1
|
Saber MM, Mahmoud MM, Amin HM, Essam RM. Therapeutic effects of combining curcumin and swimming in osteoarthritis using a rat model. Biomed Pharmacother 2023; 166:115309. [PMID: 37573656 PMCID: PMC10538387 DOI: 10.1016/j.biopha.2023.115309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a common debilitating degenerative disease of the elderly. We aimed to study the therapeutic effects of combining curcumin and swimming in monosodium iodoacetate (MIA)-induced OA in a rat model. The rats were divided into 5 groups (n = 9). Group 1 received saline and served as a control group. Groups 2-5 were injected intra-articularly in the right knee with 100 μL MIA. One week later, groups 3 and 5 were started on daily swimming sessions that gradually increased to 20-mins per session, and for groups 4 and 5, oral curcumin was administered at a dose of 200 mg/kg for 4 weeks. The combination therapy (curcumin + swimming) showed the most effective results in alleviating pain and joint stiffness as well as improving histological and radiological osteoarthritis manifestations in the knee joints. The combination modality also reduced serum C-reactive protein and tissue cartilage oligomeric matrix protein levels. Mechanistically, rats received dual treatment exhibited restoration of miR-130a and HDAC3 expression. The dual treatment also upregulated PPAR-γ alongside downregulation of NF-κB and its inflammatory cytokine targets TNF-α and IL-1β. Additionally, there was downregulation of MMP1 and MMP13 in the treated rats. In conclusion, our data showed that there is a therapeutic potential for combining curcumin with swimming in OA, which is attributed, at least in part, to the modulation of miR-130a/HDAC3/PPAR-γ signaling axis.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Hesham M Amin
- Divison of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| |
Collapse
|
2
|
Kumar HS, Yi Z, Tong S, Annamalai RT. Magnetic nanocomplexes coupled with an external magnetic field modulate macrophage phenotype - a non-invasive strategy for bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.556050. [PMID: 37732259 PMCID: PMC10508738 DOI: 10.1101/2023.09.02.556050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chronic inflammation is a major cause for the pathogenesis of musculoskeletal diseases such as fragility fracture, and nonunion. Studies have shown that modulating the immune phenotype of macrophages from proinflammatory to prohealing mode can heal recalcitrant bone defects. Current therapeutic strategies predominantly apply biochemical cues, which often lack target specificity and controlling their release kinetics in vivo is challenging spatially and temporally. We show a magnetic iron-oxide nanocomplexes (MNC)-based strategy to resolve chronic inflammation in the context of promoting fracture healing. MNC internalized pro-inflammatory macrophages, when coupled with an external magnetic field, exert an intracellular magnetic force on the cytoskeleton, which promotes a prohealing phenotype switch. Mechanistically, the intracellular magnetic force perturbs actin polymerization, thereby significantly reducing nuclear to cytoplasm redistribution of MRTF-A and HDAC3, major drivers of inflammatory and osteogenic gene expressions. This significantly reduces Nos2 gene expression and subsequently downregulates the inflammatory response, as confirmed by quantitative PCR analysis. These findings are a proof of concept to develop MNC-based resolution-centric therapeutic intervention to direct macrophage phenotype and function towards healing and can be translated either to supplement or replace the currently used anti-inflammatory therapies for fracture healing.
Collapse
|
3
|
Golob JL. Human Microbiomes and Disease for the Biomedical Data Scientist. Annu Rev Biomed Data Sci 2023; 6:259-273. [PMID: 37159872 DOI: 10.1146/annurev-biodatasci-020722-043017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The human microbiome is complex, variable from person to person, essential for health, and related to both the risk for disease and the efficacy of our treatments. There are robust techniques to describe microbiota with high-throughput sequencing, and there are hundreds of thousands of already-sequenced specimens in public archives. The promise remains to use the microbiome both as a prognostic factor and as a target for precision medicine. However, when used as an input in biomedical data science modeling, the microbiome presents unique challenges. Here, we review the most common techniques used to describe microbial communities, explore these unique challenges, and discuss the more successful approaches for biomedical data scientists seeking to use the microbiome as an input in their studies.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
4
|
Li Y, Liu C, Wang G, Wang H, Liu X, Huang C, Chen Y, Fan L, Zhou L, Tong A. HDAC3 inhibitor (BRD3308) modulates microglial pyroptosis and neuroinflammation through PPARγ/NLRP3/GSDMD to improve neurological function after intraventricular hemorrhage in mice. Neuropharmacology 2023:109633. [PMID: 37327970 DOI: 10.1016/j.neuropharm.2023.109633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Neuroinflammation plays a vital role in intraventricular hemorrhage (IVH). Excessive neuroinflammation after IVH can activate the inflammasome in the cell and accelerate the occurrence of pyroptosis in cells, produce more inflammatory mediators, increase cell death, and lead to neurological deficits. Previous studies have reported that BRD3308 (BRD), an inhibitor of histone deacetylation by histone deacetylase 3 (HDAC3), suppresses inflammation-induced apoptosis and exhibits anti-inflammatory properties. However, it is unclear how BRD reduces the occurrence of the inflammatory cascade. In this study, we stereotactically punctured the ventricles of male C57BL/6J mice and injected autologous blood via the tail vein to simulate ventricular hemorrhage. Magnetic resonance imaging was used to detect ventricular hemorrhage and enlargement. Our findings demonstrated that BRD treatment significantly improved neurobehavioral performance and decreased neuronal loss, microglial activation, and pyroptosis in the hippocampus after IVH. At the molecular level, this treatment upregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and inhibited NLRP3-mediated pyroptosis and inflammatory cytokines. Therefore, we concluded that BRD reduced pyroptosis and neuroinflammation and improve nerve function in part by activating the PPARγ/NLRP3/GSDMD signaling pathway. Our findings suggest a potential preventive role for BRD in IVH.
Collapse
Affiliation(s)
- Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjie Fan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Rai U, Senapati D, Arora MK. Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetol Int 2023; 14:134-144. [PMID: 37090130 PMCID: PMC10113422 DOI: 10.1007/s13340-022-00607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Diabetes is a major health problem worldwide. It is a chronic metabolic disorder that produces overt hyperglycemic condition that occurs either when the pancreas does not produce enough insulin due to excessive destruction of pancreatic β-cells (type 1 diabetes) or due to development of insulin resistance (type 2 diabetes). An autoimmune condition known as type 1 diabetes (T1D) results in the targeted immune death of β-cells that produce insulin. The only available treatment for T1D at the moment is the lifelong use of insulin. Multiple islet autoantibody positivity is used to diagnose T1D. There are four standard autoantibodies observed whose presence shows the development of T1D: antibodies against insulin, glutamic acid decarboxylase (GAD65), zinc T8 transporter (ZnT8), and tyrosine phosphatase-like protein (ICA512). In type 2 diabetes (T2D), an inflammatory response precipitates as a consequence of the immune response to high blood glucose level along with the presence of inflammation mediators produced by macrophages and adipocytes in fat tissue. The slow and chronic inflammatory condition of adipose tissue produces insulin resistance leading to increased stress on pancreatic β-cells to produce more insulin to compensate for the insulin resistance. Thus, this stress condition exacerbates the apoptosis of β-cells leading to insufficient production of insulin, resulting in hyperglycemia which signifies late stage T2D. Therefore, the therapeutic utilization of immunosuppressive agents may be a better alternative over the use of insulin and oral hypoglycemic agents for the treatment of T1D and T2D, respectively. This review enlightens the immune intervention for the prevention and amelioration of T1D and T2D in humans with main focus on the antigen-specific immune suppressive therapy.
Collapse
Affiliation(s)
- Uddipak Rai
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Dhirodatta Senapati
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| | - Mandeep Kumar Arora
- School of Pharmaceutical and Population Health Informatics, DIT University, 248009, Dehradun, Uttarakhand India
| |
Collapse
|
7
|
Sun W, Zhang N, Liu B, Yang J, Loers G, Siebert HC, Wen M, Zheng X, Wang Z, Han J, Zhang R. HDAC3 Inhibitor RGFP966 Ameliorated Neuroinflammation in the Cuprizone-Induced Demyelinating Mouse Model and LPS-Stimulated BV2 Cells by Downregulating the P2X7R/STAT3/NF-κB65/NLRP3 Activation. ACS Chem Neurosci 2022; 13:2579-2598. [PMID: 35947794 DOI: 10.1021/acschemneuro.1c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selective inhibitor of HDAC3) protects white matter after cuprizone-induced demyelination, as shown by reductions in neurological behavioral deficits and increases in myelin basic protein. Moreover, in this study, we found that RGFP966 caused a significant reduction in the levels of inflammatory cytokines, including IL-1β, TNF-α, as well as iNOS, and inhibited microglial (M1-liked) activation in the experimental cuprizone model and LPS-stimulated BV2 cells. Meanwhile, RGFP966 alleviated apoptosis of LPS-induced BV2 cells in vitro. Furthermore, RGFP966 suppressed the expression of P2X7R, NLRP3, ASC, IL-18, IL-1β, and caspase-1, inhibited the ratio of phosphorylated-STAT3/STAT3 and phosphorylated NF-κB p65/NF-κB p65, as well as increased acetylated NF-κB p65 in vitro and in vivo. Furthermore, we confirmed that brilliant blue G (antagonists of P2X7R) suppressed the expression of microglial NLRP3, IL-18, IL-1β, caspase-1, NF-κB p65 (including phosphorylated NF-κB p65), and STAT3 (including phosphorylated STAT3) in vitro. These findings demonstrated that RFFP966 alleviated the inflammatory response and exerted a neuroprotective effect possibly by modulating P2X7R/STAT3/NF-κB65/NLRP3 signaling pathways. Thus, HDAD3 might be considered a promising intervention target for neurodegenerative diseases, such as MS.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyi Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Junrong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
8
|
Chen Q, Kong Q, Tian P, He Y, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119197. [PMID: 35378196 DOI: 10.1016/j.envpol.2022.119197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticiser that, if absorbed into the human body, can cause various adverse effects including reproductive toxicity, liver toxicity and gut microbiota dysbiosis. So far, some studies have proved that the toxicity of DEHP can be reduced by using antioxidants. However, these candidates all show potential side effects and cannot prevent the accumulation of DEHP in the body, making them unable to be used as a daily dietary supplement to relieve the toxic effects of DEHP. Lactic acid bacteria (LAB) have antioxidant capacity and the ability to adsorb harmful substances. Herein, we investigated the protective effects of five strains of LAB, selected based on our in vitro assessments on antioxidant capacities or bio-binding capacities, against the adverse effects of DEHP exposure in rats. Our results showed that LAB strains with outstanding DEHP/MEHP binding capacities, Lactococcus lactis subsp. lactis CCFM1018 and Lactobacillus plantarum CCFM1019, possess the ability to facilitate the elimination of DEHP and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) with the faeces, decrease DEHP and MEHP level in serum further. Meanwhile, DEHP-induced liver and testicular injuries were effectively alleviated by CCFM1018 and CCFM1019. In addition, CCFM1018 effectively alleviated the DEHP-induced oxidative stress with its strong antioxidant ability. Furthermore, both CCFM1018 and CCFM1019 modulated the gut microbiota, which in turn increased the concentrations of faecal propionate and butyrate and regulated the pathways related to host metabolism. Correlation analysis indicate that DEHP/MEHP bio-binding capacity of LAB plays a crucial role in protecting the body from DEHP exposure, and its antioxidant capacity and the ability to alleviate the gut microbiota dysbiosis are also involved in the alleviation of damage. Thus, LAB with powerful bio-binding capacity of DEHP and MEHP can be considered as a potential therapeutic dietary strategy against DEHP exposure.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Qingmin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
9
|
Peng S, Zhang X, Yu L, Xu Y, Zhou Y, Qian S, Cao X, Ye X, Yang J, Jia W, Ye J. NF- κB regulates brown adipocyte function through suppression of ANT2. Acta Pharm Sin B 2022; 12:1186-1197. [PMID: 35530146 PMCID: PMC9069396 DOI: 10.1016/j.apsb.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022] Open
Abstract
The transcription factor nuclear factor of kappa-light-chain-enhancer of activated B cells (NF-κB) is expressed in brown adipocytes, but its role remains largely unknown in the cells. This issue was addressed in current study by examining NF-κB in brown adipocytes in vitro and in vivo. NF-κB activity was increased by differentiation of brown adipocytes through elevation of p65 (RelA) expression. The transcriptional activity of NF-κB was induced by the cold stimulation with an elevation in S276 phosphorylation of p65 protein. Inactivation of NF-κB in brown adipocytes made the knockout mice [uncoupling protein 1 (Ucp1)–CreER–p65f/f, U-p65-KO] intolerant to the cold environment. The brown adipocytes exhibited an increase in apoptosis, a decrease in cristae density and uncoupling activity in the interscapular brown adipose tissue (iBAT) of p65-KO mice. The alterations became severer after cold exposure of the KO mice. The brown adipocytes of mice with NF-κB activation (p65 overexpression, p65-OE) exhibited a set of opposite alterations with a reduction in apoptosis, an increase in cristae density and uncoupling activity. In mechanism, NF-κB inhibited expression of the adenine nucleotide translocase 2 (ANT2) in the control of apoptosis. Data suggest that NF-κB activity is increased in brown adipocytes by differentiation and cold stimulation to protect the cells from apoptosis through down-regulation of ANT2 expression.
Collapse
Affiliation(s)
- Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoying Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lili Yu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yanhong Xu
- Neurology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Zhou
- National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shengnan Qian
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinyu Cao
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaotong Ye
- National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jiajun Yang
- Neurology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China.,Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
10
|
Shen Y, Yang R, Zhao J, Chen M, Chen S, Ji B, Chen H, Liu D, Li L, Du G. The histone deacetylase inhibitor belinostat ameliorates experimental autoimmune encephalomyelitis in mice by inhibiting TLR2/MyD88 and HDAC3/ NF-κB p65-mediated neuroinflammation. Pharmacol Res 2022; 176:105969. [PMID: 34758400 DOI: 10.1016/j.phrs.2021.105969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a Th cell-mediated inflammatory demyelinating autoimmune disease. MS cannot be cured, and long-term drug treatment is still needed for MS patients. In this study, we examined the effect of belinostat, a pan-histone deacetylase inhibitor (HDACi), on experimental autoimmune encephalomyelitis (EAE) and elucidated its mechanism of action. We found that belinostat alleviates the clinical symptoms, histopathological central nervous system (CNS) inflammation and demyelination outcomes in EAE mice. Compared to the MS oral drug dimethyl fumarate (DMF) (100 mg/kg), belinostat (30 mg/kg) treatment exhibited better efficacy in improving the clinical symptoms of EAE mice. Belinostat treatment significantly suppressed the activation of M1 microglia and the proinflammatory cytokine expression; but it had no effects on the M2 microglial polarization. Belinostat also decreased both NO and iNOS levels in LPS-stimulated BV2 microglia. Accordingly, belinostat treatment of EAE mice significantly inhibited activation of the TLR2/MyD88 signaling pathway and downregulated the expression of HDAC3 while upregulating the acetylated NF-κB p65 levels. Taken together, these data demonstrate for the first time that belinostat ameliorates EAE in mice through inhibiting neuroinflammation via suppressing M1 microglial polarization, and implicating belinostat as a potential candidate for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Shuhan Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Baixi Ji
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Depei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2, Nan Wei Road, Beijing 100050, China.
| |
Collapse
|
11
|
Jiang LP, Yu XH, Chen JZ, Hu M, Zhang YK, Lin HL, Tang WY, He PP, Ouyang XP. Histone Deacetylase 3: A Potential Therapeutic Target for Atherosclerosis. Aging Dis 2022; 13:773-786. [PMID: 35656103 PMCID: PMC9116907 DOI: 10.14336/ad.2021.1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease, is characterized by plaque formation in the intima. Secondary lesions include intraplaque hemorrhage, plaque rupture, and local thrombosis. Vascular endothelial function impairment and smooth muscle cell migration lead to vascular dysfunction, which is conducive to the formation of macrophage-derived foam cells and aggravates inflammatory response and lipid accumulation that cause atherosclerosis. Histone deacetylase (HDAC) is an epigenetic modifying enzyme closely related to chromatin structure and gene transcriptional regulation. Emerging studies have demonstrated that the Class I member HDAC3 of the HDAC super family has cell-specific functions in atherosclerosis, including 1) maintenance of endothelial integrity and functions, 2) regulation of vascular smooth muscle cell proliferation and migration, 3) modulation of macrophage phenotype, and 4) influence on foam cell formation. Although several studies have shown that HDAC3 may be a promising therapeutic target, only a few HDAC3-selective inhibitors have been thoroughly researched and reported. Here, we specifically summarize the impact of HDAC3 and its inhibitors on vascular function, inflammation, lipid accumulation, and plaque stability in the development of atherosclerosis with the hopes of opening up new opportunities for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Jin-Zhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Yang-Kai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Hui-Ling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Wan-Ying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Ping-Ping He
- School of Nursing, University of South China, Hunan, China
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| |
Collapse
|
12
|
Ishii S. The Role of Histone Deacetylase 3 Complex in Nuclear Hormone Receptor Action. Int J Mol Sci 2021; 22:ijms22179138. [PMID: 34502048 PMCID: PMC8431225 DOI: 10.3390/ijms22179138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptors (NRs) regulate transcription of the target genes in a ligand-dependent manner in either a positive or negative direction, depending on the case. Deacetylation of histone tails is associated with transcriptional repression. A nuclear receptor corepressor (N-CoR) and a silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the main corepressors responsible for gene suppression mediated by NRs. Among numerous histone deacetylases (HDACs), HDAC3 is the core component of the N-CoR/SMRT complex, and plays a central role in NR-dependent repression. Here, the roles of HDAC3 in ligand-independent repression, gene repression by orphan NRs, NRs antagonist action, ligand-induced repression, and the activation of a transcriptional coactivator are reviewed. In addition, some perspectives regarding the non-canonical mechanisms of HDAC3 action are discussed.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8501, Japan
| |
Collapse
|
13
|
Chang H, Xu Q, Li J, Li M, Zhang Z, Ma H, Yang X. Lactate secreted by PKM2 upregulation promotes Galectin-9-mediated immunosuppression via inhibiting NF-κB pathway in HNSCC. Cell Death Dis 2021; 12:725. [PMID: 34290225 PMCID: PMC8295286 DOI: 10.1038/s41419-021-03990-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
Pyruvate kinase M2 as a key rate-limiting enzyme in glycolysis, it plays a critical role in metabolic reprogramming and carcinogenesis. However, whether PKM2 can promote immunosuppressive microenvironment formation remains unknown in head and neck squamous cell carcinoma (HNSCC). PKM2 expression was detected using immunohistochemical staining. The biological functions of PKM2 were investigated in vitro and in vivo. Lactate production and the expression of Galectin-9, a critical immunosuppression molecule, were detected after PKM2 knockdown and overexpression in HNSCC cells. The mechanism of lactate regulating Galectin-9 expression through NF-κB signaling was explored in vitro. Overexpression of PKM2 correlates with poor prognosis in HNSCC patients. Silencing PKM2 markedly inhibits proliferation and metastasis capacity in vivo and in vitro, and vice versa. The glycolysis and glycolytic capacity are significantly decreased after PKM2 silencing. Lactate secretion induced by PKM2 significantly promotes migration and invasion capacity. Furthermore, a positive correlation between PKM2 and Galectin-9 expression is observed in HNSCC tissues. The induction of Galectin-9 expression by PKM2 can be affected by a lactate transporter inhibitor. Mechanically, lactate impeded the suppressive transcriptional complex formation of NF-κB and histone deacetylase 3 (HDAC3), which released the transcription of Galectin-9 mediated by NF-κB signaling. Our findings demonstrate that lactate produced by PKM2 upregulation promotes tumor progression and Galectin-9-mediated immunosuppression via NF-κB signaling inhibition in HNSCC, which bridges metabolism and immunosuppression. The novel PKM2-lactate-Galectin-9 axis might be a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Hanyue Chang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, 510140, Guangzhou, China
| | - Qiaoshi Xu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China
| | - Jiayi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China
| | - Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China.
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, 200011, Shanghai, China.
- National Clinical Research Center for Oral Diseases, 200011, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| |
Collapse
|
14
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
15
|
Wen Q, Lau N, Weng H, Ye P, Du S, Li C, Lv J, Li H. Chrysophanol Exerts Anti-inflammatory Activity by Targeting Histone Deacetylase 3 Through the High Mobility Group Protein 1-Nuclear Transcription Factor-Kappa B Signaling Pathway in vivo and in vitro. Front Bioeng Biotechnol 2021; 8:623866. [PMID: 33569375 PMCID: PMC7868569 DOI: 10.3389/fbioe.2020.623866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Chrysophanol (Chr) is the main monomer isolated from Rheum rhabarbarum. This study aimed to identify the potential in vitro and in vivo cytoprotective effects of Chr on lipopolysaccharide (LPS)-triggered acute lung injury (ALI). We used an ALI-murine model and constructed an inflammatory macrophage in vitro cell model to determine the cellular mechanisms involved in Chr-mediated activity. To observe the vital role of histone deacetylase 3 (HDAC3) in abolishing inflammation action, HDAC3 was downregulated using small interfering RNA. Analysis of the expression of nuclear transcription factor-kappa B p65 (NF-κB p65) and molecules of its downstream signaling pathway were assessed in vitro and in lung tissue samples using the mouse model. Concentrations of tumor necrosis factor-α, interleukin-1β, high mobility group protein 1 (HMGB1), and interleukin-16 in supernatants and the bronchoalveolar lavage fluid were measured using enzyme-linked immunosorbent assay. A reporter gene assay measured HMGB1 activity, and NF-κB p65 and HMGB1 intracellular localization was determined by immunofluorescence detection on histological lung samples from Chr-treated mice. The protein interactions between HMGB1, HDAC3, and NF-κB p65 were tested by co-immunoprecipitation. Chr treatment relieved LPS-induced lung lesions. Chr also enhanced superoxide dismutase levels in ALI mice. Chr reduced the LPS-induced protein expression of NF-κB and its related pathway molecules in both in vivo and in vitro models. Moreover, Chr downregulated LPS-enhanced HMGB1 expression, acetylation, and nuclear nucleocytoplasmic translocation. However, HDAC3 knockdown substantially reduced Chr-mediated HDAC3/NF-κB expression. Furthermore, Chr enhanced HMGB1/HDAC3/NF-κB p65 complex interaction, whereas HDAC3 knockdown reduced Chr-mediated HMGB1/HDAC3/NF-κB p65 formation. This study showed that the protective effects induced by Chr were associated with the regulation of the HMGB1/NF-κB pathway via HDAC3.
Collapse
Affiliation(s)
- Quan Wen
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ngaikeung Lau
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huandi Weng
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Peng Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaohui Du
- Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun Li
- School of Nursing Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Lv
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Stanfield BA, Purves T, Palmer S, Sullenger B, Welty-Wolf K, Haines K, Agarwal S, Kasotakis G. IL-10 and class 1 histone deacetylases act synergistically and independently on the secretion of proinflammatory mediators in alveolar macrophages. PLoS One 2021; 16:e0245169. [PMID: 33471802 PMCID: PMC7816993 DOI: 10.1371/journal.pone.0245169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Anti-inflammatory cytokine IL-10 suppresses pro-inflammatory IL-12b expression after Lipopolysaccharide (LPS) stimulation in colonic macrophages, as part of the innate immunity Toll-Like Receptor (TLR)-NF-κB activation system. This homeostatic mechanism limits excess inflammation in the intestinal mucosa, as it constantly interacts with the gut flora. This effect is reversed with Histone Deacetylase 3 (HDAC3), a class I HDAC, siRNA, suggesting it is mediated through HDAC3. Given alveolar macrophages’ prominent role in Acute Lung Injury (ALI), we aim to determine whether a similar regulatory mechanism exists in the typically sterile pulmonary microenvironment. Methods Levels of mRNA and protein for IL-10, and IL-12b were determined by qPCR and ELISA/Western Blot respectively in naïve and LPS-stimulated alveolar macrophages. Expression of the NF-κB intermediaries was also similarly assessed. Experiments were repeated with AS101 (an IL-10 protein synthesis inhibitor), MS-275 (a selective class 1 HDAC inhibitor), or both. Results LPS stimulation upregulated all proinflammatory mediators assayed in this study. In the presence of LPS, inhibition of IL-10 and/or class 1 HDACs resulted in both synergistic and independent effects on these signaling molecules. Quantitative reverse-transcriptase PCR on key components of the TLR4 signaling cascade demonstrated significant diversity in IL-10 and related gene expression in the presence of LPS. Inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the transcription of MyD88, IRAK1, Rela and the NF-κB p50 subunit. Interestingly, by quantitative ELISA inhibition of IL-10 secretion and/or class 1 HDACs in the presence of LPS independently affected the secretion of not only IL-10, IL-12b, and TNFα, but also proinflammatory mediators CXCL2, IL-6, and MIF. These results suggest that IL-10 and class 1 HDAC activity regulate both independent and synergistic mechanisms of proinflammatory cytokine/chemokine signaling. Conclusions Alveolar macrophages after inflammatory stimulation upregulate both IL-10 and IL-12b production, in a highly class 1 HDAC-dependent manner. Class 1 HDACs appear to help maintain the balance between the pro- and anti-inflammatory IL-12b and IL-10 respectively. Class 1 HDACs may be considered as targets for the macrophage-initiated pulmonary inflammation in ALI in a preclinical setting.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Todd Purves
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Urology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Scott Palmer
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Bruce Sullenger
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Karen Welty-Wolf
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krista Haines
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Suresh Agarwal
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - George Kasotakis
- Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Division of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARγ Signaling in Vascular Calcification. Cells 2020; 9:cells9122658. [PMID: 33322009 PMCID: PMC7763279 DOI: 10.3390/cells9122658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC), the ectopic deposition of calcium phosphate crystals in the vessel wall, is one of the primary contributors to cardiovascular death. The pathology of VC is determined by vascular topography, pre-existing diseases, and our genetic heritage. VC evolves from inflammation, mediated by macrophages, and from the osteochondrogenic transition of vascular smooth muscle cells (VSMC) in the atherosclerotic plaque. This pathologic transition partly resembles endochondral ossification, involving the chronologically ordered activation of the β-catenin-independent and -dependent Wingless and Int-1 (WNT) pathways and the termination of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction. Several atherosclerotic plaque studies confirmed the differential activity of PPARγ and the WNT signaling pathways in VC. Notably, the actively regulated β-catenin-dependent and -independent WNT signals increase the osteochondrogenic transformation of VSMC through the up-regulation of the osteochondrogenic transcription factors SRY-box transcription factor 9 (SOX9) and runt-related transcription factor 2 (RUNX2). In addition, we have reported studies showing that WNT signaling pathways may be antagonized by PPARγ activation via the expression of different families of WNT inhibitors and through its direct interaction with β-catenin. In this review, we summarize the existing knowledge on WNT and PPARγ signaling and their interplay during the osteochondrogenic differentiation of VSMC in VC. Finally, we discuss knowledge gaps on this interplay and its possible clinical impact.
Collapse
Affiliation(s)
- Stefan Reinhold
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881409
| |
Collapse
|
18
|
PPAR-γ Is Critical for HDAC3-Mediated Control of Oligodendrocyte Progenitor Cell Proliferation and Differentiation after Focal Demyelination. Mol Neurobiol 2020; 57:4810-4824. [PMID: 32803489 DOI: 10.1007/s12035-020-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Disruption of remyelination contributes to neurodegeneration and cognitive impairment in chronically disabled patients. Valproic acid (VPA) inhibits histone deacetylase (HDAC) function and probably promotes oligodendrocyte progenitor cell (OPC) proliferation and differentiation; however, the relevant molecular mechanisms remain unknown. Here, focal demyelinating lesions (FDLs) were generated in mice by two-point stereotactic injection of lysophosphatidylcholine (LPC) into the corpus callosum. Cognitive functions, sensorimotor abilities and histopathological changes were assessed for up to 28 days post-injury with or without VPA treatment. Primary OPCs were harvested and used to study the effect of VPA on OPC differentiation under inflammatory conditions. VPA dose-dependently attenuated learning and memory deficits and robustly protected white matter after FDL induction, as demonstrated by reductions in SMI-32 and increases in myelin basic protein staining. VPA also promoted OPC proliferation and differentiation and increased subsequent remyelination efficiency by day 28 post-FDL induction. VPA treatment did not affect HDAC1, HDAC2 or HDAC8 expression but reduced HDAC3 protein levels. In vitro, VPA improved the survival of mouse OPCs and promoted their differentiation into oligodendrocytes following lipopolysaccharide (LPS) stimulation. LPS caused OPCs to overexpress HDAC3, which translocated from the cytoplasm into the nucleus, where it directly interacted with the nuclear transcription factor PPAR-γ and negatively regulated PPAR-γ expression. VPA decreased the expression of HDAC3 and promoted remyelination and functional neurological recovery after FDL. These findings may support the use of strategies modulating HDAC3-mediated regulation of protein acetylation for the treatment of demyelination-related cognitive dysfunction.
Collapse
|
19
|
Ma L, Qi L, Li S, Yin Q, Liu J, Wang J, She C, Li P, Liu Q, Wang X, Li W. Aberrant HDAC3 expression correlates with brain metastasis in breast cancer patients. Thorac Cancer 2020; 11:2493-2505. [PMID: 32686908 PMCID: PMC7471029 DOI: 10.1111/1759-7714.13561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain metastasis is an unsolved clinical problem in breast cancer patients due to its poor prognosis and high fatality rate. Although accumulating evidence has shown that some pan-histone deacetylase (HDAC) inhibitors can relieve breast cancer brain metastasis, the specific HDAC protein involved in this process is unclear. Thus, identifying a specific HDAC protein closely correlated with breast cancer brain metastasis will not only improve our understanding of the functions of the HDAC family but will also help develop a novel target for precision cancer therapy. METHODS Immunohistochemical staining of HDAC1, HDAC2, and HDAC3 in 161 samples from breast invasive ductal carcinoma patients, including 63 patients with brain metastasis, was performed using the standard streptavidin-peroxidase method. The relationships between HDAC1, HDAC2, and HDAC3 and overall survival/brain metastasis-free survival/post-brain metastatic survival were evaluated using Kaplan-Meier curves and Cox regression analyses. RESULTS HDAC1, HDAC2, and cytoplasmic HDAC3 all displayed typical oncogenic characteristics and were independent prognostic factors for the overall survival of breast cancer patients. Only cytoplasmic HDAC3 was an independent prognostic factor for brain metastasis-free survival. Cytoplasmic expression of HDAC3 was further upregulated in the brain metastases compared with the matched primary tumors, while nuclear expression was downregulated. The HDAC1, HDAC2, and HDAC3 expression levels in the brain metastases were not correlated with survival post-brain metastasis. CONCLUSIONS Our studies first demonstrate a critical role for HDAC3 in the brain metastasis of breast cancer patients and it may serve as a promising therapeutic target for the vigorously developing field of precision medicine. KEY POINTS Significant findings of the study Cytoplasmic HDAC3 is an independent prognostic factor for the overall survival and brain metastasis-free survival of breast cancer patients. What this study adds Cytoplasmic expression of HDAC3 was further upregulated in the brain metastases compared with the matched primary tumours, while nuclear expression was downregulated.
Collapse
Affiliation(s)
- Li Ma
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuangjing Li
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Qiang Yin
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinmei Liu
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingyi Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunhua She
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Li
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qun Liu
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoguang Wang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenliang Li
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Kang Z, Fan R. PPARα and NCOR/SMRT corepressor network in liver metabolic regulation. FASEB J 2020; 34:8796-8809. [DOI: 10.1096/fj.202000055rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan China
| | - Rongrong Fan
- Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden
| |
Collapse
|
21
|
Guo Y, Zhang X, Zhao Z, Lu H, Ke B, Ye X, Wu B, Ye J. NF- κ B/HDAC1/SREBP1c pathway mediates the inflammation signal in progression of hepatic steatosis. Acta Pharm Sin B 2020; 10:825-836. [PMID: 32528830 PMCID: PMC7276689 DOI: 10.1016/j.apsb.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is activated in hepatocytes in the pathogenesis of hepatic steatosis. However, the action mechanism of NF-κB remains to be established in the hepatic steatosis. In this study, the P50 subunit of NF-κB was found to promote the hepatic steatosis through regulation of histone deacetylase 1 (HDAC1) in hepatocytes. The activity was supported by the phenotypes of P50 knockout (P50-KO) mice and P65 knockout (P65-KO) mice. Hepatic steatosis was reduced in the P50-KO mice, but not in the P65-KO mice. The reduction was a result of inhibition of HDAC1 activity in the P50-KO cells. Knockdown of Hdac1 gene led to suppression of hepatocyte steatosis in HepG2 cells. A decrease in sterol-regulatory element binding protein 1c (SREBP1c) protein was observed in the liver of P50-KO mice and in cell with Hdac1 knockdown. The decrease was associated with an increase in succinylation of SREBP1c protein. The study suggests that P50 stabilizes HDAC1 to support the SREBP1c activity in hepatic steatosis in the pathophysiological condition. Interruption of this novel pathway in the P50-KO, but not the P65-KO mice, may account for the difference in hepatic phenotypes in the two lines of transgenic mice.
Collapse
Affiliation(s)
- Yunwei Guo
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Xiaoying Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Zhiyun Zhao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hongyun Lu
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bilun Ke
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
- Corresponding author.
| |
Collapse
|
22
|
Thatikonda S, Pooladanda V, Sigalapalli DK, Godugu C. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis 2020; 11:21. [PMID: 31924750 PMCID: PMC6954241 DOI: 10.1038/s41419-019-2212-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Psoriasis is an autoimmune skin disease, where chronic immune responses due to exaggerated cytokine signaling, abnormal differentiation, and evasion of keratinocytes apoptosis plays a crucial role in mediating abnormal keratinocytes hyperproliferation. From the therapeutic perspective, the molecules with strong anti-proliferative and anti-inflammatory properties could have tremendous relevance. In this study, we demonstrated that piperlongumine (PPL) treatment effectively abrogated the hyperproliferation and differentiation of keratinocytes by inducing ROS-mediated late apoptosis with loss of mitochondrial membrane potential. Besides, the arrest of cell cycle was found at Sub-G1 phase as a result of DNA fragmentation. Molecularly, inhibition of STAT3 and Akt signaling was observed with a decrease in proliferative markers such as PCNA, ki67, and Cyclin D1 along with anti-apoptotic Bcl-2 protein expression. Keratin 17 is a critical regulator of keratinocyte differentiation, and it was found to be downregulated with PPL significantly. Furthermore, prominent anti-inflammatory effects were observed by inhibition of lipopolysaccharide (LPS)/Imiquimod (IMQ)-induced p65 NF-κB signaling cascade and strongly inhibited the production of cytokine storm involved in psoriasis-like skin inflammation, thus led to the restoration of normal epidermal architecture with reduction of epidermal hyperplasia and splenomegaly. In addition, PPL epigenetically inhibited histone-modifying enzymes, which include histone deacetylases (HDACs) of class I (HDAC1-4) and class II (HDAC6) evaluated by immunoblotting and HDAC enzyme assay kit. In addition, our results show that PPL effectively inhibits the nuclear translocation of p65 and a histone modulator HDAC3, thus sequestered in the cytoplasm of macrophages. Furthermore, PPL effectively enhanced the protein-protein interactions of HDAC3 and p65 with IκBα, which was disrupted by LPS stimulation and were evaluated by Co-IP and molecular modeling. Collectively, our findings indicate that piperlongumine may serve as an anti-proliferative and anti-inflammatory agent and could serve as a potential therapeutic option in treating psoriasis.
Collapse
Affiliation(s)
- Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
23
|
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev 2020; 16:442-449. [PMID: 31657690 PMCID: PMC7475801 DOI: 10.2174/1573399815666191024085838] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type 2 Diabetes (T2D) is a major health problem worldwide. This metabolic disease is indicated by high blood glucose levels due to insufficient insulin production by the pancreas. An inflammatory response occurs as a result of the immune response to high blood glucose levels as well as the presence of inflammatory mediators produced by adipocytes and macrophages in fat tissue. This low and chronic inflammation damages the pancreatic beta cells and leads to insufficient insulin production, which results in hyperglycemia. Hyperglycemia in diabetes is thought to cause dysfunction of the immune response, which fails to control the spread of invading pathogens in diabetic subjects. Therefore, diabetic subjects are known to more susceptible to infections. The increased prevalence of T2D will increase the incidence of infectious diseases and related comorbidities. OBJECTIVE This review provides an overview of the immunological aspect of T2D and the possible mechanisms that result in increased infections in diabetics. CONCLUSION A better understanding of how immune dysfunctions occur during hyperglycemia can lead to novel treatments and preventions for infectious diseases and T2D comorbidities, thus improving the outcome of infectious disease treatment in T2D patients.
Collapse
Affiliation(s)
- Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Address correspondence to this author at the Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Raya Bandung Sumedang Km. 21, 45363, West Java, Indonesia; E-mail:
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Adi Imam Tjahjadi
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Microbiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Pharmacology and Therapy Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
24
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
25
|
Zhang H, Ji L, Yang Y, Wei Y, Zhang X, Gang Y, Lu J, Bai L. The Therapeutic Effects of Treadmill Exercise on Osteoarthritis in Rats by Inhibiting the HDAC3/NF-KappaB Pathway in vivo and in vitro. Front Physiol 2019; 10:1060. [PMID: 31481898 PMCID: PMC6710443 DOI: 10.3389/fphys.2019.01060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a disease characterized by non-bacterial inflammation. Histone deacetylase 3 (HDAC3) is a crucial positive regulator in the inflammation that leads to the development of non-OA inflammatory disease. However, the precise involvement of HDAC3 in OA is still unknown, and the underlying mechanism of exercise therapy in OA requires more research. We investigated the involvement of HDAC3 in exercise therapy-treated OA. Expression levels of HDAC3, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), matrix metalloproteinase-13 (MMP-13), HDAC3 and nuclear factor-kappaB (NF-kappaB) were measured by western blotting, reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. Cartilage damage and OA evaluation were measured by hematoxylin and eosin staining and Toluidine blue O staining according to the Mankin score and OARSI score, respectively. We found that moderate-intensity treadmill exercise could relieve OA. Meanwhile, the expression of HDAC3, MMP-13, ADAMTS-5 and NF-kappaB decreased, and collagen II increased in the OA + moderate-intensity treadmill exercise group (OAM) compared with the OA group (OAG) or OA + high- or low-intensity treadmill exercise groups (OAH or OAL). Furthermore, we found the selective HDAC3 inhibitor RGFP966 could also alleviate inflammation in OA rat model through inhibition of nuclear translocation of NF-kappaB. To further explore the relationship between HDAC3 and NF-kappaB, we investigated the change of NF-kappaB relocation in IL-1β-treated chondrocytes under the stimulation of RGFP966. We found that RGFP966 could inhibit the expression of inflammatory markers of OA via regulation of HDAC3/NF-kappaB pathway. These investigations revealed that RGFP966 is therefore a promising new drug for treating OA.
Collapse
Affiliation(s)
- He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lu Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Anesthesiology Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Gang
- Department of Orthopedic Surgery, Panjin Central Hospital, Panjin, China
| | - Jinghan Lu
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Meli VS, Veerasubramanian PK, Atcha H, Reitz Z, Downing TL, Liu WF. Biophysical regulation of macrophages in health and disease. J Leukoc Biol 2019; 106:283-299. [PMID: 30861205 PMCID: PMC7001617 DOI: 10.1002/jlb.mr0318-126r] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Praveen K. Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Hamza Atcha
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
| |
Collapse
|
27
|
Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, Cerbón M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 2019; 158:R27-R40. [DOI: 10.1530/rep-18-0449] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the leading endocrine and metabolic disorder in premenopausal women characterized by hyperandrogenism and abnormal development of ovarian follicles. To date, the PCOS etiology remains unclear and has been related to insulin resistance, obesity, type 2 diabetes mellitus, cardiovascular disease and infertility, among other morbidities. Substantial evidence illustrates the impact of genetic, intrauterine and environmental factors on the PCOS etiology. Lately, epigenetic factors have garnered considerable attention in the pathogenesis of PCOS considering that changes in the content of DNA methylation, histone acetylation and noncoding RNAs have been reported in various tissues of women with this disease. DNA methylation is changed in the peripheral and umbilical cord blood, as well as in ovarian and adipose tissue of women with PCOS, suggesting the involvement of this epigenetic modification in the pathogenesis of the disease. Perhaps, these defects in DNA methylation promote the deregulation of genes involved in inflammation, hormone synthesis and signaling and glucose and lipid metabolism. Research on the role of DNA methylation in the pathogenesis of PCOS is just beginning, and several issues await investigation. This review aims to provide an overview of current research focused on DNA methylation and PCOS, as well as discuss the perspectives regarding this topic.
Collapse
|
28
|
Suzuki C, Ushijima K, Ando H, Kitamura H, Horiguchi M, Akita T, Yamashita C, Fujimura A. Induction of Dbp by a histone deacetylase inhibitor is involved in amelioration of insulin sensitivity via adipocyte differentiation in ob/ob mice. Chronobiol Int 2019; 36:955-968. [DOI: 10.1080/07420528.2019.1602841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Chisato Suzuki
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
- Department of Pharmaceutics & Drug Delivery Systems, Tokyo University of Science, Chiba, Japan
| | - Kentaro Ushijima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroko Kitamura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Michiko Horiguchi
- Department of Pharmaceutics & Drug Delivery Systems, Tokyo University of Science, Chiba, Japan
| | - Tomomi Akita
- Department of Pharmaceutics & Drug Delivery Systems, Tokyo University of Science, Chiba, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics & Drug Delivery Systems, Tokyo University of Science, Chiba, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
29
|
Hieda M. Signal Transduction across the Nuclear Envelope: Role of the LINC Complex in Bidirectional Signaling. Cells 2019; 8:cells8020124. [PMID: 30720758 PMCID: PMC6406650 DOI: 10.3390/cells8020124] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
The primary functions of the nuclear envelope are to isolate the nucleoplasm and its contents from the cytoplasm as well as maintain the spatial and structural integrity of the nucleus. The nuclear envelope also plays a role in the transfer of various molecules and signals to and from the nucleus. To reach the nucleus, an extracellular signal must be transmitted across three biological membranes: the plasma membrane, as well as the inner and outer nuclear membranes. While signal transduction across the plasma membrane is well characterized, signal transduction across the nuclear envelope, which is essential for cellular functions such as transcriptional regulation and cell cycle progression, remains poorly understood. As a physical entity, the nuclear envelope, which contains more than 100 proteins, functions as a binding scaffold for both the cytoskeleton and the nucleoskeleton, and acts in mechanotransduction by relaying extracellular signals to the nucleus. Recent results show that the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, which is a conserved molecular bridge that spans the nuclear envelope and connects the nucleoskeleton and cytoskeleton, is also capable of transmitting information bidirectionally between the nucleus and the cytoplasm. This short review discusses bidirectional signal transduction across the nuclear envelope, with a particular focus on mechanotransduction.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543 Takooda, Tobecho,Ehime 791-2102, Japan.
| |
Collapse
|
30
|
Pooladanda V, Thatikonda S, Bale S, Pattnaik B, Sigalapalli DK, Bathini NB, Singh SB, Godugu C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis 2019; 10:81. [PMID: 30692512 PMCID: PMC6349848 DOI: 10.1038/s41419-018-1247-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive acute inflammatory response in lung parenchyma, which ultimately leads to refractory hypoxemia. One of the earliest abnormalities seen in lung injury is the elevated levels of inflammatory cytokines, among them, the soluble tumor necrosis factor (TNF-α) has a key role, which exerts cytotoxicity in epithelial and endothelial cells thus exacerbates edema. The bacterial lipopolysaccharide (LPS) was used both in vitro (RAW 264.7, THP-1, MLE-12, A549, and BEAS-2B) and in vivo (C57BL/6 mice), as it activates a plethora of overlapping inflammatory signaling pathways involved in ARDS. Nimbolide is a chemical constituent of Azadirachta indica, which contains multiple biological properties, while its role in ARDS is elusive. Herein, we have investigated the protective effects of nimbolide in abrogating the complications associated with ARDS. We showed that nimbolide markedly suppressed the nitrosative-oxidative stress, inflammatory cytokines, and chemokines expression by suppressing iNOS, myeloperoxidase, and nitrotyrosine expression. Moreover, nimbolide mitigated the migration of neutrophils and mast cells whilst normalizing the LPS-induced hypothermia. Also, nimbolide modulated the expression of epigenetic regulators with multiple HDAC inhibitory activity by suppressing the nuclear translocation of NF-κB and HDAC-3. We extended our studies using molecular docking studies, which demonstrated a strong interaction between nimbolide and TNF-α. Additionally, we showed that treatment with nimbolide increased GSH, Nrf-2, SOD-1, and HO-1 protein expression; concomitantly abrogated the LPS-triggered TNF-α, p38 MAPK, mTOR, and GSK-3β protein expression. Collectively, these results indicate that TNF-α-regulated NF-κB and HDAC-3 crosstalk was ameliorated by nimbolide with promising anti-nitrosative, antioxidant, and anti-inflammatory properties in LPS-induced ARDS.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease and Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, 110007, New Delhi, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Nagendra Babu Bathini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
31
|
Uhler C, Shivashankar GV. Nuclear Mechanopathology and Cancer Diagnosis. Trends Cancer 2018; 4:320-331. [PMID: 29606315 DOI: 10.1016/j.trecan.2018.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
Abnormalities in nuclear and chromatin organization are hallmarks of many diseases including cancer. In this review, we highlight our understanding of how the cellular microenvironment regulates nuclear morphology and, with it, the spatial organization of chromosomes and genes, resulting in cell type-specific genomic programs. We also discuss the molecular basis for maintaining nuclear and genomic integrity and how alterations in nuclear mechanotransduction pathways result in various diseases. Finally, we highlight the importance of digital pathology based on nuclear morphometric features combined with single-cell genomics for early cancer diagnostics.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering & Computer Science, Institute for Data, Systems & Society, MIT, Cambridge, MA, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore; FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.
| |
Collapse
|
32
|
Histone deacetylase 3 promotes liver regeneration and liver cancer cells proliferation through signal transducer and activator of transcription 3 signaling pathway. Cell Death Dis 2018. [PMID: 29540666 PMCID: PMC5852132 DOI: 10.1038/s41419-018-0428-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays pivotal roles in cell cycle regulation and is often aberrantly expressed in various cancers including hepatocellular carcinoma (HCC), but little is known about its role in liver regeneration and liver cancer cells proliferation. Using an inducible hepatocyte-selective HDAC3 knockout mouse, we find that lack of HDAC3 dramatically impaired liver regeneration and blocked hepatocyte proliferation in the G1 phase entry. HDAC3 inactivation robustly disrupted the signal transducer and activator of transcription 3 (STAT3) cascade. HDAC3 silencing impaired the ac-STAT3-to-p-STAT3 transition in the cytoplasm, leading to the subsequent breakdown of STAT3 signaling. Furthermore, overexpressed HDAC3 was further associated with increased tumor growth and a poor prognosis in HCC patients. Inhibition of HDAC3 expression reduced liver cancer cells growth and inhibited xenograft tumor growth. Our results suggest that HDAC3 is an important regulator of STAT3-dependent cell proliferation in liver regeneration and cancer. These findings provide novel insights into the HDAC3-STAT3 pathway in liver pathophysiological processes.
Collapse
|
33
|
Lysophospholipid-Related Diseases and PPARγ Signaling Pathway. Int J Mol Sci 2017; 18:ijms18122730. [PMID: 29258184 PMCID: PMC5751331 DOI: 10.3390/ijms18122730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/04/2023] Open
Abstract
The nuclear receptor superfamily includes ligand-inducible transcription factors that play diverse roles in cell metabolism and are associated with pathologies such as cardiovascular diseases. Lysophosphatidic acid (LPA) belongs to a family of lipid mediators. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and an intracellular nuclear hormone receptor. In addition, several enzymes that utilize LPA as a substrate or generate it as a product are under its regulatory control. Recent studies have demonstrated that the endogenously produced peroxisome proliferator-activated receptor gamma (PPARγ) antagonist cyclic phosphatidic acid (cPA), which is structurally similar to LPA, inhibits cancer cell invasion and metastasis in vitro and in vivo. We recently observed that cPA negatively regulates PPARγ function by stabilizing the binding of the co-repressor protein, a silencing mediator of retinoic acid, and the thyroid hormone receptor. We also showed that cPA prevents neointima formation, adipocyte differentiation, lipid accumulation, and upregulation of PPARγ target gene transcription. The present review discusses the arbitrary aspects of the physiological and pathophysiological actions of lysophospholipids in vascular and nervous system biology.
Collapse
|
34
|
Jiao F, Hu H, Han T, Zhuo M, Yuan C, Yang H, Wang L, Wang L. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer. Oncotarget 2017; 7:16505-16. [PMID: 26918727 PMCID: PMC4941331 DOI: 10.18632/oncotarget.7663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P < 0.001, respectively) and clinical stage (P = 0.020 and P < 0.001, respectively). Increased nuclear HDAC3 correlates with lymph node metastasis (P < 0.001) and advanced clinical stage (P < 0.001), but increased cytoplasmic HDAC3 does not (P > 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P < 0.001), more frequent lymph node metastasis (P < 0.001), and advanced clinical stage (P < 0.001). Our studies provide convincing evidence that nuclear HDAC3 and cytoplasmic CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Hai Hu
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ting Han
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Meng Zhuo
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Cuncun Yuan
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Haiyan Yang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lei Wang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| | - Liwei Wang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China
| |
Collapse
|
35
|
Epigenetic Regulation of Adipokines. Int J Mol Sci 2017; 18:ijms18081740. [PMID: 28796178 PMCID: PMC5578130 DOI: 10.3390/ijms18081740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.
Collapse
|
36
|
Remarkable Evolutionary Conservation of Antiobesity ADIPOSE/WDTC1 Homologs in Animals and Plants. Genetics 2017; 207:153-162. [PMID: 28663238 DOI: 10.1534/genetics.116.198382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/25/2017] [Indexed: 11/18/2022] Open
Abstract
ASG2 (Altered Seed Germination 2) is a prenylated protein in Arabidopsis thaliana that participates to abscisic acid signaling and is proposed to act as a substrate adaptor for the DDB1 (DNA damage-binding protein 1)-CUL4 (Cullin 4) E3 ubiquitin ligase complex. ASG2 harbors WD40 and TetratricoPeptide Repeat (TPR) domains, and resembles the well-conserved animal gene called ADP (antiobesity factor ADIPOSE) in fly and WDTC1 (WD40 and TPR 1) in humans. Loss of function of WDTC1 results in an increase in adipocytes, fat accumulation, and obesity. Antiadipogenic functions of WDTC1 involve regulation of fat-related gene transcription, notably through its binding to histone deacetylases (HDACs). Our sequence and phylogenetic analysis reveals that ASG2 belongs to the ADP/WDTC1 cluster. ASG2 and WDTC1 share a highly conserved organization that encompasses structural and functional motifs: seven WD40 domains and WD40 hotspot-related residues, three TPR protein-protein interaction domains, DDB1-binding elements [H-box and DWD (DDB1-binding WD40 protein)-box], and a prenylatable C-terminus. Furthermore, ASG2 involvement in fat metabolism was confirmed by reverse genetic approaches using asg2 knockout Arabidopsis plants. Under limited irradiance, asg2 mutants produce "obese" seeds characterized by increased weight, oil body density, and higher fatty acid contents. In addition, considering some ASG2- and WDTC1-peculiar properties, we show that the WDTC1 C-terminus is prenylated in vitro and HDAC-binding capability is conserved in ASG2, suggesting that the regulation mechanism and targets of ADP/WDTC1-like proteins may be conserved features. Our findings reveal the remarkable evolutionary conservation of the structure and the physiological role of ADIPOSE homologs in animals and plants.
Collapse
|
37
|
McClure JJ, Inks ES, Zhang C, Peterson YK, Li J, Chundru K, Lee B, Buchanan A, Miao S, Chou CJ. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs. ACS Chem Biol 2017; 12:1644-1655. [PMID: 28459537 DOI: 10.1021/acschembio.7b00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acetylation status of lysine residues on histone proteins has long been attributed to a balance struck between the catalytic activity of histone acetyl transferases and histone deacetylases (HDAC). HDACs were identified as the sole removers of acetyl post-translational modifications (PTM) of histone lysine residues. Studies into the biological role of HDACs have also elucidated their role as removers of acetyl PTMs from lysine residues of nonhistone proteins. These findings, coupled with high-resolution mass spectrometry studies that revealed the presence of acyl-group PTMs on lysine residues of nonhistone proteins, brought forth the possibility of HDACs acting as removers of both acyl- and acetyl-based PTMs. We posited that HDACs fulfill this dual role and sought to investigate their specificity. Utilizing a fluorescence-based assay and biologically relevant acyl-substrates, the selectivities of zinc-dependent HDACs toward these acyl-based PTMs were identified. These findings were further validated using cellular models and molecular biology techniques. As a proof of principal, an HDAC3 selective inhibitor was designed using HDAC3's substrate preference. This resulting inhibitor demonstrates nanomolar activity and >30 fold selectivity toward HDAC3 compared to the other class I HDACs. This inhibitor is capable of increasing p65 acetylation, attenuating NF-κB activation, and thereby preventing downstream nitric oxide signaling. Additionally, this selective HDAC3 inhibition allows for control of HMGB-1 secretion from activated macrophages without altering the acetylation status of histones or tubulin.
Collapse
Affiliation(s)
- Jesse J. McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Elizabeth S. Inks
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Cheng Zhang
- China Agricultural University, Department of Applied
Chemistry, Beijing, China
| | - Yuri K. Peterson
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Jiaying Li
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Kalyan Chundru
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| | - Bradley Lee
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
- College of Charleston, Charleston, South Carolina, United States
| | - Ashley Buchanan
- College of Charleston, Charleston, South Carolina, United States
| | - Shiqin Miao
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - C. James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina, United States
| |
Collapse
|
38
|
Ye J, Wu W, Li Y, Li L. Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Dig Dis Sci 2017; 62:1155-1164. [PMID: 28341870 DOI: 10.1007/s10620-017-4538-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
The gut microbiota is a vast ensemble of microorganisms inhabiting the mammalian gastrointestinal tract that can impact physiologic and pathologic processes. However, our understanding of the underlying mechanism for the dynamic interaction between host and gut microbiota is still in its infancy. The highly evolved epigenetic modifications allow hosts to reprogram the genome in response to environmental stimuli, which may play a key role in triggering multiple human diseases. In spite of increasing studies in gut microbiota and epigenetic modifications, the correlation between them has not been well elaborated. Here, we review current knowledge of gut microbiota impacts on epigenetic modifications, the major evidence of which centers on DNA methylation and histone modification of the immune system.
Collapse
Affiliation(s)
- Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
39
|
Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 2016; 113:320-326. [DOI: 10.1016/j.phrs.2016.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
40
|
Thiagarajan D, Ananthakrishnan R, Zhang J, O'Shea KM, Quadri N, Li Q, Sas K, Jing X, Rosario R, Pennathur S, Schmidt AM, Ramasamy R. Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor. Cell Rep 2016; 15:181-196. [PMID: 27052179 DOI: 10.1016/j.celrep.2016.02.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 01/13/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylase 3 (HDAC3), a chromatin-modifying enzyme, requires association with the deacetylase-containing domain (DAD) of the nuclear receptor corepressors NCOR1 and SMRT for its stability and activity. Here, we show that aldose reductase (AR), the rate-limiting enzyme of the polyol pathway, competes with HDAC3 to bind the NCOR1/SMRT DAD. Increased AR expression leads to HDAC3 degradation followed by increased PPARγ signaling, resulting in lipid accumulation in the heart. AR also downregulates expression of nuclear corepressor complex cofactors including Gps2 and Tblr1, thus affecting activity of the nuclear corepressor complex itself. Though AR reduces HDAC3-corepressor complex formation, it specifically derepresses the retinoic acid receptor (RAR), but not other nuclear receptors such as the thyroid receptor (TR) and liver X receptor (LXR). In summary, this work defines a distinct role for AR in lipid and retinoid metabolism through HDAC3 regulation and consequent derepression of PPARγ and RAR.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Karen M O'Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Qing Li
- Columbia University Medical Center, New York, NY 10032, USA
| | - Kelli Sas
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiao Jing
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Rosa Rosario
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Subramaniam Pennathur
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
41
|
Tsukahara T, Haniu H, Matsuda Y, Murakmi-Murofushi K. Short-term treatment with a 2-carba analog of cyclic phosphatidic acid induces lowering of plasma cholesterol levels in ApoE-deficient mice. Biochem Biophys Res Commun 2016; 473:107-113. [PMID: 27012212 DOI: 10.1016/j.bbrc.2016.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Plasma cholesterol levels are associated with an increased risk of developing atherosclerosis. An elevated low-density lipoprotein cholesterol (LDL-C) level is a hallmark of hypercholesterolemia in metabolic syndrome. Our previous study suggested that when acetylated LDL (AC-LDL) was co-applied with a PPARγ agonist, rosiglitazone (ROSI), many oil red O-positive macrophages could be observed. However, addition of cyclic phosphatidic acid (cPA) to ROSI-stimulated macrophages completely abolished oil red O-stained cells, indicating that cPA inhibits PPARγ-regulated AC-LDL uptake. This study aimed to determine whether metabolically stabilized cPA, in the form of a carba-derivative of cPA (2ccPA), could reduce plasma cholesterol levels and affect the expression of genes related to atherosclerosis in apolipoprotein E-knockout (apoE(-/-)) mice. 2ccPA reduced LDL-C levels in these mice (n = 3) from 460 to 330 mg/ml, from 420 to 350 mg/ml, and 420 to 281 mg/ml under a western-type diet. 2ccPA also reduced expression of lipid metabolism-related genes, cytokines, and chemokines in ApoE-deficient mice on a high-fat diet. Taken together, these results suggest that 2ccPA governs anti-atherogenic activities in the carotid arteries of apoE-deficient mice.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Hisao Haniu
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshikazu Matsuda
- Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806, Japan
| | - Kimiko Murakmi-Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
42
|
Shen L, Orillion A, Pili R. Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 2016; 8:415-28. [PMID: 26950532 DOI: 10.2217/epi.15.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.
Collapse
Affiliation(s)
- Li Shen
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Ashley Orillion
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.,Genitourinary Program, Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
43
|
Zhang Y, Zhao Z, Ke B, Wan L, Wang H, Ye J. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function. PLoS One 2016; 11:e0150454. [PMID: 26930489 PMCID: PMC4773252 DOI: 10.1371/journal.pone.0150454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function.
Collapse
Affiliation(s)
- Yong Zhang
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
| | - Zhiyun Zhao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
| | - Bilun Ke
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
| | - Lin Wan
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
- Laboratory of Transplantation Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bacon T, Seiler C, Wolny M, Hughes R, Watson P, Schwabe J, Grigg R, Peckham M. Histone deacetylase 3 indirectly modulates tubulin acetylation. Biochem J 2015; 472:367-77. [PMID: 26450925 PMCID: PMC4661566 DOI: 10.1042/bj20150660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/08/2015] [Indexed: 01/04/2023]
Abstract
Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation.
Collapse
Affiliation(s)
- Travis Bacon
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Caroline Seiler
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Marcin Wolny
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Ruth Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Peter Watson
- Department of Molecular and Cell Biology, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - John Schwabe
- Department of Molecular and Cell Biology, Henry Wellcome Laboratories of Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ronald Grigg
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
45
|
Loft A, Schmidt SF, Mandrup S. Modulating the Genomic Programming of Adipocytes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:239-248. [PMID: 26432526 DOI: 10.1101/sqb.2015.80.027516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to modify the transcriptional program in response to external signals provides a way for mammalian cells to alter their biological fate and properties, thereby adapting to changes in the environment. Adipocytes are excellent examples of differentiated cells that possess a striking transcriptional plasticity when exposed to physiological and metabolic stimuli. In our work, we have focused on understanding the processes responsible for modulating the genomic programming in response to different external signals. Thus, we have shown that browning of human adipocytes with rosiglitazone, an antidiabetic agonist of the key adipocyte transcription factor peroxisome proliferator-activated receptor γ (PPARγ), involves redistribution of PPARγ binding to form browning-selective PPARγ super-enhancers that drive expression of key browning genes. These include genes encoding transcriptional regulators, such as Krüppel-like factor 11 (KLF11) that are essential for modulating the genomic program in white adipocytes to induce browning. Furthermore, we have shown that acute suppression of adipocyte genes by the proinflammatory cytokine, tumor necrosis factor (TNF), involves redistribution of cofactors to enhancers activated by the master inflammatory regulator, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Interestingly, this redistribution occurs selectively from enhancers with high-cofactor occupancies, thereby predominantly affecting super-enhancers and their associated genes. We propose that this is a general mechanism contributing to transcriptional repression associated with activation of signal-dependent transcription factors.
Collapse
Affiliation(s)
- Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|
46
|
Ke B, Zhao Z, Ye X, Gao Z, Manganiello V, Wu B, Ye J. Inactivation of NF-κB p65 (RelA) in Liver Improves Insulin Sensitivity and Inhibits cAMP/PKA Pathway. Diabetes 2015; 64:3355-62. [PMID: 26038580 PMCID: PMC4587638 DOI: 10.2337/db15-0242] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/20/2015] [Indexed: 01/07/2023]
Abstract
The transcription factor nuclear factor-κB (NF-κB) mediates inflammation and stress signals in cells. To test NF-κB in the control of hepatic insulin sensitivity, we inactivated NF-κB in the livers of C57BL/6 mice through deletion of the p65 gene, which was achieved by crossing floxed-p65 and Alb-cre mice to generate L-p65-knockout (KO) mice. KO mice did not exhibit any alterations in growth, reproduction, and body weight while on a chow diet. However, the mice on a high-fat diet (HFD) exhibited an improvement in systemic insulin sensitivity. Hepatic insulin sensitivity was enhanced as indicated by increased pyruvate tolerance, Akt phosphorylation, and decreased gene expression in hepatic gluconeogenesis. In the liver, a decrease in intracellular cAMP was observed with decreased CREB phosphorylation. Cyclic nucleotide phosphodiesterase-3B (PDE3B), a cAMP-degrading enzyme, was increased in mRNA and protein as a result of the absence of NF-κB activity. NF-κB was found to inhibit PDE3B transcription through three DNA-binding sites in the gene promoter in response to tumor necrosis factor-α. Body composition, food intake, energy expenditure, and systemic and hepatic inflammation were not significantly altered in KO mice on HFD. These data suggest that NF-κB inhibits hepatic insulin sensitivity by upregulating cAMP through suppression of PDE3B gene transcription.
Collapse
Affiliation(s)
- Bilun Ke
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Zhiyun Zhao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Zhanguo Gao
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Vincent Manganiello
- Pulmonary Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| |
Collapse
|
47
|
Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Int J Obes (Lond) 2015. [PMID: 26219415 PMCID: PMC4703459 DOI: 10.1038/ijo.2015.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective To investigate the impact of transient (2-4 h) hypoxia on metabolic reprogramming of adipocytes. Methods The impact of transient hypoxia on metabolic reprogramming was investigated in 3T3-L1 cells before and after differentiation. Glucose uptake, fatty acid oxidation, lipolysis, and mitochondria were examined to determine the hypoxia effects. Preadipocytes were exposed to transient hypoxia (4h/day) in the course of differentiation. Insulin sensitivity and TG accumulation was examined in the cells at the end of differentiation to determine the reprogramming effects. AMPK activity and gene expression were determined by quantitative RT-PCR and Western blotting in search for mechanism of the reprogramming. Results In acute response to hypoxia, adipocytes exhibited an increase in insulin-dependent and -independent glucose uptake. Fatty acid β-oxidation and pyruvate dehydrogenase (PDH) activity were decreased. Multiple exposures of differentiating adipocytes to transient hypoxia enhanced insulin signaling, TG accumulation, expression of antioxidant genes in differentiated adipocytes in the absence of hypoxia. The metabolic memory was associated with elevated AMPK activity and gene expression (GLUT1, PGC-1α, PPARγ, SREBP, NRF-1, ESRRα, LPL). The enhanced insulin sensitivity was blocked by an AMPK inhibitor. Conclusions Repeated exposure of differentiating adipocytes to transient hypoxia is able to reprogram the cells for increased TG accumulation and enhanced insulin sensitivity. The metabolic alterations were observed in post-differentiated cells under normoxia. The reprogramming involves AMPK activation and gene expression in the metabolic pathways in cytosol and mitochondria.
Collapse
|
48
|
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age affecting various functions including reproduction and metabolism. This syndrome is associated with increased prevalence of subclinical cardiovascular disease as well as endometrial and ovarian cancer. This syndrome is highly heterogeneous and it is not yet clear which factors are responsible for the development of a particular phenotype. Current research has shown that the interaction of susceptible and protective genomic variants under the influence of environmental factors can modify the clinical presentation via epigenetic modifications. MicroRNA (miRNA) are regulators of gene expression. Altered miRNA expression has been associated with various diseases such as diabetes, insulin resistance, inflammation, and cancer. Several miRNA have been identified in PCOS. This review examines the role of epigenetics and miRNA in the pathophysiology of this complex disease process.
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy "Iuliu-Hatieganu", Cluj-Napoca, Romania
| | - Carmen E Georgescu
- Department of Endocrinology, University of Medicine and Pharmacy "Iuliu-Hatieganu", Cluj-Napoca, Romania.
| |
Collapse
|
49
|
Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 2015; 7:669-80. [DOI: 10.2217/epi.15.20] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The contribution of epigenetic mechanisms in diabetes mellitus (DM), β-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote β-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| |
Collapse
|
50
|
Miyoshi M, Iizuka N, Sakai S, Fujiwara M, Aoyama-Ishikawa M, Maeshige N, Hamada Y, Takahashi M, Usami M. Oral tributyrin prevents endotoxin-induced lipid metabolism disorder. Clin Nutr ESPEN 2015; 10:e83-e88. [PMID: 28531464 DOI: 10.1016/j.clnesp.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/05/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Sepsis leads to dysregulation of lipid and lipoprotein metabolism. Butyrate increases peroxisome proliferator-activated receptors (PPARs), which are key nuclear hormone receptors to induce fatty acid oxidation and synthesis. Oral administration of tributyrin, a prodrug of butyrate contained in dairy products, suppresses lipopolysaccharide (LPS)-induced liver injury through attenuating nuclear factor-κB activity with an increased hepatoportal butyrate level. In this study, we elucidated the protective effect of oral administration of tributyrin against LPS-mediated lipid metabolism disorder in rats. METHODS Male Wistar rats were randomly divided and were administered tributyrin or vehicle orally 1 h before LPS injection and then sacrificed at 0, 1.5, 6, and 24 h after LPS. Liver tissue expressions of nuclear hormone receptors, enzymes associated with fatty acid metabolism, and histone acetylation were analyzed by real-time polymerase chain reaction or western blotting. Plasma lipids levels were measured. RESULTS Tributyrin enhanced expression of PPARs and histone H3 in the liver at basal levels. Tributyrin suppressed LPS-induced repression of PPARs fatty acid oxidation-associated enzymes: fatty acid transport protein and fatty acid binding protein, and fatty acid synthesis-associated enzyme: sterol regulatory element binding protein-1c. Tributyrin reduced the increase in plasma triglyceride, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels at 24 h after LPS injection. CONCLUSIONS Oral tributyrin administration prevented elevation of plasma triglyceride, TC, and LDL-C levels through improved fatty acid oxidation in endotoxemic rats.
Collapse
Affiliation(s)
- Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Norihito Iizuka
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Shota Sakai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Mayu Fujiwara
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Yasuhiro Hamada
- Department of Therapeutic Nutrition, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Michiko Takahashi
- Department of Nutrition, Kobe University Hospital, Kobe University School of Medicine, Kobe 650-0017, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; Department of Nutrition, Kobe University Hospital, Kobe University School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|