptotic levels, high granzyme B/perforin expression and with the ability of displaying in vitro NK-like cytotoxicity. Interestingly, dissection of NKR functional outcome in IL-15-cultured CD8+ T cells revealed: (i) that NKG2D cross-linking was able per se to upregulate degranulation levels and (ii) that KIR and NKG2A cross-linking upregulated secretion of cytokines such as IFN-γ, TNF-α, IL-1β and IL-10. These results suggest that IL-15 is capable of differentiating CD8+ T cells into NK-like T cells displaying a regulatory phenotype.
Collapse
|
9
|
Wang Q, Rajshankar D, Laschinger C, Talior-Volodarsky I, Wang Y, Downey GP, McCulloch CA. Importance of protein-tyrosine phosphatase-alpha catalytic domains for interactions with SHP-2 and interleukin-1-induced matrix metalloproteinase-3 expression. J Biol Chem 2010; 285:22308-17. [PMID: 20472558 DOI: 10.1074/jbc.m110.102426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1 (IL-1) induces extracellular matrix degradation as a result of increased expression of matrix metalloproteinases (MMPs). We examined adhesion-restricted signaling pathways that enable IL-1-induced MMP release in human gingival and murine fibroblasts. Of the seven MMPs and three tissue inhibitors of MMPs screened, IL-1 enhanced release only of MMP3 when cells formed focal adhesions. Inhibition of protein-tyrosine phosphatases (PTPs), which are enriched in focal adhesions, blocked IL-1-induced MMP3 release. Accordingly, in contrast to wild-type cells, fibroblasts null for PTPalpha did not exhibit IL-1-induced MMP3 release. IL-1 treatment enhanced the recruitment of SHP-2 and PTPalpha to focal adhesions and the association of PTPalpha with SHP-2. Pulldown assays confirmed a direct interaction between PTPalpha and SHP-2, which was dependent on the intact, membrane-proximal phosphatase domain of PTPalpha. Interactions between SHP-2 and PTPalpha, recruitment of SHP-2 to focal adhesions, IL-1-induced ERK activation, and MMP3 expression were all blocked by point mutations in the phosphatase domains of PTPalpha. These data indicate that IL-1-induced signaling through focal adhesions leading to MMP3 release and interactions between SHP-2 and PTPalpha are dependent on the integrity of the catalytic domains of PTPalpha.
Collapse
Affiliation(s)
- Qin Wang
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M, Ivashkiv LB. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. THE JOURNAL OF IMMUNOLOGY 2009; 183:2444-55. [PMID: 19625651 DOI: 10.4049/jimmunol.0804165] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Induction of effective osteoclastogenesis by RANK (receptor activator of NF-kappaB) requires costimulation by ITAM-coupled receptors. In humans, the TREM-2 (triggering receptor expressed on myeloid cells 2) ITAM-coupled receptor plays a key role in bone remodeling, as patients with TREM-2 mutations exhibit defective osteoclastogenesis and bone lesions. We have identified a new rapidly induced costimulatory pathway for RANK signaling that is dependent on TREM-2 and mediated by calcium signaling. TREM-2-dependent calcium signals are required for RANK-mediated activation of calcium/calmodulin-dependent protein kinase (CaMK)II and downstream MEK and ERK MAPKs that are important for osteoclastogenesis. IL-10 inhibited RANK-induced osteoclastogenesis and selectively inhibited calcium signaling downstream of RANK by inhibiting transcription of TREM-2. Down-regulation of TREM-2 expression resulted in diminished RANKL-induced activation of the CaMK-MEK-ERK pathway and decreased expression of the master regulator of osteoclastogenesis NFATc1. These findings provide a new mechanism of inhibition of human osteoclast differentiation. The results also yield insights into crosstalk between ITAM-coupled receptors and heterologous receptors such as RANK, and they identify a mechanism by which IL-10 can suppress cellular responses to TNFR family members.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol Oncol 2009; 3:439-50. [PMID: 19632164 DOI: 10.1016/j.molonc.2009.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 06/17/2009] [Accepted: 07/04/2009] [Indexed: 11/20/2022] Open
Abstract
c-Src non-receptor tyrosine kinase is an important component of the platelet-derived growth factor (PDGF) receptor signaling pathway. c-Src has been shown to mediate the mitogenic response to PDGF in fibroblasts. However, the exact components of PDGF receptor signaling pathway mediated by c-Src remain unclear. Here, we used stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to identify Src-family kinase substrates involved in PDGF signaling. Using SILAC, we were able to detect changes in tyrosine phosphorylation patterns of 43 potential c-Src kinase substrates in PDGF receptor signaling. This included 23 known c-Src kinase substrates, of which 16 proteins have known roles in PDGF signaling while the remaining 7 proteins have not previously been implicated in PDGF receptor signaling. Importantly, our analysis also led to identification of 20 novel Src-family kinase substrates, of which 5 proteins were previously reported as PDGF receptor signaling pathway intermediates while the remaining 15 proteins represent novel signaling intermediates in PDGF receptor signaling. In validation experiments, we demonstrated that PDGF indeed induced the phosphorylation of a subset of candidate Src-family kinase substrates - Calpain 2, Eps15 and Trim28 - in a c-Src-dependent fashion.
Collapse
|
12
|
Wang Q, Rajshankar D, Branch DR, Siminovitch KA, Herrera Abreu MT, Downey GP, McCulloch CA. Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling. J Biol Chem 2009; 284:20763-72. [PMID: 19497848 DOI: 10.1074/jbc.m808828200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPalpha was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPalpha was required for the association of PTPalpha with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPalpha acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Qin Wang
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Miah SMS, Hughes TL, Campbell KS. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules. THE JOURNAL OF IMMUNOLOGY 2008; 180:2922-32. [PMID: 18292514 DOI: 10.4049/jimmunol.180.5.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
14
|
Ginnan R, Guikema BJ, Halligan KE, Singer HA, Jourd’heuil D. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic Biol Med 2008; 44:1232-45. [PMID: 18211830 PMCID: PMC2390910 DOI: 10.1016/j.freeradbiomed.2007.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Inflammation plays a critical role in promoting smooth muscle migration and proliferation during vascular diseases such as postangioplasty restenosis and atherosclerosis. Another common feature of many vascular diseases is the contribution of reactive oxygen (ROS) and reactive nitrogen (RNS) species to vascular injury. Primary sources of ROS and RNS in smooth muscle are several isoforms of NADPH oxidase (Nox) and the cytokine-regulated inducible nitric oxide (NO) synthase (iNOS). One important example of the interaction between NO and ROS is the reaction of NO with superoxide to yield peroxynitrite, which may contribute to the pathogenesis of hypertension. In this review, we discuss the literature that supports an alternate possibility: Nox-derived ROS modulate NO bioavailability by altering the expression of iNOS. We highlight data showing coexpression of iNOS and Nox in vascular smooth muscle demonstrating the functional consequences of iNOS and Nox during vascular injury. We describe the relevant literature demonstrating that the mitogen-activated protein kinases are important modulators of proinflammatory cytokine-dependent expression of iNOS. A central hypothesis discussed is that ROS-dependent regulation of the serine/threonine kinase protein kinase Cdelta is essential to understanding how Nox may regulate signaling pathways leading to iNOS expression. Overall, the integration of nonphagocytic NADPH oxidase with cytokine signaling in general and in vascular smooth muscle in particular is poorly understood and merits further investigation.
Collapse
Affiliation(s)
| | | | | | | | - David Jourd’heuil
- To whom correspondence should be addressed: Albany Medical College, Center for Cardiovascular Sciences, 47 New Scotland Avenue (MC8), Albany, NY 12208; Tel: (518) 262 8104; Fax: (518) 262 8101; E-mail:
| |
Collapse
|
15
|
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
16
|
The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 2007; 20:453-9. [PMID: 17993263 DOI: 10.1016/j.cellsig.2007.10.002] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/03/2007] [Indexed: 01/13/2023]
Abstract
Shp2 is a ubiquitous tyrosine phosphatase containing Src Homology 2 domains which plays major biological functions in response to various growth factors, hormones or cytokines. This is essentially due to its particularity of promoting the activation of the Ras/Mitogen-activated protein kinase pathway. Recent progresses have been made in the understanding of the molecular mechanisms involved in this regulation. We review here, and discuss the physiological relevance, of the following molecular functions of Shp2 that have been proposed to couple the phosphatase to Ras activation: promoter of Grb2/Sos recruitment through direct binding to Grb2, binding partner and regulator of SHPS-1, negative regulator of Sprouty, negative regulator of RasGAP recruitment, and activator of Src through dephosphorylation of Src-regulatory proteins.
Collapse
|
17
|
Wu JH, Goswami R, Cai X, Exum ST, Huang X, Zhang L, Brian L, Premont RT, Peppel K, Freedman NJ. Regulation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-5 in vascular smooth muscle cells involves the phosphatase Shp2. J Biol Chem 2006; 281:37758-72. [PMID: 17018529 DOI: 10.1074/jbc.m605756200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cell (SMC) proliferation and migration are substantially controlled by the platelet-derived growth factor receptor-beta (PDGFRbeta), which can be regulated by the Ser/Thr kinase G protein-coupled receptor kinase-2 (GRK2). In mouse aortic SMCs, however, we found that prolonged PDGFRbeta activation engendered down-regulation of GRK5, but not GRK2; moreover, GRK5 and PDGFRbeta were coordinately up-regulated in SMCs from atherosclerotic arteries. With SMCs from GRK5 knock-out and cognate wild type mice (five of each), we found that physiologic expression of GRK5 increased PDGF-promoted PDGFRbeta seryl phosphorylation by 3-fold and reduced PDGFRbeta-promoted phosphoinositide hydrolysis, thymidine incorporation, and overall PDGFRbeta tyrosyl phosphorylation by approximately 35%. Physiologic SMC GRK5 activity also increased PDGFRbeta association with the phosphatase Shp2 (8-fold), enhanced phosphorylation of PDGFRbeta Tyr(1009) (the docking site for Shp2), and reduced phosphorylation of PDGFRbeta Tyr(1021). Consistent with having increased PDGFRbeta-associated Shp2 activity, GRK5-expressing SMCs demonstrated greater PDGF-induced Src activation than GRK5-null cells. GRK5-mediated desensitization of PDGFRbeta inositol phosphate signaling was diminished by Shp2 knock-down or impairment of PDGFRbeta/Shp2 association. In contrast to GRK5, physiologic GRK2 activity did not alter PDGFRbeta/Shp2 association. Finally, purified GRK5 effected agonist-dependent seryl phosphorylation of partially purified PDGFRbetas. We conclude that GRK5 mediates the preponderance of PDGF-promoted seryl phosphorylation of the PDGFRbeta in SMCs, and, through mechanisms involving Shp2, desensitizes PDGFRbeta inositol phosphate signaling and enhances PDGFRbeta-triggered Src activation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cattle
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA Primers/genetics
- G-Protein-Coupled Receptor Kinase 5
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA Interference
- Rabbits
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- Jiao-Hui Wu
- Department of Medicine (Cardiology), Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McCulloch CA, Downey GP, El-Gabalawy H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov 2006; 5:864-76. [PMID: 17016427 DOI: 10.1038/nrd2109] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapeutically controlling inflammation is essential for the clinical management of many high-prevalence human diseases. Drugs that block the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukin-1 (IL-1) can improve outcomes for rheumatoid arthritis and other inflammatory diseases but many patients remain refractory to treatment. Here we explore the need for developing new types of anti-inflammatory drugs and the emergence of novel drug targets based on the clustering of IL-1 receptors into multi-protein aggregates associated with cell adhesions. Interference with receptor aggregation into multi-protein complexes effectively abrogates IL-1 signalling. The exploration of the crucial molecules required for receptor clustering, and therefore signal transduction, offers new targets and scope for anti-inflammatory drug development.
Collapse
|
19
|
Wang Q, Herrera Abreu MT, Siminovitch K, Downey GP, McCulloch CA. Phosphorylation of SHP-2 Regulates Interactions between the Endoplasmic Reticulum and Focal Adhesions to Restrict Interleukin-1-induced Ca2+ Signaling. J Biol Chem 2006; 281:31093-105. [PMID: 16905534 DOI: 10.1074/jbc.m606392200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1 (IL-1)-induced Ca2+ signaling in fibroblasts is constrained by focal adhesions. This process involves the proteintyrosine phosphatase SHP-2, which is critical for IL-1-induced phosphorylation of phospholipase Cgamma1, thereby enhancing IL-1-induced Ca2+ release and ERK activation. Currently, the mechanisms by which SHP-2 modulates Ca2+ release from the endoplasmic reticulum are not defined. We used immunoprecipitation and fluorescence protein-tagged SHP-2 or endoplasmic reticulum (ER)-protein expression vectors, and an ER-specific calcium indicator, to examine the functional relationships between SHP-2, focal adhesions, and IL-1-induced Ca2+ release from the ER. By total internal reflection fluorescence microscopy to image subplasma membrane compartments, SHP-2 co-localized with the ER-associated proteins calnexin and calreticulin at sites of focal adhesion formation in fibroblasts. IL-1beta promoted time-dependent recruitment of SHP-2 and ER proteins to focal adhesions; this process was blocked in cells treated with small interfering RNA for SHP-2 and in cells expressing a Y542F SHP-2 mutant. IL-1 stimulated inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the ER subjacent to the plasma membrane that was tightly localized around fibronectin-coated beads and was reduced 4-fold in cells expressing Tyr-542 SHP-2 mutant. In subcellular fractions enriched for ER proteins, immunoprecipitation demonstrated that IL-1-enhanced association of SHP-2 with the type 1 inositol 1,4,5-trisphosphate receptor was dependent on Tyr-542 of SHP-2. We conclude that Tyr-542 of SHP-2 modulates IL-1-induced Ca2+ signals and association of the ER with focal adhesions.
Collapse
Affiliation(s)
- Qin Wang
- Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | |
Collapse
|
20
|
Pritchard S, Guilak F. Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes. ACTA ACUST UNITED AC 2006; 54:2164-74. [PMID: 16802354 DOI: 10.1002/art.21941] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine whether interleukin-1 (IL-1) initiates transient changes in the intracellular concentration of [Ca2+]i and the organization of filamentous actin (F-actin) in articular chondrocytes. METHODS Articular chondrocytes within cartilage explants and enzymatically isolated chondrocytes were loaded with Ca(2+)-sensitive fluorescence indicators, and [Ca2+]i was measured using confocal fluorescence ratio imaging during exposure to 10 ng/ml IL-1alpha. Inhibitors of Ca2+ mobilization (Ca(2+)-free medium, thapsigargin [inhibitor of Ca-ATPases], U73122 [inhibitor of phospholipase C], and pertussis toxin [inhibitor of G proteins]) were used to determine the mechanisms of increased [Ca2+]i. Cellular F-actin was quantified using fluorescently labeled phalloidin. Toxin B was used to determine the role of the Rho family of small GTPases in F-actin reorganization. RESULTS In isolated cells on glass and in in situ chondrocytes within explants, exposure to IL-1 induced a transient peak in [Ca2+]i that was generally followed by a series of decaying oscillations. Thapsigargin, U73122, and pertussis toxin inhibited the percentage of cells responding to IL-1. IL-1 increased F-actin content in chondrocytes in a manner that was inhibited by toxin B. CONCLUSION Both isolated and in situ chondrocytes respond to IL-1 with transient increases in [Ca2+]i via intracellular Ca2+ release mediated by the phospholipase C and inositol trisphosphate pathways. The influx of Ca2+ from the extracellular space and the activation of G protein-coupled receptors also appear to contribute to these mechanisms. These findings suggest that Ca2+ mobilization may be one of the first signaling events in the response of chondrocytes to IL-1.
Collapse
Affiliation(s)
- Scott Pritchard
- Duke University Medical Center, 375 Medical Sciences Research Building, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
21
|
Fu Z, Huang D, Cai J, Chen Q, Han L, Li B, Wang F, Gao J. Expression changes of ERK1/2, STAT3 and SHP-2 in bone marrow cells from gamma-ray induced leukemia mice. JOURNAL OF RADIATION RESEARCH 2006; 47:121-30. [PMID: 16819138 DOI: 10.1269/jrr.47.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim is to clarify expression changes of ERK1/2, STAT3 and SHP-2 in bone marrow cells from gamma-ray induced leukemia mice. A mouse model of gamma-ray induced leukemia was produced, and by means of quantitative real-time PCR, immunoprecipitation, Western blotting and electrophoretic mobility shift assays (EMSA), the expression of mRNA and protein, phosphorylation level, and protein activity of ERK1/2, STAT3 and SHP-2 in bone marrow cells were investigated in these mice. The results indicated that mRNA and protein expressions of ERK1/2 were upregulated, with significant increase of phosphorylation level and protein activity, but with insignificant differences in mRNA and protein expressions, phosphorylation level and protein activity of STAT3 and SHP-2 in bone marrow cells from gamma-ray induced leukemia mice compared to the radiation/tumor-free or control mice. It is concluded that in the pathogenesis of gamma-ray induced leukemia in Balb/C mice, activated ERK1/2 pathway may play a role, without involving STAT3 pathway; meanwhile, SHP-2 exerts no regulative effect on pathways of Ras-ERK1/2 and JAK-STAT.
Collapse
Affiliation(s)
- Zhichao Fu
- Department of Radiotherapy, General Hospital of Fuzhou Military Command, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ginnan R, Guikema BJ, Singer HA, Jourd'heuil D. PKC-δ mediates activation of ERK1/2 and induction of iNOS by IL-1β in vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 290:C1583-91. [PMID: 16436473 DOI: 10.1152/ajpcell.00390.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the inflammatory cytokine interleukin-1β (IL-β) is an important regulator of gene expression in vascular smooth muscle (VSM), the signal transduction pathways leading to transcriptional activation upon IL-1β stimulation are poorly understood. Recent studies have implicated IL-1β-mediated ERK1/2 activation in the upregulation of type II nitric oxide synthase (iNOS) in VSM. We report that these events are mediated in a phospholipase C (PLC)- and protein kinase C (PKC)-δ-dependent manner utilizing a signaling mechanism independent of p21ras (Ras) and Raf1 activation. Stimulation of rat aortic VSM cells with IL-1β activated PLC-γ and pharmacological inhibition of PLC attenuated IL-1β-induced ERK1/2 activation and subsequent iNOS expression. Stimulation with IL-1β activated PKC-α and -δ, which was blocked using the PLC inhibitor U-73122. Pharmacological studies using isoform-specific PKC inhibitors and adenoviral overexpression of constitutively active PKC-δ indicated that ERK1/2 activation was PKC-α independent and PKC-δ dependent. Similarly, adenoviral overexpression of constitutively activated PKC-δ enhanced iNOS expression. IL-1β stimulation did not induce either Ras or Raf1 activity. The absence of a functional role for Ras and Raf1 related to ERK1/2 activation and iNOS expression was further confirmed by adenoviral overexpression of dominant-negative Ras and treatment with the Raf1 inhibitor GW5074. Taken together, we have outlined a novel transduction pathway implicating PKC-δ as a critical component of the IL-1-dependent activation of ERK in VSM cells.
Collapse
Affiliation(s)
- Roman Ginnan
- Center for Cardiovascular Sciences, MC-8, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
23
|
Sanborn BM, Ku CY, Shlykov S, Babich L. Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. ACTA ACUST UNITED AC 2006; 12:479-87. [PMID: 16202924 DOI: 10.1016/j.jsgi.2005.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 11/30/2022]
Abstract
Cellular mechanisms regulating myometrial intracellular free calcium (Ca2+(i)) are addressed in this review, with emphasis on G-protein-coupled receptor pathways. An increase in myometrial Ca2+(i) results in phosphorylation of myosin light chain, an increase in myosin adenosine monophosphatase (ATPase) activity and contraction. Dephosphorylation of myosin light chain and a decline in Ca2+(i) are associated with relaxation. Increases in Ca2+(i) are controlled by multiple signaling pathways, including receptor-mediated activation of phospholipase Cbeta (PLCbeta), leading to release of Ca2+ from intracellular stores. Ca2+ also enters myometrial cells through plasma membrane Ca2+ channels. Conversely, adenosine triphosphate (ATP)-dependent Ca2+ pumps lower Ca2+(i) concentrations and potassium channels promote hyperpolarization that can decrease Ca2+ entry. Receptor-coupled pathways that promote uterine relaxation primarily involve activation of cyclic adenosine monophosphate (cAMP)- or cyclic guanosine monophosphate (cGMP)-stimulated protein kinases that phosphorylate proteins regulating Ca2+ homeostasis. cAMP has inhibitory effects on myometrial contractile activity, agonist-stimulated phosphatidylinositide turnover and increases in Ca2+(i). Some of these effects require association of protein kinase A (PKA) with a plasma membrane-associated A-kinase-anchoring-protein (AKAP). Near term in the rat, there is a decline in the plasma membrane localization of PKA associated with this anchoring protein. This correlates with changes in the regulation of signaling pathways controlling Ca2+(i). L-type voltage-operated Ca2+ entry is an important regulator of myometrial contraction. In addition, putative signal-regulated or capacitative Ca2+ channel proteins, TrpCs, are expressed in myometrium, and signal-regulated Ca2+ entry is observed in human myometrial cells. This Ca2+ entry mechanism may play a significant role in the control of myometrial Ca2+(i) dynamics and myometrial contraction. The regulation of myometrial Ca2+(i) is complex. Understanding the mechanisms involved may lead to design of tocolytics that target multiple pathways and achieve improved suppression of premature labor.
Collapse
Affiliation(s)
- Barbara M Sanborn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
24
|
Kim HY, Park SJ, Joe EH, Jou I. Raft-mediated Src Homology 2 Domain-containing Proteintyrosine Phosphatase 2 (SHP-2) Regulation in Microglia. J Biol Chem 2006; 281:11872-8. [PMID: 16507579 DOI: 10.1074/jbc.m511706200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Janus kinase-signal transducer and activator of transcription (JAK-STAT) signals play important roles in cell proliferation, apoptosis, and inflammation, and they recently have been considered as therapeutic targets for suppressing oncogenesis and inflammatory process. Phosphatases including Src homology 2 domain-containing protein-tyrosine phosphatases (SHPs), are well known as negative regulators of the JAK-STAT pathway, but their precise mechanisms are largely unknown. Based on our previous finding that in cultured rat brain microglia, gangliosides induce rapid and transient activation of the JAK-STAT pathway, we hypothesized that raft-mediated SHP-2 activation is involved in transient activation of JAK-STAT signaling by gangliosides. We first used Western blot analysis to confirm that gangliosides rapidly induce the phosphorylation of SHP-2. This was inhibited by pretreatment with the lipid raft disrupter filipin and was restored following filipin removal. Immunostaining using antibodies directed against p-SHP-2 and flotillin-1 revealed ganglioside-induced clustering and polarization of p-SHP-2 in membrane rafts. Raft-associated regulation of SHP-2 was further demonstrated in fractionation experiments using detergent and detergent-free sucrose gradient ultracentrifugation. Rapid SHP-2 recruitment to detergent-insoluble raft fractions by gangliosides was inhibited by filipin, further indicating the involvement of rafts. We also confirmed by immunoprecipitation that SHP-2 rapidly binds in a raft-dependent manner to JAK2 in response to gangliosides. Our study therefore showed that transient activation of the JAK-STAT pathway by gangliosides is accomplished by SHP-2 in a raft-dependent manner in brain microglia.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | |
Collapse
|
25
|
Salmond RJ, Alexander DR. SHP2 forecast for the immune system: fog gradually clearing. Trends Immunol 2006; 27:154-60. [PMID: 16458607 DOI: 10.1016/j.it.2006.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/21/2005] [Accepted: 01/19/2006] [Indexed: 01/22/2023]
Abstract
The src homology 2 (SH2) domain containing tyrosine phosphatase SHP2 (also referred to as SHP-2) is ubiquitously expressed in mammalian tissues and has been shown to be essential for embryonic development, haematopoiesis and signalling downstream of a variety of growth factors. Dysregulation of SHP2 function or expression has recently been implicated in the pathogenesis of human diseases involving haematopoietic cell lineages. New findings also demonstrate the involvement of SHP2 in the regulation of immune responses through its effects on cytokine and inhibitory receptor signalling pathways, and novel transgenic models are providing valuable insights into the role of SHP2 in T cells.
Collapse
Affiliation(s)
- Robert J Salmond
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, UK, CB2 4AT.
| | | |
Collapse
|
26
|
Uhlén P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM. Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proc Natl Acad Sci U S A 2006; 103:2160-5. [PMID: 16461457 PMCID: PMC1413735 DOI: 10.1073/pnas.0510876103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gain-of-function mutations in SHP-2/PTPN11 cause Noonan syndrome, a human developmental disorder. Noonan syndrome is characterized by proportionate short stature, facial dysmorphia, increased risk of leukemia, and congenital heart defects in approximately 50% of cases. Congenital heart abnormalities are common in Noonan syndrome, but the signaling pathway(s) linking gain-of-function SHP-2 mutants to heart disease is unclear. Diverse cell types coordinate cardiac morphogenesis, which is regulated by calcium (Ca2+) and the nuclear factor of activated T-cells (NFAT). It has been shown that the frequency of Ca2+ oscillations regulates NFAT activity. Here, we show that in fibroblasts, Ca2+ oscillations in response to FGF-2 require the phosphatase activity of SHP-2. Conversely, gain-of-function mutants of SHP-2 enhanced FGF-2-mediated Ca2+ oscillations in fibroblasts and spontaneous Ca2+ oscillations in cardiomyocytes. The enhanced frequency of cardiomyocyte Ca2+ oscillations induced by a gain-of-function SHP-2 mutant correlated with reduced nuclear translocation and transcriptional activity of NFAT. These data imply that gain-of-function SHP-2 mutants disrupt the Ca2+ oscillatory control of NFAT, suggesting a potential mechanism for congenital heart defects in Noonan syndrome.
Collapse
Affiliation(s)
- Per Uhlén
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Chen CH, Floyd H, Olson NE, Magaletti D, Li C, Draves K, Clark EA. Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood 2005; 107:1459-67. [PMID: 16239426 PMCID: PMC1895401 DOI: 10.1182/blood-2005-08-3264] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendritic-cell (DC)-associated C-type lectin receptors (CLRs) take up antigens to present to T cells and regulate DC functions. DCAL-2 is a CLR with a cytosolic immunoreceptor tyrosine-based inhibitory motif (ITIM), which is restricted to immature DCs (iDCs), monocytes, and CD1a+ DCs. Cross-linking DCAL-2 on iDCs induced protein tyrosine phosphorylation and MAPK activation as well as receptor internalization. To test if DCAL-2 is involved in DC maturation and cytokine expression, we stimulated iDCs with anti-DCAL-2 mAb with or without LPS, zymosan, or CD40L. While anti-DCAL-2 did not induce iDCs to mature, it did up-regulate CCR7 expression and IL-6 and IL-10 production. DCAL-2 signals augmented DC maturation induced by LPS or zymosan, increasing both CCR7 and DC-LAMP expression. Of interest, DCAL-2 ligation had the opposite effects on TLR versus CD40L signaling: anti-DCAL-2 suppressed TLR-induced IL-12 expression, but significantly enhanced CD40L-induced IL-12 production. DCAL-2 ligation also suppressed the ability of TLR-matured DCs to induce IFN-gamma-secreting Th1 cells but augmented the capacity of CD40L-matured DCs to polarize naive T cells into Th1 cells. Thus, DCAL-2 may program DCs differently depending on whether DCs are signaled via TLRs or by T cells. DCAL-2 may be a potential immunotherapeutic target for modulating autoimmune diseases or for developing vaccines.
Collapse
Affiliation(s)
- Chang-Hung Chen
- Department of Immunology, Box 357330, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CAG, Abreu MTH, Chow CW, Downey GP. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 33:231-47. [PMID: 15891109 PMCID: PMC2715314 DOI: 10.1165/rcmb.2005-0109oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of distal lung epithelial cells plays a pivotal role in the pathogenesis of acute lung injury. In this context, proteinases, either circulating or leukocyte-derived, may contribute to epithelial apoptosis and lung injury. We hypothesized that apoptosis of lung epithelial cells induced by leukocyte elastase is mediated via the proteinase activated receptor (PAR)-1. Leukocyte elastase, thrombin, and PAR-1-activating peptide, but not the control peptide, induced apoptosis in human airway and alveolar epithelial cells as assessed by increases in cytoplasmic histone-associated DNA fragments and TUNEL staining. These effects were largely prevented by a specific PAR-1 antagonist and by short interfering RNA directed against PAR-1. To ascertain the mechanism of epithelial apoptosis, we determined that PAR-1AP, thrombin, and leukocyte elastase dissipated mitochondrial membrane potential, induced translocation of cytochrome c to the cytosol, enhanced cleavage of caspase-9 and caspase-3, and led to JNK activation and Akt inhibition. In concert, these observations provide strong evidence that leukocyte elastase mediates apoptosis of human lung epithelial cells through PAR-1-dependent modulation of the intrinsic apoptotic pathway via alterations in mitochondrial permeability and by modulation of JNK and Akt.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Division of Respirology, Department of Medicine, University of Toronto and Toronto General Hospital Research Institute, 1 King's College Circle, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|