1
|
Ronzio M, Bernardini A, Taglietti V, Ceribelli M, Donati G, Gallo A, Pavesi G, Dellabona P, Casorati G, Messina G, Mantovani R, Dolfini D. Genomic binding of NF-Y in mouse and human cells. Genomics 2024; 116:110895. [PMID: 39025317 DOI: 10.1016/j.ygeno.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
NF-Y is a Transcription Factor that regulates transcription through binding to the CCAAT-box. To understand its strategy, we analyzed 16 ChIP-seq datasets from human and mouse cells. Shared loci, mostly located in promoters of expressed genes of cell cycle, metabolism and gene expression pathways, are associated with histone marks of active chromatin and specific modules of TFs. Other peaks are in enhancers and Transposable Elements -TE- of retroviral origin in human and mouse. We evaluated the relationship with USF1, a common synergistic partner in promoters and MLT1 TEs, upon NF-YB inactivation: USF1 binding decreases in promoters, modestly in MLT1, suggesting a pioneering role of NF-Y in formers, not in the latters. These data define a common set of NF-Y functional targets across different mammalian cell types, suggesting a pioneering role in promoters with respect to TEs.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Michele Ceribelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Donati
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
2
|
Chen Y, Cattoglio C, Dailey GM, Zhu Q, Tjian R, Darzacq X. Mechanisms governing target search and binding dynamics of hypoxia-inducible factors. eLife 2022; 11:e75064. [PMID: 36322456 PMCID: PMC9681212 DOI: 10.7554/elife.75064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro - the hypoxia response element (HRE) - but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live-cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, another main determinant of chromatin binding and diffusion behavior is the AD-containing intrinsically disordered region (IDR). Using Cut&Run and RNA-seq as orthogonal genomic approaches, we also confirmed IDR-dependent binding and activation of a specific subset of HIF target genes. These findings reveal a previously unappreciated role of IDRs in regulating the TF search and binding process that contribute to functional target site selectivity on chromatin.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Qiulin Zhu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C, Hsieh THS, Mirny L, Zechner C, Hansen AS. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 2022; 376:496-501. [PMID: 35420890 PMCID: PMC9069445 DOI: 10.1126/science.abn6583] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and loop-extruding cohesins, but the live dynamics of loop formation and stability remain unknown. Here, we directly visualized chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantified looping dynamics by Bayesian inference. Unexpectedly, the Fbn2 loop was both rare and dynamic, with a looped fraction of approximately 3 to 6.5% and a median loop lifetime of approximately 10 to 30 minutes. Our results establish that the Fbn2 TAD is highly dynamic, and about 92% of the time, cohesin-extruded loops exist within the TAD without bridging both CTCF boundaries. This suggests that single CTCF boundaries, rather than the fully CTCF-CTCF looped state, may be the primary regulators of functional interactions.
Collapse
Affiliation(s)
- Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Hugo B. Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Simon Grosse-Holz
- Department of Physics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institut Curie; Paris 75005, France
| | - Asmita Jha
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| | - Gina M. Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Tsung-Han S. Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley, CA 94720, USA
| | - Leonid Mirny
- Department of Physics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institut Curie; Paris 75005, France
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology & Genetics; Dresden, Germany
- Center for Systems Biology Dresden; Dresden, Germany
- Cluster of Excellence Physics of Life and Faculty of Computer Science, TU Dresden; Dresden, Germany
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research; Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat Genet 2022; 54:1919-1932. [PMID: 36471071 PMCID: PMC9729117 DOI: 10.1038/s41588-022-01223-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
It remains unclear why acute depletion of CTCF (CCCTC-binding factor) and cohesin only marginally affects expression of most genes despite substantially perturbing three-dimensional (3D) genome folding at the level of domains and structural loops. To address this conundrum, we used high-resolution Micro-C and nascent transcript profiling in mouse embryonic stem cells. We find that enhancer-promoter (E-P) interactions are largely insensitive to acute (3-h) depletion of CTCF, cohesin or WAPL. YY1 has been proposed as a structural regulator of E-P loops, but acute YY1 depletion also had minimal effects on E-P loops, transcription and 3D genome folding. Strikingly, live-cell, single-molecule imaging revealed that cohesin depletion reduced transcription factor (TF) binding to chromatin. Thus, although CTCF, cohesin, WAPL or YY1 is not required for the short-term maintenance of most E-P interactions and gene expression, our results suggest that cohesin may facilitate TFs to search for and bind their targets more efficiently.
Collapse
|
5
|
Zhang C, Qian Q, Huang X, Zhang W, Liu X, Hou X. NF-YCs modulate histone variant H2A.Z deposition to regulate photomorphogenic growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1120-1132. [PMID: 33945672 DOI: 10.1111/jipb.13109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In plants, light signals trigger a photomorphogenic program involving transcriptome changes, epigenetic regulation, and inhibited hypocotyl elongation. The evolutionarily conserved histone variant H2A.Z, which functions in transcriptional regulation, is deposited in chromatin by the SWI2/SNF2-RELATED 1 complex (SWR1c). However, the role of H2A.Z in photomorphogenesis and its deposition mechanism remain unclear. Here, we show that in Arabidopsis thaliana, H2A.Z deposition at its target loci is induced by light irradiation via NUCLEAR FACTOR-Y, subunit C (NF-YC) proteins, thereby inhibiting photomorphogenic growth. NF-YCs physically interact with ACTIN-RELATED PROTEIN6 (ARP6), a key component of the SWR1c that is essential for depositing H2A.Z, in a light-dependent manner. NF-YCs and ARP6 function together as negative regulators of hypocotyl growth by depositing H2A.Z at their target genes during photomorphogenesis. Our findings reveal an important role for the histone variant H2A.Z in photomorphogenic growth and provide insights into a novel transcription regulatory node that mediates H2A.Z deposition to control plant growth in response to changing light conditions.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiang Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, The Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
6
|
Maheshwari P, Kummari D, Palakolanu SR, Nagasai Tejaswi U, Nagaraju M, Rajasheker G, Jawahar G, Jalaja N, Rathnagiri P, Kavi Kishor PB. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS One 2019; 14:e0222203. [PMID: 31536532 PMCID: PMC6752760 DOI: 10.1371/journal.pone.0222203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 01/28/2023] Open
Abstract
Members of the plant Heme Activator Protein (HAP) or NUCLEAR FACTOR Y (NF-Y) are trimeric transcription factor complexes composed of the NF-YA, NF-YB and NF-YC subfamilies. They bind to the CCAAT box in the promoter regions of the target genes and regulate gene expressions. Plant NF-Ys were reported to be involved in adaptation to several abiotic stresses as well as in development. In silico analysis of Sorghum bicolor genome resulted in the identification of a total of 42 NF-Y genes, among which 8 code for the SbNF-YA, 19 for SbNF-YB and 15 for the SbNF-YC subunits. Analysis was also performed to characterize gene structures, chromosomal distribution, duplication status, protein subcellular localizations, conserved motifs, ancestral protein sequences, miRNAs and phylogenetic tree construction. Phylogenetic relationships and ortholog predictions displayed that sorghum has additional NF-YB genes with unknown functions in comparison with Arabidopsis. Analysis of promoters revealed that they harbour many stress-related cis-elements like ABRE and HSE, but surprisingly, DRE and MYB elements were not detected in any of the subfamilies. SbNF-YA1, 2, and 6 were found upregulated under 200 mM salt and 200 mM mannitol stresses. While NF-YA7 appeared associated with high temperature (40°C) stress, NF-YA8 was triggered by both cold (4°C) and high temperature stresses. Among NF-YB genes, 7, 12, 15, and 16 were induced under multiple stress conditions such as salt, mannitol, ABA, cold and high temperatures. Likewise, NF-YC 6, 11, 12, 14, and 15 were enhanced significantly in a tissue specific manner under multiple abiotic stress conditions. Majority of the mannitol (drought)-inducible genes were also induced by salt, high temperature stresses and ABA. Few of the high temperature stress-induced genes are also induced by cold stress (NF-YA2, 4, 6, 8, NF-YB2, 7, 10, 11, 12, 14, 16, 17, NF-YC4, 6, 12, and 13) thus suggesting a cross talk among them. This work paves the way for investigating the roles of diverse sorghum NF-Y proteins during abiotic stress responses and provides an insight into the evolution of diverse NF-Y members.
Collapse
Affiliation(s)
- P. Maheshwari
- Department of Genetics, Osmania University, Hyderabad, India
| | - Divya Kummari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - U. Nagasai Tejaswi
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - M. Nagaraju
- Department of Genetics, Osmania University, Hyderabad, India
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - G. Rajasheker
- Department of Genetics, Osmania University, Hyderabad, India
| | - G. Jawahar
- Department of Genetics, Osmania University, Hyderabad, India
| | - N. Jalaja
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - P. Rathnagiri
- Genomix CARL Pvt. Ltd. Rayalapuram Road, Pulivendula, Kadapa, Andhra Pradesh, India
- Genomix Molecular Diagnostics Pvt Ltd., Kukatpally, Hyderabad, India
- Genomix Biotech Inc., Atlanta, GA, United States of America
| | | |
Collapse
|
7
|
Hollerer I, Barker JC, Jorgensen V, Tresenrider A, Dugast-Darzacq C, Chan LY, Darzacq X, Tjian R, Ünal E, Brar GA. Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells. G3 (BETHESDA, MD.) 2019; 9:1045-1053. [PMID: 30723103 PMCID: PMC6469420 DOI: 10.1534/g3.118.200802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Abstract
We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.
Collapse
Affiliation(s)
- Ina Hollerer
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Juliet C Barker
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Victoria Jorgensen
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Amy Tresenrider
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Leon Y Chan
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley, CA 94720
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| | - Gloria A Brar
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, CA 94720
| |
Collapse
|
8
|
Begum G, Otsu M, Ahmed U, Ahmed Z, Stevens A, Fulton D. NF-Y-dependent regulation of glutamate receptor 4 expression and cell survival in cells of the oligodendrocyte lineage. Glia 2018; 66:1896-1914. [PMID: 29704264 PMCID: PMC6220837 DOI: 10.1002/glia.23446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 03/14/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Glutamate receptor subunit 4 (GluA4) is highly expressed by neural cells sensitive to excitotoxicity, and is the predominant subunit expressed by oligodendrocyte precursor cells (OPC) during a key period of vulnerability to hypoxic‐ischemic injury. Therefore, transcriptional networks downstream of excitotoxic GluA4 activation represent a promising area for therapeutic intervention. In this work, we identify the CCAAT binding transcription factor NF‐Yb as a novel transcriptional regulator of Gria4 (GluA4 gene), and a controller of excitotoxic death in the oligodendroglial lineage. We describe a novel regulatory region within Gria4 containing CCAAT sequences whose binding by NF‐Yb is regulated by excitotoxicity. Excitotoxicity‐induced alterations in NF‐Yb binding are associated with changes in Gria4 transcription, while knockdown of NF‐Yb alters the transcription of reporter constructs containing this regulatory region. Data from immortalized and primary OPC reveal that RNAi and pharmacological disruption of NF‐Yb alter Gria4 transcription, with the latter inducing apoptosis and influencing a set of apoptotic genes similarly regulated during excitotoxicity. These data provide the first definition of a trans‐acting mechanism regulating Gria4, and identify the NF‐Y network as a potential source of pharmacological targets for promoting OPC survival.
Collapse
Affiliation(s)
- Ghazala Begum
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Masahiro Otsu
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Usman Ahmed
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PL, United Kingdom
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
9
|
Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 2017; 45:6572-6588. [PMID: 28541545 PMCID: PMC5499887 DOI: 10.1093/nar/gkx441] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Collapse
Affiliation(s)
- Melissa D. Ilsley
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Kevin R. Gillinder
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Graham W. Magor
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Stephen Huang
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | - Andrew C. Perkins
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
- The Princess Alexandra Hospital, Brisbane 4102, Australia
| |
Collapse
|
10
|
Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 2017; 6:e25776. [PMID: 28467304 PMCID: PMC5446243 DOI: 10.7554/elife.25776] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022] Open
Abstract
Folding of mammalian genomes into spatial domains is critical for gene regulation. The insulator protein CTCF and cohesin control domain location by folding domains into loop structures, which are widely thought to be stable. Combining genomic and biochemical approaches we show that CTCF and cohesin co-occupy the same sites and physically interact as a biochemically stable complex. However, using single-molecule imaging we find that CTCF binds chromatin much more dynamically than cohesin (~1-2 min vs. ~22 min residence time). Moreover, after unbinding, CTCF quickly rebinds another cognate site unlike cohesin for which the search process is long (~1 min vs. ~33 min). Thus, CTCF and cohesin form a rapidly exchanging 'dynamic complex' rather than a typical stable complex. Since CTCF and cohesin are required for loop domain formation, our results suggest that chromatin loops are dynamic and frequently break and reform throughout the cell cycle.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Iryna Pustova
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
11
|
Sun X, Lian H, Liu X, Zhou S, Liu S. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco. PROTOPLASMA 2017; 254:1353-1366. [PMID: 27650870 DOI: 10.1007/s00709-016-1026-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Xiudong Sun
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Haifeng Lian
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xingchen Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
12
|
Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska-Kulinska Z, Jarmolowski A, Gaj MD. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:18. [PMID: 28167951 PMCID: PMC5253390 DOI: 10.3389/fpls.2017.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 05/06/2023]
Abstract
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
Collapse
Affiliation(s)
- Katarzyna Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Małgorzata D. Gaj
| |
Collapse
|
13
|
Swain S, Myers ZA, Siriwardana CL, Holt BF. The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:636-644. [PMID: 27989935 DOI: 10.1016/j.bbagrm.2016.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023]
Abstract
NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric transcription factor (TF) consisting of evolutionarily distinct NF-YA, NF-YB and NF-YC subunits. The functional NF-Y heterotrimer binds to CCAAT elements in eukaryotic gene promoters and influences their expression. The genome of the model organism Arabidopsis thaliana encodes 10 distinct NF-YA, NF-YB, and NF-YC proteins, allowing for enormous combinatorial and functional diversity. Two decades of research have elucidated the importance of NF-Ys in plant growth, development and stress responses; however, the molecular mechanisms of action remain largely unexplored. Intriguingly, recent evidence suggests that NF-Ys are frequently associated with other groups of TFs, expanding the potential NF-Y combinatorial complexity. Further, information regarding the regulation of individual NF-Y subunits at the transcriptional and post-transcriptional level is beginning to emerge. In this review, we will identify developing trends within the NF-Y field and discuss recent progress towards a better understanding of NF-Y function, molecular action, and regulation in the context of Arabidopsis. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Swadhin Swain
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Zachary A Myers
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
14
|
Zambelli F, Pavesi G. Genome wide features, distribution and correlations of NF-Y binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:581-589. [PMID: 27769808 DOI: 10.1016/j.bbagrm.2016.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy; Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy.
| |
Collapse
|
15
|
Hwang YH, Kim SK, Lee KC, Chung YS, Lee JH, Kim JK. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. PLANT CELL REPORTS 2016; 35:857-865. [PMID: 26754793 DOI: 10.1007/s00299-015-1927-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.
Collapse
Affiliation(s)
- Yoon-Hyung Hwang
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Soon-Kap Kim
- Department of Bioresource Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Keh Chien Lee
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Young Soo Chung
- Department of Genetic Engineering, Dong-A University, Busan, 604-714, Republic of Korea
| | - Jeong Hwan Lee
- Department of Bioresource Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-gu, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
16
|
Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res 2016; 44:4684-702. [PMID: 26896797 PMCID: PMC4889920 DOI: 10.1093/nar/gkw096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Maurizio Pedrazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| |
Collapse
|
17
|
Benatti P, Chiaramonte ML, Lorenzo M, Hartley JA, Hochhauser D, Gnesutta N, Mantovani R, Imbriano C, Dolfini D. NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 2016; 7:1633-50. [PMID: 26646448 PMCID: PMC4811486 DOI: 10.18632/oncotarget.6453] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
18
|
Malviya N, Jaiswal P, Yadav D. Genome- wide characterization of Nuclear Factor Y (NF-Y) gene family of sorghum [Sorghum bicolor (L.) Moench]: a bioinformatics approach. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:33-49. [PMID: 27186017 PMCID: PMC4840140 DOI: 10.1007/s12298-016-0349-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 05/29/2023]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor (TF) complex with preferential binding to CCAAT elements of promoters, regulating gene expression in most of the higher eukaryotes. The availability of plant genome sequences have revealed multiple number of genes coding for the three subunits, namely NF-YA, NF-YB and NF-YC in contrast to single NF-Y gene for each subunit reported in yeast and animals. A total of 33 NF-YTF comprising of 8 NF-YA, 11 NF-YB and 14 NF-YC subunits were accessed from the sorghum genome. The bioinformatic characterization of NF-Y gene family of sorghum for gene structure, chromosome location, protein motif, phylogeny, gene duplication and in-silico expression under abiotic stresses have been attempted in the present study. The identified SbNF-Y genes are distributed on all the 10 chromosomes of sorghum with variability in the frequency and 18 out of 33 SbNF-Ys were found to be intronless. Segmental duplication event was found to be predominant feature based on gene duplication pattern study. Several orthologs and paralogs groups were disclosed through the comprehensive phylogenetic analysis of SbNF-Y proteins along with 36 Arabidopsis and 28 rice NF-Y proteins. In-silico expression analysis under abiotic stresses using rice transcriptome data revealed several of the sorghum NF-Y genes to be associated with salt, drought, cold and heat stresses.
Collapse
Affiliation(s)
- Neha Malviya
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| | - Parul Jaiswal
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009 India
| |
Collapse
|
19
|
Song C, Zhang S, Huang H. Choosing a suitable method for the identification of replication origins in microbial genomes. Front Microbiol 2015; 6:1049. [PMID: 26483774 PMCID: PMC4588119 DOI: 10.3389/fmicb.2015.01049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022] Open
Abstract
As the replication of genomic DNA is arguably the most important task performed by a cell and given that it is controlled at the initiation stage, the events that occur at the replication origin play a central role in the cell cycle. Making sense of DNA replication origins is important for improving our capacity to study cellular processes and functions in the regulation of gene expression, genome integrity in much finer detail. Thus, clearly comprehending the positions and sequences of replication origins which are fundamental to chromosome organization and duplication is the first priority of all. In view of such important roles of replication origins, tremendous work has been aimed at identifying and testing the specificity of replication origins. A number of computational tools based on various skew types have been developed to predict replication origins. Using various in silico approaches such as Ori-Finder, and databases such as DoriC, researchers have predicted the locations of replication origins sites for thousands of bacterial chromosomes and archaeal genomes. Based on the predicted results, we should choose an effective method for identifying and confirming the interactions at origins of replication. Here we describe the main existing experimental methods that aimed to determine the replication origin regions and list some of the many the practical applications of these methods.
Collapse
Affiliation(s)
- Chengcheng Song
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Shaocun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| |
Collapse
|
20
|
Feng ZJ, He GH, Zheng WJ, Lu PP, Chen M, Gong YM, Ma YZ, Xu ZS. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:1142. [PMID: 26734043 PMCID: PMC4687410 DOI: 10.3389/fpls.2015.01142] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/01/2015] [Indexed: 05/19/2023]
Abstract
It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - Guan-Hua He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F UniversityYangling, Shaanxi, China
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of AgricultureHangzhou, Zhejiang, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- *Correspondence: You-Zhi Ma
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
- Zhao-Shi Xu
| |
Collapse
|
21
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
22
|
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. Mol Cell 2014; 55:708-22. [PMID: 25132174 DOI: 10.1016/j.molcel.2014.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.
Collapse
|
23
|
Hilioti Z, Ganopoulos I, Bossis I, Tsaftaris A. LEC1-LIKE paralog transcription factor: how to survive extinction and fit in NF-Y protein complex. Gene 2014; 543:220-33. [PMID: 24727055 DOI: 10.1016/j.gene.2014.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/16/2022]
Abstract
Transcription factor function is crucial for eukaryotic systems. The presence of transcription factor families in genomes represents a significant technical challenge for functional studies. To understand their function, we must understand how they evolved and maintained by organisms. Based on genome scale searches for homologs of LEAFY COTYLEDON-LIKE (L1L; AtNF-YB6), NF-YB transcription factor, we report the discovery and annotation of a complete repertoire of thirteen novel genes that belong to the L1L paralogous gene family of Solanum lycopersicum. Gene duplication events within the species resulted in the expansion of the L1L family. Sequence and structure-based phylogenetic analyses revealed two distinct groups of L1Ls in tomato. Natural selection appears to have contributed to the asymmetric evolution of paralogs. Our results point to key differences among SlL1L paralogs in the presence of motifs, structural features, cysteine composition and expression patterns during plant and fruit development. Furthermore, differences in the binding domains of L1L members suggest that some of them evolved new binding specificities. These results reveal dramatic functional diversification of L1L paralogs for their maintenance in tomato genome. Our comprehensive insights on tomato L1L family should provide the basis for further functional and genetic experimentation.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece.
| | - Ioannis Ganopoulos
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Ioannis Bossis
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, Avrum Gudelski Building, College Park, MD 20742, USA.
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
24
|
Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS One 2014; 9:e86648. [PMID: 24497962 PMCID: PMC3909011 DOI: 10.1371/journal.pone.0086648] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022] Open
Abstract
Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.
Collapse
Affiliation(s)
- Shiv S. Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad H. Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Han X, Tang S, An Y, Zheng DC, Xia XL, Yin WL. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4589-601. [PMID: 24006421 PMCID: PMC3808328 DOI: 10.1093/jxb/ert262] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, nuclear factor Y subunit B 7 (PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 (oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines (nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.
Collapse
Affiliation(s)
- Xiao Han
- * These authors contributed equally to this manuscript
| | - Sha Tang
- * These authors contributed equally to this manuscript
| | | | | | - Xin-Li Xia
- To whom correspondence should be addressed. E-mail: and
| | - Wei-Lun Yin
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
26
|
Mazziotta L, Reynoso MA, Aguilar OM, Blanco FA, Zanetti ME. Transcriptional and functional variation of NF-YC1 in genetically diverse accessions of Phaseolus vulgaris during the symbiotic association with Rhizobium etli. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:808-18. [PMID: 23126265 DOI: 10.1111/j.1438-8677.2012.00683.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 09/06/2012] [Indexed: 05/07/2023]
Abstract
Phaseolus vulgaris (common bean) is an agronomic important legume crop native to America, where two centres of genetic diversification (GD) are recognised, one in Mesoamerica and the other in the south Andes. Mesoamerican bean accessions have preferential and more efficient nodulation with Rhizobium etli strains carrying the allele nodC type-α, which is predominant in soils of Mesoamerica. It was previously demonstrated that the host nuclear factor NF-YC1, which is involved in nodule formation and rhizobial infection, contributes to this preferential selection and enhances nodulation in the domesticated accession NAG12 from Mesoamerica. Here, we show that both domesticated and wild Mesoamerican beans exhibit higher nodulation performance with a nodC type-α than with a nodC type-δ strain. Transcripts of NF-YC1 significantly increased in roots of these accessions 24 h post-inoculation (hpi) with the nodC type-α strain. On the other hand, accessions from the Andean GD centre formed a higher number of nodules with a strain carrying the nodC type-δ, which is predominant in Andean soils. However, NF-YC1 transcript levels did not exhibit significant changes in Andean accessions upon inoculation with the nodC type-δ strain, at least at 24 hpi. RNA interference (RNAi)-mediated gene silencing of NF-YC1 in the domesticated Andean accession Alubia showed that NF-YC1 or a closely related member of this family is required for nodule formation and bacterial infection, in agreement with observations in Mesoamerican common beans. Isolation and sequencing of the full-length ORF of NF-YC1 from Alubia revealed that it was identical to the sequence previously identified in the Mesoamerican accession NAG12. Interestingly, overexpression of NF-YC1 had a negative impact on nodule formation in the Alubia accession, independently of the R. etli lineage. Our findings suggest that transcriptional and functional variation of NF-YC1 occurs among genetically diverse bean accessions, which might positively or negatively contribute to the fine-tuning mechanisms that regulate nodule formation in the common bean-R. etli symbiosis.
Collapse
Affiliation(s)
- L Mazziotta
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-La Plata, CONICET, La Plata, Argentina
| | | | | | | | | |
Collapse
|
27
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
28
|
Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res 2013; 23:1195-209. [PMID: 23595228 PMCID: PMC3730095 DOI: 10.1101/gr.148080.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000–15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS.
Collapse
Affiliation(s)
- Joseph D Fleming
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Garipov A, Li H, Bitler BG, Thapa RJ, Balachandran S, Zhang R. NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res 2013; 11:360-9. [PMID: 23360797 DOI: 10.1158/1541-7786.mcr-12-0661] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epithelial ovarian cancer (EOC) accounts for the most gynecologic malignancy-associated deaths in the United States. Enhancer of zeste homolog 2 (EZH2), which silences gene expression through generating trimethylation on lysine 27 residue of histone H3 (H3K27Me3), is often overexpressed in EOCs and has been suggested as a therapeutic target. However, the mechanism underlying EZH2 overexpression in EOCs is unknown. Here, we show that EZH2 is upregulated at the transcription level, and two CCAAT boxes in the proximal regions of the human EZH2 gene promoter are critical for its transcription in EOC cells. Indeed, NF-YA, the regulatory subunit of the CCAAT-binding transcription factor NF-Y, is expressed at higher levels in human EOCs than in primary human ovarian surface epithelial (HOSE) cells. In addition, there is a positive correlation between expression of NF-YA and EZH2 in EOCs. Notably, high NF-YA expression predicts shorter overall survival in patients with EOCs. The association of NF-YA with the promoter of the human EZH2 gene is enhanced in human EOC cells compared with primary HOSE cells. Significantly, knockdown of NF-YA downregulates EZH2, decreases H3K27Me3 levels, and suppresses the growth of human EOC cells both in vitro and in a xenograft mouse model. Notably, NF-YA knockdown induces apoptosis of EOC cells and ectopic EZH2 expression partially rescues apoptosis induced by NF-YA knockdown. Together, these data reveal that NF-Y is a key regulator of EZH2 expression and is required for EOC cell proliferation, thus representing a novel target for developing EOC therapeutics.
Collapse
Affiliation(s)
- Azat Garipov
- The Wistar Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
30
|
Arampatzi P, Gialitakis M, Makatounakis T, Papamatheakis J. Gene-specific factors determine mitotic expression and bookmarking via alternate regulatory elements. Nucleic Acids Res 2013; 41:2202-15. [PMID: 23303784 PMCID: PMC4230186 DOI: 10.1093/nar/gks1365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcriptional silencing during mitosis is caused by inactivation of critical transcriptional regulators and/or chromatin condensation. Inheritance of gene expression patterns through cell division involves various bookmarking mechanisms. In this report, we have examined the mitotic and post-mitotic expression of the DRA major histocompatibility class II (MHCII) gene in different cell types. During mitosis the constitutively MHCII-expressing B lymphoblastoid cells showed sustained occupancy of the proximal promoter by the cognate enhanceosome and general transcription factors. In contrast, although mitotic epithelial cells were depleted of these proteins irrespectively of their MHCII transcriptional activity, a distal enhancer selectively recruited the PP2A phosphatase via NFY and maintained chromatin accessibility. Based on our data, we propose a novel chromatin anti-condensation role for this element in mitotic bookmarking and timing of post-mitotic transcriptional reactivation.
Collapse
Affiliation(s)
- Panagiota Arampatzi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 70013, Greece
| | | | | | | |
Collapse
|
31
|
Gandellini P, Profumo V, Casamichele A, Fenderico N, Borrelli S, Petrovich G, Santilli G, Callari M, Colecchia M, Pozzi S, De Cesare M, Folini M, Valdagni R, Mantovani R, Zaffaroni N. miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ 2012; 19:1750-60. [PMID: 22555458 PMCID: PMC3469086 DOI: 10.1038/cdd.2012.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 12/21/2022] Open
Abstract
The basement membrane (BM) is a layer of specialized extracellular matrix that surrounds normal prostate glands and preserves tissue integrity. Lack or discontinuity of the BM is a prerequisite for tumor cell invasion into interstitial spaces, thus favoring metastasis. Therefore, BM maintenance represents a barrier against cancer development and progression. In the study, we show that miR-205 participates in a network involving ΔNp63α, which is essential for maintenance of the BM in prostate epithelium. At the molecular level, ΔNp63α is able to enhance miR-205 transcription by binding to its promoter, whereas the microRNA can post-transcriptionally limit the amount of ΔNp63α protein, mostly by affecting ΔNp63α proteasomal degradation rather than through a canonical miRNA/target interaction. Functionally, miR-205 is able to control the deposition of laminin-332 and its receptor integrin-β4. Hence, pathological loss of miR-205, as widely observed in prostate cancer, may favor tumorigenesis by creating discontinuities in the BM. Here we demonstrate that therapeutic replacement of miR-205 in prostate cancer (PCa) cells can restore BM deposition and 3D organization into normal-like acinar structures, thus hampering cancer progression.
Collapse
Affiliation(s)
- P Gandellini
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - V Profumo
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - A Casamichele
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - N Fenderico
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - S Borrelli
- Department of Biomolecular Sciences and
Biotechnology, University of Milan, Milan, Italy
| | - G Petrovich
- Department of Biomolecular Sciences and
Biotechnology, University of Milan, Milan, Italy
| | - G Santilli
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - M Callari
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - M Colecchia
- Department of Pathology, Fondazione IRCCS
Istituto Nazionale dei Tumori, Milan, Italy
| | - S Pozzi
- Department of Biomolecular Sciences and
Biotechnology, University of Milan, Milan, Italy
| | - M De Cesare
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - M Folini
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| | - R Valdagni
- Department of Radiotherapy, Fondazione IRCCS
Istituto Nazionale dei Tumori, Milan, Italy
- Prostate Program, Fondazione IRCCS Istituto
Nazionale dei Tumori, Milan, Italy
| | - R Mantovani
- Department of Biomolecular Sciences and
Biotechnology, University of Milan, Milan, Italy
| | - N Zaffaroni
- Department of Experimental Oncology,
Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
| |
Collapse
|
32
|
Wu AR, Kawahara TL, Rapicavoli NA, van Riggelen J, Shroff EH, Xu L, Felsher DW, Chang HY, Quake SR. High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. LAB ON A CHIP 2012; 12:2190-8. [PMID: 22566096 PMCID: PMC4117344 DOI: 10.1039/c2lc21290k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is an assay for interrogating protein-DNA interactions that is increasingly being used for drug target discovery and screening applications. Currently the complexity of the protocol and the amount of hands-on time required for this assay limits its use to low throughput applications; furthermore, variability in antibody quality poses an additional obstacle in scaling up ChIP for large scale screening purposes. To address these challenges, we report HTChIP, an automated microfluidic-based platform for performing high-throughput ChIP screening measurements of 16 different targets simultaneously, with potential for further scale-up. From chromatin to analyzable PCR results only takes one day using HTChIP, as compared to several days up to one week for conventional protocols. HTChIP can also be used to test multiple antibodies and select the best performer for downstream ChIP applications, saving time and reagent costs of unsuccessful ChIP assays as a result of poor antibody quality. We performed a series of characterization assays to demonstrate that HTChIP can rapidly and accurately evaluate the epigenetic states of a cell, and that it is sensitive enough to detect the changes in the epigenetic state induced by a cytokine stimulant over a fine temporal resolution. With these results, we believe that HTChIP can introduce large improvements in routine ChIP, antibody screening, and drug screening efficiency, and further facilitate the use of ChIP as a valuable tool for research and discovery.
Collapse
Affiliation(s)
- Angela R. Wu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America. Fax: (650) 736-1961; Tel: (650) 724-8890
| | - Tiara L.A. Kawahara
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Nicole A. Rapicavoli
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jan van Riggelen
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Emelyn H. Shroff
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Liwen Xu
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Dean W. Felsher
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Howard Y. Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America. Fax: (650) 736-1961; Tel: (650) 724-8890
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789
| |
Collapse
|
33
|
Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 2011; 147:120-31. [PMID: 21962512 DOI: 10.1016/j.cell.2011.08.038] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 01/06/2023]
Abstract
The transcriptional activators Oct4, Sox2, and Nanog cooperate with a wide array of cofactors to orchestrate an embryonic stem (ES) cell-specific gene expression program that forms the molecular basis of pluripotency. Here, we report using an unbiased in vitro transcription-biochemical complementation assay to discover a multisubunit stem cell coactivator complex (SCC) that is selectively required for the synergistic activation of the Nanog gene by Oct4 and Sox2. Purification, identification, and reconstitution of SCC revealed this coactivator to be the trimeric XPC-nucleotide excision repair complex. SCC interacts directly with Oct4 and Sox2 and is recruited to the Nanog and Oct4 promoters as well as a majority of genomic regions that are occupied by Oct4 and Sox2. Depletion of SCC/XPC compromised both pluripotency in ES cells and somatic cell reprogramming of fibroblasts to induced pluripotent stem (iPS) cells. This study identifies a transcriptional coactivator with diversified functions in maintaining ES cell pluripotency and safeguarding genome integrity.
Collapse
Affiliation(s)
- Yick W Fong
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
34
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
35
|
Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF. Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One 2011; 6:e21805. [PMID: 21738795 PMCID: PMC3128097 DOI: 10.1371/journal.pone.0021805] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. Methodology/Principal Findings We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. Conclusions/Significance The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses.
Collapse
Affiliation(s)
- Shuanghe Cao
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Roderick W. Kumimoto
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Chamindika L. Siriwardana
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Jan R. Risinger
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ben F. Holt
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
36
|
Benatti P, Dolfini D, Viganò A, Ravo M, Weisz A, Imbriano C. Specific inhibition of NF-Y subunits triggers different cell proliferation defects. Nucleic Acids Res 2011; 39:5356-68. [PMID: 21415014 PMCID: PMC3141247 DOI: 10.1093/nar/gkr128] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulated gene expression is essential for a proper progression through the cell cycle. The transcription factor NF-Y has a fundamental function in transcriptional regulation of cell cycle genes, particularly of G2/M genes. In order to investigate common and distinct functions of NF-Y subunits in cell cycle regulation, NF-YA, NF-YB and NF-YC have been silenced by shRNAs in HCT116 cells. NF-YA loss led to a delay in S-phase progression, DNA damage and apoptosis: we showed the activation of the replication checkpoint, through the recruitment of Δp53 and of the replication proteins PCNA and Mcm7 to chromatin. Differently, NF-YB depletion impaired cells from exiting G2/M, but did not interfere with S-phase progression. Gene expression analysis of NF-YA and NF-YB inactivated cells highlighted a common set of hit genes, as well as a plethora of uncommon genes, unveiling a different effect of NF-Y subunits loss on NF-Y binding to its target genes. Chromatin extracts and ChIP analysis showed that NF-YA depletion was more effective than NF-YB in hitting NF-Y recruitment to CCAAT-promoters. Our data suggest a critical role of NF-Y expression, highlighting that the lack of the single subunits are differently perceived by the cells, which activate diverse cell cycle blocks and signaling pathways.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Biologia, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Stephenson TJ, McIntyre CL, Collet C, Xue GP. TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Funct Integr Genomics 2011; 11:327-40. [PMID: 21327447 DOI: 10.1007/s10142-011-0212-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
Nuclear factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate-limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction centre subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase γ subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Collapse
Affiliation(s)
- Troy J Stephenson
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Brisbane, QLD 4067, Australia.
| | | | | | | |
Collapse
|
38
|
Jürchott K, Kuban RJ, Krech T, Blüthgen N, Stein U, Walther W, Friese C, Kiełbasa SM, Ungethüm U, Lund P, Knösel T, Kemmner W, Morkel M, Fritzmann J, Schlag PM, Birchmeier W, Krueger T, Sperling S, Sers C, Royer HD, Herzel H, Schäfer R. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 2010; 6:e1001231. [PMID: 21170361 PMCID: PMC2996331 DOI: 10.1371/journal.pgen.1001231] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/01/2010] [Indexed: 12/30/2022] Open
Abstract
Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.
Collapse
Affiliation(s)
- Karsten Jürchott
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf-Jürgen Kuban
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
| | - Till Krech
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Ulrike Stein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Christian Friese
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Szymon M. Kiełbasa
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ute Ungethüm
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
| | - Per Lund
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Knösel
- Institute of Pathology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wolfgang Kemmner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité Comprehensive Cancer Center, Berlin, Germany
| | - Markus Morkel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | - Tammo Krueger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Silke Sperling
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Royer
- Center of Advanced European Studies and Research, Bonn, Germany
- Institute of Human Genetics and Anthropology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
- Charité Comprehensive Cancer Center, Berlin, Germany
| |
Collapse
|
39
|
Ito Y, Zhang Y, Dangaria S, Luan X, Diekwisch TGH. NF-Y and USF1 transcription factor binding to CCAAT-box and E-box elements activates the CP27 promoter. Gene 2010; 473:92-9. [PMID: 21078375 DOI: 10.1016/j.gene.2010.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022]
Abstract
The maintenance and differentiation of embryonic stem cells (ES cells) depends on the regulation of gene expression through the coordinated binding of transcription factors to regulatory promoter elements. One of the genes involved in embryonic development is the chromatin factor CP27. Previously, we have shown that NF-Y interacted with the CP27 proximal promoter CCAAT-box. Here we report that CP27 gene expression in mouse ES cells is controlled by CCAAT and E-box cis-acting regulatory elements and their corresponding transcription factors NF-Y and USF1. Specifically, USF1 interacts with the E-box of the CP27 proximal promoter and NF-Y interacts with the CCAAT-box. NF-Y and USF1 also interacted with each other and activated the CP27 promoter in a synergistic fashion. Together, these studies demonstrate that gene expression of the chromatin factor CP27 is regulated through the interaction of the transcription factors NF-Y and USF1 with the CP27 proximal promoter.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
40
|
Borrelli S, Fanoni D, Dolfini D, Alotto D, Ravo M, Grober OMV, Weisz A, Castagnoli C, Berti E, Vigano MA, Mantovani R. C/EBPδ gene targets in human keratinocytes. PLoS One 2010; 5:e13789. [PMID: 21072181 PMCID: PMC2970548 DOI: 10.1371/journal.pone.0013789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
C/EBPs are a family of B-Zip transcription factors -TFs- involved in the regulation of differentiation in several tissues. The two most studied members -C/EBPα and C/EBPβ- play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets -MafB and SOX2- affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.
Collapse
Affiliation(s)
- Serena Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniele Fanoni
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Maria Ravo
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Olì Maria Victoria Grober
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Alessandro Weisz
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
- AIRC Naples Oncogenomics Centre, c/o CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Emilio Berti
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
- Università di Milano-Bicocca, Milano, Italy
| | - M. Alessandra Vigano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
41
|
Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 2010; 33:403-9. [PMID: 20960221 DOI: 10.1007/s10529-010-0436-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 09/21/2010] [Indexed: 10/18/2022]
Abstract
Plant miRNA regulates multiple developmental and physiological processes, including drought responses. We found that the accumulation of Sly-miR169 in tomato (Solanum lycopersicum) was induced by drought stress. Consequently, Sly-miR169 targets, namely, three nuclear factor Y subunit genes (SlNF-YA1/2/3) and one multidrug resistance-associated protein gene (SlMRP1), were significantly down-regulated by drought stress. Constitutive over-expression of a miR169 family member, Sly-miR169c, in tomato plant can efficiently down-regulate the transcripts of the target genes. Compared with non-transgenic plants, transgenic plants over-expressing Sly-miR169c displayed reduced stomatal opening, decreased transpiration rate, lowered leaf water loss, and enhanced drought tolerance. Our study is the first to provide evidence that the Sly-miR169c negatively regulates stomatal movement in tomato drought responses.
Collapse
|
42
|
Zhou L, Picard D, Ra YS, Li M, Northcott PA, Hu Y, Stearns D, Hawkins C, Taylor MD, Rutka J, Der SD, Huang A. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 2010; 70:8199-210. [PMID: 20876797 DOI: 10.1158/0008-5472.can-09-4562] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanisms by which c-Myc (Myc) amplification confers aggressive medulloblastoma phenotypes are poorly defined. Here, we show using orthotopic models that high Myc expression promotes cell migration/invasion and induces metastatic tumors, which recapitulate aggressive histologic features of Myc-amplified primary human medulloblastoma. Using ChIP-chip analysis, we identified cell migration and adhesion genes, including Tsp-1/THBS1, ING4, PVRL3, and PPAP2B, as Myc-bound loci in medulloblastoma cells. Expression of Tsp-1 was most consistently and robustly diminished in medulloblastoma cell lines and primary human tumors with high Myc expression (n = 101, P = 0.032). Strikingly, stable Tsp-1 expression significantly attenuated in vitro transformation and invasive/migratory properties of high Myc-expressing medulloblastoma cells without altering cell proliferation, whereas RNA interference-mediated Myc knockdown was consistently accompanied by increased Tsp-1 levels and reduced cell migration and invasion in medulloblastoma cells. Chromatin immunoprecipitation (ChIP) assays revealed colocalization of Myc and obligate partner Max and correlated diminished RNA polymerase II occupancy (∼3-fold decrease, P < 0.01) with increased Myc binding at a core Tsp-1 promoter. Reporter gene and/or gel shift assays confirmed direct repression of Tsp-1 transcription by Myc and also identified JPO2, a Myc interactor associated with metastatic medulloblastoma, as a cofactor in Myc-mediated Tsp-1 repression. These findings indicate the Myc-regulatory network targets Tsp-1 via multiple mechanisms in medulloblastoma transformation, and highlight a novel critical role for Tsp-1 in Myc-mediated aggressive medulloblastoma phenotypes.
Collapse
Affiliation(s)
- Limei Zhou
- Sonia and Arthur Labatt Brain Tumor Research Centre, Hospital for Sick Children, University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Luan X, Ito Y, Zhang Y, Diekwisch TGH. Characterization of the mouse CP27 promoter and NF-Y mediated gene regulation. Gene 2010; 460:8-19. [PMID: 20388536 DOI: 10.1016/j.gene.2010.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 01/02/2023]
Abstract
The cp27 gene is a highly conserved and unique gene with important roles related to craniofacial organogenesis. The present study is a first analysis of the CP27 promoter and its regulation. Here, we have cloned the promoter of the mouse cp27 gene, examined its transcriptional activity, and identified transcription factor binding sites in the proximal promoter region. Two major transcription start sites were mapped adjacent to exon 1. Promoter function analysis of the 5' flanking region by progressive 5' deletion mutations localized transcription repression elements between -1993bp and -969bp and several positive elements between -968bp and the preferred transcription start site. EMSA and functional studies indicated two function-cooperative CCAAT boxes and identified the NF-Y transcription factor as the CCAAT activator controlling transactivation of the CP27 promoter. In addition, this study demonstrated that for its effective binding and function, NF-Y required not only the minimal DNA segment length identified by deletion studies, but also a defined nucleotide sequence in the distal 3' flanking region of the CP27 proximal promoter CCAAT box. These results provide a basis for our understanding of the specific regulation of the cp27 gene in the NF-Y-mediated gene transcription network.
Collapse
Affiliation(s)
- Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
44
|
Global mapping of ZBTB7A transcription factor binding sites in HepG2 cells. Cell Mol Biol Lett 2010; 15:260-71. [PMID: 20336405 PMCID: PMC6275666 DOI: 10.2478/s11658-010-0003-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 02/17/2010] [Indexed: 11/20/2022] Open
Abstract
ZBTB7A is a known proto-oncogene that is implicated in carcinogenesis and cell differentiation and development. Fully understanding the function of ZBTB7A in cellular processes could provide useful strategies for cancer treatment and development-associated disease therapy. Here, global mapping of ZBTB7A transcription factor binding sites was developed by utilizing microarray technology in HepG2 cells. The data obtained from the microarrays was further validated via chromatin immunoprecipitation-PCR (ChIP-PCR) and real time-PCR, and it was revealed that ZBTB7A may be one of the regulators of neural development. ZBTB7A target signal pathways were identified in signal pathway and GO (Gene Ontology) analyses. This is the first report on the global mapping of ZBTB7A downstream direct targets, and these findings will be useful in understanding the roles of ZBTB7A in cellular processes.
Collapse
|
45
|
Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:561-91. [PMID: 20192751 PMCID: PMC3056615 DOI: 10.1146/annurev-arplant-042809-112226] [Citation(s) in RCA: 835] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO(2) influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO(2) activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO(2) and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO(2)-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Honghong Hu
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Noriyuki Nishimura
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Julian I. Schroeder
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| |
Collapse
|
46
|
Ceribelli M, Benatti P, Imbriano C, Mantovani R. NF-YC complexity is generated by dual promoters and alternative splicing. J Biol Chem 2009; 284:34189-200. [PMID: 19690168 DOI: 10.1074/jbc.m109.008417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is a DNA element present in the majority of human promoters, bound by the trimeric NF-Y, composed of NF-YA, NF-YB, and NF-YC subunits. We describe and characterize novel isoforms of one of the two histone-like subunits, NF-YC. The locus generates a minimum of four splicing products, mainly located within the Q-rich activation domain. The abundance of each isoform is cell-dependent; only one major NF-YC isoform is present in a given cell type. The 37- and 50-kDa isoforms are mutually exclusive, and preferential pairings with NF-YA isoforms possess different transcriptional activities, with specific combinations being more active on selected promoters. The transcriptional regulation of the NF-YC locus is also complex, and mRNAs arise from the two promoters P1 and P2. Transient transfections, chromatin immunoprecipitations, and reverse transcription-PCRs indicate that P1 has a robust housekeeping activity; P2 possesses a lower basal activity, but it is induced in response to DNA damage in a p53-dependent way. Alternative promoter usage directly affects NF-YC splicing, with the 50-kDa transcript being excluded from P2. Specific functional inactivation of the 37-kDa isoform affects the basal levels of G(1)/S blocking and pro-apoptotic genes but not G(2)/M promoters. In summary, our data highlight an unexpected degree of complexity and regulation of the NF-YC gene, demonstrating the existence of a discrete cohort of NF-Y trimer subtypes resulting from the functional diversification of Q-rich transactivating subunits and a specific role of the 37-kDa isoform in suppression of the DNA damage-response under growing conditions.
Collapse
Affiliation(s)
- Michele Ceribelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
47
|
Zhang JB, Pan ZX, Lin F, Ma XS, Liu HL. [Biochemical methods for the analysis of DNA-protein interactions]. YI CHUAN = HEREDITAS 2009; 31:325-336. [PMID: 19273448 DOI: 10.3724/sp.j.1005.2009.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Investigation of DNA-protein interactions is fundamental to understand the mechanism underlying a variety of life processes. In this article, various types of biochemical methods in DNA-protein interaction study in vivo and in vitro at the level of DNA, protein, and the complex, respectively were briefly reviewed. Traditional assays including Nitrocellulose filter-binding assay, Footprinting, EMSA, and Southwestern blotting were summarized. In addition, chromatin immunoprecipitation techniques including nChIP, xChIP, and ChIP-on-chip, which were widely used in epigenetics, were particularly introduced.
Collapse
Affiliation(s)
- Jin-Bi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | |
Collapse
|
48
|
Stros M, Polanská E, Struncová S, Pospísilová S. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha. Nucleic Acids Res 2009; 37:2070-86. [PMID: 19223331 PMCID: PMC2673423 DOI: 10.1093/nar/gkp067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Topoisomerase IIα (topo IIα) is a nuclear enzyme involved in several critical processes, including chromosome replication, segregation and recombination. Previously we have shown that chromosomal protein HMGB1 interacts with topo IIα, and stimulates its catalytic activity. Here we show the effect of HMGB1 on the activity of the human topo IIα gene promoter in different cell lines. We demonstrate that HMGB1, but not a mutant of HMGB1 incapable of DNA bending, up-regulates the activity of the topo IIα promoter in human cells that lack functional retinoblastoma protein pRb. Transient over-expression of pRb in pRb-negative Saos-2 cells inhibits the ability of HMGB1 to activate the topo IIα promoter. The involvement of HMGB1 and its close relative, HMGB2, in modulation of activity of the topo IIα gene is further supported by knock-down of HMGB1/2, as evidenced by significantly decreased levels of topo IIα mRNA and protein. Our experiments suggest a mechanism of up-regulation of cellular expression of topo IIα by HMGB1/2 in pRb-negative cells by modulation of binding of transcription factor NF-Y to the topo IIα promoter, and the results are discussed in the framework of previously observed pRb-inactivation, and increased levels of HMGB1/2 and topo IIα in tumors.
Collapse
Affiliation(s)
- Michal Stros
- Laboratory of Analysis of Chromosomal Proteins, Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic.
| | | | | | | |
Collapse
|
49
|
Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. PLANT PHYSIOLOGY 2009; 149:625-41. [PMID: 19019982 PMCID: PMC2633833 DOI: 10.1104/pp.108.130591] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/12/2008] [Indexed: 05/18/2023]
Abstract
All aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed (e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes. Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created promoter:beta-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from these promoter:beta-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time.
Collapse
Affiliation(s)
- Nicholas Siefers
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
50
|
Identification and characterization of mouse Gas6 promoter. Biochem Biophys Res Commun 2008; 371:567-72. [DOI: 10.1016/j.bbrc.2008.04.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/24/2008] [Indexed: 11/21/2022]
|