1
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
2
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
4
|
Franklin KA, Shields CE, Haynes KA. Beyond the marks: reader-effectors as drivers of epigenetics and chromatin engineering. Trends Biochem Sci 2022; 47:417-432. [PMID: 35427480 PMCID: PMC9074927 DOI: 10.1016/j.tibs.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Chromatin is a system of proteins and DNA that regulates chromosome organization and gene expression in eukaryotes. Essential features that support these processes include biochemical marks on histones and DNA, 'writer' enzymes that generate or remove these marks and proteins that translate the marks into transcriptional regulation: reader-effectors. Here, we review recent studies that reveal how reader-effectors drive chromatin-mediated processes. Advances in proteomics and epigenomics have accelerated the discovery of chromatin marks and their correlation with gene states, outpacing our understanding of the corresponding reader-effectors. Therefore, we summarize the current state of knowledge and open questions about how reader-effectors impact cellular function and human disease and discuss how synthetic biology can deepen our knowledge of reader-effector activity.
Collapse
Affiliation(s)
- Kierra A Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2022; 305:59-76. [PMID: 34545959 PMCID: PMC9250823 DOI: 10.1111/imr.13026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.
Collapse
Affiliation(s)
- Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Noah Gamble
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jason A. Caldwell
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Goldfarb Y, Givony T, Kadouri N, Dobeš J, Peligero-Cruz C, Zalayat I, Damari G, Dassa B, Ben-Dor S, Gruper Y, Oftedal BE, Bratland E, Erichsen MM, Berger A, Avin A, Nevo S, Haljasorg U, Kuperman Y, Ulman A, Haffner-Krausz R, Porat Z, Atasoy U, Leshkowitz D, Husebye ES, Abramson J. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J Exp Med 2021; 218:e20201076. [PMID: 34477806 PMCID: PMC8421262 DOI: 10.1084/jem.20201076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.
Collapse
Affiliation(s)
- Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Itay Zalayat
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bergithe E. Oftedal
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | | | - Amund Berger
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Ayelet Avin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Uku Haljasorg
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S. Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Haukeland University and Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
8
|
Fardi Golyan F, Ghaemi N, Abbaszadegan MR, Dehghan Manshadi SH, Vakili R, Druley TE, Rahimi HR, Ghahraman M. Novel mutation in AIRE gene with autoimmune polyendocrine syndrome type 1. Immunobiology 2019; 224:728-733. [PMID: 31526676 DOI: 10.1016/j.imbio.2019.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Autoimmune polyendocrine type 1 (APS-1) is a complex inherited autosomal recessive disorder. Classically, it appears within the first decade of life followed by adrenocortical insufficiency, mucocutaneous candidiasis, Addison's disease, and hypoparathyroidism. The clinical phenotype of APS-1 varies depending upon mutations in the autoimmune regulator gene (AIRE) on chromosome 21q22.3. METHODS In this study, we performed Sanger sequencing ofAIRE in Iranian patients to identify different variants and probable new mutations corresponding to a clinical diagnosis of APS-1. RESULTS After analyzing 14AIRE exons, we detected a novel insertion mutation in exon 2 in a patient who presented with severe APS-1, Lys50AsnfsX168. Furthermore, the known mutations in AIRE, including Arg139X, Arg257X, and Leu323SerfsX51, were detected in enrolled patients. DISCUSSION According to our results, sequencing analysis ofAIRE provides a useful screening method to diagnose patients with incomplete or unusual clinical presentations of APS-1.
Collapse
Affiliation(s)
- Fatemeh Fardi Golyan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nosrat Ghaemi
- Department of Pediatric Endocrinology and Metabolism, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Rahim Vakili
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pediatric Endocrinology and Metabolism, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Todd E Druley
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hamid Reza Rahimi
- Department of Modern Sciences & technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Martha Ghahraman
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
10
|
Shao W, Zumer K, Fujinaga K, Peterlin BM. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator). J Biol Chem 2016; 291:17953-63. [PMID: 27365398 PMCID: PMC5016183 DOI: 10.1074/jbc.m116.724401] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus.
Collapse
Affiliation(s)
- Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - Kristina Zumer
- Max-Planck-Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| |
Collapse
|
11
|
Sparks AE, Chen C, Breslin MB, Lan MS. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells. J Biol Chem 2016; 291:11313-22. [PMID: 27048654 PMCID: PMC4900276 DOI: 10.1074/jbc.m116.722488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/30/2016] [Indexed: 01/30/2023] Open
Abstract
INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity.
Collapse
Affiliation(s)
- Avis E Sparks
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Chiachen Chen
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Mary B Breslin
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Michael S Lan
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
12
|
Abstract
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Unit 902, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
13
|
Berardi A, Quilici G, Spiliotopoulos D, Corral-Rodriguez MA, Martin-Garcia F, Degano M, Tonon G, Ghitti M, Musco G. Structural basis for PHDVC5HCHNSD1-C2HRNizp1 interaction: implications for Sotos syndrome. Nucleic Acids Res 2016; 44:3448-63. [PMID: 26896805 PMCID: PMC4838375 DOI: 10.1093/nar/gkw103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Sotos syndrome is an overgrowth syndrome caused by mutations within the functional domains ofNSD1 gene coding for NSD1, a multidomain protein regulating chromatin structure and gene expression. In particular, PHDVC5HCHNSD1 tandem domain, composed by a classical (PHDV) and an atypical (C5HCH) plant homeo-domain (PHD) finger, is target of several pathological missense-mutations. PHDVC5HCHNSD1 is also crucial for NSD1-dependent transcriptional regulation and interacts with the C2HR domain of transcriptional repressor Nizp1 (C2HRNizp1)in vitro To get molecular insights into the mechanisms dictating the patho-physiological relevance of the PHD finger tandem domain, we solved its solution structure and provided a structural rationale for the effects of seven Sotos syndrome point-mutations. To investigate PHDVC5HCHNSD1 role as structural platform for multiple interactions, we characterized its binding to histone H3 peptides and to C2HRNizp1 by ITC and NMR. We observed only very weak electrostatic interactions with histone H3 N-terminal tails, conversely we proved specific binding to C2HRNizp1 We solved C2HRNizp1 solution structure and generated a 3D model of the complex, corroborated by site-directed mutagenesis. We suggest a mechanistic scenario where NSD1 interactions with cofactors such as Nizp1 are impaired by PHDVC5HCHNSD1 pathological mutations, thus impacting on the repression of growth-promoting genes, leading to overgrowth conditions.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università degli Studi di Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Maria Angeles Corral-Rodriguez
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy Università Vita e Salute San Raffaele, Milano 21032, Italy
| | - Fernando Martin-Garcia
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanni Tonon
- Functional genomics of cancer, Division of Experimental Oncology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS S. Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
14
|
Oftedal BE, Hellesen A, Erichsen MM, Bratland E, Vardi A, Perheentupa J, Kemp EH, Fiskerstrand T, Viken MK, Weetman AP, Fleishman SJ, Banka S, Newman WG, Sewell WAC, Sozaeva LS, Zayats T, Haugarvoll K, Orlova EM, Haavik J, Johansson S, Knappskog PM, Løvås K, Wolff ASB, Abramson J, Husebye ES. Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity 2015; 42:1185-96. [PMID: 26084028 DOI: 10.1016/j.immuni.2015.04.021] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
The autoimmune regulator (AIRE) gene is crucial for establishing central immunological tolerance and preventing autoimmunity. Mutations in AIRE cause a rare autosomal-recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by multi-organ autoimmunity. We have identified multiple cases and families with mono-allelic mutations in the first plant homeodomain (PHD1) zinc finger of AIRE that followed dominant inheritance, typically characterized by later onset, milder phenotypes, and reduced penetrance compared to classical APS-1. These missense PHD1 mutations suppressed gene expression driven by wild-type AIRE in a dominant-negative manner, unlike CARD or truncated AIRE mutants that lacked such dominant capacity. Exome array analysis revealed that the PHD1 dominant mutants were found with relatively high frequency (>0.0008) in mixed populations. Our results provide insight into the molecular action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more common than previously appreciated and cause more variable autoimmune phenotypes.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Alexander Hellesen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ayelet Vardi
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jaakko Perheentupa
- Hospital for Children and Adolescents, University of Helsinki, 00100 Helsinki, Finland
| | - E Helen Kemp
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Torunn Fiskerstrand
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marte K Viken
- Department of Immunology, Oslo University Hospital and University of Oslo, 0316 Oslo, Norway
| | - Anthony P Weetman
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Sarel J Fleishman
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - W A C Sewell
- Path Links Immunology, Scunthorpe General Hospital, Scunthorpe DN15 7BH, UK
| | - Leila S Sozaeva
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow 117036, Russian Federation
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | | | - Elizaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow 117036, Russian Federation
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
15
|
Wei W, Zhang YQ, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:871-883. [PMID: 25619813 DOI: 10.1111/tpj.12773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zemirli N, Pourcelot M, Dogan N, Vazquez A, Arnoult D. The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation. Cell Commun Signal 2014; 12:72. [PMID: 25388546 PMCID: PMC4232610 DOI: 10.1186/s12964-014-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background The nuclear factor κB (NF-κB) family members regulate several biological processes as cell proliferation and differentiation, inflammation, immunity and tumor progression. Ubiquitination plays a key role in NF-κB activation and the ubiquitylated transmitters of the NF-κB signaling cascade accumulate in close proximity to endomembranes. Findings We performed an unbiased siRNA library screen targeting the 46 E3 ubiquitin ligases bearing transmembrane domains to uncover new modulators of NF-κB activation, using tumor necrosis factor–α (TNF-α) receptor (TNFR) stimulation as a model. We report here the identification of a new Golgi Apparatus-resident protein, RNF121, as an enhancer of NF-κB promoter activity through the catalytic function of its RING domain. From a molecular standpoint, while knocking down RNF121 did not alter RIP1 ubiquitination and IKK activation, the proteasomal degradation of IκBα was impaired suggesting that this E3 ubiquitin ligase regulates this process. However, RNF121 did not directly ubiquitinate IκBα While they were found in the same complex. Finally, we discovered that RNF121 acts as a broad regulator of NF-κB signaling since its silencing also dampens NF-κB activation following stimulation of Toll-Like Receptors (TLRs), Nod-Like Receptors (NLRs), RIG-I-Like Receptors (RLRs) or after DNA damages. Conclusions These results unveil an unexpected role of Golgi Apparatus and reveal RNF121 as a new player involved in the signaling leading to NF-κB activation. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0072-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naima Zemirli
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Marie Pourcelot
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Neslihan Dogan
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Aimé Vazquez
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Damien Arnoult
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| |
Collapse
|
17
|
Zemirli N, Pourcelot M, Ambroise G, Hatchi E, Vazquez A, Arnoult D. Mitochondrial hyperfusion promotes NF-κB activation via the mitochondrial E3 ligase MULAN. FEBS J 2014; 281:3095-112. [PMID: 24841215 DOI: 10.1111/febs.12846] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Abstract
Mitochondria are dynamic organelles with a morphology resulting from the balance between two opposing processes: fusion and fission. Little is known about the function of mitochondrial fusion, beside its role in the maintenance of mitochondrial DNA. We report here that enforced mitochondrial hyperfusion, due to the expression of a dominant-negative mutant of Drp1 or of MARCH5, promotes NF-κB activation in a TAK1- and IKK-dependent manner, through the mitochondrial E3 ubiquitin ligase MULAN. The capability of MULAN to activate NF-κB depends on its RING domain and on the E3 ubiquitin ligase TRAF2. Under physiological conditions, stress-induced mitochondrial hyperfusion (SIMH) is also accompanied by NF-κB activation, and the prevention of SIMH or the knockdown of MULAN impairs NF-κB activation. During SIMH, MULAN forms a complex with TRAF2 and modulates its ubiquitylation, signifying that TRAF2 may serve as an ubiquitylated transmitter of NF-κB signaling in this pathway. Our results suggest that mitochondria, through their dynamics, convert stress signals into a cell response leading to NF-κB activation.
Collapse
Affiliation(s)
- Naima Zemirli
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud P11, Orsay, France; Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | | | | | | | | | | |
Collapse
|
18
|
Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:326-37. [PMID: 24275490 DOI: 10.1016/j.bbadis.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
Abstract
AIRE (for autoimmune regulator) is a multidomain protein that performs a fundamental function in the thymus and possibly in the secondary lymphoid organs: the regulation, especially in the sense of activation, of the process of gene transcription in cell lines deputed to the presentation of self-antigens to the maturing T lymphocytes. The apoptosis of the elements bearing T-cell receptors with critical affinity for the exhibited self-antigens prevents the escape of autoreactive clones and represents a simple and efficient mechanism of deletional self-tolerance. However, AIRE action relies on an articulated complex of biophysical and biochemical properties, in most cases attributable to single subspecialized domains. Here a thorough review of the matter is presented, with a privileged look at the pathogenic changes of AIRE that interfere with such properties and lead to the impairment in its chief function.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics - Neonatal Intensive Care, V. Fazzi Regional Hospital, Piazza F. Muratore, I-73100, Lecce, Italy.
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute at San Raffaele Scientific Institute, Via Olgettina 58, I-20132, Milan, Italy.
| |
Collapse
|
19
|
Abstract
Ubiquitination is a post-translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the latest discoveries in this field and discuss how they impact our understanding of the ubiquitin system in host defence mechanisms as well as self-tolerance.
Collapse
Affiliation(s)
- Julia Zinngrebe
- Centre for Cell Death, Cancer, and Inflammation (CCCI) UCL Cancer Institute, University College London, London, UK
| | | | | | | |
Collapse
|
20
|
De Martino L, Capalbo D, Improda N, D'Elia F, Di Mase R, D'Assante R, D'Acunzo I, Pignata C, Salerno M. APECED: A Paradigm of Complex Interactions between Genetic Background and Susceptibility Factors. Front Immunol 2013; 4:331. [PMID: 24167503 PMCID: PMC3805967 DOI: 10.3389/fimmu.2013.00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/30/2013] [Indexed: 01/08/2023] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disease, caused by mutations of a single gene named Autoimmune regulator gene (AIRE) which results in a failure of T-cell tolerance. Central tolerance takes place within the thymus and represents the mechanism by which potentially auto-reactive T-cells are eliminated through the negative selection process. The expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (mTECs) in the thymus is a key process in the central tolerance and is driven by the protein encoded by AIRE gene, the transcription factor autoimmune regulator (AIRE). A failure in this process caused by AIRE mutations is thought to be responsible of the systemic autoimmune reactions of APECED. APECED is characterized by several autoimmune endocrine and non-endocrine manifestations and the phenotype is often complex. Although APECED is the paradigm of a monogenic autoimmune disorder, it is characterized by a wide variability of the clinical expression even between siblings with the same genotype, thus implying that additional mechanisms, other than the failure of Aire function, are involved in the pathogenesis of the disease. Unraveling open issues of the molecular basis of APECED, will help improve diagnosis, management, and therapeutical strategies of this complex disease.
Collapse
Affiliation(s)
- Lucia De Martino
- Pediatric Section, Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zumer K, Saksela K, Peterlin BM. The mechanism of tissue-restricted antigen gene expression by AIRE. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2479-82. [PMID: 23456700 DOI: 10.4049/jimmunol.1203210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The autoimmune regulator is a critical transcription factor for generating central tolerance in the thymus. Recent studies have revealed how the autoimmune regulator targets many otherwise tissue-restricted Ag genes to enable negative selection of autoreactive T cells.
Collapse
Affiliation(s)
- Kristina Zumer
- Department of Virology, Haartman Institute, Helsinki University Central Hospital, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
22
|
Yang S, Bansal K, Lopes J, Benoist C, Mathis D. Aire's plant homeodomain(PHD)-2 is critical for induction of immunological tolerance. Proc Natl Acad Sci U S A 2013; 110:1833-8. [PMID: 23319629 PMCID: PMC3562810 DOI: 10.1073/pnas.1222023110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aire impacts immunological tolerance by regulating the expression of a large set of genes in thymic medullary epithelial cells, thereby controlling the repertoire of self-antigens encountered by differentiating thymocytes. Both humans and mice lacking Aire develop multiorgan autoimmunity. Currently, there are few molecular details on how Aire performs this crucial function. The more amino-terminal of its two plant homeodomains (PHDs), PHD1, helps Aire target poorly transcribed loci by "reading" the methylation status of a particular lysine residue of histone-3, a process that does not depend on the more carboxyl-terminal PHD-2. This study addresses the role of PHD2 in Aire function by comparing the behavior of wild-type and PHD2-deleted Aire in both transfected cells and transgenic mice. PHD2 was required for Aire to interact with sets of protein partners involved in chromatin structure/binding or transcription but not with those implicated in pre-mRNA processing; it also was not required for Aire's nuclear translocation or regional distribution. PHD2 strongly influenced the ability of Aire to regulate the medullary epithelial cell transcriptome and so was crucial for effective central tolerance induction. Thus, Aire's two PHDs seem to play distinct roles in the scenario by which it assures immunological tolerance.
Collapse
Affiliation(s)
| | | | | | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
23
|
Gallo V, Giardino G, Capalbo D, Palamaro L, Romano R, Santamaria F, Maio F, Salerno M, Vajro P, Pignata C. Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model. Expert Rev Clin Immunol 2013; 9:43-51. [PMID: 23256763 DOI: 10.1586/eci.12.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-nonself discrimination plays a key role in inducing a productive immunity and in preventing autoimmune reactions. Central tolerance within the thymus and peripheral tolerance in peripheral lymphoid organs lead to immunologic nonresponsiveness against self-components. The central tolerance represents the mechanism by which T cells binding with high avidity to self-antigens are eliminated through the so-called negative selection. Thymic medullary epithelial cells and medullary dendritic cells play a key role in this process, through the expression of a large number of tissue-specific self-antigens involving the transcription factor autoimmune regulator (AIRE). Mutations of AIRE result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy, a rare autosomal recessive disease (OMIM 240300), which is the paradigm of a genetically determined failure of central tolerance and autoimmunity. This review focuses on recent advances in the molecular mechanisms of central tolerance, their alterations and clinical implication.
Collapse
Affiliation(s)
- Vera Gallo
- Department of Pediatrics, Federico II University, S Pansini 5, 8013 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gaetani M, Matafora V, Saare M, Spiliotopoulos D, Mollica L, Quilici G, Chignola F, Mannella V, Zucchelli C, Peterson P, Bachi A, Musco G. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 2012; 40:11756-68. [PMID: 23074189 PMCID: PMC3526288 DOI: 10.1093/nar/gks933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.
Collapse
Affiliation(s)
- Massimiliano Gaetani
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Vittoria Matafora
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Mario Saare
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Luca Mollica
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Francesca Chignola
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Valeria Mannella
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Pärt Peterson
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Angela Bachi
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
25
|
Ubiquitin ligase RNF167 regulates AMPA receptor-mediated synaptic transmission. Proc Natl Acad Sci U S A 2012; 109:19426-31. [PMID: 23129617 DOI: 10.1073/pnas.1217477109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified. In a screen to identify transmembrane RING domain-containing E3 ubiquitin ligases that regulate surface expression of AMPARs, we identified RNF167. Predominantly lysosomal, a subpopulation of RNF167 is located on the surface of cultured neurons. Using a RING mutant RNF167 or a specific shRNA to eliminate endogenous RNF167, we demonstrate that AMPAR surface expression increases in hippocampal neurons with disrupted RNF167 activity and that RNF167 is involved in activity-dependent ubiquitination of AMPARs. In addition, RNF167 regulates synaptic AMPAR currents, whereas synaptic NMDAR currents are unaffected. Therefore, our study identifies RNF167 as a selective regulator of AMPAR-mediated neurotransmission and expands our understanding of how ubiquitination dynamically regulates excitatory synapses.
Collapse
|
26
|
Capalbo D, Giardino G, Martino LD, Palamaro L, Romano R, Gallo V, Cirillo E, Salerno M, Pignata C. Genetic basis of altered central tolerance and autoimmune diseases: a lesson from AIRE mutations. Int Rev Immunol 2012; 31:344-62. [PMID: 23083345 DOI: 10.3109/08830185.2012.697230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The thymus is a specialized organ that provides an inductive environment for the development of T cells from multipotent hematopoietic progenitors. Self-nonself discrimination plays a key role in inducing a productive immunity and in preventing autoimmune reactions. Tolerance represents a state of immunologic nonresponsiveness in the presence of a particular antigen. The immune system becomes tolerant to self-antigens through the two main processes, central and peripheral tolerance. Central tolerance takes place within the thymus and represents the mechanism by which T cells binding with high avidity self-antigens, which are potentially autoreactive, are eliminated through so-called negative selection. This process is mostly mediated by medullary thymic epithelia cells (mTECs) and medullary dendritic cells (DCs). A remarkable event in the process is the expression of tissue-specific antigens (TSA) by mTECs driven by the transcription factor autoimmune regulator (AIRE). Mutations in this gene result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), a rare autosomal recessive disease (OMIM 240300). Thus far, this syndrome is the paradigm of a genetically determined failure of central tolerance and autoimmunty. Patients with APECED have a variable pattern of autoimmune reactions, involving different endocrine and nonendocrine organs. However, although APECED is a monogenic disorder, it is characterized by a wide variability of the clinical expression, thus implying a further role for disease-modifying genes and environmental factors in the pathogenesis. Studies on this polyreactive autoimmune syndrome contributed enormously to unraveling several issues of the molecular basis of autoimmunity. This review focuses on the developmental, functional, and molecular events governing central tolerance and on the clinical implication of its failure.
Collapse
|
27
|
Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M. Autoimmune polyendocrine syndrome type 1: case report and review of literature. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2012; 56:54-66. [PMID: 22460196 DOI: 10.1590/s0004-27302012000100009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/03/2011] [Indexed: 11/22/2022]
Abstract
Autoimmune polyendocrine syndrome type 1 (APECED) is a rare autosomal recessive disorder characterized by autoimmune multiorgan attack. The disease is caused by mutations in the autoimmune regulator gene (AIRE), resulting in defective AIRE protein, which is essential for selftolerance. Clinical manifestations are widely variable. Although the classic triad is composed by mucocutaneous candidiasis, hypoparathyroidism and adrenal failure, many other components may develop. Treatment is based on supplementation of the various deficiencies, and patients require regular follow-up throughout their lifespan. This article describes the case of a patient with the disease, and reviews literature data on the epidemiology, clinical course, immunogenetic aspects, diagnosis and treatment of the syndrome.
Collapse
Affiliation(s)
- Fernanda Guimarães Weiler
- Bone and Mineral Unit, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| | | | | |
Collapse
|
28
|
Eldershaw SA, Sansom DM, Narendran P. Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue. Clin Exp Immunol 2011; 163:296-308. [PMID: 21303359 PMCID: PMC3048612 DOI: 10.1111/j.1365-2249.2010.04316.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2010] [Indexed: 01/07/2023] Open
Abstract
Educational immune tolerance to self-antigens is induced primarily in the thymus where tissue-restricted antigens (TRAs) are presented to T lymphocytes by cells of the thymic stroma - a process known as central tolerance. The expression of these TRAs is controlled in part by a transcription factor encoded by the autoimmune regulatory (Aire) gene. Patients with a mutation of this gene develop a condition known as autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED), characterized by autoimmune destruction of endocrine organs, fungal infection and dental abnormalities. There is now evidence for TRA expression and for mechanisms of functional tolerance outside the thymus. This has led to a number of studies examining Aire expression and function at these extra-thymic sites. These investigations have been conducted across different animal models using different techniques and have often shown discrepant results. Here we review the studies of extra thymic Aire and discuss the evidence for its expression and function in both human and murine systems.
Collapse
Affiliation(s)
- S A Eldershaw
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham, UK. ,uk
| | | | | |
Collapse
|
29
|
Aguissa-Touré AH, Wong RPC, Li G. The ING family tumor suppressors: from structure to function. Cell Mol Life Sci 2011; 68:45-54. [PMID: 20803232 PMCID: PMC11114739 DOI: 10.1007/s00018-010-0509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/31/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
The Inhibitor of Growth (ING) proteins belong to a well-conserved family which presents in diverse organisms with several structural and functional domains for each protein. The ING family members are found in association with many cellular processes. Thus, the ING family proteins are involved in regulation of gene transcription, DNA repair, tumorigenesis, apoptosis, cellular senescence and cell cycle arrest. The ING proteins have multiple domains that are potentially capable of binding to many partners. It is conceivable, therefore, that such proteins could function similarly within protein complexes. In this case, within this family, each function could be attributed to a specific domain. However, the role of ING domains is not definitively clear. In this review, we summarize recent advances in structure-function relationships in ING proteins. For each domain, we describe the known biological functions and the approaches utilized to identify the functions associated with ING proteins.
Collapse
Affiliation(s)
- Almass-Houd Aguissa-Touré
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Ronald P. C. Wong
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
30
|
Yap KL, Zhou MM. Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 2010; 45:488-505. [PMID: 20923397 DOI: 10.3109/10409238.2010.512001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|
31
|
Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain. Eur J Pain 2010; 15:53-60. [PMID: 20822942 DOI: 10.1016/j.ejpain.2010.08.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/12/2010] [Accepted: 08/06/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Chronic visceral pain is frequent, extremely debilitating, and generally resistant to pharmacological treatment. It has been shown that chronic visceral inflammation, through altered afferent visceral sensory input, leads to plastic changes in the central nervous system that ultimately sustain pain. Therefore approaches aiming at modulation of brain activity are attractive candidates to control visceral pain. METHODS Here we report findings of a phase II, sham-controlled clinical trial assessing the clinical effects and brain metabolic correlates of a 10-day course of daily sessions of slow-frequency, repetitive transcranial magnetic stimulation (rTMS) targeting the right secondary somatosensory cortex (SII) in patients with chronic pancreatitis and severe visceral pain. RESULTS Our results show a significant reduction in pain after real rTMS that lasted for at least 3 weeks following treatment. These clinical changes were correlated with increases in glutamate and N-acetyl aspartate (NAA) levels--neurometabolites associated with cortical activity and brain damage--as measured by in vivo single-voxel proton magnetic resonance spectroscopy (1H-MRS). Adverse effects in the real rTMS group were mild and short-lasting. CONCLUSIONS Our results support preliminary findings showing that modulation of right SII with rTMS is associated with a significant analgesic effect and that this effect is correlated with an increase in excitatory neurotransmitter levels such as glutamate and NAA.
Collapse
|
32
|
Colomé N, Collado J, Bech-Serra JJ, Liiv I, Antón LC, Peterson P, Canals F, Jaraquemada D, Alvarez I. Increased apoptosis after autoimmune regulator expression in epithelial cells revealed by a combined quantitative proteomics approach. J Proteome Res 2010; 9:2600-9. [PMID: 20218732 DOI: 10.1021/pr100044d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive autoimmune disease, affecting many endocrine tissues. APECED is associated to the lack of function of a single gene called AutoImmune REgulator (AIRE). Aire knockout mice develop various autoimmune disorders affecting different organs, indicating that Aire is a key gene in the control of organ-specific autoimmune diseases. AIRE is mainly expressed by medullary thymic epithelial cells (mTECs), and its absence results in the loss of tolerance against tissue restricted antigens (TRAs). Aire induces the transcription of genes encoding for TRAs in mTECs. In this report, the analysis of AIRE's effect on the cellular proteome was approached by the combination of two quantitative proteomics techniques, 2D-DIGE and ICPL, using an AIRE-transfected and nontransfected epithelial cell line. The results showed increased levels of several chaperones, (HSC70, HSP27 and tubulin-specific chaperone A) in AIRE-expressing cells, while various cytoskeleton interacting proteins, that is, transgelin, caldesmon, tropomyosin alpha-1 chain, myosin regulatory light polypeptide 9, and myosin-9, were decreased. Furthermore, some apoptosis-related proteins were differentially expressed. Data were confirmed by Western blot and flow cytometry analysis. Apoptosis assays with annexin V and etoposide demonstrated that AIRE-positive cells suffer more spontaneous apoptosis and are less resistant to apoptosis induction.
Collapse
Affiliation(s)
- Nuria Colomé
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meloni A, Fiorillo E, Corda D, Incani F, Serra ML, Contini A, Cao A, Rosatelli MC. DAXX is a new AIRE-interacting protein. J Biol Chem 2010; 285:13012-21. [PMID: 20185822 PMCID: PMC2857146 DOI: 10.1074/jbc.m109.037747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 02/09/2010] [Indexed: 01/18/2023] Open
Abstract
The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in the AIRE gene cause the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. To this day, the precise function of the AIRE protein in regulating transcription and its interacting proteins has yet to be entirely clarified. The knowledge of novel AIRE interactors and their precise role will improve our knowledge of its biological activity and address some of the foremost autoimmunity-related questions. In this study, we have used a yeast two-hybrid system to identify AIRE-interacting proteins. This approach led us to the discovery of a new AIRE-interacting protein called DAXX. The protein is known to be a multifunctional adaptor with functions both in apoptosis and in transcription regulation pathways. The interaction between AIRE and DAXX has been validated by in vivo coimmunoprecipitation analysis and colocalization study in mammalian cells. The interaction has been further confirmed by showing in transactivation assays that DAXX exerts a strong repressive role on the transcriptional activity of AIRE.
Collapse
Affiliation(s)
- Allesandra Meloni
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Edoardo Fiorillo
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Denise Corda
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Federica Incani
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Luisa Serra
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonella Contini
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonio Cao
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Maria Cristina Rosatelli
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| |
Collapse
|
34
|
Yu B, Shao Y, Zhang C, Chen Y, Zhong Q, Zhang J, Yang H, Zhang W, Wan J. BS69 undergoes SUMO modification and plays an inhibitory role in muscle and neuronal differentiation. Exp Cell Res 2009; 315:3543-53. [DOI: 10.1016/j.yexcr.2009.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/05/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023]
|
35
|
Wei W, Huang J, Hao YJ, Zou HF, Wang HW, Zhao JY, Liu XY, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS One 2009; 4:e7209. [PMID: 19789627 PMCID: PMC2747011 DOI: 10.1371/journal.pone.0007209] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/07/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.
Collapse
Affiliation(s)
- Wei Wei
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian Huang
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Jun Hao
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Feng Zou
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Wen Wang
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing-Yun Zhao
- Institute of economic crops, Shanxi Academy of Agricultural Sciences, Fenyang, Shanxi, China
| | - Xue-Yi Liu
- Institute of economic crops, Shanxi Academy of Agricultural Sciences, Fenyang, Shanxi, China
| | - Wan-Ke Zhang
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Biao Ma
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Shikama N, Nusspaumer G, Holländer GA. Clearing the AIRE: on the pathophysiological basis of the autoimmune polyendocrinopathy syndrome type-1. Endocrinol Metab Clin North Am 2009; 38:273-88, vii. [PMID: 19328411 DOI: 10.1016/j.ecl.2009.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autoimmune polyendocrine syndrome type-1 clinically manifests as the triad of hypoparathyroidism, primary adrenocortical insufficiency, and chronic mucocutaneous candidiasis. Mutations in the gene that encodes the autoimmune regulator protein, AIRE, have been identified as the cause of the autoimmune polyendocrine syndrome type-1. The loss of immunologic tolerance to tissue-restricted antigens consequent to an absence of AIRE expression in the thymus results in the thymic export of autoreactive T cells that initiate autoimmunity. In this article, we discuss the role of AIRE in autoimmune polyendocrine syndrome type-1 and identify issues that still need to be addressed to fully understand the molecular pathophysiology of this complex syndrome.
Collapse
Affiliation(s)
- Noriko Shikama
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel and The University Children's Hospital (UKBB), Basel, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
Protein ubiquitylation has emerged as a key mechanism that regulates immune responses. Much like phosphorylation, ubiquitylation is a reversible covalent modification that regulates the stability, activity and localization of target proteins. As such, ubiquitylation regulates the development of the immune system and many phases of the immune response, including its initiation, propagation and termination. Recent work has shown that several ubiquitin ligases help to prevent the immune system from attacking self tissues. The dysfunction of several ubiquitin ligases has been linked to autoimmune diseases.
Collapse
Affiliation(s)
- Vijay G Bhoj
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
38
|
Chignola F, Gaetani M, Rebane A, Org T, Mollica L, Zucchelli C, Spitaleri A, Mannella V, Peterson P, Musco G. The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation. Nucleic Acids Res 2009; 37:2951-61. [PMID: 19293276 PMCID: PMC2685098 DOI: 10.1093/nar/gkp166] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 11/14/2022] Open
Abstract
Plant homeodomain (PHD) fingers are often present in chromatin-binding proteins and have been shown to bind histone H3 N-terminal tails. Mutations in the autoimmune regulator (AIRE) protein, which harbours two PHD fingers, cause a rare monogenic disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE activates the expression of tissue-specific antigens by directly binding through its first PHD finger (AIRE-PHD1) to histone H3 tails non-methylated at K4 (H3K4me0). Here, we present the solution structure of AIRE-PHD1 in complex with H3K4me0 peptide and show that AIRE-PHD1 is a highly specialized non-modified histone H3 tail reader, as post-translational modifications of the first 10 histone H3 residues reduce binding affinity. In particular, H3R2 dimethylation abrogates AIRE-PHD1 binding in vitro and reduces the in vivo activation of AIRE target genes in HEK293 cells. The observed antagonism by R2 methylation on AIRE-PHD1 binding is unique among the H3K4me0 histone readers and represents the first case of epigenetic negative cross-talk between non-methylated H3K4 and methylated H3R2. Collectively, our results point to a very specific histone code responsible for non-modified H3 tail recognition by AIRE-PHD1 and describe at atomic level one crucial step in the molecular mechanism responsible for antigen expression in the thymus.
Collapse
Affiliation(s)
- Francesca Chignola
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Massimiliano Gaetani
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Ana Rebane
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Tõnis Org
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Luca Mollica
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Andrea Spitaleri
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Valeria Mannella
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Pärt Peterson
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, 20132 Milan, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
39
|
COLES ANDREWH, JONES STEPHENN. The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 2009; 218:45-57. [PMID: 18780289 PMCID: PMC2872195 DOI: 10.1002/jcp.21583] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The five members of the inhibitor of growth (ING) gene family have garnered significant interest due to their putative roles as tumor suppressors. However, the precise role(s) of these ING proteins in regulating cell growth and tumorigenesis remains uncertain. Biochemical and molecular biological analysis has revealed that all ING members encode a PHD finger motif proposed to bind methylated histones and phosphoinosital, and all ING proteins have been found as components of large chromatin remodeling complexes that also include histone acetyl transferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, the results of forced overexpression studies performed in tissue culture have indicated that several of the ING proteins can interact with the p53 tumor suppressor protein and/or the nuclear factor-kappa B (NF-kappaB) protein complex. As these ING-associated proteins play well-established roles in numerous cell processes, including DNA repair, cell growth and survival, inflammation, and tumor suppression, several models have been proposed that ING proteins act as key regulators of cell growth not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-kappaB activity. However, these models have yet to be substantiated by in vivo experimentation. This review summarizes what is currently known about the biological functions of the five ING genes based upon in vitro experiments and recent mouse modeling efforts, and will highlight the potential impact of INGs on the development of cancer.
Collapse
Affiliation(s)
- ANDREW H. COLES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - STEPHEN N. JONES
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
40
|
Abstract
Mutations in the transcriptional regulator, Aire, cause APECED, a polyglandular autoimmune disease with monogenic transmission. Animal models of APECED have revealed that Aire plays an important role in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a large repertoire of transcripts encoding proteins normally restricted to differentiated organs residing in the periphery. The absence of Aire results in impaired clonal deletion of self-reactive thymocytes, which escape into the periphery and attack a variety of organs. In addition, Aire is a proapoptotic factor, expressed at the final maturation stage of thymic medullary epithelial cells, a function that may promote cross-presentation of the antigens encoded by Aire-induced transcripts in these cells. Transcriptional regulation by Aire is unusual in being very broad, context-dependent, probabilistic, and noisy. Structure/function analyses and identification of its interaction partners suggest that Aire may impact transcription at several levels, including nucleosome displacement during elongation and transcript splicing or other aspects of maturation.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and the Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
41
|
Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8:948-57. [PMID: 19008896 PMCID: PMC2785478 DOI: 10.1038/nri2450] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 5O411, Estonia.
| | | | | |
Collapse
|
42
|
Baker LA, Allis CD, Wang GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 2008; 647:3-12. [PMID: 18682256 PMCID: PMC2656448 DOI: 10.1016/j.mrfmmm.2008.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/04/2008] [Indexed: 12/14/2022]
Abstract
Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved "reader/effector" modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized "reader" modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., "writers" and "erasers") are already known to be involved in various human diseases, mutations in the modification-specific "reader" proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein "chromatin readers" stand as potential drug targets.
Collapse
Affiliation(s)
- Lindsey A. Baker
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - C. David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| | - Gang G. Wang
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
43
|
Musco G, Peterson P. PHD finger of autoimmune regulator: an epigenetic link between the histone modifications and tissue-specific antigen expression in thymus. Epigenetics 2008; 3:310-4. [PMID: 19011376 PMCID: PMC2635555 DOI: 10.4161/epi.3.6.7182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Methylation of lysine residues on histone H3 tails regulates transcription. A recent addition to the list of known methylated histone binding modules is the plant homeodomain (PHD) finger, which is usually found in nuclear proteins with chromatin-related functions. Autoimmune regulator (AIRE) protein contains two PHD fingers and mutations in AIRE gene cause the monogenic disease autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed in thymic medullary epithelial cells where it promotes the expression of tissue-specific antigens. However the mechanism by which AIRE controls gene expression is currently unknown and the function of its domains, in particular of its PHD fingers is still elusive and controversial. In this review we discuss recent works on AIRE PHD finger(s) providing a new link between the status of histone modifications and the regulation of tissue-specific antigen expression in thymus.
Collapse
Affiliation(s)
- Giovanna Musco
- Biomolecular NMR Laboratory; Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Milan Italy
| | - Pärt Peterson
- Molecular Pathology; University of Tartu; Tartu Estonia
| |
Collapse
|
44
|
Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, Bua D, Carney D, Shoelson SE, Gozani O, Kingston RE, Benoist C, Mathis D. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A 2008; 105:15878-83. [PMID: 18840680 PMCID: PMC2572939 DOI: 10.1073/pnas.0808470105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Indexed: 01/08/2023] Open
Abstract
Aire induces ectopic expression of peripheral tissue antigens (PTAs) in thymic medullary epithelial cells, which promotes immunological tolerance. Beginning with a broad screen of histone peptides, we demonstrate that the mechanism by which this single factor controls the transcription of thousands of genes involves recognition of the amino-terminal tail of histone H3, but not of other histones, by one of Aire's plant homeodomain (PHD) fingers. Certain posttranslational modifications of H3 tails, notably dimethylation or trimethylation at H3K4, abrogated binding by Aire, whereas others were tolerated. Similar PHD finger-H3 tail-binding properties were recently reported for BRAF-histone deacetylase complex 80 and DNA methyltransferase 3L; sequence alignment, molecular modeling, and biochemical analyses showed these factors and Aire to have structure-function relationships in common. In addition, certain PHD1 mutations underlying the polyendocrine disorder autoimmune polyendocrinopathy-candidiases-ectodermaldystrophy compromised Aire recognition of H3. In vitro binding assays demonstrated direct physical interaction between Aire and nucleosomes, which was in part buttressed by its affinity to DNA. In vivo Aire interactions with chromosomal regions depleted of H3K4me3 were dependent on its H3 tail-binding activity, and this binding was necessary but not sufficient for the up-regulation of genes encoding PTAs. Thus, Aire's activity as a histone-binding module mediates the thymic display of PTAs that promotes self-tolerance and prevents organ-specific autoimmunity.
Collapse
Affiliation(s)
- Andrew S. Koh
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA, 02114; and
| | - Alex J. Kuo
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Sang Youn Park
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Peggie Cheung
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jakub Abramson
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Dennis Bua
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Dylan Carney
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Steven E. Shoelson
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA, 02114; and
| | - Christophe Benoist
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Diane Mathis
- *Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
45
|
Peña PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RPC, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O, Kutateladze TG. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 2008; 380:303-12. [PMID: 18533182 DOI: 10.1016/j.jmb.2008.04.061] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 11/18/2022]
Abstract
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 A-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-pi contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignancies, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.
Collapse
Affiliation(s)
- P V Peña
- Department of Pharmacology, University of Colorado Health Sciences Center, 12801 East 17th Avenue, Aurora, CO 80045-0511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bøe Wolff AS, Oftedal B, Johansson S, Bruland O, Løvås K, Meager A, Pedersen C, Husebye ES, Knappskog PM. AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes Immun 2008; 9:130-6. [PMID: 18200029 DOI: 10.1038/sj.gene.6364457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 11/08/2022]
Abstract
Autoimmune Addison's disease (AAD) is often associated with other components in autoimmune polyendocrine syndromes (APS). Whereas APS I is caused by mutations in the AIRE gene, the susceptibility genes for AAD and APS II are unclear. In the present study, we investigated whether polymorphisms or copy number variations in the AIRE gene were associated with AAD and APS II. First, nine SNPs in the AIRE gene were analyzed in 311 patients with AAD and APS II and 521 healthy controls, identifying no associated risk. Second, in a subgroup of 25 of these patients, AIRE sequencing revealed three novel polymorphisms. Finally, the AIRE copy number was determined by duplex quantitative PCR in 14 patients with APS I, 161 patients with AAD and APS II and in 39 healthy subjects. In two Scandinavian APS I patients previously reported to be homozygous for common AIRE mutations, we identified large deletions of the AIRE gene covering at least exon 2 to exon 8. We conclude that polymorphisms in the AIRE gene are not associated with AAD and APS II. We further suggest that DNA analysis of the parents of patients found to be homozygous for mutations in AIRE, always should be performed.
Collapse
Affiliation(s)
- A S Bøe Wolff
- Institute of Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gómez-Martín D, Díaz-Zamudio M, Alcocer-Varela J. Ubiquitination system and autoimmunity: The bridge towards the modulation of the immune response. Autoimmun Rev 2008; 7:284-90. [DOI: 10.1016/j.autrev.2007.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
|
48
|
Saltis M, Criscitiello MF, Ohta Y, Keefe M, Trede NS, Goitsuka R, Flajnik MF. Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis. Immunogenetics 2008; 60:105-14. [PMID: 18214467 PMCID: PMC7039057 DOI: 10.1007/s00251-007-0268-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/05/2007] [Indexed: 01/06/2023]
Abstract
During T cell differentiation, medullary thymic epithelial cells (MTEC) expose developing T cells to tissue-specific antigens. MTEC expression of such self-antigens requires the transcription factor autoimmune regulator (Aire). In mammals, defects in aire result in multi-tissue, T cell-mediated autoimmunity. Because the T cell receptor repertoire is randomly generated and extremely diverse in all jawed vertebrates, it is likely that an aire-dependent T cell tolerance mechanism also exists in nonmammalian vertebrates. We have isolated aire genes from animals in all gnathostome classes except the cartilaginous fish by a combination of molecular techniques and scanning of expressed sequence tags and genomic databases. The deduced amino acid sequences of Aire were compared among mouse, human, opossum, chicken, Xenopus, zebrafish, and pufferfish. The first of two plant homeodomains (PHD) in human Aire and regions associated with nuclear and cytoplasmic localization are evolutionarily conserved, while other domains are either absent or divergent in one or more vertebrate classes. Furthermore, the second zinc-binding domain previously named Aire PHD2 appears to have greater sequence similarity with Ring finger domains than to PHD domains. Point mutations in defective human aire genes are generally found in the most evolutionarily conserved regions of the protein. These findings reveal a very rapid evolution of certain regions of aire during vertebrate evolution and support the existence of an aire-dependent mechanism of T cell tolerance dating back at least to the emergence of bony fish.
Collapse
Affiliation(s)
- Mark Saltis
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:74-83. [PMID: 17997173 PMCID: PMC2225445 DOI: 10.1016/j.bbamcr.2007.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/29/2007] [Accepted: 09/21/2007] [Indexed: 01/29/2023]
Abstract
The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA-PK), consisting of Ku70, Ku80 and DNA-PK catalytic subunit (DNA-PKcs), is a novel interaction partner for AIRE. In vitro phosphorylation assays show that the residues Thr68 and Ser156 are DNA-PK phosphorylation sites in AIRE. In addition, we demonstrate that DNA-PKcs is expressed in AIRE positive mTEC cell population and that introduction of mutations into the AIRE phosphorylation sites decrease the capacity of AIRE to activate transcription from reporter promoters. In conclusion, our results suggest that phosphorylation of the AIRE protein at Thr68 and Ser156 by DNA-PK influences AIRE transactivation ability and might have impact on other aspects of the functional regulation of the AIRE protein.
Collapse
Affiliation(s)
- Ingrid Liiv
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Tõnis Org
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Mario Saare
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | | | - Kai Kisand
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Erkki Juronen
- Human Biology and Genetics, University of Tartu, Tartu 50411, Estonia
| | - Leena Valmu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matthew James Bottomley
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia (Rome), Italy
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
- Institute of Medical Technology, University of Tampere, Tampere 33014, Finland
| |
Collapse
|
50
|
Lin AE, Mak TW. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr Opin Immunol 2007; 19:665-73. [PMID: 18036806 DOI: 10.1016/j.coi.2007.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/30/2022]
Abstract
The ubiquitination of proteins by E3 ligases has become an important regulatory mechanism for a variety of immune functions, including the maintenance of self tolerance and suppression of autoreactive T cell development. This review highlights recent advances in our knowledge of the functions in this context of known and potential E3 ligases, including autoimmune regulator (AIRE), TNF receptor-associated factor 6 (TRAF6), Casitas B cell lymphoma b (Cbl-b), gene related to anergy in lymphocytes (GRAIL), Itch, and Roquin. We discuss how disruptions to these molecules may contribute to the loss of T cell homeostasis and the pathogenesis of autoimmunity. We also report on the implications of the potential coordinated actions of these molecules for T cell anergy and regulatory T cell (Treg) functions. The great diversity of E3 ligases and the growing list of cellular processes in which ubiquitination plays a role make for an exciting field of research. Findings emerging from these investigations may suggest ways to exploit the therapeutic potential of manipulating ubiquitination, particularly for autoimmune disorders.
Collapse
Affiliation(s)
- Amy Erica Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|