1
|
Palić M, Šoštarić Zuckermann IC, Džaja P, Ljubić BB, Severin K. A Biochemical and Histological Assessment of Postmortem Changes to the Eyes of Domestic Pigs: A Preliminary Study. Animals (Basel) 2024; 14:1190. [PMID: 38672338 PMCID: PMC11047443 DOI: 10.3390/ani14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The Postmortem Interval (PMI) is the time from the death of an animal to its discovery. From a veterinary forensic standpoint, an accurate estimation of the PMI is of particular importance, especially with the observed increase in deaths of domestic and wild animals. A preliminary study was conducted using the eyes of domestic pigs. A biochemical analysis was conducted on the vitreous humor of the eye, whilst a histological analysis was conducted on the retina. The eyes were stored at +4 °C and changes were assessed at time intervals of 0, 12, 24, 48, and 120 h. The biochemical analysis during the PMI established a decrease in sodium, chlorine, and glucose concentrations, and a rise in potassium concentration. Accordingly, a simple linear regression showed a significant correlation between changes in concentrations of sodium (Na+), potassium (K+), chloride (Cl-), and glucose, in relation to the PMI. The histological analysis showed evident morphological changes in the retina, which included homogenization of the rod and cone cells, pyknosis of the outer nuclear layer, homogenization of the outer plexiform layer, pyknosis of the inner nuclear layer, homogenization of the inner plexiform layer, and pyknosis of the nuclei of the ganglion layer of the retina.
Collapse
Affiliation(s)
- Magdalena Palić
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (M.P.); (P.D.)
| | | | - Petar Džaja
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (M.P.); (P.D.)
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Krešimir Severin
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (M.P.); (P.D.)
| |
Collapse
|
2
|
Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, Yi CL, Chen XQ. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe? Neurosci Bull 2023; 39:1481-1496. [PMID: 36884214 PMCID: PMC10533768 DOI: 10.1007/s12264-023-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Jing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian-Rong Liu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shang-Bin Yu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-La Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Semenova MA, Chertkova RV, Kirpichnikov MP, Dolgikh DA. Molecular Interactions between Neuroglobin and Cytochrome c: Possible Mechanisms of Antiapoptotic Defense in Neuronal Cells. Biomolecules 2023; 13:1233. [PMID: 37627298 PMCID: PMC10452090 DOI: 10.3390/biom13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| |
Collapse
|
4
|
Freindorf M, Delgado AAA, Kraka E. CO bonding in hexa‐ and pentacoordinate carboxy‐neuroglobin: A quantum mechanics/molecular mechanics and local vibrational mode study. J Comput Chem 2022. [DOI: 10.1002/jcc.26973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marek Freindorf
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | | | - Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
5
|
Neuroglobin Is Involved in the Hypoxic Stress Response in the Brain. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8263373. [PMID: 35898686 PMCID: PMC9313969 DOI: 10.1155/2022/8263373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Neuroglobin is an oxygen-binding heme protein expressed predominantly in the brain. Despite many years of research, the exact distribution and expression of neuroglobin in the neocortical development and under mild hypoxia stress still remain unclear. Therefore, we aim to explore the expression of neuroglobin during neocortex expansion and under mild hypoxia stress in vivo. We used Kunming mice to examine the expression of Ngb protein during neocortex expansion. In addition, we analyzed the density of Ngb-positive neural stem cells using the Image-Pro PLUS (v.6) computer software program (Media Cybernetics, Inc.). Our data indicated that the density of the neuroglobin-positive neurons in mice cerebral cortex displayed a downward trend after birth compared with high expression of neuroglobin in a prenatal period. Similarly, we identified that neurons were capable of ascending neuroglobin levels in response to mild hypoxic stress compared with the no intervention group. These findings suggest that neuroglobin behaves as a compensatory protein regulating oxygen provision in the process of neocortical development or under physiological hypoxia, further contributing to the discovery of novel therapeutic methods for neurological disorders, which is clinically important.
Collapse
|
6
|
Kaynezhad P, Jeffery G, Bainbridge J, Sivaprasad S, Tachtsidis I, Hay-Schmidt A, Rajendram R. The Role of Neuroglobin in Retinal Hemodynamics and Metabolism: A Real-Time Study. Transl Vis Sci Technol 2022; 11:2. [PMID: 35802369 PMCID: PMC9279924 DOI: 10.1167/tvst.11.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In this study, we used broadband near-infrared spectroscopy, a non-invasive optical technique, to investigate in real time the possible role of neuroglobin in retinal hemodynamics and metabolism. Methods Retinae of 12 C57 mice (seven young and five old) and seven young neuroglobin knockouts (Ngb-KOs) were exposed to light from a low-power halogen source, and the back-reflected light was used to calculate changes in the concentration of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and oxidized cytochrome c oxidase (oxCCO). Results The degree of change in the near-infrared spectroscopy signals associated with HHb, HbO2, and oxCCO was significantly greater in young C57 mice compared to the old C57 mice (P < 0.05) and the Ngb-KO model (P < 0.005). Conclusions Our results reveal a possible role of Ngb in regulating retinal function, as its absence in the retinae of a knockout mouse model led to suppressed signals that are associated with hemodynamics and oxidative metabolism. Translational Relevance Near-infrared spectroscopy enabled the non-invasive detection of characteristic signals that differentiate between the retina of a neuroglobin knockout mouse model and that of a wild-type model. Further work is needed to evaluate the source of the signal differences and how these differences relate to the presence or absence of neuroglobin in the ganglion, bipolar, or amacrine cells of the retina.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| | - James Bainbridge
- Institute of Ophthalmology, University College London, London, UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Anders Hay-Schmidt
- Department of Odontology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ranjan Rajendram
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells. Cells 2021; 10:cells10123394. [PMID: 34943907 PMCID: PMC8699457 DOI: 10.3390/cells10123394] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.
Collapse
|
9
|
Solar Fernandez V, Marino M, Fiocchetti M. Neuroglobin in Retinal Neurodegeneration: A Potential Target in Therapeutic Approaches. Cells 2021; 10:cells10113200. [PMID: 34831423 PMCID: PMC8621852 DOI: 10.3390/cells10113200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal neurodegeneration affects an increasing number of people worldwide causing vision impairments and blindness, reducing quality of life, and generating a great economic challenge. Due to the complexity of the tissue, and the diversity of retinal neurodegenerative diseases in terms of etiology and clinical presentation, so far, there are no cures and only a few early pathological markers have been identified. Increasing efforts have been made to identify and potentiate endogenous protective mechanisms or to abolish detrimental stress responses to preserve retinal structure and function. The discovering of the intracellular monomeric globin neuroglobin (NGB), found at high concentration in the retina, has opened new possibilities for the treatment of retinal disease. Indeed, the NGB capability to reversibly bind oxygen and its neuroprotective function against several types of insults including oxidative stress, ischemia, and neurodegenerative conditions have raised the interest in the possible role of the globin as oxygen supplier in the retina and as a target for retinal neurodegeneration. Here, we provide the undercurrent knowledge on NGB distribution in retinal layers and the evidence about the connection between NGB level modulation and the functional outcome in terms of retinal neuroprotection to provide a novel therapeutic/preventive target for visual pathway degenerative disease.
Collapse
Affiliation(s)
- Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-5733-6455; Fax: +39-06-5733-6321
| |
Collapse
|
10
|
Filippov VM, Petrachkov DV, Budzinskaya MV, Sidamonidze AL. [Modern concepts of pathogenesis of diabetic retinopathy]. Vestn Oftalmol 2021; 137:306-313. [PMID: 34669342 DOI: 10.17116/oftalma2021137052306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This literature review presents modern view on the pathogenesis of diabetic retinopathy (DR) paying particular attention to the molecular mechanisms leading to its development, as well as the manifestations of retinal neurodegeneration in such patients. Assessment of this condition and its clinical manifestations makes it possible to diagnose DR at the stage of absent initial vascular changes. Investigating the neurodegeneration mechanisms could supplement the existing understanding of the disease pathogenesis and could possibly help find new ways of treatment and prevention of DR.
Collapse
Affiliation(s)
- V M Filippov
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | | |
Collapse
|
11
|
Ma G, Son T, Kim TH, Yao X. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors. JOURNAL OF BIOPHOTONICS 2021; 14:e202000462. [PMID: 33547871 PMCID: PMC8240094 DOI: 10.1002/jbio.202000462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 05/05/2023]
Abstract
The objective of this study is to verify the anatomic correlate of the second (2nd) outer retina band in optical coherence tomography (OCT), and to demonstrate the potential of using intrinsic optical signal (IOS) imaging for concurrent optoretinography (ORG) of phototransduction activation and energy metabolism in stimulus activated retinal photoreceptors. A custom-designed OCT was employed for depth-resolved IOS imaging in mouse retina activated by a visible light flicker stimulation. The spatiotemporal properties of the IOS changes at the photoreceptor outer segment (OS) and inner segment (IS) were quantitatively evaluated. Rapid IOS change was observed at the OS almost right away, and the IOS at the IS was relatively slow. Comparative analysis indicates that the OS-IOS reflects transient OS deformation caused by the phototransduction activation, and IS-IOS might reflect the energy metabolism caused by mitochondria activation in retinal photoreceptors. The consistency of the distribution of the IS-IOS and the 2nd OCT band supports the IS ellipsoid (ISe), which has abundant mitochondria, as the signal source of the 2nd OCT band of the outer retina.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Xincheng Yao, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
12
|
Fiocchetti M, Cracco P, Montalesi E, Solar Fernandez V, Stuart JA, Marino M. Neuroglobin and mitochondria: The impact on neurodegenerative diseases. Arch Biochem Biophys 2021; 701:108823. [PMID: 33675812 DOI: 10.1016/j.abb.2021.108823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Dysfunctional mitochondria have severe consequences on cell functions including Reactive Oxygen Specie (ROS) generation, alteration of mitochondrial signaling, Ca2+ buffering, and activation of apoptotic pathway. These dysfunctions are closely linked with degenerative diseases including neurodegeneration. The discovery of neuroglobin (NGB) as an endogenous neuroprotective protein, which effects seem to depend on its mitochondrial localization, could drive new therapeutic strategies against aged-related neurodegenerative diseases. Indeed, high levels of NGB are active against several brain injuries, including neurodegeneration, hypoxia, ischemia, toxicity, and nutrient deprivation opening a new scenario in the comprehension of the relationship between neural pathologies and mitochondrial homeostasis. In this review, we provide the current understanding of the role of mitochondria in neurodegeneration and discuss structural and functional connection between NGB and mitochondria with the purpose of defining a novel mitochondrial-based neuroprotective mechanism(s).
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy; Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Patrizio Cracco
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy
| | | | - Jeffrey A Stuart
- Department of Biological Science, Faculty of Mathematics and Science, Brock University, St. Catharines L2S 3A1, Ontario, Canada
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 446 -00146, Rome, Italy; Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
13
|
Ma X, Su B, Bangs M, Alston V, Backenstose NJC, Simora RM, Wang W, Xing D, Li S, Ye Z, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:90-105. [PMID: 33113010 DOI: 10.1007/s10126-020-10005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023, Iloilo, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, 94000, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
| |
Collapse
|
14
|
Giarmarco MM, Brock DC, Robbings BM, Cleghorn WM, Tsantilas KA, Kuch KC, Ge W, Rutter KM, Parker ED, Hurley JB, Brockerhoff SE. Daily mitochondrial dynamics in cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:28816-28827. [PMID: 33144507 PMCID: PMC7682359 DOI: 10.1073/pnas.2007827117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors in the retina are exposed to intense daylight and have higher energy demands in darkness. Cones produce energy using a large cluster of mitochondria. Mitochondria are susceptible to oxidative damage, and healthy mitochondrial populations are maintained by regular turnover. Daily cycles of light exposure and energy consumption suggest that mitochondrial turnover is important for cone health. We investigated the three-dimensional (3D) ultrastructure and metabolic function of zebrafish cone mitochondria throughout the day. At night retinas undergo a mitochondrial biogenesis event, corresponding to an increase in the number of smaller, simpler mitochondria and increased metabolic activity in cones. In the daytime, endoplasmic reticula (ER) and autophagosomes associate more with mitochondria, and mitochondrial size distribution across the cluster changes. We also report dense material shared between cone mitochondria that is extruded from the cell at night, sometimes forming extracellular structures. Our findings reveal an elaborate set of daily changes to cone mitochondrial structure and function.
Collapse
Affiliation(s)
| | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Brian M Robbings
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | | | - Kellie C Kuch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - William Ge
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Kaitlyn M Rutter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Edward D Parker
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, WA 98195;
- Department of Ophthalmology, University of Washington, Seattle, WA 98195
| |
Collapse
|
15
|
Li C, Zhong P, Yuan H, Dong X, Peng Q, Huang M, Wu Q, Liu B, Xu M, Kuang Y, Zeng X, Xiao Y, Fang Y, Yu H, Yang X. Retinal microvasculature impairment in patients with congenital heart disease investigated by optical coherence tomography angiography. Clin Exp Ophthalmol 2020; 48:1219-1228. [PMID: 32860305 PMCID: PMC7756805 DOI: 10.1111/ceo.13846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Importance A high prevalence of retinal abnormalities have been reported in congenital heart disease (CHD), but quantitative analysis of retinal vasculature is scarce. Optical coherence tomography angiography (OCTA) is a noninvasive method to quantitatively assess the retinal microvasculature. Background To investigate the retinal microvasculature changes in CHD patients by using OCTA. Design Cross‐sectional study. Participants A total of 158 participants including 57 cyanotic CHD (CCHD) patients, 60 acyanotic CHD (ACHD) patients and 41 control subjects were included. Methods All participants underwent a comprehensive ophthalmologic examination, including refraction measurement, intraocular pressure measurement and OCTA. Main Outcome Measures Vessel density (VD) was measured within the radial peripapillary capillary (RPC), superficial capillary plexus (SCP) and deep capillary plexus (DCP) of the macula. Results CCHD patients had significantly lower VD in the RPC, SCP and DCP (all P < .01) compared to control subjects, and significantly lower VD in the RPC and DCP (both P < .05) compared to ACHD patients. Besides, among the CHD group, VD in the RPC was positively correlated with oxygen saturation (whole image, ρ = 0.45; peripapillary, ρ = 0.48) and negatively correlated with haematocrit (whole image, ρ = 0.55; peripapillary, ρ = 0.55) (all P < .001). Conclusions and Relevance Retinal VD might be a surrogate to reflect the effect of chronic systemic hypoxemia in CHD patients. OCTA could be a convenient and noninvasive tool to evaluate the retinal structure and function in CHD patients.
Collapse
Affiliation(s)
- Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingting Zhong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Medical College, Shantou University, Shantou, China
| | - Haiyun Yuan
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinran Dong
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qingsheng Peng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,Medical College, Shantou University, Shantou, China
| | - Manqing Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiaowei Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Baoyi Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Minghui Xu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu Kuang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaomin Zeng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Xiao
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ying Fang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Connecting the Dots in the Neuroglobin-Protein Interaction Network of an Unstressed and Ferroptotic Cell Death Neuroblastoma Model. Cells 2019; 8:cells8080873. [PMID: 31405213 PMCID: PMC6721670 DOI: 10.3390/cells8080873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroglobin is a heme protein of which increased levels provide neuroprotection against amyloid proteinopathy and hemorrhagic damage. These cellular stressors involve the promotion of ferroptosis—an iron-dependent, lipid peroxide-accreting form of cell death. Hence, we questioned whether neuroglobin could oppose ferroptosis initiation. We detected human neuroglobin (hNgb)-EGFP-expressing SH-SY5Y cells to be significantly more resistant to ferroptosis induction, identifying 0.68-fold less cell death. To elucidate the underlying pathways, this study investigated hNgb-protein interactions with a Co-IP-MS/MS approach both under a physiological and a ferroptotic condition. hNgb binds to proteins of the cellular iron metabolism (e.g., RPL15 and PCBP3) in an unstressed condition and shows an elevated binding ratio towards cell death-linked proteins, such as HNRNPA3, FAM120A, and ABRAXAS2, under ferroptotic stress. Our data also reveal a constitutive interaction between hNgb and the longevity-associated heterodimer XRCC5/XRCC6. Disentangling the involvement of hNgb and its binding partners in cellular processes, using Ingenuity Pathway Analysis, resulted in the integration of hNgb in the ubiquitination pathway, mTOR signaling, 14-3-3-mediated signaling, and the glycolysis cascade. We also detected a previously unknown strong link with motor neuropathies. Hence, this study contributes to the elucidation of neuroglobin’s involvement in cellular mechanisms that provide neuroprotection and the upkeep of homeostasis.
Collapse
|
17
|
Chidlow G, Wood JPM, Sia PI, Casson RJ. Distribution and Activity of Mitochondrial Proteins in Vascular and Avascular Retinas: Implications for Retinal Metabolism. Invest Ophthalmol Vis Sci 2019; 60:331-344. [PMID: 30664793 DOI: 10.1167/iovs.18-25536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Understanding the energetics of retinal neurons and glia is crucial for developing therapies for diseases that feature deficits in nutrient or oxygen availability. Herein, we performed a detailed characterization of the distribution and activity of mitochondrial proteins in the vascularized retinas of rat and marmoset, and the avascular retinas of rabbit and guinea pig. Further, we delineated expression of ubiquitous mitochondrial creatine kinase (uMtCK). Methods Expression of eight mitochondrial proteins was investigated using Western blotting, single- and double-labeling immunohistochemistry. Activities of cytochrome c oxidase, succinate dehydrgogenase, and isocitrate dehydrogenase were determined by enzyme histochemistry using unfixed tissue sections. Results In vascularized retinas, immunoreactivities were characterized by strong, punctate labeling in the plexiform layers, photoreceptor inner segments, somas of various cell types, notably retinal ganglion cells (RGCs), and the basolateral surface of the retinal pigment epithelium. In avascular retinas, immunoreactivities featured intense labeling of inner segments, together with weak, but unambiguous, staining of both plexiform layers. RGCs were relatively enriched. In Müller cells of avascular retinas, mitochondria were restricted to scleral-end processes. For each species, enzyme activity assays yielded similar results to the protein distributions. Labeling for uMtCK in vascular and avascular retinas was fundamentally similar, being restricted to neuronal populations, most notably inner segments and RGCs. Of all of the mitochondrial proteins, uMtCK displayed the strongest labeling in avascular retinas. uMtCK was not detectable in Müller cells in any species. Conclusions The current findings advance our understanding of the metabolic similarities and differences between vascular and avascular retinas.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul I Sia
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Neuroglobin Expression Models as a Tool to Study Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5728129. [PMID: 31320982 PMCID: PMC6607734 DOI: 10.1155/2019/5728129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 01/13/2023]
Abstract
Neuroglobin (Ngb) is an evolutionary conserved member of the globin family with a primary expression in neurons of which the exact functions remain elusive. A plethora of in vivo and in vitro model systems has been generated to this day to determine the functional biological roles of Ngb. Here, we provide a comprehensive overview and discussion of the different Ngb models, covering animal and cellular models of both overexpression and knockout strategies. Intriguingly, an in-depth literature search of available Ngb expression models revealed crucial discrepancies in the outcomes observed in different models. Not only does the level of Ngb expression—either physiologically, overexpressed, or downregulated—alter its functional properties, the experimental setup, being in vitro or in vivo, does impact the functional outcome as well and, hence, whether or not a physiological and/or therapeutic role is ascribed to Ngb. These differences could highlight either technical or biological adaptations and should be considered until elucidation of the Ngb biology.
Collapse
|
19
|
Lüdemann J, Verissimo KM, Dreger K, Fago A, Schneider I, Burmester T. Globin E is a myoglobin-related, respiratory protein highly expressed in lungfish oocytes. Sci Rep 2019; 9:280. [PMID: 30670817 PMCID: PMC6343008 DOI: 10.1038/s41598-018-36592-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 11/23/2022] Open
Abstract
Globins are a classical model system for the studies of protein evolution and function. Recent studies have shown that – besides the well-known haemoglobin and myoglobin – additional globin-types occur in vertebrates that serve different functions. Globin E (GbE) was originally identified as an eye-specific protein of birds that is distantly related to myoglobin. GbE is also present in turtles and the coelacanth but appeared to have been lost in other vertebrates. Here, we show that GbE additionally occurs in lungfish, the closest living relatives of the tetrapods. Each lungfish species harbours multiple (≥5) GbE gene copies. Surprisingly, GbE is exclusively and highly expressed in oocytes, with mRNA levels that exceed that of myoglobin in the heart. Thus, GbE is the first known oocyte-specific globin in vertebrates. No GbE transcripts were found in the ovary or egg transcriptomes of other vertebrates, suggesting a lungfish-specific function. Spectroscopic analysis and kinetic studies of recombinant GbE1 of the South American lungfish Lepidosiren paradoxa revealed a typical pentacoordinate globin with myoglobin-like O2-binding kinetics, indicating similar functions. Our findings suggest that the multiple copies of GbE evolved to enhance O2-supply in the developing embryo of lungfish, analogous to the embryonic and fetal haemoglobins of other vertebrates. In evolution, GbE must have changed its expression site from oocytes to eyes, or vice versa.
Collapse
Affiliation(s)
- Julia Lüdemann
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | | | - Kimberley Dreger
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | |
Collapse
|
20
|
Smith HL, Pavasovic A, Surm JM, Phillips MJ, Prentis PJ. Evidence for a Large Expansion and Subfunctionalization of Globin Genes in Sea Anemones. Genome Biol Evol 2018; 10:1892-1901. [PMID: 29947797 PMCID: PMC6077788 DOI: 10.1093/gbe/evy128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
The globin gene superfamily has been well-characterized in vertebrates, however, there has been limited research in early-diverging lineages, such as phylum Cnidaria. This study aimed to identify globin genes in multiple cnidarian lineages, and use bioinformatic approaches to characterize the evolution, structure, and expression of these genes. Phylogenetic analyses and in silico protein predictions showed that all cnidarians have undergone an expansion of globin genes, which likely have a hexacoordinate protein structure. Our protein modeling has also revealed the possibility of a single pentacoordinate globin lineage in anthozoan species. Some cnidarian globin genes displayed tissue and development specific expression with very few orthologous genes similarly expressed across species. Our phylogenetic analyses also revealed that eumetazoan globin genes form a polyphyletic relationship with vertebrate globin genes. Overall, our analyses suggest that a Ngb-like and GbX-like gene were most likely present in the globin gene repertoire for the last common ancestor of eumetazoans. The identification of a large-scale expansion and subfunctionalization of globin genes in actiniarians provides an excellent starting point to further our understanding of the evolution and function of the globin gene superfamily in early-diverging lineages.
Collapse
Affiliation(s)
- Hayden L Smith
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Joachim M Surm
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.,Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Kiyama T, Chen CK, Wang SW, Pan P, Ju Z, Wang J, Takada S, Klein WH, Mao CA. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis. Mol Neurodegener 2018; 13:56. [PMID: 30333037 PMCID: PMC6192121 DOI: 10.1186/s13024-018-0287-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mitochondrial dysfunction has been implicated in the pathologies of a number of retinal degenerative diseases in both the outer and inner retina. In the outer retina, photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and sensitivity to oxidative stress. However, it is unclear how defective mitochondrial biogenesis affects neural development and contributes to neural degeneration. In this report, we investigated the in vivo function of nuclear respiratory factor 1 (Nrf1), a major transcriptional regulator of mitochondrial biogenesis in both proliferating retinal progenitor cells (RPCs) and postmitotic rod photoreceptor cells (PRs). Methods We used mouse genetic techniques to generate RPC-specific and rod PR-specific Nrf1 conditional knockout mouse models. We then applied a comprehensive set of tools, including histopathological and molecular analyses, RNA-seq, and electroretinography on these mouse lines to study Nrf1-regulated genes and Nrf1’s roles in both developing retinas and differentiated rod PRs. For all comparisons between genotypes, a two-tailed two-sample student’s t-test was used. Results were considered significant when P < 0.05. Results We uncovered essential roles of Nrf1 in cell proliferation in RPCs, cell migration and survival of newly specified retinal ganglion cells (RGCs), neurite outgrowth in retinal explants, reconfiguration of metabolic pathways in RPCs, and mitochondrial morphology, position, and function in rod PRs. Conclusions Our findings provide in vivo evidence that Nrf1 and Nrf1-mediated pathways have context-dependent and cell-state-specific functions during neural development, and disruption of Nrf1-mediated mitochondrial biogenesis in rod PRs results in impaired mitochondria and a slow, progressive degeneration of rod PRs. These results offer new insights into the roles of Nrf1 in retinal development and neuronal homeostasis and the differential sensitivities of diverse neuronal tissues and cell types of dysfunctional mitochondria. Moreover, the conditional Nrf1 allele we have generated provides the opportunity to develop novel mouse models to understand how defective mitochondrial biogenesis contributes to the pathologies and disease progression of several neurodegenerative diseases, including glaucoma, age-related macular degeneration, Parkinson’s diseases, and Huntington’s disease.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Steven W Wang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Present Address: Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William H Klein
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
23
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
24
|
|
25
|
Retinal metabolism: A comparative look at energetics in the retina. Brain Res 2017; 1672:50-57. [DOI: 10.1016/j.brainres.2017.07.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
|
26
|
Narayan DS, Chidlow G, Wood JP, Casson RJ. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol 2017; 45:730-741. [PMID: 28334493 DOI: 10.1111/ceo.12952] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/25/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Photoreceptors are the first-order neurons of the visual pathway, converting light into electrical signals. Rods and cones are the two main types of photoreceptors in the mammalian retina. Rods are specialized for sensitivity at the expense of resolution and are responsible for vision in dimly lit conditions. Cones are responsible for high acuity central vision and colour vision. Many human retinal diseases are characterized by a progressive loss of photoreceptors. Photoreceptors consist of four primary regions: outer segments, inner segments, cell bodies and synaptic terminals. Photoreceptors consume large amounts of energy, and therefore, energy metabolism may be a critical juncture that links photoreceptor function and survival. Cones require more energy than rods, and cone degeneration is the main cause of clinically significant vision loss in retinal diseases. Photoreceptor segments are capable of utilizing various energy substrates, including glucose, to meet their large energy demands. The pathways by which photoreceptor segments meet their energy demands remain incompletely understood. Improvements in the understanding of glucose metabolism in photoreceptor segments may provide insight into the reasons why photoreceptors degenerate due to energy failure. This may, in turn, assist in developing bio-energetic therapies aimed at protecting photoreceptors.
Collapse
Affiliation(s)
- Daniel S Narayan
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - John Pm Wood
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| | - Robert J Casson
- Ophthalmic Research Laboratories, Hanson Institute Centre for Neurological Diseases, Adelaide, South Austalia, Australia.,South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Austalia, Australia
| |
Collapse
|
27
|
Fago A. Functional roles of globin proteins in hypoxia-tolerant ectothermic vertebrates. J Appl Physiol (1985) 2017; 123:926-934. [PMID: 28428250 DOI: 10.1152/japplphysiol.00104.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
Globins are heme-containing proteins ubiquitously expressed in vertebrates, where they serve a broad range of biological functions, directly or indirectly related to the tight control of oxygen levels and its toxic products in vivo. Perhaps the most investigated of all proteins, hemoglobin and myoglobin are primarily involved in oxygen transport and storage, but also in facilitating arterial vasodilation, suppressing mitochondrial respiration, and preventing tissue oxidative damage via accessory redox enzymatic activities during hypoxia. By contrast, the more recently discovered neuroglobin and cytoglobin do not seem to function as reversible oxygen carriers and are instead involved in redox activities, although their exact biological roles remain to be clarified. In this context, hypoxia-tolerant ectotherms, such as freshwater turtles and members of the carp family that survive winter in extreme hypoxia, have proven as excellent models to appreciate the diversity of biological functions of globin proteins. Unraveling physiological roles of globin proteins in these extreme animals will clarify an important part of the adaptive mechanisms for surviving extreme fluctuations of oxygen availability that are prohibitive to mammals.
Collapse
Affiliation(s)
- Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
|
29
|
Azarov I, Wang L, Rose JJ, Xu Q, Huang XN, Belanger A, Wang Y, Guo L, Liu C, Ucer KB, McTiernan CF, O'Donnell CP, Shiva S, Tejero J, Kim-Shapiro DB, Gladwin MT. Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning. Sci Transl Med 2016; 8:368ra173. [PMID: 27928027 PMCID: PMC5206801 DOI: 10.1126/scitranslmed.aah6571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Carbon monoxide (CO) is a leading cause of poisoning deaths worldwide, with no available antidotal therapy. We introduce a potential treatment paradigm for CO poisoning, based on near-irreversible binding of CO by an engineered human neuroglobin (Ngb). Ngb is a six-coordinate hemoprotein, with the heme iron coordinated by two histidine residues. We mutated the distal histidine to glutamine (H64Q) and substituted three surface cysteines with less reactive amino acids to form a five-coordinate heme protein (Ngb-H64Q-CCC). This molecule exhibited an unusually high affinity for gaseous ligands, with a P50 (partial pressure of O2 at which hemoglobin is half-saturated) value for oxygen of 0.015 mmHg. Ngb-H64Q-CCC bound CO about 500 times more strongly than did hemoglobin. Incubation of Ngb-H64Q-CCC with 100% CO-saturated hemoglobin, either cell-free or encapsulated in human red blood cells, reduced the half-life of carboxyhemoglobin to 0.11 and 0.41 min, respectively, from ≥200 min when the hemoglobin or red blood cells were exposed only to air. Infusion of Ngb-H64Q-CCC to CO-poisoned mice enhanced CO removal from red blood cells, restored heart rate and blood pressure, increased survival, and was followed by rapid renal elimination of CO-bound Ngb-H64Q-CCC. Heme-based scavenger molecules with very high CO binding affinity, such as our mutant five-coordinate Ngb, are potential antidotes for CO poisoning by virtue of their ability to bind and eliminate CO.
Collapse
Affiliation(s)
- Ivan Azarov
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jason J Rose
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xueyin N Huang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrea Belanger
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ying Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Lanping Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Chen Liu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Kamil B Ucer
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Charles F McTiernan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Christopher P O'Donnell
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
31
|
Critical re-evaluation of neuroglobin expression reveals conserved patterns among mammals. Neuroscience 2016; 337:339-354. [DOI: 10.1016/j.neuroscience.2016.07.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023]
|
32
|
Roberts PA, Gaffney EA, Luthert PJ, Foss AJE, Byrne HM. Retinal oxygen distribution and the role of neuroglobin. J Math Biol 2015; 73:1-38. [PMID: 26370669 DOI: 10.1007/s00285-015-0931-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.
Collapse
Affiliation(s)
- Paul A Roberts
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK. .,Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
| | - Eamonn A Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Philip J Luthert
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Alexander J E Foss
- Department of Ophthalmology, Queen's Medical Centre, Derby Road, Nottingham, Nottinghamshire, NG7 2UH, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.,Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
33
|
Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res 2015; 93:1079-92. [PMID: 25801286 PMCID: PMC4720126 DOI: 10.1002/jnr.23583] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023]
Abstract
The vertebrate retina has specific functions and structures that give it a unique set of constraints on the way in which it can produce and use metabolic energy. The retina's response to illumination influences its energy requirements, and the retina's laminated structure influences the extent to which neurons and glia can access metabolic fuels. There are fundamental differences between energy metabolism in retina and that in brain. The retina relies on aerobic glycolysis much more than the brain does, and morphological differences between retina and brain limit the types of metabolic relationships that are possible between neurons and glia. This Mini-Review summarizes the unique metabolic features of the retina with a focus on the role of lactate shuttling.
Collapse
Affiliation(s)
- James B. Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Kenneth J. Lindsay
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| | - Jianhai Du
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Schwarze K, Singh A, Burmester T. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions. Genome Biol Evol 2015; 7:1896-913. [PMID: 26078264 PMCID: PMC4524481 DOI: 10.1093/gbe/evv114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina.
Collapse
Affiliation(s)
- Kim Schwarze
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Abhilasha Singh
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| | - Thorsten Burmester
- Institute of Zoology, Department of Biology, University of Hamburg, Germany
| |
Collapse
|
35
|
Neuroglobin Expression in the Mammalian Auditory System. Mol Neurobiol 2015; 53:1461-1477. [PMID: 25636685 DOI: 10.1007/s12035-014-9082-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.
Collapse
|
36
|
Okogwu OI, Xie P, Zhao Y, Fan H. Organ-dependent response in antioxidants, myoglobin and neuroglobin in goldfish (Carassius auratus) exposed to MC-RR under varying oxygen level. CHEMOSPHERE 2014; 112:427-434. [PMID: 25048936 DOI: 10.1016/j.chemosphere.2014.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/29/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacterial bloom, a common phenomenon nowadays often results in the depletion of dissolved oxygen (hypoxia) and releases microcystin-RR (MC-RR) in the water. Information on the combined effects of MC-RR and hypoxia on the goldfish is lacking, therefore, this study is aimed at evaluating the effect of two doses of MC-RR on the antioxidants and globin mRNA of goldfish under normoxia, hypoxia and reoxygenation. The result showed that MC-RR at both doses (50 and 200 μg kg(-1) body weight) significantly (p<0.05) induced superoxide dismutase activities in the liver and kidney but catalase activities and total antioxidant capacity were low in these organs during hypoxia and reoxygenation compared to normoxia and control. Myoglobin and neuroglobin mRNAs in MC-RR group were significantly induced in the brain only and are believed to protect the brain from oxidative damage. However, other organs were unprotected and extensive damage was observed in the liver cells. Our results clearly demonstrated that MC-RR and hypoxia-reoxygenation transitions were synergistically harmful to the goldfish and could impair its adaptation to hypoxia, especially during reoxygenation.
Collapse
Affiliation(s)
- Okechukwu Idumah Okogwu
- Department of Applied Biology, Ebonyi State University, PMB 53, Abakaliki, Ebonyi State, Nigeria; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Yanyan Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huihui Fan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
37
|
Ilmjärv S, Reimets R, Hundahl CA, Luuk H. Effect of light on global gene expression in the neuroglobin-deficient mouse retina. Biomed Rep 2014; 2:780-786. [PMID: 25279145 DOI: 10.3892/br.2014.364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/03/2014] [Indexed: 01/18/2023] Open
Abstract
Several previous studies have raised controversy over the functional role of neuroglobin (Ngb) in the retina. Certain studies indicate a significant impact of Ngb on retinal physiology, whereas others are conflicting. The present is an observational study that tested the effect of Ngb deficiency on gene expression in dark- and light-adapted mouse retinas. Large-scale gene expression profiling was performed using GeneChip® Mouse Exon 1.0 ST arrays and the results were compared to publicly available data sets. The lack of Ngb was found to have a minor effect on the light-induced retinal gene expression response. In addition, there was no increase in the expression of marker genes associated with hypoxia, endoplasmic reticulum-stress and oxidative stress in the Ngb-deficient retina. By contrast, several genes were identified that appeared to be differentially expressed between the genotypes when the effect of light was ignored. The present study indicates that Ngb deficiency does not lead to major alternations in light-dependent gene expression response, but leads to subtle systemic differences of a currently unknown functional significance.
Collapse
Affiliation(s)
- Sten Ilmjärv
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia ; Quretec Ltd, University of Tartu, Tartu 50411, Estonia
| | - Riin Reimets
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia ; The Centre for Disease Models and Biomedical Imaging, University of Tartu, Tartu 50411, Estonia
| | - Christian Ansgar Hundahl
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia ; The Centre for Disease Models and Biomedical Imaging, University of Tartu, Tartu 50411, Estonia ; Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Hendrik Luuk
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia ; The Centre for Disease Models and Biomedical Imaging, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
38
|
Lin Y, Cai B, Xue XH, Fang L, Wu ZY, Wang N. TAT-mediated delivery of neuroglobin attenuates apoptosis induced by oxygen–glucose deprivation via the Jak2/Stat3 pathwayin vitro. Neurol Res 2014; 37:531-8. [DOI: 10.1179/1743132814y.0000000420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Burmester T, Hankeln T. Function and evolution of vertebrate globins. Acta Physiol (Oxf) 2014; 211:501-14. [PMID: 24811692 DOI: 10.1111/apha.12312] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Globins are haem-proteins that bind O2 and thus play an important role in the animal's respiration and oxidative energy production. However, globins may also have other functions such as the decomposition or production of NO, the detoxification of reactive oxygen species or intracellular signalling. In addition to the well-investigated haemoglobins and myoglobins, genome sequence analyses have led to the identification of six further globin types in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y and neuroglobin. Here, we review the present state of knowledge on the functions, the taxonomic distribution and evolution of vertebrate globins, drawing conclusions about the functional changes underlying present-day globin diversity.
Collapse
Affiliation(s)
- T. Burmester
- Institute of Zoology and Zoological Museum; University of Hamburg; Hamburg Germany
| | - T. Hankeln
- Institute of Molecular Genetics; Johannes Gutenberg-University Mainz; Mainz Germany
| |
Collapse
|
40
|
Morozov AN, Roach JP, Kotzer M, Chatfield DC. A possible mechanism for redox control of human neuroglobin activity. J Chem Inf Model 2014; 54:1997-2003. [PMID: 24855999 PMCID: PMC4114473 DOI: 10.1021/ci5002108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin (Ngb) promotes neuron survival under hypoxic/ischemic conditions. In vivo and in vitro assays provide evidence for redox-regulated functioning of Ngb. On the basis of X-ray crystal structures and our MD simulations, a mechanism for redox control of human Ngb (hNgb) activity via the influence of the CD loop on the active site is proposed. We provide evidence that the CD loop undergoes a strand-to-helix transition when the external environment becomes sufficiently oxidizing, and that this CD loop conformational transition causes critical restructuring of the active site. We postulate that the strand-to-helix mechanics of the CD loop allows hNgb to utilize the lability of Cys46/Cys55 disulfide bonding and of the Tyr44/His64/heme propionate interaction network for redox-controlled functioning of hNgb.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
41
|
Ascenzi P, Gustincich S, Marino M. Mammalian nerve globins in search of functions. IUBMB Life 2014; 66:268-76. [DOI: 10.1002/iub.1267] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy; University Roma Tre; Roma Italy
| | | | - Maria Marino
- Department of Science; University Roma Tre; Roma Italy
| |
Collapse
|
42
|
Yu ZL, Qiu S, Chen XC, Dai ZH, Huang YC, Li YN, Cai RH, Lei HT, Gu HY. Neuroglobin - a potential biological marker of retinal damage induced by LED light. Neuroscience 2014; 270:158-67. [PMID: 24747803 DOI: 10.1016/j.neuroscience.2014.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 01/16/2023]
Abstract
Neuroglobin (NGB), a protein highly expressed in the retina, has been shown to be up-regulated to protect neurons from hypoxic and ischemic injuries. It exhibits neuroprotective functions and plays an important role in the survival of neurons. Recent studies show that light-emitting diode (LED) white light emitted significant amounts of blue light (short-wavelength), which may be harmful to retinal cells, but the studies about biomarkers for evaluating the damage from LED white light are still insufficient. In our study, we found that NGB levels in the retina showed a twofold increase and peaked at 1h after a 1-h exposure to blue light (453 nm) which did not cause damage to the retina. However, retinal damage was observed after 2h of blue-light irradiation, which induced an approximate sevenfold increase of NGB levels as confirmed by Western blot and RT-PCR analysis. Immunofluorescence study demonstrated that NGB was predominantly up-regulated in the ganglion cell layer (GCL), plexiform layer (PL) and photoreceptor layer (PRL). We also examined Ngb mRNA and protein expression in the damaged retina induced by light of other wavelengths given equal photon fluxes. The LED red light (625 nm), green light (527 nm) and blue light (453 nm) increased the expression of NGB and caused TdT-mediated dUTP nick-end labeling-positive cells, especially in the blue-light group. In addition, a negative correlation between NGB and rhodopsin was observed. These findings suggested that there was a correlation between NGB expression and the severity of the retinal damage, indicating NGB's potential function as a biological marker of retinal damage induced by LED light.
Collapse
Affiliation(s)
- Z-L Yu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - S Qiu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - X-C Chen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Z-H Dai
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Y-C Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Y-N Li
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
| | - R-H Cai
- Joinmax Display Technology Co., Ltd., Guangzhou, China
| | - H-T Lei
- Women and Childern Care Center of Luoyang, Henan Province, China
| | - H-Y Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice. Mol Ther 2014; 22:1096-1109. [PMID: 24622090 DOI: 10.1038/mt.2014.44] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/06/2014] [Indexed: 01/13/2023] Open
Abstract
Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in the Harlequin (Hq) mouse strain, which exhibits retinal ganglion cell (RGC) loss and optic atrophy due to a respiratory chain complex I (CI) defect. A twofold decrease of NGB amounts was observed in Hq retinas. We constructed a recombinant adeno-associated virus which combines to the mouse NGB open reading frame, its 5' and 3'UTR, for guarantying mRNA stability and translation capacity. The vector was administrated intravitreally to Hq mice and NGB expression was stable for up to 7 months without negative effect on retinal architecture or function. On the contrary, RGCs and their axons were substantially preserved from degeneration; consequently, CI activity in optic nerves was protected conferring improvements in vision. Hence, we established that NGB prevents respiratory chain impairment, therefore, protecting visual function otherwise compromised by mitochondrial energetic failure.
Collapse
|
44
|
Pramanik D, Mukherjee S, Dey SG. Apomyoglobin Sequesters Heme from Heme Bound Aβ Peptides. Inorg Chem 2013; 52:10929-35. [DOI: 10.1021/ic401771j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Debajyoti Pramanik
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|
45
|
Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res 2013; 36:217-46. [PMID: 23891817 DOI: 10.1016/j.preteyeres.2013.07.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/20/2022]
Abstract
Retinal ganglion cells (RGCs) are specialized projection neurons that relay an immense amount of visual information from the retina to the brain. RGC signal inputs are collected by dendrites and output is distributed from the cell body via very thin (0.5-1 μm) and long (∼50 mm) axons. The RGC cell body is larger than other retinal neurons, but is still only a very small fraction (one ten thousandths) of the length and total surface area of the axon. The total distance traversed by RGCs extends from the retina, starting from synapses with bipolar and amacrine cells, to the brain, to synapses with neurons in the lateral geniculate nucleus. This review will focus on the energy demands of RGCs and the relevant tissues that surround them. RGC survival and function unexceptionally depends upon free energy, predominantly adenosine triphosphate (ATP). RGC energy metabolism is vastly different when compared to that of the photoreceptors. Each subcellular component of the RGC is remarkably different in terms of structure, function and extracellular environment. The energy demands and distribution of each component are also distinct as evidenced by the uneven distribution of mitochondria and ATP within the RGC - signifying the presence of intracellular energy gradients. In this review we will describe RGCs as having four subcellular components, (1) Dendrites, (2) Cell body, (3) Non-myelinated axon, including intraocular and optic nerve head portions, and (4) Myelinated axon, including the intra-orbital and intracranial portions. We will also describe how RGCs integrate information from each subcellular component in order achieve intracellular homeostatic stability as well as respond to perturbations in the extracellular environment. The possible cellular mechanisms such as axonal transport and axonal cytoskeleton proteins that are involved in maintaining RGC energy homeostasis during normal and disease conditions will also be discussed in depth. The emphasis of this review will be on energetic mechanisms within RGC components that have the most relevance to clinical ophthalmology.
Collapse
|
46
|
Lechauve C, Augustin S, Roussel D, Sahel JA, Corral-Debrinski M. Neuroglobin involvement in visual pathways through the optic nerve. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1772-8. [PMID: 23639750 DOI: 10.1016/j.bbapap.2013.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/26/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022]
Abstract
Neuroglobin is a member of the globin superfamily proposed to be only expressed in neurons and involved in neuronal protection from hypoxia or oxidative stress. A significant fraction of the protein localizes within the mitochondria and is directly associated with mitochondrial metabolism and integrity. The retina is the site of the highest concentration for neuroglobin and has been reported to be up to 100-fold higher than in the brain. Since neuroglobin was especially abundant in retinal ganglion cell layer, we investigated its abundance in optic nerves. Remarkably in optic nerves, neuroglobin is observed, as expected, in retinal ganglion cell axon profiles but also astrocyte processes, in physiological conditions, possess high levels of the protein. Neuroglobin mRNA and protein levels are ~10-fold higher in optic nerves than in retinas, indicating an important accumulation of neuroglobin in these support cells. Additionally, neuroglobin levels increase in Müller cells during reactive gliosis in response to eye injury. This suggests the pivotal role of neuroglobin in retinal glia involved in neuronal support and/or healing. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
47
|
Moritz GL, Lim NTL, Neitz M, Peichl L, Dominy NJ. Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins. Evol Biol 2013; 40:542-553. [PMID: 24293738 PMCID: PMC3832777 DOI: 10.1007/s11692-013-9230-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
A nocturnal activity pattern is central to almost all hypotheses on the adaptive origins of primates. This enduring view has been challenged in recent years on the basis of variation in the opsin genes of nocturnal primates. A correspondence between the opsin genes and activity patterns of species in Euarchonta-the superordinal group that includes the orders Primates, Dermoptera (colugos), and Scandentia (treeshrews)-could prove instructive, yet the basic biology of the dermopteran visual system is practically unknown. Here we show that the eye of the Sunda colugo (Galeopterus variegatus) lacks a tapetum lucidum and has an avascular retina, and we report on the expression and spectral sensitivity of cone photopigments. We found that Sunda colugos have intact short wavelength sensitive (S-) and long wavelength sensitive (L-) opsin genes, and that both opsins are expressed in cone photoreceptors of the retina. The inferred peak spectral sensitivities are 451 and 562 nm, respectively. In line with adaptation to nocturnal vision, cone densities are low. Surprisingly, a majority of S-cones coexpress some L-opsin. We also show that the ratio of rates of nonsynonymous to synonymous substitutions of exon 1 of the S-opsin gene is indicative of purifying selection. Taken together, our results suggest that natural selection has favored a functional S-opsin in a nocturnal lineage for at least 45 million years. Accordingly, a nocturnal activity pattern remains the most likely ancestral character state of euprimates.
Collapse
Affiliation(s)
- Gillian L. Moritz
- Department of Biological Sciences, Dartmouth College, The Class of 1978 Life Sciences Center, 78 College Street, Hanover, NH 03755 USA
| | - Norman T.-L. Lim
- Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Box 356485, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Leo Peichl
- Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany
| | - Nathaniel J. Dominy
- Department of Biological Sciences, Dartmouth College, The Class of 1978 Life Sciences Center, 78 College Street, Hanover, NH 03755 USA
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755 USA
| |
Collapse
|
48
|
Fiocchetti M, De Marinis E, Ascenzi P, Marino M. Neuroglobin and neuronal cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1744-9. [PMID: 23357651 DOI: 10.1016/j.bbapap.2013.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
The balance between neuronal apoptosis and survival sculpts the developing brain and has an important role in neurodegenerative diseases. Thus, the individuation of signals that could modulate the cell death machinery as well as enhance survival in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases. Neuroglobin (NGB), the first nerve globin identified in neuronal tissues of humans, seems to possess a protective role in the brain only after up-regulation. Here, the NGB physiological role in the control of neuronal survival is reviewed. In vitro studies suggested that cytosolic NGB could react very rapidly with cytochrome c released from mitochondria, thus interfering with the intrinsic pathway of apoptosis. Although very suggestive, these data do not explain either the role of NGB up-regulation in neuroprotection or the recently reported NGB localization into mitochondria. Recently, we identified the steroid hormone 17β-estradiol (E2) as an endogenous modulator of NGB levels in neuroblastoma SK-N-BE cell line. Upon E2 stimulation, NGB reallocates mainly into mitochondria where the association with the mitochondrial cytochrome c occurs. Remarkably, E2 treatment before an apoptotic stimulus strongly enhances the NGB:cytochrome c association reducing cytochrome c release into the cytosol. As a consequence, a decrease of caspase-3 activation and, in turn, of the apoptotic cascade activation take place. Besides E2, other compounds have been reported to up-regulate the NGB expression highlighting the possibility to develop NGB-mediated therapeutic strategies against stroke damage and neurodegenerative diseases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
49
|
Neuroglobin involvement in respiratory chain function and retinal ganglion cell integrity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2261-73. [DOI: 10.1016/j.bbamcr.2012.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/13/2023]
|
50
|
Brittain T. The anti-apoptotic role of neuroglobin. Cells 2012; 1:1133-55. [PMID: 24710547 PMCID: PMC3901133 DOI: 10.3390/cells1041133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
The small heme-protein neuroglobin is expressed at high concentrations in certain brain neurons and in the rod cells of the retina. This paper reviews the many studies which have recently identified a protective role for neuroglobin, in a wide range of situations involving apoptotic cell death. The origins of this protective mechanism are discussed in terms of both experimental results and computational modeling of the intrinsic pathway of apoptosis, which shows that neuroglobin can intervene in this process by a reaction with released mitochondrial cytochrome c. An integrated model, based on the various molecular actions of both neuroglobin and cytochrome c, is developed, which accounts for the cellular distribution of neuroglobin.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, Centre for Brain Research, University of Auckland, 3a Symonds Street, Auckland,1142, New Zealand.
| |
Collapse
|