1
|
Adamopoulos PG, Bartzoka N, Tsiakanikas P, Scorilas A. Characterization of novel ACE2 mRNA transcripts: The potential role of alternative splicing in SARS-CoV-2 infection. Gene 2025; 936:149092. [PMID: 39549777 DOI: 10.1016/j.gene.2024.149092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The human angiotensin converting enzyme 2 (ACE2) gene encodes a type I transmembrane protein, which is homologous to angiotensin I-converting enzyme (ACE) and belongs to the angiotensin-converting enzyme family of dipeptidyl carboxypeptidases. As highlighted by the COVID-19 pandemic, ACE2 is not only crucial for the renin-angiotensin-aldosterone system (RAAS), but also displays great affinity with the SARS-CoV-2 spike protein, representing the major receptor of the virus. Given the significance of ACE2 in COVID-19, especially among cancer patients, the present study aims to explore the transcriptional landscape of ACE2 in human cancer and non-cancerous cell lines through the design and implementation of a custom targeted long-read sequencing approach. Bioinformatics analysis of the massive parallel sequencing data led to the identification of novel ACE2 mRNA splice variants (ACE2 sv.7-sv.12) that demonstrate previously uncharacterized exon-skipping events as well as 5' and/or 3' alternative splice sites. Demultiplexing of the sequencing data elucidated the differential expression profile of the identified splice variants in multiple human cell types, whereas in silico analysis suggests that some of the novel splice variants could produce truncated ACE2 isoforms with altered functionalities, potentially influencing their interaction with the SARS-CoV-2 spike protein. In summary, our study sheds light on the complex alternative splicing landscape of the ACE2 gene in cancer cell lines, revealing novel splice variants that could have significant implications for SARS-CoV-2 susceptibility in cancer patients. These findings contribute to the increased understanding of ACE2's role in COVID-19 and highlight the importance of considering alternative splicing as a key factor in viral pathogenesis. Undoubtably, further research is needed to explore the functional roles of these variants and their potential as therapeutic targets in the ongoing fight against COVID-19.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natalia Bartzoka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
3
|
Gentili V, Beltrami S, Cuffaro D, Cianci G, Maini G, Rizzo R, Macchia M, Rossello A, Bortolotti D, Nuti E. JG26 attenuates ADAM17 metalloproteinase-mediated ACE2 receptor processing and SARS-CoV-2 infection in vitro. Pharmacol Rep 2025; 77:260-273. [PMID: 39292373 PMCID: PMC11743353 DOI: 10.1007/s43440-024-00650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND ADAM17 is a metalloprotease implicated in the proteolysis of angiotensin-converting enzyme 2 (ACE2), known to play a critical role in the entry and spread of SARS-CoV-2. In this context, ADAM17 results as a potential novel target for controlling SARS-CoV-2 infection. METHODS In this study, we investigated the impact on ACE2 surface expression and the antiviral efficacy against SARS-CoV-2 infection of the selective ADAM17 inhibitor JG26 and its dimeric (compound 1) and glycoconjugate (compound 2) derivatives using Calu-3 human lung cells. RESULTS None of the compounds exhibited cytotoxic effects on Calu-3 cells up to a concentration of 25 µM. Treatment with JG26 resulted in partial inhibition of both ACE2 receptor shedding and SARS-CoV-2 infection, followed by compound 1. CONCLUSION JG26, an ADAM17 inhibitor, demonstrated promising antiviral activity against SARS-CoV-2 infection, likely attributed to reduced sACE2 availability, thus limiting viral dissemination.
Collapse
Affiliation(s)
- Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Giorgia Cianci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Gloria Maini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy
- Clinical Research Center, LTTA, University of Ferrara, Ferrara, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, 56126, Italy.
| |
Collapse
|
4
|
Yskak A, Sokharev Y, Zhumalynov K, Koneva E, Afanasyeva N, Borodulin D, Babaskin D, Nugmanov A, Nurushev M, Chashkov V. Hormonal Implications of SARS-CoV-2: A Review of Endocrine Disruptions. SCIENTIFICA 2025; 2025:7305185. [PMID: 39830837 PMCID: PMC11742418 DOI: 10.1155/sci5/7305185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/27/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025]
Abstract
To improve medical care and rehabilitation algorithms for patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is important to evaluate and summarize the available data on the effect of coronavirus infection (COVID-19) on the endocrine system. The purpose of this review was to study the effect of COVID-19 on the endocrine system. The scientific novelty of this study is the evaluation of the effect of coronavirus infection on the endocrine system and the potential effect of hormones on susceptibility to COVID-19. The results of this review show that the endocrine system is vulnerable to disorders caused by COVID-19, mainly thyroid dysfunction and hyperglycemia. The information in the published literature mentioned here contains some unclear aspects and contradictory data, but much remains to be studied and clarified regarding the impact of COVID-19 on the endocrine system. In particular, this concerns the study of the hyperglycemic status of patients who have had coronavirus infection, which is extremely important for the future metabolic health of COVID-19 survivors. This review contributes to the scientific discourse by systematically synthesizing disparate studies to identify patterns, gaps, and emerging trends in the literature concerning the effects of COVID-19 on the endocrine system. By integrating these findings, this study offers a novel perspective on potential hormonal interactions influencing COVID-19 susceptibility and outcomes, proposing new hypotheses and frameworks for future research.
Collapse
Affiliation(s)
- Aliya Yskak
- Research Institute of Applied Biotechnology, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia
| | - Yevgeniy Sokharev
- Pathological Anatomy Department, Municipal State Company “Kostanay Regional Pathoanatomical Bureau” of the Health Department of the Akimat of the Kostanay Region, Kostanay, Kazakhstan
| | - Kuanysh Zhumalynov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Elizaveta Koneva
- Department of Sports Medicine and Medical Rehabilitation, Sechenov University, Moscow, Russia
| | - Natalia Afanasyeva
- Resource Center “Medical Sechenov Pre-University”, Sechenov University, Moscow, Russia
| | - Dmitri Borodulin
- Department of Technology of Storage and Processing of Fruits, Vegetables and Plant Growing Products, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | | | - Almabek Nugmanov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| | - Murat Nurushev
- Higher School of Natural Sciences, Astana International University, Astana, Kazakhstan
| | - Vadim Chashkov
- Department of Natural Sciences, Akhmet Baitursynuly Kostanay Regional University, Kostanay, Kazakhstan
| |
Collapse
|
5
|
Bach ML, Laftih S, Andresen JK, Pedersen RM, Andersen TE, Madsen LW, Madsen K, Hinrichs GR, Zachar R, Svenningsen P, Lund L, Johansen IS, Hansen LF, Palarasah Y, Jensen BL. ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19. Pflugers Arch 2025; 477:83-98. [PMID: 39382598 PMCID: PMC11711140 DOI: 10.1007/s00424-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.
Collapse
Affiliation(s)
- Marie Lykke Bach
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sara Laftih
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper K Andresen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Rikke Zachar
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Yaseelan Palarasah
- Unit of Inflammation and Cancer Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Shikama Y, Otsuka K, Shikama Y, Furukawa M, Ishimaru N, Matsushita K. Involvement of metformin and aging in salivary expression of ACE2 and TMPRSS2. Biofactors 2025; 51:e2154. [PMID: 39865553 PMCID: PMC11771682 DOI: 10.1002/biof.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs. Regarding TMPRSS2, zymogen and the cleaved form were both expressed in the salivary glands, whereas only zymogen was expressed in murine lacrimal glands and the lungs. Metformin, an AMPK activator, increased stimulated saliva secretion and full-length ACE2 expression and decreased cleaved TMPRSS2 expression in the salivary glands, and exerted the same effects on soluble ACE2 (sACE2) and sTMPRSS2 in saliva. Moreover, metformin decreased the expression of beta-galactosidase, a senescence marker, and ADAM17, a sheddase of ACE2 to sACE2, in the salivary glands. In aged mice, the expression of ACE2 was decreased in the salivary glands, whereas that of sACE2 was increased in saliva, presumably by the up-regulated expression of ADAM17. The expression of TMPRSS2 in the salivary glands and sTMPRSS2 in saliva were both increased. Collectively, these results suggest that the protein expression patterns of ACE2 and TMPRSS2 in the salivary glands differ from those in other oral-related cells and tissues, and also that metformin and aging affect the salivary expression of ACE2 and TMPRSS2, which have the potential as targets for preventing the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Kunihiro Otsuka
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuka Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Masae Furukawa
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Naozumi Ishimaru
- Department of Oral PathologyGraduate School of Medical and Dental Sciences, Institute of Science TokyoTokyoJapan
| | - Kenji Matsushita
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Sáez-Leyva J, Lennol MP, Avilés-Granados C, García-Ayllón MS, Gutiérrez A, Francés R, Sáez-Valero J. Altered plasma levels of the SARS-CoV-2-related proteins ACE2 and TMPRSS2 in patients with Crohn's disease. Sci Rep 2024; 14:30346. [PMID: 39638806 PMCID: PMC11621418 DOI: 10.1038/s41598-024-81810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The SARS-CoV-2 coronavirus infects cells through the cellular receptor angiotensin-converting enzyme 2 (ACE2), and the protease TMPRSS2 for the priming of viral spike protein. Thus, changes in these key proteins due to chronic conditions can increase risk for SARS-CoV2 infection; but significance of changes may differ is these changes correspond to full-length species or proteolytic fragments. Here, we determined that full-length ACE2 decreased in the plasma of uninfected Crohn's disease (CD) patients before treatment onset compared to controls. TMPRSS2 is mostly presented in plasma as full-length species and as an active peptidase fragment, but also as a prodomain fragment, which is the unique species remarkably decreased in plasma from CD patients. Patients treated with the anti-TNFα adalimumab showed recovery in ACE2 levels, while those treated with infliximab, or with the anti-IL-12/23 ustekinumab, still displayed a decrease in full-length species, as well as in cleaved fragments. Patients treated with azathioprine displayed similar ACE2 levels to that of controls, except a decrease in one of the ACE2 fragments. Uniquely, patients treated with azathioprine or with ustekinumab showed partial recovery in the reduction of the TMPRSS2-prodomain fragment characterized in treatment-naïve patients. Our data suggest that CD and common therapies are not related to increased susceptibility for SARS-CoV-2.
Collapse
Affiliation(s)
- Jorge Sáez-Leyva
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute of Neurophysiopathology (INP UMR7051), CNRS, Aix-Marseille Université, Marseille, 13005, France
| | - Carlos Avilés-Granados
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| | - Ana Gutiérrez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Francés
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
- Hepatic and Intestinal Immunology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
8
|
Stich M, Magalhães VG, Bürger F, Garbade SF, Jeltsch K, Mohr K, Haddad A, Elling R, Lang P, Rabsteyn A, Jacobsen E, Bode SFN, Müller B, Kräusslich H, Hoffmann GF, Okun JG, Bartenschlager R, Binder M, Janda A, Renk H, Tönshoff B. Elevated Soluble ACE2 Activity in Children and Adults After SARS-CoV-2 Exposure Irrespective of Laboratory-Confirmed Infection. J Med Virol 2024; 96:e70098. [PMID: 39624009 PMCID: PMC11612704 DOI: 10.1002/jmv.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
The pivotal role of the cell entry receptor ACE2 for SARS-CoV-2 infection is well-established. When ACE2 is shed from cell surface into plasma as soluble ACE2 (sACE2), it can effectively neutralize SARS-CoV-2. This longitudinal prospective cohort study analyzed sACE2 activity in 1192 participants, aged 4 months to 81 years, 3 and 12 months after SARS-CoV-2 household exposure. Following SARS-CoV-2 exposure, participants exhibited significantly elevated sACE2 activity, irrespective of confirmed infection, with the highest levels observed in exposed children. Longitudinal analysis revealed a decline in sACE2 levels over time, reaching levels comparable to age- and sex-matched pre-pandemic controls. An increase in sACE2 activity was also confirmed in vitro in Calu-3 (human lung) cells within hours of SARS-CoV-2 exposure, providing a direct link between SARS-CoV-2 exposure and elevated sACE2. This study, therefore, challenges the dichotomy of categorizing SARS-CoV-2 exposed participants as infected or not infected solely on currently established diagnostic assays. It demonstrates lasting host responses independent of B- and T-cell memory and may help to keep SARS-CoV-2 infections in balance and contribute to successful virus clearance in children and adults lacking humoral and cellular immune responses following SARS-CoV-2 exposure. Trial Registration: German Registry for Clinical Studies; Identifier: D 00021521.
Collapse
Affiliation(s)
- Maximilian Stich
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
- Heidelberg UniversityMedical Faculty Heidelberg, Department of Infectious Diseases, Molecular VirologyHeidelbergGermany
- German Cancer Research Center (DKFZ)Division Virus‐Associated CarcinogenesisHeidelbergGermany
- German Center for Infection Research (DZIF)Heidelberg Partner SiteHeidelbergGermany
| | - Vladimir Gonçalves Magalhães
- German Cancer Research Center (DKFZ)Division Virus‐Associated Carcinogenesis, Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”HeidelbergGermany
| | - Friederike Bürger
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| | - Sven F. Garbade
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| | - Kathrin Jeltsch
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| | - Kerstin Mohr
- German Cancer Research Center (DKFZ)Division Virus‐Associated Carcinogenesis, Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”HeidelbergGermany
| | - Anneke Haddad
- Institute for Infection Prevention and ControlUniversity Medical Centre and Faculty of Medicine FreiburgFreiburg im BreisgauGermany
- Center for Pediatrics and Adolescent MedicineUniversity Medical Centre and Faculty of Medicine FreiburgFreiburg im BreisgauGermany
| | - Roland Elling
- Center for Pediatrics and Adolescent MedicineUniversity Medical Centre and Faculty of Medicine FreiburgFreiburg im BreisgauGermany
- Institute for ImmunodeficiencyMedical Center Freiburg, Germany and Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Peter Lang
- University Children's Hospital TübingenDepartment of Hematology/OncologyTübingenGermany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)Partner Site TübingenTübingenGermany
| | - Armin Rabsteyn
- University Children's Hospital TübingenDepartment of Hematology/OncologyTübingenGermany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)Partner Site TübingenTübingenGermany
- Cluster of Excellence iFIT (EXC2180) “Image‐Guided and Functionally Instructed Tumor Therapies”University of TübingenTübingenGermany
| | - Eva‐Maria Jacobsen
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Sebastian F. N. Bode
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Barbara Müller
- Heidelberg UniversityMedical Faculty Heidelberg, Department of Infectious Diseases, VirologyHeidelbergGermany
| | - Hans‐Georg Kräusslich
- German Center for Infection Research (DZIF)Heidelberg Partner SiteHeidelbergGermany
- Heidelberg UniversityMedical Faculty Heidelberg, Department of Infectious Diseases, VirologyHeidelbergGermany
| | - Georg Friedrich Hoffmann
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| | - Jürgen G. Okun
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| | - Ralf Bartenschlager
- Heidelberg UniversityMedical Faculty Heidelberg, Department of Infectious Diseases, Molecular VirologyHeidelbergGermany
- German Cancer Research Center (DKFZ)Division Virus‐Associated CarcinogenesisHeidelbergGermany
- German Center for Infection Research (DZIF)Heidelberg Partner SiteHeidelbergGermany
| | - Marco Binder
- German Cancer Research Center (DKFZ)Division Virus‐Associated Carcinogenesis, Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”HeidelbergGermany
| | - Aleš Janda
- Department of Pediatrics and Adolescent MedicineUlm University Medical CenterUlmGermany
| | - Hanna Renk
- University Children's Hospital TübingenDepartment of Pediatric Neurology and Developmental MedicineTübingenGermany
| | - Burkhard Tönshoff
- Heidelberg UniversityMedical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department of Pediatrics IHeidelbergGermany
| |
Collapse
|
9
|
Ahmed AEA, Abuhamdah SM, Hassan MH, Rashwan NI, Abd-Elmawgood EA, Mansour H, Sherkawy HS, Rizk SG. Clinical, biochemical, and genetic study of TACE/TNF-α/ACE signaling pathway in pediatric COVID-19 infection. Clin Exp Pediatr 2024; 67:704-717. [PMID: 39600173 PMCID: PMC11621736 DOI: 10.3345/cep.2024.00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pediatric patients infected with coronavirus disease 2019 (COVID-19) have unique clinical characteristics. Tumor necrosis factor (TNF) is a proinflammatory cytokine that greatly contributes to tumor pathogenesis. PURPOSE To describe the presenting characteristics of COVID-19 infection among pediatric patients, and investigate the possible role of the TNF-α signaling pathway. METHODS This prospective case-control study included 50 Egyptian pediatric patients with COVID-19 and 50 healthy controls. Clinical, laboratory, and radiological assessments were performed. Serum TNF-alpha (TNF-α), TNF-α-converting enzyme (TACE), and angiotensin-converting enzyme 2 (ACE2) were measured using enzyme-linked immunosorbent assay. ACE (I/D) (rs4646994), ACE2 rs2285666, and TNF-α-308G/A single nucleotide polymorphisms (SNPs) were performed using conventional polymerase chain reaction techniques with or without restriction fragment length polymorphism. RESULTS The median age was 1 year (interquartile range [IQR], 0.31-2.50 years) in the case group and 1.45 years (IQR, 1.00-3.00) in the control group. The main presenting symptoms were fever (92%), dry cough (74%), and dyspnea (72%). The lymphocytic count was normal in 14 patients (28%), decreased in 16 patients (32%), and increased in 20 patients (40%) of the case group. Positive chest computed tomography finding of COVID-19 infection were demonstrated among 40% of patients using COVID-19 Reporting and Data System categories (ground-glass opacity with or without consolidations in the lungs). There were significant increased serum TACE and TNF-α with decreased ACE2 levels among cases versus controls (P< 0.001). The GG genotype and G allele of the TNF-α-308G/A SNP were significantly higher in patients than in controls (P<0.05 for both), with insignificant differences in genotype and allelic frequencies in the ACE (I/D) (rs4646994) and ACE2 rs2285666 SNPs. CONCLUSION The TNF signaling pathway was significantly activated in pediatric COVID-19 infection. Only the TNF-α-308G/A SNP was significantly associated with pediatric COVID-19 infection.
Collapse
Affiliation(s)
- Ahmed El-Abd Ahmed
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sawsan M.A. Abuhamdah
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Abu Dhabi, UAE
| | - Mohammed H. Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
- Department of Medical Biochemistry, Medicine and Surgery Program, South Valley National University, Qena, Egypt
| | - Nagwan I. Rashwan
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Haggagy Mansour
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Hoda S. Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Shymaa G. Rizk
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Webers M, Yu Y, Eyll J, Vanderliek-Kox J, Schun K, Michely A, Schumertl T, Garbers C, Dietrich J, Jonigk DD, Krüger I, Kühnel MP, Martin C, Ludwig A, Düsterhöft S. The metalloproteinase ADAM10 sheds angiotensin-converting enzyme (ACE) from the pulmonary endothelium as a soluble, functionally active convertase. FASEB J 2024; 38:e70105. [PMID: 39387631 DOI: 10.1096/fj.202402069r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a critical role in the regulation of blood pressure and fluid balance, with angiotensin-converting enzyme (ACE) being a key transmembrane enzyme that converts angiotensin I to angiotensin II. Hence, ACE activity is an important drug target in cardiovascular pathologies such as hypertension. Our study demonstrates that human pulmonary microvascular endothelial cells (HPMECs) are an important source of proteolytically released ACE. The proteolytic release of transmembrane proteins, a process known as ectodomain shedding, is facilitated by membrane proteases called sheddases. By knockout and inhibition studies, we identified ADAM10 (A disintegrin and metalloprotease 10) as a primary sheddase responsible for ACE release in HEK293 cells. The function of ADAM10 as primary, constitutive sheddase of ACE was confirmed in HPMECs. Moreover, we demonstrated the physiological relevance of ADAM10 for ACE shedding in ex vivo precision cut lung slices (PCLS) from human and mouse lungs. Notably, ADAM17 activity is not directly involved in ACE shedding but indirectly by regulating ACE mRNA and protein levels, leading to increased ADAM10-mediated ACE shedding. Importantly, soluble ACE generated by shedding is enzymatically active and can thereby participate in systemic RAAS functions. Taken together, our findings highlight the critical role of ADAM10 (directly) and ADAM17 (indirectly) in ACE shedding and RAAS modulation.
Collapse
Affiliation(s)
- Maria Webers
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yan Yu
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johanna Eyll
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julia Vanderliek-Kox
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katharina Schun
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Michely
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Tim Schumertl
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Hannover, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Dietrich
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Ingo Krüger
- Clinic for Thoracic Surgery, Luisenhospital Aachen, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, University Clinics of RWTH University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
12
|
Jacobs AK, Morley SD, Samuel K, Morgan K, Boswell L, Kendall TJ, Dorward DA, Fallowfield JA, Hayes PC, Plevris JN. Hepatic angiotensin-converting enzyme 2 expression in metabolic dysfunction-associated steatotic liver disease and in patients with fatal COVID-19. World J Gastroenterol 2024; 30:3705-3716. [PMID: 39192998 PMCID: PMC11346159 DOI: 10.3748/wjg.v30.i31.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), characterised by hepatic lipid accumulation, causes inflammation and oxidative stress accompanied by cell damage and fibrosis. Liver injury (LI) is also frequently reported in patients hospitalised with coronavirus disease 2019 (COVID-19), while pre-existing MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy. Mechanisms of injury at the cellular level remain unclear, but it may be significant that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19, uses angiotensin-converting expression enzyme 2 (ACE2), a key regulator of the 'anti-inflammatory' arm of the renin-angiotensin system, for viral attachment and host cell invasion. AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19. METHODS ACE2 protein levels and localisation, and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum (isolated hepatocellular steatosis, metabolic dysfunction-associated steatohepatitis (MASH) +/- fibrosis, end-stage cirrhosis) and in post-mortem tissues from patients who had died with severe COVID-19, using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas, followed by quantification using machine learning-based image pixel classifiers. RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes. Strikingly, ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis. ACE2 protein levels and histological fibrosis are not associated, but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum. Hepatic ACE2 levels are also increased in COVID-19 patients, especially those showing evidence of LI, but are not correlated with the presence of SARS-CoV-2 virus in the liver. However, there is a clear association between the hepatic lipid droplet content and the presence of the virus, suggesting a possible functional link. CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI, while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication, accelerating MASLD progression and COVID-19-mediated liver damage.
Collapse
Affiliation(s)
- Angus K Jacobs
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Steven D Morley
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Jack Copland Centre, Edinburgh EH14 4BE, United Kingdom
| | - Katie Morgan
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Lyndsey Boswell
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
- Edinburgh Pathology, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - David A Dorward
- Edinburgh Pathology, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Jonathan A Fallowfield
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Peter C Hayes
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - John N Plevris
- Hepatology Laboratory, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
13
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
14
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Alkhofash NF, Ali BR. The Evaluation of Drugs as Potential Modulators of the Trafficking and Maturation of ACE2, the SARS-CoV-2 Receptor. Biomolecules 2024; 14:764. [PMID: 39062478 PMCID: PMC11274373 DOI: 10.3390/biom14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
ACE2, part of the angiotensin-converting enzyme family and the renin-angiotensin-aldosterone system (RAAS), plays vital roles in cardiovascular and renal functions. It is also the primary receptor for SARS-CoV-2, enabling its entry into cells. This project aimed to study ACE2's cellular trafficking and maturation to the cell surface and assess the impact of various drugs and compounds on these processes. We used cellular and biochemical analyses to evaluate these compounds as potential leads for COVID-19 therapeutics. Our screening assay focused on ACE2 maturation levels and subcellular localization with and without drug treatments. Results showed that ACE2 maturation is generally fast and robust, with certain drugs having a mild impact. Out of twenty-three tested compounds, eight significantly reduced ACE2 maturation levels, and three caused approximately 20% decreases. Screening trafficking inhibitors revealed significant effects from most molecular modulators of protein trafficking, mild effects from most proposed COVID-19 drugs, and no effects from statins. This study noted that manipulating ACE2 levels could be beneficial or harmful, depending on the context. Thus, using this approach to uncover leads for COVID-19 therapeutics requires a thorough understanding ACE2's biogenesis and biology.
Collapse
Affiliation(s)
- Nesreen F. Alkhofash
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
16
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
17
|
Mendiola-Salazar XA, Munguía-Laguna MA, Franco M, Cano-Martínez A, Santamaría Sosa J, Bautista-Pérez R. SARS-CoV-2 Spike Protein Enhances Carboxypeptidase Activity of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:6276. [PMID: 38892464 PMCID: PMC11172802 DOI: 10.3390/ijms25116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats.
Collapse
Affiliation(s)
- Xóchitl Andrea Mendiola-Salazar
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico (M.A.M.-L.)
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Melanie A. Munguía-Laguna
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico (M.A.M.-L.)
| | - Martha Franco
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.); (J.S.S.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - José Santamaría Sosa
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.); (J.S.S.)
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico (M.A.M.-L.)
| |
Collapse
|
18
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
20
|
Barone M. Angiotensin-converting enzyme 2 and AMPK/mTOR pathway in the treatment of liver fibrosis: Should we consider further implications? World J Gastroenterol 2024; 30:2391-2396. [PMID: 38764773 PMCID: PMC11099390 DOI: 10.3748/wjg.v30.i18.2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 05/11/2024] Open
Abstract
This editorial contains comments on the article by Zhao et al in print in the World Journal of Gastroenterology. The mechanisms responsible for hepatic fibrosis are also involved in cancerogenesis. Here, we recapitulated the complexity of the renin-angiotensin system, discussed the role of hepatic stellate cell (HSC) autophagy in liver fibrogenesis, and analyzed the possible implications in the development of hepatocarcinoma (HCC). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers definitively contribute to reducing hepatic fibrogenesis, whereas their involvement in HCC is more evident in experimental conditions than in human studies. Angiotensin-converting enzyme 2 (ACE2), and its product Angiotensin (Ang) 1-7, not only regulate HSC autophagy and liver fibrosis, but they also represent potential targets for unexplored applications in the field of HCC. Finally, ACE2 overexpression inhibits HSC autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. In this case, Ang 1-7 acts binding to the MasR, and its agonists could modulate this pathway. However, since AMPK utilizes different targets to suppress the mTOR downstream complex mTOR complex 1 effectively, we still need to unravel the entire pathway to identify other potential targets for the therapy of fibrosis and liver cancer.
Collapse
Affiliation(s)
- Michele Barone
- Section of Gastroenterology, Department of Precision and Regenerative Medicine - Jonian Area- University of Bari, Bari 70124, Italy
| |
Collapse
|
21
|
Kuo TC, Hsu WL, Wu VC, Jan TR, Tsai PSJ, Lee YJ. Urinary angiotensin-converting enzyme 2 and its activity in cats with chronic kidney disease. Front Vet Sci 2024; 11:1362379. [PMID: 38756510 PMCID: PMC11097973 DOI: 10.3389/fvets.2024.1362379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Angiotensin-converting enzyme 2 (ACE2) played an important role in the renin-angiotensin-aldosterone system (RAAS) and it was proved to be renoprotective in renal disease. Urinary angiotensin-converting enzyme 2 (uACE2) has been shown to reflect renal injury in human and experimental studies, but its role in feline kidney disease remains unknown. Aims Our objectives involve comparing uACE2 concentrations and activities in cats across CKD stages with healthy controls, investigating the relationship between uACE2 concentrations, activities, and clinicopathological data in feline CKD patients, and assessing the predictive abilities of both for CKD progression. Methods A retrospective, case-control study. The concentration and activity of uACE2 were measured by commercial ELISA and fluorometric assay kits, respectively. The concentration was adjusted to give uACE2 concentration-to-creatinine ratios (UACCRs). Results In total, 67 cats consisting of 24 control and 43 chronic kidney disease (CKD), including 24 early-stage CKD and 19 late-stage CKD, were enrolled in this study. UACCR values were significantly higher in both early-stage (2.100 [1.142-4.242] x 10-6) and late-stage feline CKD (4.343 [2.992-5.0.71] x 10-6) compared to healthy controls (0.894 [0.610-1.076] x 10-6; p < 0.001), and there was also significant difference between-early stage group and late-stage group (p = 0.026). Urinary ACE2 activity (UAA) was significantly lower in CKD cats (1.338 [0.644-2.755] x pmol/min/ml) compared to the healthy cats (7.989 [3.711-15.903] x pmol/min/ml; p < 0.001). UACCR demonstrated an independent, positive correlation with BUN (p < 0.001), and UAA exhibited an independent, negative correlation with plasma creatinine (p < 0.001). Both UACCR and UAA did not yield significant results in predicting CKD progression based on the ROC curve analysis. Conclusion and clinical importance uACE2 concentration and activity exhibit varying changes as renal function declines, particularly in advanced CKD cats.
Collapse
Affiliation(s)
- Tzu-Chien Kuo
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tong-Rong Jan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Jane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Heindl MR, Rupp AL, Schwerdtner M, Bestle D, Harbig A, De Rocher A, Schmacke LC, Staker B, Steinmetzer T, Stein DA, Moulton HM, Böttcher-Friebertshäuser E. ACE2 acts as a novel regulator of TMPRSS2-catalyzed proteolytic activation of influenza A virus in airway cells. J Virol 2024; 98:e0010224. [PMID: 38470058 PMCID: PMC11019950 DOI: 10.1128/jvi.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.
Collapse
Affiliation(s)
| | - Anna-Lena Rupp
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Anne Harbig
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Amy De Rocher
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Luna C. Schmacke
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
23
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
24
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
25
|
Lebedin M, Ratswohl C, Garg A, Schips M, García CV, Spatt L, Thibeault C, Obermayer B, Weiner J, Velásquez IM, Gerhard C, Stubbemann P, Hanitsch LG, Pischon T, Witzenrath M, Sander LE, Kurth F, Meyer-Hermann M, de la Rosa K. Soluble ACE2 correlates with severe COVID-19 and can impair antibody responses. iScience 2024; 27:109330. [PMID: 38496296 PMCID: PMC10940809 DOI: 10.1016/j.isci.2024.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/25/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 μg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Ratswohl
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Free University of Berlin, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Berlin, Germany
| | - Amar Garg
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marta Schips
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Clara Vázquez García
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Spatt
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ilais Moreno Velásquez
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Cathrin Gerhard
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leif-Gunnar Hanitsch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias Pischon
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin de la Rosa
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
26
|
Bläsius K, Ludwig L, Knapp S, Flaßhove C, Sonnabend F, Keller D, Tacken N, Gao X, Kahveci-Türköz S, Grannemann C, Babendreyer A, Adrain C, Huth S, Baron JM, Ludwig A, Düsterhöft S. Pathological mutations reveal the key role of the cytosolic iRhom2 N-terminus for phosphorylation-independent 14-3-3 interaction and ADAM17 binding, stability, and activity. Cell Mol Life Sci 2024; 81:102. [PMID: 38409522 PMCID: PMC10896983 DOI: 10.1007/s00018-024-05132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.
Collapse
Affiliation(s)
- Katharina Bläsius
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Lena Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Knapp
- Institute of Biochemistry and Molecular Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Charlotte Flaßhove
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Friederike Sonnabend
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Diandra Keller
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Xintong Gao
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Caroline Grannemann
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland
| | - Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Zheng G, Qiu G, Qian H, Shu Q, Xu J. Multifaceted role of SARS-CoV-2 structural proteins in lung injury. Front Immunol 2024; 15:1332440. [PMID: 38375473 PMCID: PMC10875085 DOI: 10.3389/fimmu.2024.1332440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus to cause acute respiratory distress syndrome (ARDS) and contains four structural proteins: spike, envelope, membrane, and nucleocapsid. An increasing number of studies have demonstrated that all four structural proteins of SARS-CoV-2 are capable of causing lung injury, even without the presence of intact virus. Therefore, the topic of SARS-CoV-2 structural protein-evoked lung injury warrants more attention. In the current article, we first synopsize the structural features of SARS-CoV-2 structural proteins. Second, we discuss the mechanisms for structural protein-induced inflammatory responses in vitro. Finally, we list the findings that indicate structural proteins themselves are toxic and sufficient to induce lung injury in vivo. Recognizing mechanisms of lung injury triggered by SARS-CoV-2 structural proteins may facilitate the development of targeted modalities in treating COVID-19.
Collapse
Affiliation(s)
| | - Guanguan Qiu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Huifeng Qian
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianguo Xu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Li JX, Xiao X, Teng F, Li HH. Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1-7)-Mas-mediated macrophage polarization. Redox Biol 2024; 69:103004. [PMID: 38141575 PMCID: PMC10788636 DOI: 10.1016/j.redox.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
30
|
Li X, Li X, Kang B, Eom Y, Lee HK, Kim DH, Zhong J, Song JS. Effects of particulate matter exposure on the expression of the SARS-CoV-2 ACE2 receptor in ocular surface tissues and cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8768-8780. [PMID: 38180673 DOI: 10.1007/s11356-023-31607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Particulate matter (PM) has been reported to be one of the risk factor for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, although the ocular surface is deeply affected by both PM exposure and SARS-COV-2 infection, no studies have investigated the effects of PM exposure on the ocular route of SARS-COV-2 infection. To this end, we explored the effects of PM on the expression of SARS-COV-2-associated receptors and proteins in ocular surface. Herein, short- and long-term PM-exposed rat models were established by topically administering PM for 3 and 10 days, respectively. Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to PM. ACE2, TMPRSS2, CD147, and ADAM17 expression levels were measured by western blot analysis. Our results show that short-term PM exposure had little effect on the expressions of ACE2, TMPRSS2, and CD147 in ocular surface tissues. However, long-term PM exposure decreased the ACE2 expression in conjunctival tissues and increased the CD147 expression in corneal or conjunctival tissues. PM exposure reduced the ACE2 expression by increasing the ADAM17 expression and ACE2 shedding level in HCECs and HCjECs. Our findings suggest that long-term PM exposure down-regulate the expression of the SARS-CoV-2 receptor ACE2 in conjunctival tissues through ADAM17-dependent ACE2 shedding. However, long-term PM exposure up-regulates the expression of another SARS-CoV-2 receptor CD147 in ocular surface tissues, accompanied by ocular surface damage and cytotoxicity. This study provides a new insight into uncovering potential risk factors for infection with SARS-CoV-2 via the ocular route.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuemin Li
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, 80, Guro-Dong, Guro-Gu, Seoul, 152-703, South Korea.
| |
Collapse
|
31
|
Ghahramani M, Shahsavani MB, Khaleghinejad SH, Niazi A, Moosavi-Movahedi AA, Yousefi R. Efficient Expression in the Prokaryotic Host System, Purification and Structural Analyses of the Recombinant Human ACE2 Catalytic Subunit as a Hybrid Protein with the B Subunit of Cholera Toxin (CTB-ACE2). Protein J 2024; 43:24-38. [PMID: 38017315 DOI: 10.1007/s10930-023-10164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has a specific interaction with the coronavirus spike protein, enabling its entry into human cells. This membrane enzyme converts angiotensin II into angiotensin 1-7, which has an essential role in protecting the heart and improving lung function. Many therapeutic properties have been attributed to the human recombinant ACE2 (hrACE2), especially in combating complications related to diabetes mellitus and hypertension, as well as, preventing the coronavirus from entering the target tissues. In the current study, we designed an appropriate gene construct for the hybrid protein containing the ACE2 catalytic subunit and the B subunit of cholera toxin (CTB-ACE2). This structural feature will probably help the recombinant hybrid protein enter the mucosal tissues, including the lung tissue. Optimization of this hybrid protein expression was investigated in BL21 bacterial host cells. Also, the hybrid protein was identified with an appropriate antibody using the ELISA method. A large amount of the hybrid protein (molecular weight of ~ 100 kDa) was expressed as the inclusion body when the induction was performed in the presence of 0.25 mM IPTG and 1% sucrose for 10 h. Finally, the protein structural features were assessed using several biophysical methods. The fluorescence emission intensity and oligomeric size distribution of the CTB-ACE2 suggested a temperature-dependent alteration. The β-sheet and α-helix were also dominant in the hybrid protein structure, and this protein also displays acceptable chemical stability. In overall, according to our results, the efficient expression and successful purification of the CTB-ACE2 protein may pave the path for its therapeutic applications against diseases such as covid-19, diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Seyed Hossein Khaleghinejad
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Guo Z, Niu Q, Mi X, Yang B, Cai M, Liang Y. Sirt1 activation prevents high glucose-induced angiotensin converting enzyme 2 downregulation in renal tubular cells by regulating the TIMP3/ADAM17 pathway. Mol Biol Rep 2024; 51:81. [PMID: 38183511 DOI: 10.1007/s11033-023-08957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Angiotensin converting enzyme 2 (ACE2) exerts renoprotective effects in diabetic kidney disease (DKD) by converting angiotensin (Ang) II into Ang (1-7). Previous studies have demonstrated that ACE2 expression in renal tubules is downregulated in DKD, but the mechanism is not fully understood. Sirtuin-1 (Sirt1) is a protein deacetylase that may regulate the activity of the renin-angiotensin system. The present study investigated the effects of Sirt1 on ACE2 expression under high glucose (HG) conditions and the underlying signaling pathway. METHODS AND RESULTS Rats with DKD and NRK-52E cells cultured with HG were employed in this study. Western blotting, immunohistochemistry detection and qRT-PCR were performed for protein and mRNA expression analyses. Rats subjected to DKD displayed downregulated expression of Sirt1 and ACE2 in kidneys. Resveratrol, an activator of Sirt1, restored ACE2 expression and ameliorated renal injuries. Similarly, pharmacological activation of Sirt1 with SRT1720 markedly upregulated ACE2 in NRK-52E cells cultured with HG, while Sirt1 small interfering RNA (siRNA) further suppressed ACE2 expression. In addition, A disintegrin and metalloproteinase (ADAM) 17 was observed to be upregulated, and its inhibitor, tissue inhibitor of metalloproteinase 3 (TIMP3), was downregulated in the kidneys of diabetic rats and NRK-52E cells incubated with HG. The TIMP3/ADAM17 pathway was involved in the regulation of ACE2 expression, as evidenced by decreased ACE2 expression levels after TIMP3-siRNA pretreatment. SRT1720 ameliorated the imbalance of TIMP3/ADAM17 induced by HG and consequently enhanced the expression of ACE2. Notably, the above effect of SRT1720 on ACE2 was interrupted by TIMP3-siRNA. CONCLUSIONS Our findings suggest that Sirt1 activation may prevent HG-induced downregulation of renal tubular ACE2 by modulating the TIMP3/ADAM17 pathway. Sirt1 stimulation might be a potential strategy for the treatment of DKD.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Qingyu Niu
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Bing Yang
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Meishun Cai
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
33
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
34
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Papavassiliou KA, Gogou VA, Papavassiliou AG. Angiotensin-Converting Enzyme 2 (ACE2) Signaling in Pulmonary Arterial Hypertension: Underpinning Mechanisms and Potential Targeting Strategies. Int J Mol Sci 2023; 24:17441. [PMID: 38139269 PMCID: PMC10744156 DOI: 10.3390/ijms242417441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating progressive disease characterized by excessive pulmonary vasoconstriction and abnormal vascular remodeling processes that lead to right-ventricular heart failure and, ultimately, death. Although our understanding of its pathophysiology has advanced and several treatment modalities are currently available for the management of PAH patients, none are curative and the prognosis remains poor. Therefore, further research is required to decipher the molecular mechanisms associated with PAH. Angiotensin-converting enzyme 2 (ACE2) plays an important role through its vasoprotective functions in cardiopulmonary homeostasis, and accumulating preclinical and clinical evidence shows that the upregulation of the ACE2/Angiotensin-(1-7)/MAS1 proto-oncogene, G protein-coupled receptor (Mas 1 receptor) signaling axis is implicated in the pathophysiology of PAH. Herein, we highlight the molecular mechanisms of ACE2 signaling in PAH and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki A. Gogou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
36
|
Niwa R, Sakai K, Lung MSY, Matsumoto T, Mikawa R, Maehana S, Suzuki M, Yamamoto Y, Maurissen TL, Hirabayashi A, Noda T, Kubo M, Gotoh S, Woltjen K. ACE2 knockout hinders SARS-CoV-2 propagation in iPS cell-derived airway and alveolar epithelial cells. Front Cell Dev Biol 2023; 11:1290876. [PMID: 38149046 PMCID: PMC10750251 DOI: 10.3389/fcell.2023.1290876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/28/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.
Collapse
Affiliation(s)
- Ryo Niwa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji Sakai
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mandy Siu Yu Lung
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomoko Matsumoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ryuta Mikawa
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shotaro Maehana
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Yamamoto
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas L. Maurissen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ai Hirabayashi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Makoto Kubo
- Department of Microbiology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Shimpei Gotoh
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Olímpio F, Andreata-Santos R, Rosa PC, Santos W, Oliveira C, Aimbire F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics Antimicrob Proteins 2023; 15:1513-1528. [PMID: 36346611 PMCID: PMC9643982 DOI: 10.1007/s12602-022-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.
Collapse
Affiliation(s)
- Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Immunology, and Parasitology, Lab. Retrovirology, Federal University of São Paulo, Rua Botucatu 862 - 6° Andar, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Paloma Cristina Rosa
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Wellington Santos
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP, 64003-120, Brazil
| | - Carlos Oliveira
- Department of Science and Technology, Postgraduate Program in Biomedical Engineering, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
38
|
Shen YL, Hsieh YA, Hu PW, Lo PC, Hsiao YH, Ko HK, Lin FC, Huang CW, Su KC, Perng DW. Angiotensin-(1-7) attenuates SARS-CoV2 spike protein-induced interleukin-6 and interleukin-8 production in alveolar epithelial cells through activation of Mas receptor. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1147-1157. [PMID: 37802686 DOI: 10.1016/j.jmii.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND SARS-CoV-2 spike proteins (SP) can bind to the human angiotensin-converting enzyme 2 (ACE2) in human pulmonary alveolar epithelial cells (HPAEpiC) and trigger an inflammatory process. Angiotensin-(1-7) may have an anti-inflammatory effect through activation of Mas receptor. This study aims to investigate whether SARS-CoV-2 SP can induce inflammation through ACE2 in the alveolar epithelial cells which can be modulated through angiotensin-(1-7)/Mas receptor axis. METHODS HPAEpiC were treated with SARS-CoV-2 SP in the presence or absence of ACE2 antagonist-dalbavancin and Mas receptor agonist-angiotensin-(1-7). Proinflammatory cytokine production (IL-6 and IL-8) were measured at mRNA and protein levels. MAP kinase phosphorylation and transcription factor activation was determined by Western Blot. Mas receptor was blocked by either antagonist (A779) or knockdown (specific SiRNA). Experiments were replicated using A549 cells. FINDINGS SARS-CoV-2 SP (5 μg/mL) significantly induced MAP kinase (ERK1/2) phosphorylation, downstream transcription factor (activator protein-1, AP-1) activation and cytokine production (IL-6 and IL-8) at both mRNA and protein levels. Pretreatment with dalbavancin (10 μg/mL), or angiotensin-(1-7) (10 μM) significantly reduced ERK1/2 phosphorylation, AP-1 activation, and cytokine production. However, these angiotensin-(1-7)-related protective effects were significantly abolished by blocking Mas receptor with either antagonist (A799,10 μM) or SiRNA knockdown. INTERPRETATION SARS-CoV-2 SP can induce proinflammatory cytokine production, which can be inhibited by either ACE2 antagonist or Mas receptor agonist-angiotensin-(1-7). Angiotensin-(1-7)-related protective effect on cytokine reduction can be abolished by blocking Mas receptor. Our findings suggest that ACE2/angiotensin-(1-7)/Mas axis may serve as a therapeutic target to control inflammatory response triggered by SARS-CoV-2 SP.
Collapse
Affiliation(s)
- Yi-Luen Shen
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan, ROC
| | - Yi-An Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan, ROC
| | - Po-Wei Hu
- Division of Chest Medicine, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Taiwan, ROC; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Po-Chun Lo
- Taipei Veterans General Hospital, Fenglin Branch, Hualien, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Han Hsiao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsin-Kuo Ko
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fang-Chi Lin
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wen Huang
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan, ROC; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Kang-Cheng Su
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| | - Diahn-Warng Perng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
39
|
Xiao Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Halemubieke S, Mei L, Lu Z, Yan Y, Wang L. Posttranslational modifications of ACE2 protein: Implications for SARS-CoV-2 infection and beyond. J Med Virol 2023; 95:e29304. [PMID: 38063421 DOI: 10.1002/jmv.29304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
The present worldwide pandemic of coronavirus disease 2019 (COVID-19) has highlighted the important function of angiotensin-converting enzyme 2 (ACE2) as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. A deeper understanding of ACE2 could offer insights into the mechanisms of SARS-CoV-2 infection. While ACE2 is subject to regulation by various factors in vivo, current research in this area is insufficient to fully elucidate the corresponding pathways of control. Posttranslational modification (PTM) is a powerful tool for broadening the variety of proteins. The PTM study of ACE2 will help us to make up for the deficiency in the regulation of protein synthesis and translation. However, research on PTM-related aspects of ACE2 remains limited, mostly focused on glycosylation. Accordingly, a comprehensive review of ACE2 PTMs could help us better understand the infection process and provide a basis for the treatment of COVID-19 and beyond.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shana Halemubieke
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
40
|
O’Keeffe M, Oterhals Å, Vikøren LAS, Drotningsvik A, Mellgren G, Halstensen A, Gudbrandsen OA. Dietary fish intake increased the concentration of soluble ACE2 in rats: can fish consumption reduce the risk of COVID-19 infection through interception of SARS-CoV-2 by soluble ACE2? Br J Nutr 2023; 130:1712-1719. [PMID: 36946006 PMCID: PMC10587383 DOI: 10.1017/s0007114523000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells after binding to the membrane-bound receptor angiotensin-converting enzyme 2 (ACE2), but this may be prevented through interception by soluble ACE2 (sACE2) or by inhibition of the ACE2 receptor, thus obstructing cell entry and replication. The main objective of this study was to investigate if fish intake affected the concentration of sACE2 in rats. The secondary aim was to evaluate the in vitro ACE2-inhibiting activity of fish proteins. Rats were fed cod muscle as 25 % of dietary protein, and blood was collected after 4 weeks of intervention. Muscle, backbone, skin, head, stomach, stomach content, intestine and swim bladder from haddock, saithe, cod and redfish were hydrolysed with trypsin before ACE2-inhibiting activity was measured in vitro. In vivo data were compared using unpaired Student's t test, and in vitro data were compared using one-way ANOVA followed by the Tukey HSD post hoc test. The mean sACE2 concentration was 47 % higher in rats fed cod when compared with control rats (P 0·034), whereas serum concentrations of angiotensin II and TNF-α were similar between the two experimental groups. Muscle, backbone, skin and head from all four fish species inhibited ACE2 activity in vitro, whereas the remaining fractions had no effect. To conclude, our novel data demonstrate that fish intake increased the sACE2 concentration in rats and that the hydrolysed fish proteins inhibited ACE2 activity in vitro.
Collapse
Affiliation(s)
- Maria O’Keeffe
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | | | - Linn Anja Slåke Vikøren
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen5021, Norway
| | - Alfred Halstensen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K. Halstensen AS, P.O. Box 103, Bekkjarvik5399, Norway
| | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| |
Collapse
|
41
|
Xu SQ, Sie ZY, Hsu JI, Tan KT. Small Plasma Membrane-Targeted Fluorescent Dye for Long-Time Imaging and Protein Degradation Analyses. Anal Chem 2023; 95:15549-15555. [PMID: 37816133 DOI: 10.1021/acs.analchem.3c01980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Plasma membrane (PM)-targeted fluorescent dyes have become an important tool to visualize morphological and dynamic changes in the cell membrane. However, most of these PM dyes are either too large and thus might potentially perturb the membrane and affect its functions or exhibit a short retention time on the cell membrane. The rapid internalization problem is particularly severe for PM dyes based on cationic and neutral hydrophobic fluorescent dyes, which can be easily transported into the cells by transmembrane potential and passive diffusion mechanisms. In this paper, we report a small but highly specific PM fluorescent dye, PM-1, which exhibits a very long retention time on the plasma membrane with a half-life of approximately 15 h. For biological applications, we demonstrated that PM-1 can be used in combination with protein labeling probes to study ectodomain shedding and endocytosis processes of cell surface proteins and successfully demonstrated that native transmembrane human carbonic anhydrase IX (hCAIX) is degraded via the ectodomain shedding mechanism. In contrast, hCAIX undergoes endocytic degradation in the presence of sheddase inhibitors. We believe that PM-1 can be a versatile tool to provide detailed insights into the dynamic processes of the cell surface proteins.
Collapse
Affiliation(s)
- Shun-Qiang Xu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Zong-Yan Sie
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Jung-I Hsu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| |
Collapse
|
42
|
Sunil AA, Jose D, Karri SK, Pukhraj P, Varughese JK, Skaria T. Biomolecular interactions between the antibacterial ceftolozane and the human inflammatory disease target ADAM17: a drug repurposing study. J Biomol Struct Dyn 2023; 42:11706-11716. [PMID: 37798935 DOI: 10.1080/07391102.2023.2263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Inhibition of a disintegrin and metalloproteinase-17 (ADAM17), a metzincin, is proposed as a novel therapeutic strategy to suppress overproduction of the proinflammatory cytokine TNF-α in rheumatoid arthritis and inflammatory bowel disease. Existing ADAM17 inhibitors generate toxic metabolites in-vivo or haven't progressed in clinical trials. Previous studies suggest that ligands which bind to ADAM17 active site by interacting with the Zn ion and L-shaped hydrophobic S1'- and S3'-pockets and forming favorable hydrogen bonds could act as potential ADAM17 inhibitors. Here, we investigated whether the FDA-approved anti-bacterial drug ceftolozane, a cephalosporin containing aromatic groups and carboxyl groups as probable zinc binding groups (ZBGs), forms non-covalent interactions resulting in its binding in the active site of ADAM17. In this study, the density functional theory (DFT), molecular docking and molecular dynamics calculations with the catalytic chain of ADAM17 show that carboxyl group of ceftolozane acts as moderate ZBG, and its extended geometry forms hydrogen bonds and hydrophobic interactions resulting in a binding affinity comparable to the co-crystallized known ADAM17 inhibitor. The favorable binding interactions identified here suggest the potential of ceftolozane to modulate ADAM17 activity in inflammatory diseases. ADAM17 cleaves and releases epidermal growth factor (EGF) ligands from the cell surface. The shed EGF ligands then bind to the EGF receptors to drive embryonic development. Therefore, our findings also suggest that use of ceftolozane during pregnancy may inhibit ADAM17-mediated shedding of EGF and thus increase the risk of birth defects in humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College, Calicut, India
| | - Sai Kumar Karri
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Pukhraj Pukhraj
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | | | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
43
|
Ratswohl C, Vázquez García C, Ahmad AUW, Gonschior H, Lebedin M, Silvis CE, Spatt L, Gerhard C, Lehmann M, Sander LE, Kurth F, Olsson S, de la Rosa K. A design strategy to generate a SARS-CoV-2 RBD vaccine that abrogates ACE2 binding and improves neutralizing antibody responses. Eur J Immunol 2023; 53:e2350408. [PMID: 37435628 DOI: 10.1002/eji.202350408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.
Collapse
Affiliation(s)
- Christoph Ratswohl
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Clara Vázquez García
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Ata Ul Wakeel Ahmad
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Casper Ewijn Silvis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Lisa Spatt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cathrin Gerhard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | | | - Simon Olsson
- Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Västra Götalands län, Sweden
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
44
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
45
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
46
|
Melano I, Cheng WC, Kuo LL, Liu YM, Chou YC, Hung MC, Lai MMC, Sher YP, Su WC. A disintegrin and metalloproteinase domain 9 facilitates SARS-CoV-2 entry into cells with low ACE2 expression. Microbiol Spectr 2023; 11:e0385422. [PMID: 37713503 PMCID: PMC10581035 DOI: 10.1128/spectrum.03854-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Li-Lan Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yuag-Meng Liu
- Department of Internal Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Changhua Christian Medical Foundation, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Michael M. C. Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Ren J, Wang XQ, Nakao T, Libby P, Shi GP. Differential Roles of Interleukin-6 in Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Cardiometabolic Diseases. CARDIOLOGY DISCOVERY 2023; 3:166-182. [PMID: 38152628 PMCID: PMC10750760 DOI: 10.1097/cd9.0000000000000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can lead to a cytokine storm, unleashed in part by pyroptosis of virus-infected macrophages and monocytes. Interleukin-6 (IL-6) has emerged as a key participant in this ominous complication of COVID-19. IL-6 antagonists have improved outcomes in patients with COVID-19 in some, but not all, studies. IL-6 signaling involves at least 3 distinct pathways, including classic-signaling, trans-signaling, and trans-presentation depending on the localization of IL-6 receptor and its binding partner glycoprotein gp130. IL-6 has become a therapeutic target in COVID-19, cardiovascular diseases, and other inflammatory conditions. However, the efficacy of inhibition of IL-6 signaling in metabolic diseases, such as obesity and diabetes, may depend in part on cell type-dependent actions of IL-6 in controlling lipid metabolism, glucose uptake, and insulin sensitivity owing to complexities that remain to be elucidated. The present review sought to summarize and discuss the current understanding of how and whether targeting IL-6 signaling ameliorates outcomes following SARS-CoV-2 infection and associated clinical complications, focusing predominantly on metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiao-Qi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Tetsushi Nakao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Kolesov DE, Gaiamova EA, Orlova NA, Vorobiev II. Dimeric ACE2-FC Is Equivalent to Monomeric ACE2 in the Surrogate Virus Neutralization Test. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1274-1283. [PMID: 37770394 DOI: 10.1134/s0006297923090079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/30/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main cellular receptor for the dangerous sarbecoviruses SARS-CoV and SARS-CoV-2. Its recombinant extracellular domain is used to monitor the level of protective humoral immune response to a viral infection or vaccine using the surrogate virus neutralization test (sVNT). Soluble ACE2 is also considered as an option for antiviral therapy potentially insensitive to the changes in the SARS-CoV-2 spike protein. Extensive testing of the samples of patient's serum by the sVNT method requires using preparations of ACE2 or ACE2 conjugates with constant properties. We have previously obtained a cell line that is a producer of a soluble monomeric ACE2 and showed that this ACE2 variant can be used in sVNT, preferably as a conjugate with horseradish peroxidase. A cell line that generates an ACE2-Fc fusion protein with high productivity, more than 150 mg/liter of the target protein when cultured in a stirred flask, was obtained for producing a stable and universally applicable form of soluble ACE2. The affinity-purified ACE2-Fc fusion contains a mixture of dimeric and tetrameric forms, but allows obtaining linear response curves for inhibition of binding with the receptor-binding domain of the SARS-CoV-2 spike protein by antibodies. The ACE2-Fc-HRP-based sVNT testing system can be used for practical measurements of the levels of virus-neutralizing antibodies against various circulating variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Denis E Kolesov
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elizaveta A Gaiamova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nadezhda A Orlova
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ivan I Vorobiev
- Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
49
|
Ferreira-Duarte M, Oliveira LCG, Quintas C, Esteves-Monteiro M, Duarte-Araújo M, Sousa T, Casarini DE, Morato M. ACE and ACE2 catalytic activity in the fecal content along the gut. Neurogastroenterol Motil 2023; 35:e14598. [PMID: 37052403 DOI: 10.1111/nmo.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) and ACE2 are two major enzymes of the renin-angiotensin-aldosterone system (RAAS), which control the formation/degradation of angiotensin (Ang) II and Ang1-7, regulating their opposite effects. We aimed at evaluating the catalytic activity of ACE and ACE2 in the intestinal content and corresponding intestinal tissue along the gut of Wistar Han rats. METHODS Portions of the ileum, cecum, proximal colon, and distal colon, and the corresponding intestinal content were collected from Wistar Han rats. Enzyme activity was evaluated by fluorometric assays using different substrates: Hippuryl-His-Leu for ACE-C-domain, Z-Phe-His-Leu for ACE-N-domain, and Mca-APK(Dnp) for ACE2. ACE and ACE2 concentration was assessed by ELISA. Ratios concerning concentrations and activities were calculated to evaluate the balance of the RAAS. Statistical analysis was performed using Friedman test followed by Dunn's multiple comparisons test or Wilcoxon matched-pairs test whenever needed. KEY RESULTS ACE and ACE2 are catalytically active in the intestinal content along the rat gut. The ACE N-domain shows higher activity than the C-domain both in the intestinal content and in the intestinal tissue. ACE and ACE2 are globally more active in the intestinal content than in the corresponding intestinal tissue. There was a distal-to-proximal prevalence of ACE2 over ACE in the intestinal tissue. CONCLUSIONS & INFERENCES This work is the first to report the presence of catalytically active ACE and ACE2 in the rat intestinal content, supporting future research on the regulatory role of the intestinal RAAS on gut function and a putative link to the microbiome.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | | | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Marisa Esteves-Monteiro
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine-Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal, & Centro de Investigação Farmacológica e Inovação Medicamentosa, University of Porto (MedInUP), Porto, Portugal
| | - Dulce Elena Casarini
- Department of Medicine, Discipline Nephrology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Wang CW, Chuang HC, Tan TH. ACE2 in chronic disease and COVID-19: gene regulation and post-translational modification. J Biomed Sci 2023; 30:71. [PMID: 37608279 PMCID: PMC10464117 DOI: 10.1186/s12929-023-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a counter regulator of the renin-angiotensin system, provides protection against several chronic diseases. Besides chronic diseases, ACE2 is the host receptor for SARS-CoV or SARS-CoV-2 virus, mediating the first step of virus infection. ACE2 levels are regulated by transcriptional, post-transcriptional, and post-translational regulation or modification. ACE2 transcription is enhanced by transcription factors including Ikaros, HNFs, GATA6, STAT3 or SIRT1, whereas ACE2 transcription is reduced by the transcription factor Brg1-FoxM1 complex or ERRα. ACE2 levels are also regulated by histone modification or miRNA-induced destabilization. The protein kinase AMPK, CK1α, or MAP4K3 phosphorylates ACE2 protein and induces ACE2 protein levels by decreasing its ubiquitination. The ubiquitination of ACE2 is induced by the E3 ubiquitin ligase MDM2 or UBR4 and decreased by the deubiquitinase UCHL1 or USP50. ACE2 protein levels are also increased by the E3 ligase PIAS4-mediated SUMOylation or the methyltransferase PRMT5-mediated ACE2 methylation, whereas ACE2 protein levels are decreased by AP2-mediated lysosomal degradation. ACE2 is downregulated in several human chronic diseases like diabetes, hypertension, or lung injury. In contrast, SARS-CoV-2 upregulates ACE2 levels, enhancing host cell susceptibility to virus infection. Moreover, soluble ACE2 protein and exosomal ACE2 protein facilitate SARS-CoV-2 infection into host cells. In this review, we summarize the gene regulation and post-translational modification of ACE2 in chronic disease and COVID-19. Understanding the regulation and modification of ACE2 may help to develop prevention or treatment strategies for ACE2-mediated diseases.
Collapse
Affiliation(s)
- Chia-Wen Wang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan, 35053 Taiwan
| |
Collapse
|