1
|
Wang Q, Zhou J, Cheng A, Liu Y, Guo J, Li X, Chen M, Hu D, Wu J. Artesunate-binding FABP5 promotes apoptosis in lung cancer cells via the PPARγ-SCD pathway. Int Immunopharmacol 2024; 143:113381. [PMID: 39405934 DOI: 10.1016/j.intimp.2024.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Artesunate holds excellent promise for lung cancer treatment, but its target is still unclear. We used molecular docking techniques to predict artesunate and Fatty acid binding protein 5 (FABP5) binding sites. Cellular thermal shift assay (CETSA) verified that artesunate treatment could promote the stability of the FABP5 protein. There was no significant change in the strength of the FABP5 protein after the mutation of binding sites by adding artesunate treatment. Mechanistically, artesunate promotes apoptosis in lung cancer cells by binding to FABP5, inhibiting the expression of the lipid metabolism gene SCD, and suppressing the expression of the SCD transcription factor regulated by the transcription factor PPARγ. In summary, our study shows that the protein targeted by artesunate is FABP5 and that artesunate promotes apoptosis through the FABP5-PPARγ-SCD pathway, which offers excellent potential for treating lung cancer.
Collapse
Affiliation(s)
- Qingsen Wang
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan 232000, Anhui, China
| | - Anqi Cheng
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan 232000, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Xuan Li
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Maoqian Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan 232000, Anhui, China
| | - Dong Hu
- The First Affiliated Hospital of Anhui University of Science and Technology Huainan First People's Hospital, School of Medicine, Huainan 232000, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 232001, Anhui, China.
| | - Jing Wu
- Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan 232000, Anhui, China.
| |
Collapse
|
2
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
3
|
Oatman N, Gawali MV, Congrove S, Caceres R, Sukumaran A, Gupta N, Murugesan N, Arora P, Subramanian SV, Choi K, Abdel-Malek Z, Reisz JA, Stephenson D, Amaravadi R, Desai P, D’Alessandro A, Komurov K, Dasgupta B. A Multimodal Drug-Diet-Immunotherapy Combination Restrains Melanoma Progression and Metastasis. Cancer Res 2024; 84:2333-2351. [PMID: 38885087 PMCID: PMC11250569 DOI: 10.1158/0008-5472.can-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mruniya V. Gawali
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sunny Congrove
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Roman Caceres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Abitha Sukumaran
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Narmadha Murugesan
- Divisions of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | | | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ravi Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
4
|
Ikeda T, Katoh Y, Hino H, Seta D, Ogawa T, Iwata T, Nishio H, Sugawara M, Hirai S. FADS2 confers SCD1 inhibition resistance to cancer cells by modulating the ER stress response. Sci Rep 2024; 14:13116. [PMID: 38849435 PMCID: PMC11161504 DOI: 10.1038/s41598-024-64043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Toshikatsu Ikeda
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-Kami-Cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yuki Katoh
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-Kami-Cho, Itabashi-ku, Tokyo, 173-8610, Japan.
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotsugu Hino
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-Kami-Cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Daichi Seta
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-Kami-Cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tadashi Ogawa
- Department of Legal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishio
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaki Sugawara
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Ohyaguchi-Kami-Cho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
5
|
Zhang L, Yamasaki T, Dowdy T, Larion M. DMT1 contributes to MF- 438 - mediated inhibition of glioma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591407. [PMID: 38903063 PMCID: PMC11188100 DOI: 10.1101/2024.04.26.591407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Elevated SCD1 expression has been associated with enhanced cancer cell survival, proliferation, and resistance to therapy in many cancer types including gliomas. Hereby, we investigate the impact of MF-438 on SCD1-mediated lipid metabolism and its consequences on glioma growth and survival. Our data reveals an IDH mut -specific inhibitory effect of MF438 on gliomas. Also, we delineate a dual mechanism of action: while SCD1-mediated lipid metabolism is hindered by MF-438 treatment, MF-438 also exerts an SCD1-independent inhibition on DMT1 expression. Supporting data from the DMT1 blocker underscores its significance in MF-438's anti-glioma efficacy.
Collapse
|
6
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
7
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
8
|
Min JY, Kim DH. Stearoyl-CoA Desaturase 1 as a Therapeutic Biomarker: Focusing on Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24108951. [PMID: 37240297 DOI: 10.3390/ijms24108951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The dysregulation of lipid metabolism and alterations in the ratio of monounsaturated fatty acids (MUFAs) to saturated fatty acids (SFAs) have been implicated in cancer progression and stemness. Stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in lipid desaturation, is crucial in regulating this ratio and has been identified as an important regulator of cancer cell survival and progression. SCD1 converts SFAs into MUFAs and is important for maintaining membrane fluidity, cellular signaling, and gene expression. Many malignancies, including cancer stem cells, have been reported to exhibit high expression of SCD1. Therefore, targeting SCD1 may provide a novel therapeutic strategy for cancer treatment. In addition, the involvement of SCD1 in cancer stem cells has been observed in various types of cancer. Some natural products have the potential to inhibit SCD1 expression/activity, thereby suppressing cancer cell survival and self-renewal activity.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Ntambi JM, Liu X, Burhans MS, ALjohani A, Selen ES, Kalyesubula M, Assadi-Porter F. Hepatic oleate regulates one-carbon metabolism during high carbohydrate feeding. Biochem Biophys Res Commun 2023; 651:62-69. [PMID: 36791500 PMCID: PMC9992055 DOI: 10.1016/j.bbrc.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, coronary heart disease, and strok. These diseases are associated with profound alterations in gene expression in metabolic tissues. Epigenetic-mediated regulation of gene expression is one mechanism through which environmental factors, such as diet, modify gene expression and disease predisposition. However, epigenetic control of gene expression in obesity and insulin resistance is not fully characterized. We discovered that liver-specific stearoyl-CoA desaturase-1 (Scd1) knockout mice (LKO) fed a high-carbohydrate low-fat diet exhibit dramatic changes in hepatic gene expression and metabolites of the folate cycle and one-carbon metabolism respectively for the synthesis of S-adenosylmethionine (SAM). LKO mice show an increased ratio of S-adenosylmethionine to S-adenosylhomocysteine, a marker for increased cellular methylation capacity. Furthermore, expression of DNA and histone methyltransferase genes is up-regulated while the mRNA and protein levels of the non-DNA methyltransferases including phosphatidylethanolamine methyltransferase (PEMT), Betaine homocysteine methyltransferase (Bhmt), and the SAM-utilizing enzymes such as glycine-N-methyltransferase (Gnmt) and guanidinoacetate methyltransferase (Gamt) are generally down-regulated. Feeding LKO mice a high carbohydrate diet supplemented with triolein, but not tristearin, and increased endogenous hepatic synthesis of oleate but not palmitoleate in Scd1 global knockout mice normalized one carbon gene expression and metabolite levels. Additionally, changes in one carbon gene expression are independent of the PGC-1α-mediated ER stress response previously reported in the LKO mice. Together, these results highlight the important role of oleate in maintaining one-carbon cycle homeostasis and point to observed changes in one-carbon metabolism as a novel mediator of the Scd1 deficiency-induced liver phenotype.
Collapse
Affiliation(s)
- James M Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Xueqing Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Maggie S Burhans
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ahmed ALjohani
- College of Science and Health Professions, King Saudi Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ebru Selin Selen
- Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mugagga Kalyesubula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fariba Assadi-Porter
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Jia S, Chang S, Zhang L, Gui Z, Liu L, Ma Z, Li S, Huang X, Zhong H. Plasmonic Hydroxyl Radical-Driven Epoxidation of Fatty Acid Double Bonds in Nanoseconds for On-Tissue Mass-Spectrometric Analysis and Bioimaging. Anal Chem 2023; 95:3976-3985. [PMID: 36633955 DOI: 10.1021/acs.analchem.2c03759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipids represent a large family of compounds with highly diverse structures that are involved in complex biological processes. A photocatalytic technique of on-tissue epoxidation of C=C double bonds has been developed for in situ mass spectrometric identification and spatial imaging of positional isomers of lipids. It is based on the plasmonic hot-electron transfer from irradiated gold nanowires to redox-active organic matrix compounds that undergo bond cleavages and generate hydroxyl radicals in nanoseconds. Intermediate radical anions and negative fragment ions have been unambiguously identified. Under the irradiation of a pulsed laser of the third harmonic of Nd3+:YAG (355 nm), the hydroxyl radical-driven epoxidation of unsaturated lipids with different numbers of C=C bonds can be completed in nanoseconds with high yields of up to 95%. Locations of C=C bonds were recognized with diagnostic fragment ions that were produced by either collision with an inert gas or auto-fragmentation resulting from the impact of energetic hot electrons and vibrational excitation. This technique has been applied to the analysis of breast cancer tissues of mice models without extensive sample processes. It was experimentally demonstrated that C=C bonds may be formed at different positions of not only regular mono- or poly-unsaturated fatty acids but also other odd-numbered long-chain fatty acids.
Collapse
Affiliation(s)
- Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Shao Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Lin Zhang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengwei Gui
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Linhui Liu
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Zhenglan Ma
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Shuyu Li
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
11
|
Kruglikov IL, Scherer PE. Pathophysiology of cellulite: Possible involvement of selective endotoxemia. Obes Rev 2023; 24:e13517. [PMID: 36285892 PMCID: PMC9772045 DOI: 10.1111/obr.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 12/27/2022]
Abstract
The most relevant hallmarks of cellulite include a massive protrusion of superficial adipose tissue into the dermis, reduced expression of the extracellular glycoprotein fibulin-3, and an unusually high presence of MUSE cells in gluteofemoral white adipose tissue (gfWAT) that displays cellulite. Also typical for this condition is the hypertrophic nature of the underlying adipose tissue, the interaction of adipocytes with sweat glands, and dysfunctional lymph and blood circulation as well as a low-grade inflammation in the areas of gfWAT affected by cellulite. Here, we propose a new pathophysiology of cellulite, which connects this skin condition with selective accumulation of endogenous lipopolysaccharides (LPS) in gfWAT. The accumulation of LPS within a specific WAT depot has so far not been considered as a possible pathophysiological mechanism triggering localized WAT modifications, but may very well be involved in conditions such as cellulite and, secondary to that, lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-8549, USA
| |
Collapse
|
12
|
Downregulation of Stearoyl-CoA Desaturase 1 (SCD-1) Promotes Resistance to Imatinib in Chronic Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023008. [PMID: 36660357 PMCID: PMC9833301 DOI: 10.4084/mjhid.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance.
Collapse
|
13
|
Matta M, Deubler E, Chajes V, Vozar B, Gunter MJ, Murphy N, Gaudet MM. Circulating plasma phospholipid fatty acid levels and breast cancer risk in the Cancer Prevention Study-II Nutrition Cohort. Int J Cancer 2022; 151:2082-2094. [PMID: 35849437 DOI: 10.1002/ijc.34216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Prospective studies that objectively measure circulating levels of fatty acids are needed to clarify their role in the etiology of breast cancer. Thirty-eight phospholipid fatty acids were measured using gas chromatograph in the plasma fraction of blood samples collected prospectively from 2718 postmenopausal women (905 breast cancer cases) enrolled in the Cancer Prevention Study II Nutrition Cohort. Associations of 28 fatty acids that passed quality control metrics (modeled as per 1-SD increase) with breast cancer risk were assessed using multiple variable conditional logistic regression models to compute odds ratios (OR) and 95% confidence intervals (CI). The false discovery rate (q value) was computed to account for multiple comparisons. Myristic acid levels were positively associated with breast cancer risk (OR, 1.17, 95% CI: 1.07-1.28; q value = 0.03). Borderline associations were also found for palmitoleic acid (OR, 1.14, 95% CI: 1.04-1.24) and desaturation index16 (OR, 1.10, 95% CI: 1.01-1.20) at nominal P values (<.03) (q values>0.05). These findings suggest that higher circulating levels of myristic acid, sourced from dietary intake of palm kernel oils along with increased de novo synthesis of fatty acids, may increase breast cancer risk. Additional studies are needed to investigate de novo synthesis of fatty acid in breast cancer tissues.
Collapse
Affiliation(s)
- Michèle Matta
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Emily Deubler
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Veronique Chajes
- Office of the Director, International Agency for Research on Cancer, Lyon, France
| | - Beatrice Vozar
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Mia M Gaudet
- Trans Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells 2022; 11:cells11142146. [PMID: 35883589 PMCID: PMC9319324 DOI: 10.3390/cells11142146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, the monounsaturated hexadecenoic fatty acids are being increasingly considered as biomarkers of health with key functions in physiology and pathophysiology. Palmitoleic acid (16:1n-7) and sapienic acid (16:1n-10) are synthesized from palmitic acid by the action of stearoyl-CoA desaturase-1 and fatty acid desaturase 2, respectively. A third positional isomer, hypogeic acid (16:1n-9) is produced from the partial β-oxidation of oleic acid. In this review, we discuss the current knowledge of the effects of palmitoleic acid and, where available, sapienic acid and hypogeic acid, on metabolic diseases such as diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and cancer. The results have shown diverse effects among studies in cell lines, animal models and humans. Palmitoleic acid was described as a lipokine able to regulate different metabolic processes such as an increase in insulin sensitivity in muscle, β cell proliferation, prevention of endoplasmic reticulum stress and lipogenic activity in white adipocytes. Numerous beneficial effects have been attributed to palmitoleic acid, both in mouse models and in cell lines. However, its role in humans is not fully understood, and is sometimes controversial. Regarding sapienic acid and hypogeic acid, studies on their biological effects are still scarce, but accumulating evidence suggests that they also play important roles in metabolic regulation. The multiplicity of effects reported for palmitoleic acid and the compartmentalized manner in which they often occur, may suggest the overlapping actions of multiple isomers being present at the same or neighboring locations.
Collapse
|
15
|
Kang D, Shin D, Choe H, Hwang D, Bugenyi AW, Na CS, Lee HK, Heo J, Shim K. Transcriptome-wide analysis reveals gluten-induced suppression of
small intestine development in young chickens. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:752-769. [PMID: 35969701 PMCID: PMC9353357 DOI: 10.5187/jast.2022.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Wheat gluten is an increasingly common ingredient in poultry diets but its impact
on the small intestine in chicken is not fully understood. This study aimed to
identify effects of high-gluten diets on chicken small intestines and the
variation of their associated transcriptional responses by age. A total of 120
broilers (Ross Strain) were used to perform two animal experiments consisting of
two gluten inclusion levels (0% or 25%) by bird’s age (1
week or 4 weeks). Transcriptomics and histochemical techniques were employed to
study the effect of gluten on their duodenal mucosa using randomly selected 12
broilers (3 chicks per group). A reduction in feed intake and body weight gain
was found in the broilers fed a high-gluten containing diet at both ages.
Histochemical photomicrographs showed a reduced villus height to crypt depth
ratio in the duodenum of gluten-fed broilers at 1 week. We found mainly a
significant effect on the gene expression of duodenal mucosa in gluten-fed
broilers at 1 week (289 differentially expressed genes [DEGs]). Pathway analyses
revealed that the significant DEGs were mainly involved in ribosome, oxidative
phosphorylation, and peroxisome proliferator-activated receptor (PPAR) signaling
pathways. These pathways are involved in ribosome protein biogenesis, oxidative
phosphorylation and fatty acid metabolism, respectively. Our results suggest a
pattern of differential gene expression in these pathways that can be linked to
chronic inflammation, suppression of cell proliferation, cell cycle arrest and
apoptosis. And via such a mode of action, high-gluten inclusion levels in
poultry diets could lead to the observed retardation of villi development in the
duodenal mucosa of young broiler chicken.
Collapse
Affiliation(s)
- Darae Kang
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Hosung Choe
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Doyon Hwang
- Institute for Animal Products Quality
Evaluation, Sejong 339011, Korea
| | - Andrew Wange Bugenyi
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
- National Agricultural Research
Organization, Entebbe 295, Uganda
| | - Chong-Sam Na
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Jaeyoung Heo
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- Corresponding author: Jaeyoung Heo,
Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea. Tel: +82-63-270-2549, E-mail:
| | - Kwanseob Shim
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- Corresponding author: Kwanseob Shim,
Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea. Tel: +82-63-270-2609, E-mail:
| |
Collapse
|
16
|
Garcia KA, Costa ML, Lacunza E, Martinez ME, Corsico B, Scaglia N. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci 2022; 301:120621. [PMID: 35545133 DOI: 10.1016/j.lfs.2022.120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
AIMS Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.
Collapse
Affiliation(s)
- Karina Andrea Garcia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Lucía Costa
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Elizabeth Martinez
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Molecular Hydrogen Inhibits Colorectal Cancer Growth via the AKT/SCD1 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8024452. [PMID: 35528164 PMCID: PMC9071919 DOI: 10.1155/2022/8024452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
Objective Molecular hydrogen (H2) has been considered a potential therapeutic target in many cancers. Therefore, we sought to assess the potential effect of H2 on colorectal cancer (CRC) in this study. Methods The effect of H2 on the proliferation and apoptosis of RKO, SW480, and HCT116 CRC cell lines was assayed by CCK-8, colony formation, and flow cytometry assays. The effect of H2 on tumor growth was observed in xenograft implantation models (inhalation of 67% hydrogen two hours per day). Western blot and immunohistochemistry analyses were performed to examine the expression of p-PI3K, PI3K, AKT, pAKT, and SCD1 in CRC cell lines and xenograft mouse models. The expression of SCD1 in 491 formalin-fixed, paraffin-embedded CRC specimens was investigated with immunochemistry. The relationship between SCD1 status and clinicopathological characteristics and outcomes was determined. Results Hydrogen treatment suppressed the proliferation of CRC cell lines independent of apoptosis, and the cell lines showed different responses to different doses of H2. Hydrogen also elicited a potent antitumor effect to reduce CRC tumor volume and weight in vivo. Western blot and IHC staining demonstrated that H2 inhibits CRC cell proliferation by decreasing pAKT/SCD1 levels, and the inhibition of cell proliferation induced by H2 was reversed by the AKT activator SC79. IHC showed that SCD1 expression was significantly higher in CRC tissues than in normal epithelial tissues (70.3% vs. 29.7%, p = 0.02) and was correlated with a more advanced TNM stage (III vs. I + II; 75.9% vs. 66.3%, p = 0.02), lymph node metastasis (with vs. without; 75.9% vs. 66.3%, p = 0.02), and patients without a family history of CRC (78.7% vs. 62.1%, p = 0.047). Conclusion This study demonstrates that high concentrations of H2 exert an inhibitory effect on CRC by inhibiting the pAKT/SCD1 pathway. Further studies are warranted for clinical evaluation of H2 as SCD1 inhibitor to target CRC.
Collapse
|
18
|
Nagata K, Hishikawa D, Sagara H, Saito M, Watanabe S, Shimizu T, Shindou H. Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells. J Biol Chem 2022; 298:101958. [PMID: 35452679 PMCID: PMC9136105 DOI: 10.1016/j.jbc.2022.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022] Open
Abstract
Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.
Collapse
Affiliation(s)
- Katsuyuki Nagata
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masamichi Saito
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
19
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Pérez G, Lopez-Moya F, Chuina E, Ibañez-Vea M, Garde E, López-Llorca LV, Pisabarro AG, Ramírez L. Strain Degeneration in Pleurotus ostreatus: A Genotype Dependent Oxidative Stress Process Which Triggers Oxidative Stress, Cellular Detoxifying and Cell Wall Reshaping Genes. J Fungi (Basel) 2021; 7:jof7100862. [PMID: 34682283 PMCID: PMC8537115 DOI: 10.3390/jof7100862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Strain degeneration has been defined as a decrease or loss in the yield of important commercial traits resulting from subsequent culture, which ultimately leads to Reactive Oxygen Species (ROS) production. Pleurotus ostreatus is a lignin-producing nematophagous edible mushroom. Mycelia for mushroom production are usually maintained in subsequent culture in solid media and frequently show symptoms of strain degeneration. The dikaryotic strain P. ostreatus (DkN001) has been used in our lab as a model organism for different purposes. Hence, different tools have been developed to uncover genetic and molecular aspects of this fungus. In this work, strain degeneration was studied in a full-sib monokaryotic progeny of the DkN001 strain with fast (F) and slow (S) growth rates by using different experimental approaches (light microscopy, malondialdehyde levels, whole-genome transcriptome analysis, and chitosan effect on monokaryotic mycelia). The results obtained showed that: (i) strain degeneration in P. ostreatus is linked to oxidative stress, (ii) the oxidative stress response in monokaryons is genotype dependent, (iii) stress and detoxifying genes are highly expressed in S monokaryons with symptoms of strain degeneration, (iv) chitosan addition to F and S monokaryons uncovered the constitutive expression of both oxidative stress and cellular detoxifying genes in S monokaryon strains which suggest their adaptation to oxidative stress, and (v) the overexpression of the cell wall genes, Uap1 and Cda1, in S monokaryons with strain degeneration phenotype indicates cell wall reshaping and the activation of High Osmolarity Glycerol (HOG) and Cell Wall Integrity (CWI) pathways. These results could constitute a hallmark for mushroom producers to distinguish strain degeneration in commercial mushrooms.
Collapse
Affiliation(s)
- Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Federico Lopez-Moya
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Emilia Chuina
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - María Ibañez-Vea
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Edurne Garde
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Luis V. López-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, University of Alicante, 03690 Alicante, Spain; (F.L.-M.); (L.V.L.-L.)
| | - Antonio G. Pisabarro
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
| | - Lucía Ramírez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain; (G.P.); (E.C.); (M.I.-V.); (E.G.); (A.G.P.)
- Correspondence:
| |
Collapse
|
21
|
Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, Mancini R. SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 2021; 40:265. [PMID: 34429143 PMCID: PMC8383407 DOI: 10.1186/s13046-021-02067-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular degradation system that removes unnecessary or dysfunctional components and recycles them for other cellular functions. Over the years, a mutual regulation between lipid metabolism and autophagy has been uncovered. METHODS This is a narrative review discussing the connection between SCD1 and the autophagic process, along with the modality through which this crosstalk can be exploited for therapeutic purposes. RESULTS Fatty acids, depending on the species, can have either activating or inhibitory roles on autophagy. In turn, autophagy regulates the mobilization of fat from cellular deposits, such as lipid droplets, and removes unnecessary lipids to prevent cellular lipotoxicity. This review describes the regulation of autophagy by lipid metabolism in cancer cells, focusing on the role of stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in the synthesis of monounsaturated fatty acids. SCD1 plays an important role in cancer, promoting cell proliferation and metastasis. The role of autophagy in cancer is more complex since it can act either by protecting against the onset of cancer or by promoting tumor growth. Mounting evidence indicates that autophagy and lipid metabolism are tightly interconnected. CONCLUSION Here, we discuss controversial findings of SCD1 as an autophagy inducer or inhibitor in cancer, highlighting how these activities may result in cancer promotion or inhibition depending upon the degree of cancer heterogeneity and plasticity.
Collapse
Affiliation(s)
- Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, 00144, Rome, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, 00189, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, 00144, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00161, Rome, Italy.
| |
Collapse
|
22
|
Zhao X, Wang M, Liu J, Su X. Stearoyl CoA Desaturase 1 and Inositol-Requiring Protein 1 α Determine the Efficiency of Oleic Acid in Alleviating Silica Nanoparticle-Induced Insulin Resistance. J Biomed Nanotechnol 2021; 17:1349-1363. [PMID: 34446138 DOI: 10.1166/jbn.2021.3109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Min Wang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| |
Collapse
|
23
|
SCD5 expression correlates with prognosis and response to neoadjuvant chemotherapy in breast cancer. Sci Rep 2021; 11:8976. [PMID: 33903614 PMCID: PMC8076324 DOI: 10.1038/s41598-021-88258-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) represents a standard option for breast cancer. Unfortunately, about 55–80% of breast cancer patients do not have a favorable response to chemotherapy. Highly specific tumor biomarker that can predict the pathological response to neoadjuvant chemotherapy is lacking. Stearoyl-CoA desaturase 5 (SCD5) is an integral membrane protein of the endoplasmic reticulum that participates in lipid metabolism. Previous studies on the role of SCD5 in human cancers drew different conclusions. Therefore, the role of SCD5 in breast cancer remains unclear. Our study aims to understand its expression signature, prognosis value and correlation with pathological response to NACT in breast cancer using bioinformatics from public databases. Analysis of samples from public databases showed that SCD5 expression was down-regulated in some human cancers including breast cancer, and low expression of SCD5 was associated with more aggressive breast cancer phenotypes. Survival analysis revealed that SCD5 expression was related to prognosis in breast cancer. Integrated analysis of multiple public datasets indicated that SCD5 expression signature was associated with pathological response to NACT, particularly in TNBC. Based on functional enrichment analysis, the most affected biological functions in high SCD5-expressing breast cancer tissues were involved in negative regulation of cell cycle. Moreover, a significantly negative correlation between SCD5 expression and several cell cycle regulators was noted. Taken together, SCD5 was involved in the development and progression of breast cancer and might be a predictive biomarker for response to NACT. In conclusion, SCD5 could serve as a predictive biomarker of pathological response to NACT and play a carcinostatic role in breast cancer. These results provided us with clues to better understand SCD5 from the perspective of bioinformatics and highlighted the clinical importance of SCD5 in breast cancer, especially triple negative breast cancer (TNBC).
Collapse
|
24
|
Cohen ED, Yee M, Porter GA, Ritzer E, McDavid AN, Brookes PS, Pryhuber GS, O’Reilly MA. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight 2021; 6:140785. [PMID: 33507880 PMCID: PMC8021108 DOI: 10.1172/jci.insight.140785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth increases the risk for pulmonary hypertension and heart failure in adulthood. Oxygen therapy can damage the immature cardiopulmonary system and may be partially responsible for the cardiovascular disease in adults born preterm. We previously showed that exposing newborn mice to hyperoxia causes pulmonary hypertension by 1 year of age that is preceded by a poorly understood loss of pulmonary vein cardiomyocyte proliferation. We now show that hyperoxia also reduces cardiomyocyte proliferation and survival in the left atrium and causes diastolic heart failure by disrupting its filling of the left ventricle. Transcriptomic profiling showed that neonatal hyperoxia permanently suppressed fatty acid synthase (Fasn), stearoyl-CoA desaturase 1 (Scd1), and other fatty acid synthesis genes in the atria of mice, the HL-1 line of mouse atrial cardiomyocytes, and left atrial tissue explanted from human infants. Suppressing Fasn or Scd1 reduced HL-1 cell proliferation and increased cell death, while overexpressing these genes maintained their expansion in hyperoxia, suggesting that oxygen directly inhibits atrial cardiomyocyte proliferation and survival by repressing Fasn and Scd1. Pharmacologic interventions that restore Fasn, Scd1, and other fatty acid synthesis genes in atrial cardiomyocytes may, thus, provide a way of ameliorating the adverse effects of supplemental oxygen on preterm infants.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul S. Brookes
- Department of Anesthesiology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
25
|
Zheng RH, Zhang YB, Qiu FN, Liu ZH, Han Y, Huang R, Zhao Y, Yao P, Qiu Y, Ren J. NF-κB pathway play a role in SCD1 deficiency-induced ceramide de novo synthesis. Cancer Biol Ther 2021; 22:164-174. [PMID: 33612070 DOI: 10.1080/15384047.2021.1883414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stearoyl-CoA-desaturase 1 (SCD1) deficiency mediates apoptosis in colorectal cancer cells by promoting ceramide de novo synthesis. The mechanisms underlying the cross-talk between SCD1 and ceramide synthesis have not been explored. We treated colorectal cancer cells with an SCD1 inhibitor and examined the effects on gene expression, cell growth, and cellular lipid contents. The main effect of SCD1 inhibition on the fatty acid contents of colorectal cancer cells was a decrease in monounsaturated fatty acids (MUFAs). RNA sequencing (RNA-seq) showed that the most intense alteration of gene expression after SCD1 inhibition occurred in the NF-κB signaling pathway. Further experiments revealed that SCD1 inhibition resulted in increased levels of phosphorylated NF-κB p65 and increased nuclear translocation of NF-κB p65. Treatment with an NF-κB inhibitor eliminated several effects of SCD1 inhibition, mainly including overexpression of serine palmitoyltransferase1 (SPT1), elevation of dihydroceramide contents, and suppression of cell growth. Furthermore, treatment with supplemental oleate counteracted the SCD1-induced NF-κB activation and downstream effects. In summary, our data demonstrate that the NF-κB pathway plays a role in SCD1 deficiency-induced ceramide de novo synthesis in colorectal cancer cells, and that reduced MUFA levels contribute to the course.
Collapse
Affiliation(s)
- Rui-He Zheng
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China.,Department of Pharmacy, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yi-Bo Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fu-Nan Qiu
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, P. R. China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Yun Han
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Huang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yun Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Peijie Yao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Oatman N, Dasgupta N, Arora P, Choi K, Gawali MV, Gupta N, Parameswaran S, Salomone J, Reisz JA, Lawler S, Furnari F, Brennan C, Wu J, Sallans L, Gudelsky G, Desai P, Gebelein B, Weirauch MT, D'Alessandro A, Komurov K, Dasgupta B. Mechanisms of stearoyl CoA desaturase inhibitor sensitivity and acquired resistance in cancer. SCIENCE ADVANCES 2021; 7:eabd7459. [PMID: 33568479 PMCID: PMC7875532 DOI: 10.1126/sciadv.abd7459] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.
Collapse
Affiliation(s)
- Nicole Oatman
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nupur Dasgupta
- Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Priyanka Arora
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mruniya V Gawali
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nishtha Gupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean Lawler
- Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Furnari
- Ludwig Institute of Cancer Research, University of California, San Diego, CA, USA
| | | | - Jianqiang Wu
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Larry Sallans
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Gary Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Pankaj Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kakajan Komurov
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
27
|
Zheng M, Wang W, Liu J, Zhang X, Zhang R. Lipid Metabolism in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:49-69. [PMID: 33740243 DOI: 10.1007/978-981-33-6785-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic reprogramming is one of the most critical hallmarks in cancer cells. In the past decades, mounting evidence has demonstrated that, besides the Warburg Effect, lipid metabolism dysregulation is also one of the essential characteristics of cancer cell metabolism. Lipids are water-insoluble molecules with diverse categories of phosphoglycerides, triacylglycerides, sphingolipids, sterols, etc. As the major utilization for energy storage, fatty acids are the primary building blocks for synthesizing triacylglycerides. And phosphoglycerides, sphingolipids, and sterols are the main components constructing biological membranes. More importantly, lipids play essential roles in signal transduction by functioning as second messengers or hormones. Much evidence has shown specific alterations of lipid metabolism in cancer cells. Consequently, the structural configuration of biological membranes, the energy homeostasis under nutrient stress, and the abundance of lipids in the intracellular signal transduction are affected by these alterations. Furthermore, lipid droplets accumulate in cancer cells and function adaptively to different types of harmful stress. This chapter reviews the regulation, functions, and therapeutic benefits of targeting lipid metabolism in cancer cells. Overall, this chapter highlights the significance of exploring more potential therapeutic strategies for malignant diseases by unscrambling lipid metabolism regulation in cancer cells.
Collapse
Affiliation(s)
- Minhua Zheng
- Department of Medical Genetics and Developmental Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China.
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
28
|
Ngo Njembe MT, Dormal E, Gardin C, Mignolet E, Debier C, Larondelle Y. Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chem 2020; 344:128668. [PMID: 33267981 DOI: 10.1016/j.foodchem.2020.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
The health promoting omega-3, -7, and -5 fatty acids, α-linolenic acid (ALA), docosahexaenoic acid (DHA), rumenic acid (RmA), and α-eleostearic acid (α-ESA)/punicic acid (PunA), are not currently combined in frequently consumed food items. We have evaluated the impact of supplementing laying hens' feeds with flaxseeds combined with oil derived from seeds of either Ricinodendron heudelotii, an α-ESA source, or Punica granatum, a PunA source, on the egg fatty acid profile. The supplemented diets increased the egg content in ALA, DHA, RmA, as well as α-ESA or PunA. The combination of dietary lipids did not affect the conversion rate of ALA into DHA. Hens fed on R. heudelotii or P. granatum seed oil both accumulated RmA in egg yolk, indicating an efficient conversion from the α-ESA or PunA precursors through a Δ-13 reductase activity. The accumulation of PunA in eggs was largely higher than that of α-ESA.
Collapse
Affiliation(s)
- M T Ngo Njembe
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Dormal
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Gardin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - E Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - C Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - Y Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
29
|
Piccinin E, Cariello M, Moschetta A. Lipid metabolism in colon cancer: Role of Liver X Receptor (LXR) and Stearoyl-CoA Desaturase 1 (SCD1). Mol Aspects Med 2020; 78:100933. [PMID: 33218679 DOI: 10.1016/j.mam.2020.100933] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly occurring cancers worldwide. Although several genetic alterations have been associated with CRC onset and progression, nowadays the reprogramming of cellular metabolism has been recognized as a fundamental step of the carcinogenic process. Intestinal tumor cells frequently display an aberrant activation of lipid metabolism. Indeed, to satisfy the growing needs of a continuous proliferation, cancer cells can either increase the uptake of exogenous lipids or upregulate the endogenous lipogenesis and cholesterol synthesis. Therefore, strategies aimed at limiting lipid accumulation are now under development in order to counteract malignancies. Two major players of lipids metabolism have been so far identified for their contribution to CRC development: the nuclear receptor Liver X Receptor (LXRs) and the enzyme Stearoyl-CoA Desaturase 1 (SCD1). Whereas LXR is mainly recognized for its role as a cholesterol sensor, finally promoting the loss of cellular cholesterol and whole-body homeostasis, SCD1 acts as the major regulator of new fatty acids, finely tuning the monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA) ratio. Intriguingly, SCD1 is directly regulated by LXRs. Despite LXRs agonists have elicited great interest as a promising therapeutic target for cancer, LXR's ability to induce SCD1 and new fatty acids synthesis represent a major obstacle in the development of new effective treatments. Thus, further investigations are required to fully dissect the concomitant modulation of both players, to develop specific therapies aimed at blocking intestinal cancer cells proliferation, eventually counteracting CRC progression.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy; INBB, National Institute for Biostructures and Biosystems, Rome, Italy; National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
30
|
Igal RA, Sinner DI. Stearoyl-CoA desaturase 5 (SCD5), a Δ-9 fatty acyl desaturase in search of a function. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158840. [PMID: 33049404 DOI: 10.1016/j.bbalip.2020.158840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
A large body of research has demonstrated that human stearoyl-CoA desaturase 1 (SCD1), a universally expressed fatty acid Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), is a central regulator of metabolic and signaling pathways involved in cell proliferation, differentiation, and survival. Unlike SCD1, stearoyl-CoA desaturase 5 (SCD5), a second SCD isoform found in a variety of vertebrates, including humans, has received considerably less attention but new information on the catalytic properties, regulation and biological functions of this enzyme has begun to emerge. This review will examine the new evidence that supports key metabolic and biological roles for SCD5, as well as the potential implication of this desaturase in the mechanisms of human diseases.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, 630 West 168th Street, PH 1501 East, New York City, NY 10032, United States of America.
| | - Débora I Sinner
- Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Lab: R4447, Office: R4445, MLC 7009, 3333 Burnet Ave, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
31
|
Tutino V, Gigante I, Milella RA, De Nunzio V, Flamini R, De Rosso M, Scavo MP, Depalo N, Fanizza E, Caruso MG, Notarnicola M. Flavonoid and Non-Flavonoid Compounds of Autumn Royal and Egnatia Grape Skin Extracts Affect Membrane PUFA's Profile and Cell Morphology in Human Colon Cancer Cell Lines. Molecules 2020; 25:E3352. [PMID: 32718061 PMCID: PMC7435874 DOI: 10.3390/molecules25153352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-γ), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-γ were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-γ gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 70010 Turi (BA), Italy;
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| | - Riccardo Flamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Mirko De Rosso
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano (TV), Italy; (R.F.); (M.D.R.)
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical-Physical Processes (IPCF)-CNR SS Bari, 70125 Bari (BA), Italy; (N.D.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari (BA), Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (BA), Italy; (V.T.); (I.G.); (V.D.N.)
| |
Collapse
|
32
|
Stearoyl-CoA Desaturase-1 Attenuates the High Shear Force Damage Effect on Human MG63 Osteosarcoma Cells. Int J Mol Sci 2020; 21:ijms21134720. [PMID: 32630668 PMCID: PMC7369751 DOI: 10.3390/ijms21134720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Mechanical regulation is known as an important regulator in cancer progression and malignancy. High shear force has been found to inhibit the cell cycle progression and result in cell death in various cancer cells. Stearoyl-CoA desaturase (SCD)-1, one of the important lipogenic enzymes, has recently been indicated as a potential pharmaceutical target in cancer therapy. In this study, we determined whether the cell fate control of shear force stimulation is through regulating the SCD-1 expression in cancer cells. Human MG63 osteosarcoma cells were used in this study. 2 and 20 dynes/cm2 shear forces were defined as low and high intensities, respectively. A SCD-1 upregulation in human MG63 osteosarcoma cells under 20, but not 2, dynes/cm2 shear force stimulation was shown, and this induction was regulated by Smad1/5 and peroxisome proliferator-activated receptor δ (PPARδ) signaling. Moreover, gene knockdown of PPARδ and SCD-1 in human MG63 osteosarcoma cells attenuated the differentiation inhibition and resulted in much more cell death of high shear force initiation. The present study finds a possible auto-protective role of SCD-1 upregulation in high shear force-damaged human MG63 osteosarcoma cells. However, its detailed regulation in the cancer fate decision of high shear force should be further examined.
Collapse
|
33
|
Korbecki J, Kojder K, Jeżewski D, Simińska D, Tarnowski M, Kopytko P, Safranow K, Gutowska I, Goschorska M, Kolasa-Wołosiuk A, Wiszniewska B, Chlubek D, Baranowska-Bosiacka I. Expression of SCD and FADS2 Is Lower in the Necrotic Core and Growing Tumor Area than in the Peritumoral Area of Glioblastoma Multiforme. Biomolecules 2020; 10:biom10050727. [PMID: 32392704 PMCID: PMC7277411 DOI: 10.3390/biom10050727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 01/31/2023] Open
Abstract
The expression of desaturases is higher in many types of cancer, and despite their recognized role in oncogenesis, there has been no research on the expression of desaturases in glioblastoma multiforme (GBM). Tumor tissue samples were collected during surgery from 28 patients (16 men and 12 women) diagnosed with GBM. The effect of necrotic conditions and nutritional deficiency (mimicking conditions in the studied tumor zones) was studied in an in vitro culture of human brain (glioblastoma astrocytoma) U-87 MG cells. Analysis of desaturase expression was made by qRT-PCR and the immunohistochemistry method. In the tumor, the expression of stearoyl–coenzyme A desaturase (SCD) and fatty acid desaturases 2 (FADS2) was lower than in the peritumoral area. The expression of other desaturases did not differ in between the distinguished zones. We found no differences in the expression of SCD, fatty acid desaturases 1 (FADS1), or FADS2 between the sexes. Necrotic conditions and nutritional deficiency increased the expression of the studied desaturase in human brain (glioblastoma astrocytoma) U-87 MG cells. The obtained results suggest that (i) biosynthesis of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in a GBM tumor is less intense than in the peritumoral area; (ii) expressions of SCD, SCD5, FADS1, and FADS2 correlate with each other in the necrotic core, growing tumor area, and peritumoral area; (iii) expressions of desaturases in a GBM tumor do not differ between the sexes; and (iv) nutritional deficiency increases the biosynthesis of MUFA and PUFA in GBM cells.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Department of Applied Neurocognitivistics, Unii Lubelskiej 1, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.T.); (P.K.)
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.T.); (P.K.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
| | - Agnieszka Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.-W.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.-W.); (B.W.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (K.S.); (M.G.); (D.C.)
- Correspondence: ; Tel.: +48-91-466-1515; Fax: +48-91-466-1516
| |
Collapse
|
34
|
Mbarik M, Biam RS, Robichaud PP, Surette ME. The impact of PUFA on cell responses: Caution should be exercised when selecting PUFA concentrations in cell culture. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102083. [PMID: 32126480 DOI: 10.1016/j.plefa.2020.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are important components of cellular membranes, serving both structural and signaling functions. Investigation of the functional responses of cells to various PUFA often involves cell culture experiments, which can then inform or guide subsequent in vivo and clinical investigations. In this study, human carcinoma and leukemia cell lines (MCF-7, HepG2, THP-1, Jurkat) were incubated for 3 days in the presence of up to 150 μM of exogenous arachidonic or eicosapentaenoic acids. At concentrations up to 20 μM these PUFA were enriched in cellular phospholipids, but at concentrations of 20 μM or higher cells accumulated large quantities of these PUFA and their elongation products into triglycerides. This coincided with decreased cell proliferation and enhanced apoptosis. Inhibition of DGAT1 but not DGAT2 enhanced the cytotoxic effect of exogenous PUFA suggesting a protective role of PUFA sequestration into TGs. Lower (10 μM) and higher (50 μM) exogenous PUFA concentrations also had different impacts on the expression of PUFA metabolizing enzymes. Overall, these results indicate that caution must be exercised when planning in vitro experiments since elevated concentrations of PUFA can lead to dysfunctional cellular responses that are not predictive of in vivo responses to dietary PUFA.
Collapse
Affiliation(s)
- Maroua Mbarik
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Roody S Biam
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
35
|
Tutino V, Gigante I, Scavo MP, Refolo MG, De Nunzio V, Milella RA, Caruso MG, Notarnicola M. Stearoyl-CoA Desaturase-1 Enzyme Inhibition by Grape Skin Extracts Affects Membrane Fluidity in Human Colon Cancer Cell Lines. Nutrients 2020; 12:nu12030693. [PMID: 32143529 PMCID: PMC7146266 DOI: 10.3390/nu12030693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The polyphenolic compounds present in grape extracts have chemopreventive and anticancer properties. Here, we studied the ability of two grape skin extracts (GSEs), Autumn Royal and Egnatia, to influence the cell motility and membrane fluidity regulated by the enzyme Stearoyl-CoA desaturase-1 (SCD1) which increases with the cancer aggressiveness. Caco2 and SW480 human colon cancer cell lines were treated with increasing concentrations of GSEs to evaluate cell proliferation and motility. SCD1 levels were evaluated in both treated cell lines, by membrane lipidomic analysis conducted by gas chromatography. The expression levels of SCD1 and other factors involved in the reorganization of the cytoskeleton and focal adhesions were assessed by Real-time PCR, Western Blotting, and Immunofluorescence staining. High-performance liquid chromatography (HPLC) analyses were performed to determine the phenolic composition in the GSEs, finding them more expressed in Autumn Royal than in Egnatia. Both treatments reduced the levels of SCD1, phospho-Rac1/Cdc42/Rac1/Cdc42 ratio, Cofilin, Vimentin, and phospho-Paxillin especially in Caco2 compared to SW480, showing a different behavior of the two cell lines to these natural compounds. Our findings show that GSEs block the cell migration and membrane fluidity through a new mechanism of action involving structural cellular components.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Maria Grazia Refolo
- Laboratory of Cellular and Molecular Biology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 70010 Turi, Bari, Italy;
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
36
|
Korbecki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, Barczak K, Chlubek D, Baranowska-Bosiacka I. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Biol Trace Elem Res 2020; 193:152-161. [PMID: 30927246 PMCID: PMC6914714 DOI: 10.1007/s12011-019-01699-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucose metabolism, they also alter lipid metabolism. Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD or Δ9-desaturase), Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA) were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2 (FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA) such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)-oleic acid and palmitoleic acid. Sodium orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1 macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated with a lack of influence on the expression of FADS1 and FADS2.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Marta Wiercioch
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland.
| |
Collapse
|
37
|
Kikuchi K, Tsukamoto H. Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact 2019; 316:108917. [PMID: 31838050 DOI: 10.1016/j.cbi.2019.108917] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
Stearoyl-CoA desaturase (SCD) generates monounsaturated fatty acids (MUFAs) which contribute to cell growth, survival, differentiation, metabolic regulation and signal transduction. Overexpression of SCD is evident and implicated in metabolic diseases such as diabetes and non-alcoholic fatty liver disease. SCD also stimulates canonical Wnt pathway and YAP activation in support of stemness and tumorigenesis. SCD facilitates metabolic reprogramming in cancer which is mediated, at least in part, by regulation of AKT, AMPK, and NF-kB via MUFAs. Our research has revealed the novel positive loop to amplify Wnt signaling through stabilization of LRP5/6 in both hepatic stellate cells and liver tumor-initiating stem cell-like cells. As such, this loop is pivotal in promoting liver fibrosis and liver tumor development. This review summarizes the mechanisms of SCD-mediated tumor promotion described by recent studies and discusses the future prospect for SCD-mediated signaling crosstalk as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kohtaro Kikuchi
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Arlauckas SP, Browning EA, Poptani H, Delikatny EJ. Imaging of cancer lipid metabolism in response to therapy. NMR IN BIOMEDICINE 2019; 32:e4070. [PMID: 31107583 DOI: 10.1002/nbm.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non-invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.
Collapse
Affiliation(s)
- Sean Philip Arlauckas
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Systems Biology, Mass General Hospital, Boston, MA, USA
| | - Elizabeth Anne Browning
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Regenerative Medicine, University of Liverpool, Liverpool, UK
| | - Edward James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
40
|
de Oliveira PSN, Coutinho LL, Cesar ASM, Diniz WJDS, de Souza MM, Andrade BG, Koltes JE, Mourão GB, Zerlotini A, Reecy JM, Regitano LCA. Co-Expression Networks Reveal Potential Regulatory Roles of miRNAs in Fatty Acid Composition of Nelore Cattle. Front Genet 2019; 10:651. [PMID: 31354792 PMCID: PMC6637853 DOI: 10.3389/fgene.2019.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a significant role in biological processes such as adipogenesis and immune response. It is well known that, in beef, the main FAs associated with these biological processes are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. Here, we performed differential expression and co-expression analyses, weighted gene co-expression network analysis (WGCNA) and partial correlation with information theory (PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in skeletal muscle associated with FA content. miRNA and mRNA expression data were obtained from skeletal muscle of Nelore cattle that had extreme genomic breeding values for OA and CLA. Insulin and MAPK signaling pathways were identified by WGCNA as central pathways associated with both of these fatty acids. Co-expression network analysis identified bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, bta-miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-miR-146b, bta-let-7a-5p, bta-let-7f, bta-let-7, bta-miR 339, bta-miR-10b, bta-miR 486, and the genes ACTA1 and ALDOA as potential regulators of fatty acid synthesis. This study provides evidence and insights into the molecular mechanisms and potential target genes involved in fatty acid content differences in Nelore beef cattle, revealing new candidate pathways of phenotype modulation that could positively benefit beef production and human consumption.
Collapse
Affiliation(s)
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, University of São Paulo, Piracicaba, Brazil
| | | | - Marcela M de Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Bruno G Andrade
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Gerson B Mourão
- Department of Agroindustry, Food and Nutrition, University of São Paulo, Piracicaba, Brazil
| | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, Brazil
| |
Collapse
|
41
|
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers (Basel) 2019; 11:cancers11070948. [PMID: 31284458 PMCID: PMC6678606 DOI: 10.3390/cancers11070948] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|
42
|
Hao P, Cui X, Liu J, Li M, Fu Y, Liu Q. Identification and characterization of stearoyl-CoA desaturase in Toxoplasma gondii. Acta Biochim Biophys Sin (Shanghai) 2019; 51:615-626. [PMID: 31139819 DOI: 10.1093/abbs/gmz040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
Few information of the function of stearoyl-coenzyme A (CoA) desaturase (SCD) in apicomplaxan parasite has been obtained. In this study, we retrieved a putative fatty acyl-CoA desaturase (TGGT1_238950) by a protein alignment with Plasmodium falciparum SCD in ToxoDB. A typical Δ9-desaturase domain was revealed in this protein. The putative desaturase was tagged with HA endogenously in Toxoplasma gondii, and the endoplasmic reticulum localization of the putative desaturase was revealed, which was consistent with the fatty acid desaturases in other organisms. Therefore, the TGGT1_238950 was designated T. gondii SCD. Based on CRISPR/Cas9 gene editing technology, SCD conditional knockout mutants in the T. gondii TATi strain were obtained. The growth in vitro and pathogenicity in mice of the mutants suggested that SCD might be dispensable for tachyzoite growth and proliferation. The SCD-overexpressing line was constructed to further explore SCD function. The portion of palmitoleic acid and oleic acid were increased in SCD-overexpressing parasites, compared with the RH parental strain, indicating that T. gondii indeed is competent for unsaturated fatty acid synthesis. The SCD-overexpressing tachyzoites propagated slower than the parental strain, with a decreased invasion capability and weaker pathogenicity in mice. The TgIF2α phosphorylation and the expression changes of several genes demonstrated that ER stress was triggered in the SCD-overexpressing parasites, which were more apt toward autophagy and apoptosis. The function of unsaturated fatty acid synthesis of TgSCD was consistent with our hypothesis. On the other hand, SCD might also be involved in tachyzoite autophagy and apoptosis.
Collapse
Affiliation(s)
- Pan Hao
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Patent Examination Cooperation Sichuan Center of the Patent Office, CNIPA, Chengdu, China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Research Centre for Preventive Medicine, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Muzi Li
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Rodriguez Sawicki L, Garcia KA, Corsico B, Scaglia N. De novo lipogenesis at the mitotic exit is used for nuclear envelope reassembly/expansion. Implications for combined chemotherapy. Cell Cycle 2019; 18:1646-1659. [PMID: 31203714 DOI: 10.1080/15384101.2019.1629792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Karina A Garcia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Betina Corsico
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| | - Natalia Scaglia
- a Instituto de Investigaciones Bioquímicas de La Plata (INIBOLP), UNLP/CONICET, Facultad de Ciencias Médicas , Universidad Nacional de La Plata , La Plata , Argentina
| |
Collapse
|
44
|
Zhang H, Li S. Concise Review: Exploiting Unique Biological Features of Leukemia Stem Cells for Therapeutic Benefit. Stem Cells Transl Med 2019; 8:768-774. [PMID: 31016860 PMCID: PMC6646691 DOI: 10.1002/sctm.18-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer stem cells play a critical role in disease initiation and insensitivity to chemotherapy in numerous hematologic malignancies and some solid tumors, and these stem cells need to be eradicated to achieve a cure. Key to successful targeting of cancer stem cells is to identify and functionally test critical target genes and to fully understand their associated molecular network in these stem cells. Human chronic myeloid leukemia (CML) is well accepted as one of the typical types of hematopoietic malignancies that are derived from leukemia stem cells (LSCs), serving as an excellent model disease for understanding the biology of LSCs and developing effective, selective, and curative strategies through targeting LSCs. Here, we discuss LSCs in CML with a focus on identification of unique biological features of these stem cells to emphasize the feasibility and significance of specific targeting of LSCs while sparing normal stem cell counterparts in leukemia therapy. stem cells translational medicine2019;8:768&774
Collapse
Affiliation(s)
- Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
45
|
Leukemia Stem Cells in Chronic Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:191-215. [PMID: 31338821 DOI: 10.1007/978-981-13-7342-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the BCR-ABL oncogene encoding a constitutively activated tyrosine kinase. Although BCR-ABL tyrosine kinase inhibitors (TKIs) are highly effective in treating CML at chronic phase, a number of patients develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs). Similar to other types of hematopoietic malignancies, LSCs in CML are believed to be a rare cell population responsible for leukemia initiation, disease progression, and drug resistance. Therefore, a full understanding of the biology of LSCs will help to develop novel therapeutic strategies for effective treatment of CML to possibly reach a cure. In recent years, a significant progress has been made in studying the biology of LSCs in both animal models and human patients at cellular and molecular levels, providing a basis for designing and testing potential molecular targets for eradicating LSCs in CML.
Collapse
|
46
|
Piao C, Cui X, Zhan B, Li J, Li Z, Li Z, Liu X, Bi J, Zhang Z, Kong C. Inhibition of stearoyl CoA desaturase-1 activity suppresses tumour progression and improves prognosis in human bladder cancer. J Cell Mol Med 2018; 23:2064-2076. [PMID: 30592142 PMCID: PMC6378218 DOI: 10.1111/jcmm.14114] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Urinary bladder neoplasm is one of the most common cancers worldwide. Cancer stem cells (CSCs) have been proven to be an important cause of cancer progression and poor prognosis. In the present study, we established bladder CSCs and identified the crucial differentially expressed genes (DEGs) between these cells and parental bladder cancer cells. Analyses of bioinformatics data and clinical samples from local hospitals showed that stearoyl CoA desaturase‐1 (SCD) was the key factor among the DEGs. A significant correlation between SCD gene expression and poor prognosis among patients with bladder cancer was observed in our data. Loss‐of‐function experiments further revealed that the SCD inhibitor A939572 and SCD gene interference reduced cell proliferation and invasion. The above data suggest that SCD may serve as a novel marker for the prediction of tumour progression and poor prognosis in patients with bladder cancer.
Collapse
Affiliation(s)
- Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaolu Cui
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Bo Zhan
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
47
|
Angelucci C, D'Alessio A, Iacopino F, Proietti G, Di Leone A, Masetti R, Sica G. Pivotal role of human stearoyl-CoA desaturases (SCD1 and 5) in breast cancer progression: oleic acid-based effect of SCD1 on cell migration and a novel pro-cell survival role for SCD5. Oncotarget 2018; 9:24364-24380. [PMID: 29849946 PMCID: PMC5966257 DOI: 10.18632/oncotarget.25273] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
The influence of cell membrane fluidity on cancer progression has been established in different solid tumors. We previously reported that “cancer-associated fibroblasts” (CAFs) induced epithelial-mesenchymal transition and increased cell membrane fluidity and migration in poorly (MCF-7) and highly invasive (MDA-MB-231) breast cancer cells. We also found that the membrane fluidity regulating enzyme stearoyl-CoA desaturase 1 (SCD1) was upregulated in tumor cells co-cultured with CAFs and established its essential role for both intrinsic and CAF-driven tumor cell motility. Here, we further explored the mechanisms involved in the SCD1-based modulation of breast cancer cell migration and investigated the role of the other human SCD isoform, SCD5. We showed that the addition of oleic acid, the main SCD1 product, nullified the inhibitory effects produced on MCF-7 and MDA-MB-231 cell migration by SCD1 depletion (pharmacological or siRNA-based). Conversely, SCD5 seemed not involved in the regulation of cancer cell motility. Interestingly, a clear induction of necrosis was observed as a result of the depletion of SCD5 in MCF-7 cells, where the expression of SCD5 was found to be upregulated by CAFs. The necrotic effect was rescued by a 48-h treatment of cells with oleic acid. These results provide further insights in understanding the role of SCD1 in both intrinsic and CAF-stimulated mammary tumor cell migration, unveiling the metabolic basis of this desaturase-triggered effect. Moreover, our data suggest the ability of CAFs to promote the maintenance of tumor cell survival by the induction of SCD5 levels.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Alessio D'Alessio
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Fortunata Iacopino
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Gabriella Proietti
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Alba Di Leone
- Unità Operativa di Chirurgia Senologica, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Roma, Italia
| | - Riccardo Masetti
- Unità Operativa di Chirurgia Senologica, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Roma, Italia
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
48
|
Li H, Xiang L, Yang N, Cao F, Li C, Chen P, Ruan X, Feng Y, Zhou N, Wang X. Zhiheshouwu ethanol extract induces intrinsic apoptosis and reduces unsaturated fatty acids via SREBP1 pathway in hepatocellular carcinoma cells. Food Chem Toxicol 2018; 119:169-175. [PMID: 29702135 DOI: 10.1016/j.fct.2018.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/07/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major incidence and one of the most life-threatening cancer. How to conquer HCC is a worldwide issue for patients. Zhiheshouwu (Polygoni multiflori Radix Praeparata) is a Chinese medicinal herb exhibiting both lowering lipid and inhibiting cancer cells. However, it remains a matter if its inhibiting cancer cells is related to its lowering lipid. In this study, we investigate the effects of Zhiheshouwu ethanolic extract (HSWE) on apoptosis and the underlying mechanisms in Bel-7402 cells. The results showed that HSWE inhibited the proliferation with an increased level of ALT and AST in Bel-7402 cells. The decreased mitochondrial membrane potential (ΔΨm) was observed in HSWE-treated Bel-7402 cells. The flow cytometry results showed that HSWE triggered apoptosis. Since mitochondrial injury is characterized as intrinsic apoptotic cell death, these data indicated that HSWE may induce intrinsic apoptosis in Bel-7402 cells. In addition, HSWE decreased the production of unsaturated fatty acids, and inhibited the mRNA and protein of SCD1 and its up-stream factor, sterol-regulatory element binding proteins 1 (SREBP1), a master transcriptional regulator of lipogenic gene. Taken together, these data suggest that HSWE induces an intrinsic apoptosis, and reduced unsaturated fatty acids by blocking SREBP1 in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Longchao Xiang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Nian Yang
- Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China.
| | - Chen Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China; Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China
| | - Xuzhi Ruan
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China; Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Nian Zhou
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, Hubei Province, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology of School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei Province, 442000, China.
| |
Collapse
|
49
|
Ran H, Zhu Y, Deng R, Zhang Q, Liu X, Feng M, Zhong J, Lin S, Tong X, Su Q. Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. J Exp Clin Cancer Res 2018; 37:54. [PMID: 29530061 PMCID: PMC5848567 DOI: 10.1186/s13046-018-0711-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diabetic patients have a higher risk factor for colorectal cancer (CRC) metastasis. Stearoyl-CoA desaturase 1 (SCD1), the main enzyme responsible for producing monounsaturated fatty acids(MUFA) from saturated fatty acids, is frequently deregulated in both diabetes and CRC. The function and mechanism of SCD1 in metastasis of CRC and its relevance to glucose remains largely unknown. METHODS SCD1 expression levels were analyzed in human CRC tissues and the Cancer Browser database ( https://genome-cancer.ucsc.edu/ ). CRC cell lines stably transfected with SCD1 shRNAs or vector were established to investigate the role of SCD1 in modulating migration and invasion of CRC cells. A glucose concentration gradient was set to investigate regulation of SCD1 in CRC relevant to diabetic conditions. RESULTS The clinical data analysis showed high expression of SCD1 in CRC tissues with a negative correlation with the prognosis of CRC. In vitro experiments revealed that SCD1 increased CRC progression through promoting epithelial-mesenchymal transition (EMT). Lipidomic analysis demonstrated that SCD1 increased MUFA levels and MUFA administration could rescue migration and invasion defect of CRC cells induced by SCD1 knockdown. Furthermore, SCD1-mediated progression of CRC was promoted by carbohydrate response-element binding protein (ChREBP) in response to high glucose. Mechanistically, hyperglycemia-SCD1-MUFA induced CRC cell migration and invasion by regulating PTEN. CONCLUSIONS Our findings show that SCD1 promotes metastasis of CRC cells through MUFA production and suppressing PTEN in response to glucose, which may be a novel mechanism for diabetes-induced CRC metastasis.
Collapse
Affiliation(s)
- Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665, Kong Jiang Road, Shanghai, 200092 China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025 China
| | - Ruyuan Deng
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665, Kong Jiang Road, Shanghai, 200092 China
| | - Qi Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665, Kong Jiang Road, Shanghai, 200092 China
| | - Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100, Haining Road, Shanghai, 200080 China
| | - Ming Feng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025 China
| | - Jie Zhong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025 China
| | - Shuhai Lin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025 China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025 China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665, Kong Jiang Road, Shanghai, 200092 China
| |
Collapse
|
50
|
Li W, Bai H, Liu S, Cao D, Wu H, Shen K, Tai Y, Yang J. Targeting stearoyl-CoA desaturase 1 to repress endometrial cancer progression. Oncotarget 2018; 9:12064-12078. [PMID: 29552293 PMCID: PMC5844729 DOI: 10.18632/oncotarget.24304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/26/2017] [Indexed: 01/06/2023] Open
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is an established molecular target in many primary tumors including breast, lung, pancreatic, colon and hepatocellular carcinomas. However, its potential role in supporting endometrial cancer growth and progression has not yet been determined. In this study, we evaluated the value of SCD1 as a candidate therapeutic target in human endometrial cancer. Compared with secretory and post-menopausal endometrium, SCD1 was highly expressed in normal endometrium of proliferative phase, endometrial hyperplasia and endometrial carcinoma, while was absent or low expression in non-malignant control stromal cells and adjacent normal endometrium. Knockdown of SCD1 significantly repressed endometrial cancer cell growth and induced cell apoptosis. Both short hairpin RNA targeted knockdown and chemical inhibitor of SCD1 suppressed the foci formation of AN3CA, a metastatic endometrial cell line. Xenograft model further demonstrated that reduced SCD1 expression impaired endometrial cancer growth in vivo. Taken together, these findings indicate that SCD1 is a potentially therapeutic target in human endometrial cancer. Inhibiting lipid metabolism in cancer cells would be a promising strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Weihua Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, China.,Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Shiping Liu
- Departments of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, China
| | - Hongying Wu
- Institute of Radiation Medicine, The Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, China
| | - Yanhong Tai
- Department of Pathology, The Affiliated Hospital of Military Medical Science Academy of Chinese People's Liberation Army (307 Hospital of Chinese People's Liberation Army), Beijing 100071, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, China
| |
Collapse
|