1
|
Kyle RL, Prout M, Le Gros G, Robinson MJ. STAT6 tunes maximum T cell IL-4 production from stochastically regulated Il4 alleles. Immunol Cell Biol 2024; 102:194-211. [PMID: 38286436 DOI: 10.1111/imcb.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024]
Abstract
T helper 2 (Th2) cells stochastically express from the Il4 locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared Il4 locus expression in T cells from hemizygous IL-4 reporter mice in culture and in vivo following exposure to type 2 immunogens. In culture, Il4 alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. In vivo profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of Il4 alleles in vivo among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.
Collapse
Affiliation(s)
- Ryan L Kyle
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Melanie Prout
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marcus J Robinson
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Immunology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
2
|
Choi A, Jung YW, Choi H. The extrinsic factors important to the homeostasis of allergen-specific memory CD4 T cells. Front Immunol 2022; 13:1080855. [PMID: 36591273 PMCID: PMC9798121 DOI: 10.3389/fimmu.2022.1080855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Memory T cells, which are generated after the primary immune response to cognate antigens, possess unique features compared to naïve or effector T cells. These memory T cells are maintained for a long period of time and robustly reactivate in lymphoid or peripheral tissues where they re-encounter antigens. Environments surrounding memory T cells are importantly involved in the process of the maintenance and reactivation of these T cells. Although memory T cells are generally believed to be formed in response to acute infections, the pathogenesis and persistence of chronic inflammatory diseases, including allergic diseases, are also related to the effector functions of memory CD4 T cells. Thus, the factors involved in the homeostasis of allergen-specific memory CD4 T cells need to be understood to surmount these diseases. Here, we review the characteristics of allergen-specific memory CD4 T cells in allergic diseases and the importance of extrinsic factors for the homeostasis and reactivation of these T cells in the view of mediating persistence, recurrence, and aggravation of allergic diseases. Overall, this review provides a better understanding of memory CD4 T cells to devise effective therapeutic strategies for refractory chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong-si, Republic of Korea
| | - Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
3
|
Cendón C, Du W, Durek P, Liu YC, Alexander T, Serene L, Yang X, Gasparoni G, Salhab A, Nordström K, Lai T, Schulz AR, Rao A, Heinz GA, Stefanski AL, Claußnitzer A, Siewert K, Dörner T, Chang HD, Volk HD, Romagnani C, Qin Z, Hardt S, Perka C, Reinke S, Walter J, Mashreghi MF, Thurley K, Radbruch A, Dong J. Resident memory CD4+ T lymphocytes mobilize from bone marrow to contribute to a systemic secondary immune reaction. Eur J Immunol 2022; 52:737-752. [PMID: 35245389 DOI: 10.1002/eji.202149726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
Resident memory T lymphocytes (TRM ) of epithelial tissues and the bone marrow protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 hours after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the bone marrow. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vβ clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the bone marrow confer not only local, but also systemic immune memory. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carla Cendón
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Weijie Du
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lindsay Serene
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xinyi Yang
- Otto-Warburg-Laboratory, Computational Epigenomics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Karl Nordström
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Tina Lai
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anna Rao
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ana L Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Claußnitzer
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hyun-Dong Chang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Medical Department / Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Bejing, China.,University of Chinese Academy of Sciences, Bejing, China.,Zhengzhou University, Zhengzhou, China
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), Campus, Saarbrücken, 66123, Germany
| | - Mir-F Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.,Institute for Theoretical Biology, Humboldt University Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
4
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Abstract
Epigenetic modifications are emerging as important regulatory mechanisms of gene expression in lung disease, given that they are influenced by environmental exposures and genetic variants, and that they regulate immune and fibrotic processes. In this review, we introduce these concepts with a focus on the study of DNA methylation and histone modifications and discuss how they have been applied to lung disease, and how they can be applied to sarcoidosis. This information has implications for other exposure and immunologically mediated lung diseases, such as chronic beryllium disease, hypersensitivity pneumonitis, and asbestosis.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa A Maier
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Dept of Environmental and Occupational Health, Colorado School of Public Health, Aurora, CO, USA
| | - Ivana V Yang
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|
6
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
7
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
8
|
Yang IV, Konigsberg I, MacPhail K, Li L, Davidson EJ, Mroz PM, Hamzeh N, Gillespie M, Silveira LJ, Fingerlin TE, Maier LA. DNA Methylation Changes in Lung Immune Cells Are Associated with Granulomatous Lung Disease. Am J Respir Cell Mol Biol 2019; 60:96-105. [PMID: 30141971 DOI: 10.1165/rcmb.2018-0177oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epigenetic marks are likely to explain variability of response to antigen in granulomatous lung disease. The objective of this study was to identify DNA methylation and gene expression changes associated with chronic beryllium disease (CBD) and sarcoidosis in lung cells obtained by BAL. BAL cells from CBD (n = 8), beryllium-sensitized (n = 8), sarcoidosis (n = 8), and additional progressive sarcoidosis (n = 9) and remitting (n = 15) sarcoidosis were profiled on the Illumina 450k methylation and Affymetrix/Agilent gene expression microarrays. Statistical analyses were performed to identify DNA methylation and gene expression changes associated with CBD, sarcoidosis, and disease progression in sarcoidosis. DNA methylation array findings were validated by pyrosequencing. We identified 52,860 significant (P < 0.005 and q < 0.05) CpGs associated with CBD; 2,726 CpGs near 1,944 unique genes have greater than 25% methylation change. A total of 69% of differentially methylated genes are significantly (q < 0.05) differentially expressed in CBD, with many canonical inverse relationships of methylation and expression in genes critical to T-helper cell type 1 differentiation, chemokines and their receptors, and other genes involved in immunity. Testing of these CBD-associated CpGs in sarcoidosis reveals that methylation changes only approach significance, but are methylated in the same direction, suggesting similarities between the two diseases with more heterogeneity in sarcoidosis that limits power with the current sample size. Analysis of progressive versus remitting sarcoidosis identified 15,215 CpGs (P < 0.005 and q < 0.05), but only 801 of them have greater than 5% methylation change, demonstrating that DNA methylation marks of disease progression changes are more subtle. Our study highlights the significance of epigenetic marks in lung immune response in granulomatous lung disease.
Collapse
Affiliation(s)
- Ivana V Yang
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,2 Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado.,3 Center for Genes, Environment, and Health
| | - Iain Konigsberg
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Li Li
- 4 Department of Medicine, and
| | - Elizabeth J Davidson
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | - Tasha E Fingerlin
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,3 Center for Genes, Environment, and Health.,5 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and.,6 Department of Biostatistics and Bioinformatics and
| | - Lisa A Maier
- 1 Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,4 Department of Medicine, and.,7 Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
9
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
10
|
Clinical potential of DNA methylation in organ transplantation. J Heart Lung Transplant 2016; 35:843-50. [DOI: 10.1016/j.healun.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
|
11
|
Chogtu B, Bhattacharjee D, Magazine R. Epigenetics: The New Frontier in the Landscape of Asthma. SCIENTIFICA 2016; 2016:4638949. [PMID: 27293973 PMCID: PMC4879257 DOI: 10.1155/2016/4638949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Over the years, on a global scale, asthma has continued to remain one of the leading causes of morbidity, irrespective of age, sex, or social bearings. This is despite the prevalence of varied therapeutic options to counter the pathogenesis of asthma. Asthma, as a disease per se, is a very complex one. Scientists all over the world have been trying to obtain a lucid understanding of the machinations behind asthma. This has led to many theories and conjectures. However, none of the scientific disciplines have been able to provide the missing links in the chain of asthma pathogenesis. This was until epigenetics stepped into the picture. Though epigenetic research in asthma is in its nascent stages, it has led to very exciting results, especially with regard to explaining the massive influence of environment on development of asthma and its varied phenotypes. However, there remains a lot of work to be done, especially with regard to understanding how the interactions between immune system, epigenome, and environment lead to asthma. But introduction of epigenetics has infused a fresh lease of life in research into asthma and the mood among the scientific community is that of cautious optimism.
Collapse
Affiliation(s)
- Bharti Chogtu
- Department of Pharmacology, Kasturba Medical College, Manipal University, Karnataka 576104, India
| | - Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Karnataka 576104, India
| | - Rahul Magazine
- Department of Pulmonary Medicine, Kasturba Medical College, Manipal University, Karnataka 576104, India
| |
Collapse
|
12
|
Sahoo A, Wali S, Nurieva R. T helper 2 and T follicular helper cells: Regulation and function of interleukin-4. Cytokine Growth Factor Rev 2016; 30:29-37. [PMID: 27072069 DOI: 10.1016/j.cytogfr.2016.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 12/24/2022]
Abstract
Type 2 immunity is characterized by expression of the cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13, which can function in mediating protective immunity in the host or possess a pathogenic role. T helper (Th) 2 cells have emerged to play a beneficial role in mediating anti-parasitic immunity and are also known to be key players in mediating allergic diseases. In addition to the Th2 cells, recent studies have identified T follicular helper (Tfh) cells as an alternative source of IL-4 to regulate type 2 humoral immune responses, indicating that Th2 and Tfh cells exhibit overlapping phenotypical and functional characteristics. Th2 and Tfh cells appear to utilize distinct mechanisms for regulation of IL-4 expression; however unlike Th2 cells, the regulation and function of Tfh-derived IL-4 is not yet fully understood. Understanding of the molecular mechanisms for IL-4 expression and function in both cell subsets will be beneficial for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Anupama Sahoo
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Shradha Wali
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Roza Nurieva
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.
| |
Collapse
|
13
|
Jaigirdar SA, MacLeod MKL. Development and Function of Protective and Pathologic Memory CD4 T Cells. Front Immunol 2015; 6:456. [PMID: 26441961 PMCID: PMC4561815 DOI: 10.3389/fimmu.2015.00456] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy.
Collapse
Affiliation(s)
- Shafqat Ahrar Jaigirdar
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Megan K L MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
14
|
Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ, Binia A, Hopkin JM, Yang IV, Grundberg E, Busche S, Hudson M, Rönnblom L, Pastinen TM, Schwartz DA, Lathrop GM, Moffatt MF, Cookson WOCM. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 2015; 520:670-674. [PMID: 25707804 PMCID: PMC4416961 DOI: 10.1038/nature14125] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Abstract
Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.
Collapse
Affiliation(s)
- Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA 02115
| | | | | | - Kenny C C Wong
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Gwyneth A Davies
- Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario Canada, M5G 0A3
- Departments of Medical Biophysics and Molecular Genetics, University of Toronto, Canada ON M5S 1A1
| | - Aristea Binia
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | - Julian M Hopkin
- Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | - Ivana V Yang
- University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206
| | - Elin Grundberg
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Marie Hudson
- Jewish General Hospital and Lady Davis Research Institute, Montréal, Canada H3T 1E2
| | - Lars Rönnblom
- Department of Medical Sciences, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tomi M Pastinen
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
- Department of Medical Genetics, McGill University Health Centre, Montréal, Canada
| | - David A Schwartz
- University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206
| | - G Mark Lathrop
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | | |
Collapse
|
15
|
Berni Canani R, Paparo L, Nocerino R, Cosenza L, Pezzella V, Di Costanzo M, Capasso M, Del Monaco V, D'Argenio V, Greco L, Salvatore F. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are associated with tolerance acquisition in children with IgE-mediated cow's milk allergy. Clin Epigenetics 2015; 7:38. [PMID: 25859290 PMCID: PMC4391731 DOI: 10.1186/s13148-015-0070-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic changes in DNA methylation could regulate the expression of several allergy-related genes. We investigated whether tolerance acquisition in children with immunoglobulin E (IgE)-mediated cow's milk allergy (CMA) is characterized by a specific DNA methylation profile of Th2 (IL-4, IL-5) and Th1 (IL-10, IFN-γ)-associated cytokine genes. RESULTS DNA methylation of CpGs in the promoting regions of genes from peripheral blood mononuclear cells and serum level of IL-4, IL-5, IL-10 and INF-γ were assessed in children with active IgE-mediated CMA (group 1), in children who acquired tolerance to cow's milk proteins (group 2) and in healthy children (group 3). Forty children (24 boys, aged 3 to 18 months) were enrolled: 10 in group 1, 20 in group 2, and 10 in the control group. The DNA methylation profiles clearly separated active CMA patients from healthy controls. We observed an opposite pattern comparing subjects with active IgE-mediated CMA with healthy controls and group 2 children who outgrew CMA. The IL-4 and IL-5 DNA methylation was significantly lower, and IL-10 and INF-γ DNA methylation was higher in active IgE-mediated CMA patients. Gene promoter DNA methylation rates of all cytokines and respective serum levels were strongly correlated. Formula selection significantly influenced cytokine DNA methylation profiles in group 2. CONCLUSIONS Tolerance acquisition in children with IgE-mediated CMA is characterized by a distinct Th1 and Th2 cytokine gene DNA methylation pattern. These results suggest that DNA methylation may be a target for CMA prevention and treatment.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy ; European Laboratory for the Investigation of Food-Induced Diseases, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Linda Cosenza
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Vincenza Pezzella
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Margherita Di Costanzo
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico I, Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Valentina Del Monaco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico I, Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico I, Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy ; European Laboratory for the Investigation of Food-Induced Diseases, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico I, Via S.Pansini, 5 80131 Naples, Italy ; CEINGE-Biotecnologie Avanzate s.c.ar.l, University of Naples 'Federico II', Via S.Pansini, 5 80131 Naples, Italy
| |
Collapse
|
16
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
17
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Köck J, Kreher S, Lehmann K, Riedel R, Bardua M, Lischke T, Jargosch M, Haftmann C, Bendfeldt H, Hatam F, Mashreghi MF, Baumgrass R, Radbruch A, Chang HD. Nuclear factor of activated T cells regulates the expression of interleukin-4 in Th2 cells in an all-or-none fashion. J Biol Chem 2014; 289:26752-26761. [PMID: 25037220 PMCID: PMC4175318 DOI: 10.1074/jbc.m114.587865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens.
Collapse
Affiliation(s)
- Juliana Köck
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephan Kreher
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katrin Lehmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - René Riedel
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Bardua
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Lischke
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Manja Jargosch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Haftmann
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanna Bendfeldt
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Farahnaz Hatam
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Ria Baumgrass
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
19
|
Abstract
In higher eukaryotic organisms epigenetic modifications are crucial for proper chromatin folding and thereby proper regulation of gene expression. In the last years the involvement of aberrant epigenetic modifications in inflammatory and autoimmune diseases has been recognized and attracted significant interest. However, the epigenetic mechanisms underlying the different disease phenotypes are still poorly understood. As autoimmune and inflammatory diseases are at least partly T cell mediated, we will provide in this chapter an introduction to the epigenetics of T cell differentiation followed by a summary of the current knowledge on aberrant epigenetic modifications that dysfunctional T cells display in various diseases such as type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease, and asthma.
Collapse
|
20
|
Kuo CH, Hsieh CC, Lee MS, Chang KT, Kuo HF, Hung CH. Epigenetic regulation in allergic diseases and related studies. Asia Pac Allergy 2014; 4:14-8. [PMID: 24527405 PMCID: PMC3921865 DOI: 10.5415/apallergy.2014.4.1.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 01/03/2023] Open
Abstract
Asthma, a chronic inflammatory disorder of the airway, has features of both heritability as well as environmental influences which can be introduced in utero exposures and modified through aging, and the features may attribute to epigenetic regulation. Epigenetic regulation explains the association between early prenatal maternal smoking and later asthma-related outcomes. Epigenetic marks (DNA methylation, modifications of histone tails or noncoding RNAs) work with other components of the cellular regulatory machinery to control the levels of expressed genes, and several allergy- and asthma-related genes have been found to be susceptible to epigenetic regulation, including genes important to T-effector pathways (IFN-γ, interleukin [IL] 4, IL-13, IL-17) and T-regulatory pathways (FoxP3). Therefore, the mechanism by which epigenetic regulation contributes to allergic diseases is a critical issue. In the past most published experimental work, with few exceptions, has only comprised small observational studies and models in cell systems and animals. However, very recently exciting and elegant experimental studies and novel translational research works were published with new and advanced technologies investigating epigenetic mark on a genomic scale and comprehensive approaches to data analysis. Interestingly, a potential link between exposure to environmental pollutants and the occurrence of allergic diseases is revealed recently, particular in developed and industrialized countries, and endocrine disrupting chemicals (EDCs) as environmental hormone may play a key role. This review addresses the important question of how EDCs (nonylphenol, 4 octylphenol, and phthalates) influences on asthma-related gene expression via epigenetic regulation in immune cells, and how anti-asthmatic agents prohibit expression of inflammatory genes via epigenetic modification. The discovery and validation of epigenetic biomarkers linking exposure to allergic diseases might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
Affiliation(s)
- Chang-Hung Kuo
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Min-Sheng Lee
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kai-Ting Chang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. ; Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80708, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan. ; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. ; Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80708, Taiwan. ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. ; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
22
|
Stochastic cytokine expression induces mixed T helper cell States. PLoS Biol 2013; 11:e1001618. [PMID: 23935453 PMCID: PMC3728019 DOI: 10.1371/journal.pbio.1001618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
During early differentiation of T helper cells, stochastic cytokine expression triggers the co-expression of antagonistic transcription factors at high levels, buffered by the interplay between extracellular and intracellular signaling components. During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression. During the development of a multicellular organism, the progenitor cells, which have the potential to become any of several different cell lineages with specialized functions, commit and differentiate into one particular lineage. This differentiation of progenitors is driven by the induction of lineage-specific transcription factors, molecules that regulate gene expression. This process is often mediated by extracellular signaling molecules, including a class of molecules called cytokines that can bind to cell surface receptors, activating and/or repressing transcription factors. Here we explored the early differentiation of naive T helper (Th) cells, an important class of T lymphocytes that help effector immune cells to defend the body against various pathogens. We measured both mRNA and protein levels of cytokines and transcription factors in individual cells. In particular, mRNA levels were measured with single-molecule resolution. Contrary to the expression of only one set of lineage-specific transcription factors, we observed ubiquitous high-level co-expression of antagonistic transcription factors in individual cells. We found that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in individual cells. When cytokine signaling is inhibited, each cell expressed only one of the antagonistic transcription factors at high levels. This reveals a weak intracellular network that is otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process T helper cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.
Collapse
|
23
|
T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun 2013; 3:1268. [PMID: 23232398 PMCID: PMC3535338 DOI: 10.1038/ncomms2260] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
T-bet and GATA3 regulate the CD4+ T cell Th1/Th2 cell fate decision but little is known about the interplay between these factors outside of the murine Ifng and Il4/Il5/Il13 loci. Here we show that T-bet and GATA3 bind to multiple distal sites at immune regulatory genes in human effector T cells. These sites display markers of functional elements, act as enhancers in reporter assays and are associated with a requirement for T-bet and GATA3. Furthermore, we demonstrate that both factors bind distal sites at Tbx21 and that T-bet directly activates its own expression. We also show that in Th1 cells, GATA3 is distributed away from Th2 genes, instead occupying T-bet binding sites at Th1 genes, and that T-bet is sufficient to induce GATA3 binding at these sites. We propose these aspects of T-bet and GATA3 function are important for Th1/Th2 differentiation and for understanding transcription factor interactions in other T cell lineage decisions. T-bet and GATA3 regulate differentiation of T cells into Th1 or Th2 cell fates, but little is known about their functional interaction outside of the IFNγ and Il4/Il5/Il13 loci. Kanhere et al. map these factors across the genome in human T cells, revealing unappreciated breadth of function and interplay between them.
Collapse
|
24
|
Dong J, Chang HD, Ivascu C, Qian Y, Rezai S, Okhrimenko A, Cosmi L, Maggi L, Eckhardt F, Wu P, Sieper J, Alexander T, Annunziato F, Gossen M, Li J, Radbruch A, Thiel A. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes. Eur J Immunol 2013; 43:793-804. [PMID: 23255246 DOI: 10.1002/eji.201242858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.
Collapse
Affiliation(s)
- Jun Dong
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yoshimoto M, Yoder MC, Guevara P, Adkins B. The murine Th2 locus undergoes epigenetic modification in the thymus during fetal and postnatal ontogeny. PLoS One 2013; 8:e51587. [PMID: 23335954 PMCID: PMC3546009 DOI: 10.1371/journal.pone.0051587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/05/2012] [Indexed: 01/18/2023] Open
Abstract
Epigenetic modifications play a central role in the differentiation and function of immune cells in adult animals. Developmentally regulated epigenetic patterns also appear to contribute to the ontogeny of the immune system. We show here that the epigenetic profile of the T-helper (Th) 2 locus undergoes changes in T lineage cells beginning in mid-gestation and extending throughout the first week of life. In particular, regulatory regions of the Th2 locus are largely methylated at CpG residues among fetal liver common lymphoid progenitor cells. The locus subsequently becomes highly hypomethylated among the downstream progeny of these cells within the fetal thymus. This hypomethylated state is preserved until birth when the locus becomes rapidly re-methylated, achieving adult-like status by 3–6 days post birth. Notably, the capacity for rapid, high level Th2 cytokine production is lost in parallel with this re-methylation. In vitro organ culture and in vivo transplantation experiments indicate that signals from the adult environment are required to achieve the postnatal methylated state. Together, these findings indicate that the Th2 bias of neonates may be conferred, in part, by an epigenetic profile inherited from fetal life. However, the fetal program is rapidly terminated post birth by the development of signals leading to the acquisition of adult-like epigenetic patterns.
Collapse
Affiliation(s)
- Momoko Yoshimoto
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mervin C. Yoder
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Patricia Guevara
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Tokoyoda K, Radbruch A. Signals controlling rest and reactivation of T helper memory lymphocytes in bone marrow. Cell Mol Life Sci 2012; 69:1609-13. [PMID: 22460581 PMCID: PMC11114998 DOI: 10.1007/s00018-012-0969-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 12/18/2022]
Abstract
Established views on the maintenance of immunological memory have been challenged recently by the description of memory plasma cells and memory T helper (Th) lymphocytes residing in the bone marrow (BM) in dedicated survival niches, resting in terms of proliferation and migration. While memory plasma cells are no longer reactive to antigen, memory Th lymphocytes are in a state of attentive rest, and can be reactivated fast and efficiently. Here, we discuss the signals controlling these resting states, which the memory lymphocytes receive from their microenvironment.
Collapse
Affiliation(s)
- Koji Tokoyoda
- German Rheumatism Research Center Berlin, Chariteplatz 1, Berlin, Germany.
| | | |
Collapse
|
27
|
Okoye IS, Wilson MS. CD4+ T helper 2 cells--microbial triggers, differentiation requirements and effector functions. Immunology 2012; 134:368-77. [PMID: 22043920 DOI: 10.1111/j.1365-2567.2011.03497.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over the past 10 years we have made great strides in our understanding of T helper cell differentiation, expansion and effector functions. Within the context of T helper type 2 (Th2) cell development, novel innate-like cells with the capacity to secrete large amounts of interleukin-5 (IL-5), IL-13 and IL-9 as well as IL-4-producing and antigen-processing basophils have (re)-emerged onto the type 2 scene. To what extent these new players influence αβ+ CD4+ Th2 cell differentiation is discussed throughout this appraisal of the current literature. We highlight the unique features of Th2 cell development, highlighting the three necessary signals, T-cell receptor ligation, co-stimulation and cytokine receptor ligation. Finally, putting these into context, microbial and allergenic properties that trigger Th2 cell differentiation and how these influence Th2 effector function are discussed and questioned.
Collapse
Affiliation(s)
- Isobel S Okoye
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, UK
| | | |
Collapse
|
28
|
Joshi K, Bhat S, Deshpande P, Sule M, Satyamoorthy K. Epigenetics mechanisms and degenerative diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojgen.2012.24023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Pandiyan P, Zheng L, Lenardo MJ. The molecular mechanisms of regulatory T cell immunosuppression. Front Immunol 2011; 2:60. [PMID: 22566849 PMCID: PMC3342245 DOI: 10.3389/fimmu.2011.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022] Open
Abstract
CD4⁺CD25⁺Foxp3⁺ T lymphocytes, known as regulatory T cells or T(regs), have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of T(regs). There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4⁺ effector T cells are directly inhibited by T(regs), it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that T(regs), similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of T(reg) behavior, we will recount developing findings that support these new concepts.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA.
| | | | | |
Collapse
|
30
|
Marsh LM, Pfefferle PI, Pinkenburg O, Renz H. Maternal signals for progeny prevention against allergy and asthma. Cell Mol Life Sci 2011; 68:1851-62. [PMID: 21369709 PMCID: PMC11115134 DOI: 10.1007/s00018-011-0644-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/08/2011] [Accepted: 02/15/2011] [Indexed: 01/04/2023]
Abstract
Allergy and asthma are chronic inflammatory diseases which result from complex gene-environment interactions. Recent evidence indicates the importance of prenatal and postnatal developmental processes in terms of maturation of balanced immune responses. According to the current view, gene-environment interactions during a restricted time frame are responsible for programming of the immune system in favor of allergic immune mechanisms later in life. The interaction between genes and environment is complex and only partially understood; however, heritable epigenetic modifications including chemical additions in and alternative packaging of the DNA have been shown to play a crucial role in this context. Novel data indicate that epigenetic mechanisms contribute to the development of T-helper cell function. Environmental factors, including diesel exhaust particles (DEP), vitamins and tobacco smoke, operate through such mechanisms. Furthermore, the role of environmental microbes provides another and maybe even more important group of exogenous exposures which operates in this critical time frame.
Collapse
Affiliation(s)
- Leigh Matthew Marsh
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Petra Ina Pfefferle
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Olaf Pinkenburg
- Department of Clinical Chemistry and Molecular Diagnostics, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Harald Renz
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Medical Faculty, Philipps University of Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| |
Collapse
|
31
|
The enhancer HS2 critically regulates GATA-3-mediated Il4 transcription in T(H)2 cells. Nat Immunol 2010; 12:77-85. [PMID: 21131966 DOI: 10.1038/ni.1966] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/08/2010] [Indexed: 12/24/2022]
Abstract
GATA-3 is a master regulator of T helper type 2 (T(H)2) differentiation. However, the molecular basis of GATA-3-mediated T(H)2 lineage commitment is poorly understood. Here we identify the DNase I-hypersensitive site 2 (HS2) element located in the second intron of the interleukin 4 locus (Il4) as a critical enhancer strictly controlled by GATA-3 binding. Mice lacking HS2 showed substantial impairment in their asthmatic responses and their production of IL-4 but not of other T(H)2 cytokines. Overexpression of Gata3 in HS2-deficient T cells failed to restore Il4 expression. HS2 deletion impaired the trimethylation of histone H3 at Lys4 and acetylation of histone H3 at Lys9 and Lys14 in the Il4 locus. Our results indicate that HS2 is the target of GATA-3 in regulating chromosomal modification of the Il4 locus and is independent of the Il5 and Il13 loci.
Collapse
|
32
|
Singh SP, de Camargo MM, Zhang HH, Foley JF, Hedrick MN, Farber JM. Changes in histone acetylation and methylation that are important for persistent but not transient expression of CCR4 in human CD4+ T cells. Eur J Immunol 2010; 40:3183-3197. [PMID: 20963786 DOI: 10.1002/eji.201040443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/03/2010] [Accepted: 08/18/2010] [Indexed: 01/04/2023]
Abstract
Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-γ and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naïve cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.
Collapse
Affiliation(s)
- Satya P Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda M, USA
| | - Maristela M de Camargo
- Laboratory of Molecular Immunoregulation, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, BRAZIL
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda M, USA
| | - John F Foley
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda M, USA
| | - Michael N Hedrick
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda M, USA
| | - Joshua M Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda M, USA
| |
Collapse
|
33
|
Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010; 126:453-65. [PMID: 20816181 DOI: 10.1016/j.jaci.2010.07.030] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T-cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past 2 or 3 decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on the epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, polycyclic aromatic hydrocarbons, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure, asthma, or both might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
|
34
|
Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression. Mol Syst Biol 2010; 6:359. [PMID: 20393579 PMCID: PMC2872609 DOI: 10.1038/msb.2010.13] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/09/2010] [Indexed: 01/07/2023] Open
Abstract
Combining experiments on primary T cells and mathematical modeling, we characterized the stochastic expression of the interleukin-4 cytokine gene in its physiologic context, showing that a two-step model of transcriptional regulation acting on chromatin rearrangement and RNA polymerase recruitment accounts for the level, kinetics, and population variability of expression. A rate-limiting step upstream of transcription initiation, but occurring at the level of an individual allele, controls whether the interleukin-4 gene is expressed during antigenic stimulation, suggesting that the observed stochasticity of expression is linked to the dynamics of chromatin rearrangement. The computational analysis predicts that the probability to re-express an interleukin-4 gene that has been expressed once is transiently increased. In support, we experimentally demonstrate a short-term memory for interleukin-4 expression at the predicted time scale of several days. The model provides a unifying framework that accounts for both graded and binary modes of gene regulation. Graded changes in expression level can be achieved by controlling transcription initiation, whereas binary regulation acts at the level of chromatin rearrangement and is targeted during the differentiation of T cells that specialize in interleukin-4 production.
Cell populations are typically heterogeneous with respect to protein expression even when clonally derived from a single progenitor. In bacteria and yeast, such heterogeneity has been shown to be due to intrinsically stochastic dynamics of gene expression (Raj and van Oudenaarden, 2008). Thus, cross-population heterogeneity may be an unavoidable by-product of random fluctuations in molecular interactions (Raser and O'Shea, 2004; Pedraza and van Oudenaarden, 2005). The phenotypic variability deriving from it may also be beneficial for cell function, differentiation, or adaptation to changing environments (Chang et al, 2008; Feinerman et al, 2008; Losick and Desplan, 2008). However, little is known about how gene-expression variability is caused in mammalian cells. Two principal modes of gene regulation have been identified: graded and binary. In the graded mode, transcriptional regulators can tune the level of a gene product in a continuous manner (Hazzalin and Mahadevan, 2002). In the binary mode, the gene is expressed at an invariant level, whereas its probability of being expressed in a given cell is regulated, so that the gene has discrete ‘on' and ‘off' states (Walters et al, 1995; Hume, 2000; Biggar and Crabtree, 2001). In humans and mice, cytokine genes are expressed in a binary manner (Bix and Locksley, 1998; Riviere et al, 1998; Hu-Li et al, 2001; Apostolou and Thanos, 2008). A particularly well-studied case is the interleukin-4 (il4) gene that is critical for antibody-based immune responses. This gene is expressed by antigen-stimulated T cells initially with low probability, so that in most IL-4-positive cells only one allele is active (Bix and Locksley, 1998; Riviere et al, 1998). The expressed allele is not imprinted but chosen stochastically during each cell stimulation (Hu-Li et al, 2001). Here, we have studied the dynamics of IL-4 expression quantitatively. Primary murine CD4+ T cells have been differentiated uniformly into type-2 T-helper (Th2) cells that express the lineage-specifying transcription factor (TF) Gata-3 and are competent to activate the il4 gene upon challenge with antigen. Using T cells heterozygous for an il4 wild-type allele and an il4 allele with GFP knock-in after the promoter, the alleles are found to be expressed stochastically and in an uncorrelated manner (Figure 2A; Hu-Li et al, 2001). To account for the observed stochastic dynamics of IL-4 expression, we considered a basic model of gene transcription, mRNA translation, turnover, and protein secretion (Figure 2B). However, our experimental estimates of the intracellular life times of IL-4 mRNA and protein (∼1 h) and their absolute numbers (mRNA∼103, protein∼105) rule out random fluctuations in transcription, translation as well as mRNA and protein turnover as an explanation for the observed stochastic properties of IL-4 expression (Thattai and van Oudenaarden, 2001; Paulsson, 2004). As il4 is known to be strongly regulated at the chromatin level (Ansel et al, 2006), we included in the model a reversible step of chromatin opening that is permissive for transcription (Figure 2C and D). Both chromatin opening and transcription initiation are driven by TFs that are transiently activated during the antigen stimulus, with NFAT1 playing a prominent role (Agarwal et al, 2000; Avni et al, 2002; Guo et al, 2004). The model accounts for the kinetics of NFAT1 TF activity (Figure 2E) (Loh et al, 1996). Using a best-fit procedure for estimating the kinetics of the chromatin transition and TF activity from experimental data, we found that the model accurately reproduces the distribution of IL-4 expression within the cell population over the entire time course of a stimulation (Figure 3A). At the same time, it accounts for the measured kinetics of IL-4 mRNA, intracellular and secreted protein (Figure 3B). Additional data show that the model can also explain IL-4 expression at different stages of Th2 differentiation and upon pharmacological inhibition of NFAT1 activity. In each case, the model predicts a slow and stochastic chromatin opening (Step 1 in Figure 2C) that is the limiting step for the activation of the gene. The slowness of chromatin opening inferred by the model implies an extended lifetime of the open chromatin state (several days), which lasts longer than TF activity during antigenic stimulation (several hours). This indicates that acute IL-4 expression is terminated by the cessation of TF activity (Step 2 in Figure 2C), rather than by the closing of the chromatin (Step 1). In support of this prediction, we observed an elevated fraction of IL-4-producing cells after secondary stimulations administered within a few days of the primary stimulus. Consistent with the model, this elevation disappeared with a half-life of ∼3 days (Figure 4B). To test whether this ‘short-term memory' for activation of the il4 gene is indeed due to the IL-4 producers in the primary stimulation, we sorted stimulated Th2 cells into viable IL-4-producing and non-producing fractions using the cytokine secretion assay (Ouyang et al, 2000) and cultured them separately for different resting periods. The probability of IL-4 re-expression in the positive-sorted cells was consistently larger than in negative-sorted cells and decreased progressively over several days (Figure 4C). By contrast, the sorted IL-4 negative cells exhibited a constant induction probability indistinguishable from the unsorted population. This behavior was not due to differential cell proliferation in the sorted populations or different success of Th2 differentiation. Moreover, using heterozygous il4-wild-type/il4-gfp cells, and sorting for expression of the wild-type allele, we observed that expression of the il4-gfp allele was similar in IL-4-positive and negative sorted fractions. Taken together, these findings imply that stochastic, slow chromatin changes at individual il4 genes govern the binary expression pattern of this cytokine. In conclusion, we propose an experimentally based model of inducible gene expression where strong stochasticity arises from slow (hours to days) chromatin opening and closing transitions, rather than being due to small numbers of mRNA or protein molecules or transcriptional bursting (Raj et al, 2006). This rate-limiting step upstream of transcription initiation (which may entail several interacting epigenetic processes) naturally gives rise to a binary expression pattern of the gene. By contrast, regulation at the level of transcription initiation can have a graded effect on the expression level. We provide evidence that both binary and graded regulation can occur for the il4 gene. Physiological regulation of il4 seems to be mainly binary, thus enabling a dose–response within a population while producing an unequivocal all-or-none signal at the single-cell level. Although cell-to-cell variability has been recognized as an unavoidable consequence of stochasticity in gene expression, it may also serve a functional role for tuning physiological responses within a cell population. In the immune system, remarkably large variability in the expression of cytokine genes has been observed in homogeneous populations of lymphocytes, but the underlying molecular mechanisms are incompletely understood. Here, we study the interleukin-4 gene (il4) in T-helper lymphocytes, combining mathematical modeling with the experimental quantification of expression variability and critical parameters. We show that a stochastic rate-limiting step upstream of transcription initiation, but acting at the level of an individual allele, controls il4 expression. Only a fraction of cells reaches an active, transcription-competent state in the transient time window determined by antigen stimulation. We support this finding by experimental evidence of a previously unknown short-term memory that was predicted by the model to arise from the long lifetime of the active state. Our analysis shows how a stochastic mechanism acting at the chromatin level can be integrated with transcriptional regulation to quantitatively control cell-to-cell variability.
Collapse
|
35
|
Williams M, Georas S. Gene expression patterns and susceptibility to allergic responses. Expert Rev Clin Immunol 2010; 2:59-73. [PMID: 20477088 DOI: 10.1586/14787210.2.1.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allergic diseases are due to hypersensitive immune responses against otherwise innocuous allergens, and involve the dysregulated expression of numerous genes in cells from both the innate and adaptive immune systems. Allergic diseases are characterized by the enhanced production of type 2 T helper (Th2) cytokines, including interleukin-4, -5 and -13. These cytokines induce many of the pathophysiologic hallmarks of allergy, and their expression is tightly regulated at the level of gene transcription by both positively and negatively-acting transcription factors. In this review, the authors summarize data indicating that some of these factors represent checkpoints in the development of allergic diseases. Th2 gene expression is also controlled at the level of chromatin remodeling, and the implications of chromatin-based Th2 gene regulation in allergic disorders is also discussed. The differentiation of Th2 cells from naive precursors is critically dependent upon instruction received from dendritic cells, although the precise signals involved in this process are not well understood. Current thinking regarding some of the environmental cues interpreted by dendritic cells during allergen encounter, and how they promote Th2 responses will be reviewed. Understanding the cross-talk between dendritic cells and T cells holds great promise for deciphering the dysregulated immune response in allergy.
Collapse
Affiliation(s)
- Marc Williams
- Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview CircleBaltimore, MD 21224, USA.
| | | |
Collapse
|
36
|
Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2010; 2:549-53. [PMID: 19892885 DOI: 10.1242/dmm.001719] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Childhood asthma is linked strongly to atopy and is characterised by a T helper 2 (Th2)-polarised immunological response. Epidemiological studies implicate severe lower respiratory tract viral infections, especially in early childhood, and repeated inhalational exposure to allergens as important synergistic factors in the development of asthma. The way in which these and other environmental factors induce stable alterations in phenotype is poorly understood, but may be explained on the basis of epigenetic changes, which are now recognised to underlie the establishment and maintenance of a Th2 response. Furthermore, ongoing asthmatic inflammation of the airways may be driven by alterations in the expression profile of regulatory microRNA genes, to which epigenetic mechanisms may also contribute. Thus, an understanding of epigenetic mechanisms in asthma has the potential to reveal new approaches for primary prevention or therapeutic intervention in childhood asthma.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, University of New South Wales, Sydney NSW, Australia.
| | | | | |
Collapse
|
37
|
Shen Z, Chen L, Hao F, Wu J. Transcriptional regulation of Foxp3 gene: multiple signal pathways on the road. Med Res Rev 2009; 29:742-66. [PMID: 19267400 DOI: 10.1002/med.20152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Foxp3, forkhead/winged helix transcription factor 3, is a master transcription factor for the development and function of regulatory T cells. Foxp3 has been proved to be associated with immunoregulation, autoimmune diseases, infections, and tumor immune evasion/escape. Foxp3 regulates other critical gene transcriptions. However, the mechanism how the transcription of Foxp3 itself is regulated remains partly clear. In this article, we provided an overview of the current understanding of the transcriptional regulation of Foxp3 gene, including signaling pathways initiated by TCR, IL-2R/STAT pathway, TGF-beta/Smad pathway, PI3K/Akt/mTOR axis, Notch signal pathway, IFN/IRF and IFN/nitric oxide axis, and epigenetic mechanisms. Some therapeutic agents on Foxp3 regulation were also reviewed. Points for attention in further study of Foxp3 transcription regulation, such as the combinations/cross-talks, the bi-directional functions, and species specificity of these pathways, were discussed as well.
Collapse
Affiliation(s)
- Zhu Shen
- Department of Dermatology, Center for Clinical Immunology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | |
Collapse
|
38
|
Jenner RG, Townsend MJ, Jackson I, Sun K, Bouwman RD, Young RA, Glimcher LH, Lord GM. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 2009; 106:17876-81. [PMID: 19805038 PMCID: PMC2764903 DOI: 10.1073/pnas.0909357106] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Indexed: 01/05/2023] Open
Abstract
Upon detection of antigen, CD4(+) T helper (Th) cells can differentiate into a number of effector types that tailor the immune response to different pathogens. Alternative Th1 and Th2 cell fates are specified by the transcription factors T-bet and GATA-3, respectively. Only a handful of target genes are known for these two factors and because of this, the mechanism through which T-bet and GATA-3 induce differentiation toward alternative cell fates is not fully understood. Here, we provide a genomic map of T-bet and GATA-3 binding in primary human T cells and identify their target genes, most of which are previously unknown. In Th1 cells, T-bet associates with genes of diverse function, including those with roles in transcriptional regulation, chemotaxis and adhesion. GATA-3 occupies genes in both Th1 and Th2 cells and, unexpectedly, shares a large proportion of targets with T-bet. Re-complementation of T-bet alters the expression of these genes in a manner that mirrors their differential expression between Th1 and Th2 lineages. These data show that the choice between Th1 and Th2 lineage commitment is the result of the opposing action of T-bet and GATA-3 at a shared set of target genes and may provide a general paradigm for the interaction of lineage-specifying transcription factors.
Collapse
Affiliation(s)
- Richard G. Jenner
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Michael J. Townsend
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
| | - Ian Jackson
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
| | - Kaiming Sun
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Russell D. Bouwman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London W1T 4JF, United Kingdom
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02141; and
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston, MA, 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Graham M. Lord
- Department of Nephrology and Transplantation and Medical Research Council Centre for Transplantation and
- National Institute for Health Research Comprehensive Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
39
|
Moon C, Kim S, Park K, Choi B, Lee H, Park J, Choi G, Kwan J, Joh J, Kim S. Use of Epigenetic Modification to Induce FOXP3 Expression in Naïve T Cells. Transplant Proc 2009; 41:1848-54. [DOI: 10.1016/j.transproceed.2009.02.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 02/17/2009] [Indexed: 01/19/2023]
|
40
|
Abstract
Naive CD4(+) T cells give rise to T-helper-cell subsets with functions that are tailored to their respective roles in host defence. The specification of T-helper-cell subsets is controlled by networks of lineage-specifying transcription factors, which bind to regulatory elements in genes that encode cytokines and other transcription factors. The nuclear context in which these transcription factors act is affected by epigenetic processes, which allow programmes of gene expression to be inherited by progeny cells that at the same time retain the potential for change in response to altered environmental signals. In this Review, we describe these epigenetic processes and discuss how they collaborate to govern the fate and function of T helper cells.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Current levels of air pollution are consistently associated with asthma development and morbidity among children, suggesting that current regulatory policies may be insufficient. This review will describe recent studies that have examined specific emission sources or components of pollutants that may be associated with pediatric asthma and identify subpopulations that may be particularly susceptible to the effects of air pollution exposure. RECENT FINDINGS Important advances include new characterizations of the effects of traffic-related air pollution in urban areas. They also include the application of novel exposure and outcome measures such as pollution estimates derived from land use regression modeling and biological markers of airway inflammation. Additionally, studies have identified host susceptibility characteristics that may modify responses to air pollution exposure, including polymorphisms in oxidative stress genes and epigenetic alterations. SUMMARY Identifying specific sources and toxic constituents of air pollution and accurately assessing air pollutant-related asthma outcomes are needed to better direct control strategies. Further research is needed to identify additional host factors that confer increased susceptibility to air pollution exposure. Future therapy to reduce the adverse effects of air pollution on respiratory disease will likely depend on targeting susceptible populations for intervention.
Collapse
|
42
|
Fowell DJ. Signals for the execution of Th2 effector function. Cytokine 2009; 46:1-6. [PMID: 19237299 PMCID: PMC2955979 DOI: 10.1016/j.cyto.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022]
Abstract
Appropriate control of infection depends on the generation of lymphocytes armed with a particular array of cytokine and chemokine effector molecules. The differentiation of naïve T cells into functionally distinct effector subsets is regulated by signals from the T cell receptor (TCR) and cytokine receptors. Using gene knock-out approaches, the initiation of discrete effector programs appears differentially sensitive to the loss of individual TCR signaling components; likely due to differences in the transcription factors needed to activate individual cytokine genes. Less well understood however, are the signal requirements for the execution of effector function. With a focus on Th2 cells and the kinase ITK, we review recent observations that point to differences between the signals needed for the initiation and implementation of cytokine programs in CD4+ T cells. Indeed, Th2 effector cells signal differently from both their naïve counterparts and from Th1 effectors suggesting they may transduce activation signals differently or may be selectively receptive to different activation signals. Potential regulation points for effector function lie at the level of transcription and translation of cytokine genes. We also discuss how provision of these execution signals may be spatially segregated in vivo occurring at tissue sites of inflammation and subject to modulation by the pathogen itself.
Collapse
Affiliation(s)
- Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, Ho SM. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 2009; 4:e4488. [PMID: 19221603 PMCID: PMC2637989 DOI: 10.1371/journal.pone.0004488] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/19/2008] [Indexed: 12/11/2022] Open
Abstract
In a longitudinal cohort of approximately 700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5'-CpG island(s) (5'-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5'-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5'-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m(3) (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5'CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development.
Collapse
Affiliation(s)
- Frederica Perera
- The Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Wan-yee Tang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Julie Herbstman
- The Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Deliang Tang
- The Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Linda Levin
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Rachel Miller
- The Columbia Center for Children's Environmental Health, Columbia University Mailman School of Public Health, New York, New York, United States of America
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Shuk-mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cancer Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lexberg MH, Taubner A, Förster A, Albrecht I, Richter A, Kamradt T, Radbruch A, Chang HD. Th memory for interleukin-17 expression is stable in vivo. Eur J Immunol 2008; 38:2654-64. [PMID: 18825747 DOI: 10.1002/eji.200838541] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Based on the memory for the re-expression of certain cytokine genes, different subsets of Th cells have been defined. In Th type 1 (Th1) and Th2 memory lymphocytes, the genes for the cytokines interferon-gamma and interleukin (IL)-4 are imprinted for expression upon restimulation by the expression of the transcription factors T-bet and GATA-3, respectively, and epigenetic modification of the cytokine genes. In Th17 cells, IL-17 expression is dependent on the transcription factors RORgammat and RORalpha. Here, we analyze the stability and plasticity of IL-17 memory in Th17 cells. We have developed a cytometric IL-17 secretion assay for the isolation of viable Th cells secreting IL-17. For Th17 cells generated in vitro, IL-17 expression itself is dependent on continued TGF-beta/IL-6 or IL-23 signaling and is blocked by interferon-gamma and IL-4 signaling. In response to IL-12 and IL-4, in vitro generated Th17 cells are converted into Th1 or Th2 cells, respectively. Th17 cells isolated ex vivo, however, maintain their IL-17 memory upon subsequent in vitro culture, even in the absence of IL-23. Their cytokine memory is not regulated by IL-12 or IL-4. Th17 cells generated in vivo are a stable and distinct lineage of Th cell differentiation.
Collapse
|
45
|
de Lalla C, Festuccia N, Albrecht I, Chang HD, Andolfi G, Benninghoff U, Bombelli F, Borsellino G, Aiuti A, Radbruch A, Dellabona P, Casorati G. Innate-like effector differentiation of human invariant NKT cells driven by IL-7. THE JOURNAL OF IMMUNOLOGY 2008; 180:4415-24. [PMID: 18354162 DOI: 10.4049/jimmunol.180.7.4415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional MHC-restricted T lymphocytes leave thymus with a naive phenotype and require Ag-dependent stimulation coupled to proliferation to acquire effector functions. Invariant (i)NKT cells are a subset of T lymphocytes considered innate because they display an effector memory phenotype independent of TCR stimulation by foreign Ags. We investigated the effector differentiation program followed by human iNKT cells by studying cells from a relevant set of fetal thymi and umbilical cord blood samples. We find that human fetal iNKT cells have already started a differentiation program that activates the epigenetic and transcriptional control of ifng and il4 genes, leading at birth to cells that express these cytokines upon TCR signaling but independently of proliferation in vitro. Both ex vivo and in vitro analysis of fetal and neonatal iNKT cells delineate an effector differentiation program linked to cell division in vivo, and they identify IL-7 as one of the crucial signals driving this program in the apparent absence of Ag stimulation. Consistent with these data, human fetal and neonatal iNKT cells are hyperresponsive in vitro to IL-7 in comparison to conventional T cells, owing to an increased expression and signaling function of the IL-7 receptor alpha-chain. The innate nature of human iNKT cells could thus derive from lineage-specific developmental cues that selectively make these cells efficient IL-7 responders following thymic selection.
Collapse
Affiliation(s)
- Claudia de Lalla
- Experimental Immunology Unit, Cancer Immunotherapy and Gene Therapy Program, DIBIT, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kumar A, Ghosh B. A single nucleotide polymorphism (A --> G) in intron 3 of IFNgamma gene is associated with asthma. Genes Immun 2008; 9:294-301. [PMID: 18385742 DOI: 10.1038/gene.2008.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interferon-gamma (IFNgamma) is located on chromosome 12, and a number of studies have detected very strong linkage signals around this gene and asthma. The aim of this study was to analyze the association of a (CA)n repeat in intron 1 and six single nucleotide polymorphisms (((rs2069705, T/C) (promoter)), ((rs1861494, A/G), (rs1861493, T/C), (rs2069718, C/T) (intron 3)), ((rs2069727, A/G) and (rs2069728, G/A) (3' untranslated region))) spanning the whole gene with asthma. We report here the association of rs1861494 A/G with atopic asthma in a case-control cohort (n=189 and n=270 cases and controls, respectively) (P=0.0006), which was replicated (P=0.006) in a family study (n=137) as well. Allele G was found to be negatively associated (odds ratio=0.50, 95% confidence interval, P=0.0006). A five-locus haplotype also showed significant association with asthma in the case-control (P=0.002) and the family studies (P=0.0004). In our three-locus sliding window haplotypic analysis, we found the (CA)n repeat, rs1861494 A/G and rs2069718 C/T to be of high priority (P=0.0003). Using electrophoretic mobility shift assay, we provide evidence that the alleles of rs1861494 A/G have differential affinity to bind to putative nuclear factor(s). In conclusion, we report for the first time association of rs1861494 A/G polymorphism with asthma, which may regulate the IFNgamma levels and, hence, modulate asthma pathogenesis.
Collapse
Affiliation(s)
- A Kumar
- Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Delhi, India
| | | |
Collapse
|
47
|
Katzman SD, Fowell DJ. Pathogen-imposed skewing of mouse chemokine and cytokine expression at the infected tissue site. J Clin Invest 2008; 118:801-11. [PMID: 18188454 DOI: 10.1172/jci33174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022] Open
Abstract
Compartmentalization of immunity ensures tight regulation of T cell activation in the LN and precise effector T cell delivery to inflamed sites. Herein we show that the tissue-specific accumulation of effector T cells can be subverted by a pathogen at the infection site. Using the Leishmania major mouse model of dermal infection, we observed a restricted chemokine profile at the infection site, i.e., the expression of Th2 cell-attracting CCL7 but not of Th1 cell-attracting chemokines. Consistent with these chemokine expression data, recruitment of cytokine-producing T cells to the infection site was also selective. Both IL-4- and IFN-gamma-producing effector T cells homed to inflamed OVA/CFA-immunized dermis, but only IL-4-producing cells homed to L. major-infected dermis. The narrowing of the cytokine repertoire at the site of infection with L. major was driven, in part, by pathogen-induced CCL7. Inflammatory signals failed to disrupt the early restrictive L. major infection site, which suggests that L. major dominantly modifies the local milieu. We have highlighted an emerging principle in pathogen-host interactions: that the cytokine repertoire at the infection site and the LN draining the infection site can be different because of the ability of the pathogen to modify the chemokine profile at the infection site. Thus, pathogens may edit the LN cytokine repertoire through differential recruitment of cytokine-producing cells.
Collapse
Affiliation(s)
- Shoshana D Katzman
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
48
|
Miller RL, Ho SM. Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 2008; 177:567-73. [PMID: 18187692 DOI: 10.1164/rccm.200710-1511pp] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies suggest that epigenetic regulation (heritable changes in gene expression that occur in the absence of alterations in DNA sequences) may in part mediate the complex gene-by-environment interactions that can lead to asthma. The variable natural history of asthma (i.e., incidence and remission of symptoms) may be a result of epigenetic changes, such as DNA methylation, covalent histone modifications, microRNA changes, and chromatin alterations, after early or later environmental exposures. Findings from multiple epidemiologic and experimental studies indicate that asthma risk may be modified by epigenetic regulation. One study suggested that the transmission of asthma risk may occur across multiple generations. Experimental studies provide substantial in vitro data indicating that DNA methylation of genes critical to T-helper cell differentiation may induce polarization toward or away from an allergic phenotype. Despite this initial progress, fundamental questions remain that need to be addressed by well-designed research studies. Data generated from controlled experiments using in vivo models and/or clinical specimens collected after environmental exposure monitoring are limited. Importantly, cohort-driven epigenetic research has the potential to address key questions, such as those concerning the influence of timing of exposure, dose of exposure, diet, and ethnicity on susceptibility to asthma development. There is immense promise that the study of environmental epigenetics will help us understand a theoretically preventable environmental disease.
Collapse
Affiliation(s)
- Rachel L Miller
- PH8E, 630 W. 168th Street, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
49
|
Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F, Chen LC, Miller RL. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2007; 102:76-81. [PMID: 18042818 DOI: 10.1093/toxsci/kfm290] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-gamma promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-gamma promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus. We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-gamma promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG(-45), CpG(-53), CpG(-205) sites of the IFN-gamma promoter and hypomethylation at CpG(-408) of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis.
Collapse
Affiliation(s)
- Jinming Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim ST, Fields PE, Flavell RA. Demethylation of a specific hypersensitive site in the Th2 locus control region. Proc Natl Acad Sci U S A 2007; 104:17052-7. [PMID: 17940027 PMCID: PMC2040439 DOI: 10.1073/pnas.0708293104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Indexed: 12/21/2022] Open
Abstract
A growing body of literature has examined and implicated DNA methylation as a critical epigenetic modification in T helper (Th) cell differentiation. The absence of DNA methyltransferases or methyl-binding proteins derepresses many cytokine loci, allowing their ectopic expression, while methylation of specific CpG residues is sufficient to prevent expression. Here, we characterize demethylation events of the Th2 cytokine locus control region (LCR). rad50 hypersensitive site 7 (RHS7), a hypersensitive site within this LCR, becomes demethylated in a STAT6-dependent manner and only in cells stimulated under type 2 conditions. Robust demethylation appears to require signaling contributions from both IL-4 receptor, via STAT6, and CD28, but it cannot be effected by GATA3. Finally, RHS7 is demethylated independently of cell division, consistent with an "active," rather than passive, mechanism. Taken together, these findings firmly connect RHS7 demethylation and Th2 LCR activation in the type 2 differentiation program.
Collapse
Affiliation(s)
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Richard A. Flavell
- *Department of Immunobiology and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520; and
| |
Collapse
|