1
|
Cao Y, Wang W, Song X, Wen Q, Xie J, Zhang D. Identification of Key Genes and Imbalanced SNAREs Assembly in the Comorbidity of Polycystic Ovary Syndrome and Depression. Genes (Basel) 2024; 15:494. [PMID: 38674428 PMCID: PMC11049873 DOI: 10.3390/genes15040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) have increased odds of concurrent depression, indicating that the relationship between PCOS and depression is more likely to be comorbid. However, the underlying mechanism remains unclear. Here, we aimed to use bioinformatic analysis to screen for the genetic elements shared between PCOS and depression. METHODS Differentially expressed genes (DEGs) were screened out through GEO2R using the PCOS and depression datasets in NCBI. Protein-protein interaction (PPI) network analysis and enrichment analysis were performed to identify the potential hub genes. After verification using other PCOS and depression datasets, the associations between key gene polymorphism and comorbidity were further studied using data from the UK biobank (UKB) database. RESULTS In this study, three key genes, namely, SNAP23, VTI1A, and PRKAR1A, and their related SNARE interactions in the vesicular transport pathway were identified in the comorbidity of PCOS and depression. The rs112568544 at SNAP23, rs11077579 and rs4458066 at PRKAR1A, and rs10885349 at VTI1A might be the genetic basis of this comorbidity. CONCLUSIONS Our study suggests that the SNAP23, PRKAR1A, and VTI1A genes can directly or indirectly participate in the imbalanced assembly of SNAREs in the pathogenesis of the comorbidity of PCOS and depression. These findings may provide new strategies in diagnosis and therapy for this comorbidity.
Collapse
Affiliation(s)
- Yi Cao
- Biomedical Center, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China; (Y.C.); (X.S.); (Q.W.)
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China;
| | - Xuxia Song
- Biomedical Center, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China; (Y.C.); (X.S.); (Q.W.)
| | - Qian Wen
- Biomedical Center, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China; (Y.C.); (X.S.); (Q.W.)
| | - Jing Xie
- Biomedical Center, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China; (Y.C.); (X.S.); (Q.W.)
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, China;
| |
Collapse
|
2
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|
3
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Tang BL. Vesicle transport through interaction with t-SNAREs 1a (Vti1a)'s roles in neurons. Heliyon 2020; 6:e04600. [PMID: 32775753 PMCID: PMC7398939 DOI: 10.1016/j.heliyon.2020.e04600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
The Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediates membrane fusion during membrane trafficking and autophagy in all eukaryotic cells, with a number of SNAREs having cell type-specific functions. The endosome-trans-Golgi network (TGN) localized SNARE, Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is unique among SNAREs in that it has numerous neuron-specific functions. These include neurite outgrowth, nervous system development, spontaneous neurotransmission, synaptic vesicle and dense core vesicle secretion, as well as a process of unconventional surface transport of the Kv4 potassium channel. Furthermore, the human VT11A gene is known to form fusion products with neighboring genes in cancer tissues, and VT11A variants are associated with risk in cancers, including glioma. In this review, I highlight VTI1A's known physio-pathological roles in brain neurons, as well as unanswered questions in these regards.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
5
|
Baranski TJ, Kraja AT, Fink JL, Feitosa M, Lenzini PA, Borecki IB, Liu CT, Cupples LA, North KE, Province MA. A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses. PLoS Genet 2018; 14:e1007222. [PMID: 29608557 PMCID: PMC5897035 DOI: 10.1371/journal.pgen.1007222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/12/2018] [Accepted: 01/25/2018] [Indexed: 12/30/2022] Open
Abstract
Human GWAS of obesity have been successful in identifying loci associated with adiposity, but for the most part, these are non-coding SNPs whose function, or even whose gene of action, is unknown. To help identify the genes on which these human BMI loci may be operating, we conducted a high throughput screen in Drosophila melanogaster. Starting with 78 BMI loci from two recently published GWAS meta-analyses, we identified fly orthologs of all nearby genes (± 250KB). We crossed RNAi knockdown lines of each gene with flies containing tissue-specific drivers to knock down (KD) the expression of the genes only in the brain and the fat body. We then raised the flies on a control diet and compared the amount of fat/triglyceride in the tissue-specific KD group compared to the driver-only control flies. 16 of the 78 BMI GWAS loci could not be screened with this approach, as no gene in the 500-kb region had a fly ortholog. Of the remaining 62 GWAS loci testable in the fly, we found a significant fat phenotype in the KD flies for at least one gene for 26 loci (42%) even after correcting for multiple comparisons. By contrast, the rate of significant fat phenotypes in RNAi KD found in a recent genome-wide Drosophila screen (Pospisilik et al. (2010) is ~5%. More interestingly, for 10 of the 26 positive regions, we found that the nearest gene was not the one that showed a significant phenotype in the fly. Specifically, our screen suggests that for the 10 human BMI SNPs rs11057405, rs205262, rs9925964, rs9914578, rs2287019, rs11688816, rs13107325, rs7164727, rs17724992, and rs299412, the functional genes may NOT be the nearest ones (CLIP1, C6orf106, KAT8, SMG6, QPCTL, EHBP1, SLC39A8, ADPGK /ADPGK-AS1, PGPEP1, KCTD15, respectively), but instead, the specific nearby cis genes are the functional target (namely: ZCCHC8, VPS33A, RSRC2; SPDEF, NUDT3; PAGR1; SETD1, VKORC1; SGSM2, SRR; VASP, SIX5; OTX1; BANK1; ARIH1; ELL; CHST8, respectively). The study also suggests further functional experiments to elucidate mechanism of action for genes evolutionarily conserved for fat storage. Human Genome Wide Association Studies have successfully found thousands of novel genetic variants associated with many diseases. While these undoubtedly point to new biology, the field has been slowed in exploiting these new findings to reach a better understanding of exactly how they confer increased risk. Many, if not most, appear to be regulatory not coding variants, so their immediate consequence is not obvious. A real rate limiting step is even identifying which gene these variants might be regulating, and in what tissues they are operating to increase disease risk. In the absence of any other information, a first order assumption is that they may be more likely to be regulating a nearby gene, and such variants are often initially annotated by the “nearest” gene until their function is more definitively validated. Exploiting the idea that many genes may have conserved function across species, we conducted a high-throughput screen of fruit-fly orthologs of human genes nearby 78 well validated GWAS variants for human obesity, in order to more precisely identify the gene(s) of action. We systematically knocked down the function of each of these nearby genes in the brain and fat-body of the flies, raised them on a standard diet, and compared their percent body fat with control flies, in order to validate which genes showed a fat response. 43% of the time when fly orthologs existed in the region, we were able to identify the causal gene. Interestingly, nearly half the time (46%), it was not the nearest gene but another nearby one that regulated fat.
Collapse
Affiliation(s)
- Thomas J. Baranski
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TJB); (MAP)
| | - Aldi T. Kraja
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jill L. Fink
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mary Feitosa
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Petra A. Lenzini
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ingrid B. Borecki
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Province
- Department of Genetics and Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (TJB); (MAP)
| |
Collapse
|
6
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
7
|
Kinnersley B, Houlston RS, Bondy ML. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev 2018; 27:418-428. [PMID: 29382702 DOI: 10.1158/1055-9965.epi-17-1080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/23/2023] Open
Abstract
Since the first reports in 2009, genome-wide association studies (GWAS) have been successful in identifying germline variants associated with glioma susceptibility. In this review, we describe a chronological history of glioma GWAS, culminating in the most recent study comprising 12,496 cases and 18,190 controls. We additionally summarize associations at the 27 glioma-risk SNPs that have been reported so far. Future efforts are likely to be principally focused on assessing association of germline-risk SNPs with particular molecular subgroups of glioma, as well as investigating the functional basis of the risk loci in tumor formation. These ongoing studies will be important to maximize the impact of research into glioma susceptibility, both in terms of insight into tumor etiology as well as opportunities for clinical translation. Cancer Epidemiol Biomarkers Prev; 27(4); 418-28. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
8
|
Brännmark C, Lövfors W, Komai AM, Axelsson T, El Hachmane MF, Musovic S, Paul A, Nyman E, Olofsson CS. Mathematical modeling of white adipocyte exocytosis predicts adiponectin secretion and quantifies the rates of vesicle exo- and endocytosis. J Biol Chem 2017; 292:20032-20043. [PMID: 28972187 DOI: 10.1074/jbc.m117.801225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
Adiponectin is a hormone secreted from white adipocytes and takes part in the regulation of several metabolic processes. Although the pathophysiological importance of adiponectin has been thoroughly investigated, the mechanisms controlling its release are only partly understood. We have recently shown that adiponectin is secreted via regulated exocytosis of adiponectin-containing vesicles, that adiponectin exocytosis is stimulated by cAMP-dependent mechanisms, and that Ca2+ and ATP augment the cAMP-triggered secretion. However, much remains to be discovered regarding the molecular and cellular regulation of adiponectin release. Here, we have used mathematical modeling to extract detailed information contained within our previously obtained high-resolution patch-clamp time-resolved capacitance recordings to produce the first model of adiponectin exocytosis/secretion that combines all mechanistic knowledge deduced from electrophysiological experimental series. This model demonstrates that our previous understanding of the role of intracellular ATP in the control of adiponectin exocytosis needs to be revised to include an additional ATP-dependent step. Validation of the model by introduction of data of secreted adiponectin yielded a very close resemblance between the simulations and experimental results. Moreover, we could show that Ca2+-dependent adiponectin endocytosis contributes to the measured capacitance signal, and we were able to predict the contribution of endocytosis to the measured exocytotic rate under different experimental conditions. In conclusion, using mathematical modeling of published and newly generated data, we have obtained estimates of adiponectin exo- and endocytosis rates, and we have predicted adiponectin secretion. We believe that our model should have multiple applications in the study of metabolic processes and hormonal control thereof.
Collapse
Affiliation(s)
- Cecilia Brännmark
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - William Lövfors
- Departments of Biomedical Engineering, SE-581 83 Linköping; Mathematics, Linköping University, SE-581 83 Linköping
| | - Ali M Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Tom Axelsson
- Departments of Biomedical Engineering, SE-581 83 Linköping
| | - Mickaël F El Hachmane
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg
| | - Alexandra Paul
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10 SE-412 96 Göteborg
| | - Elin Nyman
- Departments of Biomedical Engineering, SE-581 83 Linköping; Cardiovascular and Metabolic Diseases iMed Biotech Unit, AstraZeneca R&D, 431 83 Gothenburg, Sweden.
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30 Göteborg.
| |
Collapse
|
9
|
Bedi D, Dennis JC, Morrison EE, Braden TD, Judd RL. Regulation of intracellular trafficking and secretion of adiponectin by myosin II. Biochem Biophys Res Commun 2017; 490:202-208. [PMID: 28606474 DOI: 10.1016/j.bbrc.2017.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023]
Abstract
Adiponectin is a protein secreted by white adipocytes that plays an important role in insulin action, energy homeostasis and the development of atherosclerosis. The intracellular localization and trafficking of GLUT4 and leptin in adipocytes has been well studied, but little is known regarding the intracellular trafficking of adiponectin. Recent studies have demonstrated that constitutive adiponectin secretion is dependent on PIP2 levels and the integrity of cortical F-actin. Non-muscle myosin II is an actin-based motor that is associated with membrane vesicles and participates in vesicular trafficking in mammalian cells. Therefore, we investigated the role of myosin II in the trafficking and secretion of adiponectin in 3T3-L1 adipocytes. Confocal microscopy revealed that myosin IIA and IIB were dispersed throughout the cytoplasm of the adipocyte. Both myosin isoforms were localized in the Golgi/TGN region as evidenced by colocalization with the cis-Golgi marker, p115 and the trans-Golgi marker, γ-adaptin. Inhibition of myosin II activity by blebbistatin or actin depolymerization by latrunculin B dispersed myosin IIA and IIB towards the periphery while significantly inhibiting adiponectin secretion. Therefore, the constitutive trafficking and secretion of adiponectin in 3T3-L1 adipocytes occurs by an actin-dependent mechanism that involves the actin-based motors, myosin IIA and IIB.
Collapse
Affiliation(s)
- Deepa Bedi
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States.
| | - John C Dennis
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Edward E Morrison
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Tim D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
10
|
Wang N, Deng Z, Wang M, Li R, Xu G, Bao G. Additional evidence supports association of common genetic variants in VTI1A and ETFA with increased risk of glioma susceptibility. J Neurol Sci 2017; 375:282-288. [DOI: 10.1016/j.jns.2017.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
|
11
|
Cui J, Pang J, Lin YJ, Jiang P, Gong H, Wang Z, Li J, Cai JP, Huang JD, Zhang TM. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2016; 476:620-626. [DOI: 10.1016/j.bbrc.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
|
12
|
Sreetama SC, Takano T, Nedergaard M, Simon SM, Jaiswal JK. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 2015; 23:596-607. [PMID: 26450452 DOI: 10.1038/cdd.2015.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.
Collapse
Affiliation(s)
- S C Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - T Takano
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - M Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - S M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - J K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC, USA
| |
Collapse
|
13
|
Kinnersley B, Labussière M, Holroyd A, Di Stefano AL, Broderick P, Vijayakrishnan J, Mokhtari K, Delattre JY, Gousias K, Schramm J, Schoemaker MJ, Fleming SJ, Herms S, Heilmann S, Schreiber S, Wichmann HE, Nöthen MM, Swerdlow A, Lathrop M, Simon M, Bondy M, Sanson M, Houlston RS. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat Commun 2015; 6:8559. [PMID: 26424050 PMCID: PMC4600760 DOI: 10.1038/ncomms9559] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Previous genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of glioma. To identify new glioma susceptibility loci, we conducted a meta-analysis of four GWAS (totalling 4,147 cases and 7,435 controls), with imputation using 1000 Genomes and UK10K Project data as reference. After genotyping an additional 1,490 cases and 1,723 controls we identify new risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B, P=3.02 × 10(-9)) and non-GBM at 10q25.2 (rs11196067, near VTI1A, P=4.32 × 10(-8)), 11q23.2 (rs648044, near ZBTB16, P=6.26 × 10(-11)), 12q21.2 (rs12230172, P=7.53 × 10(-11)) and 15q24.2 (rs1801591, near ETFA, P=5.71 × 10(-9)). Our findings provide further insights into the genetic basis of the different glioma subtypes.
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Marianne Labussière
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Anna-Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jayaram Vijayakrishnan
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Karima Mokhtari
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Laboratoire de neuropathologie R Escourolle, F-75013 Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Konstantinos Gousias
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Johannes Schramm
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Sarah J. Fleming
- Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Herms
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Stefanie Heilmann
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Stefan Schreiber
- 1st Medical Department, University Clinic Schleswig-Holstein, Campus Kiel, House 6, Arnold-Heller-Straße 3, Kiel 24105, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Arnold-Heller-Straße 3, Kiel 24105, Germany
| | - Heinz-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Markus M. Nöthen
- Department of Biomedicine, Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Mark Lathrop
- AP-HP, GH Pitié-Salpêtrière, Laboratoire de neuropathologie R Escourolle, F-75013 Paris, France
- Foundation Jean Dausset-CEPH, 27 Rue Juliette Dodu, 75010 Paris, France
- Génome Québec, Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Melissa Bondy
- Division of Hematology-Oncology, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, F-75013 Paris, France
- Onconeurotek, F-75013 Paris, France
- AP-HP, GH Pitié-Salpêtrière, Service de Neurologie 2, F-75013 Paris, France
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
14
|
Single Nucleotide Polymorphisms in VTI1A Gene Contribute to the Susceptibility of Chinese Population to Non-Small Cell Lung cancer. Int J Biol Markers 2015; 30:e286-93. [PMID: 25744365 DOI: 10.5301/jbm.5000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
Background Genome-wide association studies (GWAS) have determined a new single nucleotide polymorphism (SNP) called VTI1A (rs7086803) that induces lung cancer susceptibility in nonsmoking women in Asia. This study aimed to evaluate the association between the VTI1A gene and the susceptibility of Chinese patients to lung cancer; it was also conducted to investigate the relationship between VTI1A SNP and adiponectin receptor 1 expression. Methods A total of 887 subjects were enrolled in this study. VTI1A (rs7086803) genotypes were determined by genotyping. Overall survival (OS) was evaluated using Kaplan-Meier analysis with a log-rank test. Results Multivariate regression analysis results indicated that the AA genotype of VTI1A (rs7086803) polymorphism was associated with an increased risk of developing non-small cell lung carcinoma (NSCLC) compared with the GG genotype (AA vs. GG: odds ratio [OR] = 2.020; 95% confidence interval [95% CI], 1.033-3.949, p = 0.037). The AA genotype of VTI1A (rs7086803) in smokers predicted significantly shorter OS (median survival time [MST]: AA 9.8 months, AG 19.3 months, GG 12.2 months, p = 0.017). Adiponectin receptor 1 expression in tumor tissues with the AA genotype was significantly lower than that for other genotypes (mean rank: AA 18.55, AG 25, GG 45.76, p = 0.001). Conclusions The presence of the allele A of VTI1A (rs7086803) may be the allele contributing to the risk of lung cancer susceptibility in Chinese population. Smoking lung cancer patients with the AA genotype of VTI1A gene (rs7086803) had a poor survival rate. Adiponectin receptor 1 expression may be correlated with the susceptibility of the allele A of VTI1A.
Collapse
|
15
|
Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS. EARP is a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol 2015; 17:639-50. [PMID: 25799061 PMCID: PMC4417048 DOI: 10.1038/ncb3129] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
Abstract
Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling.
Collapse
Affiliation(s)
- Christina Schindler
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yu Chen
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing Pu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
El Hachmane MF, Komai AM, Olofsson CS. Cooling reduces cAMP-stimulated exocytosis and adiponectin secretion at a Ca2+-dependent step in 3T3-L1 adipocytes. PLoS One 2015; 10:e0119530. [PMID: 25793888 PMCID: PMC4368704 DOI: 10.1371/journal.pone.0119530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/30/2015] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of temperature on white adipocyte exocytosis (measured as increase in membrane capacitance) and short-term adiponectin secretion with the aim to elucidate mechanisms important in regulation of white adipocyte stimulus-secretion coupling. Exocytosis stimulated by cAMP (included in the pipette solution together with 3 mM ATP) in the absence of Ca2+ (10 mM intracellular EGTA) was equal at all investigated temperatures (23°C, 27°C, 32°C and 37°C). However, the augmentation of exocytosis induced by an elevation of the free cytosolic [Ca2+] to ~1.5 μM (9 mM Ca2+ + 10 mM EGTA) was potent at 32°C or 37°C but less distinct at 27°C and abolished at 23°C. Adiponectin secretion stimulated by 30 min incubations with the membrane permeable cAMP analogue 8-Br-cAMP (1 mM) or a combination of 10 μM forskolin and 200 μM IBMX was unaffected by a reduction of temperature from 32°C to 23°C. At 32°C, cAMP-stimulated secretion was 2-fold amplified by inclusion of the Ca2+ ionophore ionomycin (1μM), an effect that was not observed at 23°C. We suggest that cooling affects adipocyte exocytosis/adiponectin secretion at a Ca2+-dependent step, likely involving ATP-dependent processes, important for augmentation of cAMP-stimulated adiponectin release.
Collapse
Affiliation(s)
- Mickaël F. El Hachmane
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali M. Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Charlotta S. Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
17
|
Wang H, Burnett T, Kono S, Haiman CA, Iwasaki M, Wilkens LR, Loo LW, Berg DVD, Kolonel LN, Henderson BE, Keku TO, Sandler RS, Signorello LB, Blot WJ, Newcomb PA, Pande M, Amos CI, West DW, Bézieau S, Berndt SI, Zanke BW, Hsu L, Lindor NM, Haile RW, Hopper JL, Jenkins MA, Gallinger S, Casey G, Stenzel SL, Schumacher FR, Peters U, Gruber SB, Tsugane S, Stram DO, Marchand LL. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat Commun 2014; 5:4613. [PMID: 25105248 PMCID: PMC4180879 DOI: 10.1038/ncomms5613] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/07/2014] [Indexed: 01/20/2023] Open
Abstract
The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We replicate genome-wide statistically significant associations (P<5 × 10(-8)) in 16,823 cases and 18,211 controls of European ancestry. This study reveals a new pan-ethnic CRC risk locus at 10q25 (rs12241008, intronic to VTI1A; P=1.4 × 10(-9)), providing additional insight into the aetiology of CRC and highlighting the value of association mapping in diverse populations.
Collapse
Affiliation(s)
- Hansong Wang
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - Terrilea Burnett
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - Suminori Kono
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Motoki Iwasaki
- Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - Lenora W.M. Loo
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | | | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Temitope O. Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC
| | - Robert S. Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC
| | - Lisa B. Signorello
- Department of Epidemiology, Harvard School of Public Health, and the Channing Division of Network Medicine, Harvard Medical School, Boston, MA and Dana-Farber/Harvard Cancer Center, Boston, MA
| | - William J. Blot
- Division of Epidemiology, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN and International Epidemiology Institute, Rockville, MD
| | - Polly A. Newcomb
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mala Pande
- Department of Gastroenterolgy - Research, the University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Dee W. West
- Cancer Prevention Institute of California, Fremont, CA
| | | | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brent W. Zanke
- Division of Hematology, Faculty of Medicine, University of Ottawa and Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Li Hsu
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population and Global Health, University of Melbourne, Australia
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population and Global Health, University of Melbourne, Australia
| | | | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | | | - Stephanie L. Stenzel
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Fredrick R. Schumacher
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Ulrike Peters
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stephen B. Gruber
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | | | - Shoichiro Tsugane
- Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Daniel O. Stram
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| |
Collapse
|
18
|
Walter AM, Kurps J, de Wit H, Schöning S, Toft-Bertelsen TL, Lauks J, Ziomkiewicz I, Weiss AN, Schulz A, Fischer von Mollard G, Verhage M, Sørensen JB. The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 2014; 33:1681-97. [PMID: 24902738 DOI: 10.15252/embj.201387549] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans-Golgi network, partially overlapping with syntaxin-6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca(2+)-channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin-2 content. In contrast, release kinetics and Ca(2+)-sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long-term re-expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short-term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca(2+)-channel trafficking, but is dispensable for transmitter release.
Collapse
Affiliation(s)
- Alexander M Walter
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Julia Kurps
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Heidi de Wit
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Susanne Schöning
- Biochemie III, Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Trine L Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Lauks
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Iwona Ziomkiewicz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Annita N Weiss
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Matthijs Verhage
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Mori T, Koyama Y, Maeda N, Nakamura Y, Fujishima Y, Matsuda K, Funahashi T, Shimada S, Shimomura I. Ultrastructural localization of adiponectin protein in vasculature of normal and atherosclerotic mice. Sci Rep 2014; 4:4895. [PMID: 24809933 PMCID: PMC4013939 DOI: 10.1038/srep04895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Adiponectin, adipose-specific secretory protein, abundantly circulates in bloodstream and its concentration is around 1000-fold higher than that of other cytokines and hormones. Hypoadiponectinemia is a risk factor for atherosclerosis. There is little or no information on ultrastructural localization of adiponectin in the vasculature. Herein we investigated the localization of vascular adiponectin in the aorta using the immunoelectron microscopic technique. In wild-type (WT) mice, adiponectin was mainly detected on the luminal surface membrane of endothelial cells (ECs) and also found intracellularly in the endocytic vesicles of ECs. In the atherosclerotic lesions of apolipoprotein E-knockout (ApoE-KO) mice, adiponectin was detected in ECs, on the cell surface membrane of synthetic smooth muscle cells, and on the surface of monocytes adherent to ECs. Changes in adiponectin localization within the wall of the aorta may provide novel insight into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Takuya Mori
- 1] Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871 [2]
| | - Yoshihisa Koyama
- 1] Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871 [2]
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Keisuke Matsuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Tohru Funahashi
- 1] Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871 [2] Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan 565-0871
| |
Collapse
|
20
|
Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VHF, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe ADL, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen R, Wu J, Lim WY, Chen KC, Chow WH, Ji BT, Chan JKC, Chu M, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu T, Wu YL, Yang PC, Zhou B, Shin MH, Fraumeni JF, Lin D, Chanock SJ, Rothman N. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 2012; 44:1330-5. [PMID: 23143601 DOI: 10.1038/ng.2456] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking.
Collapse
Affiliation(s)
- Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kang HP, Yang X, Chen R, Zhang B, Corona E, Schadt EE, Butte AJ. Integration of disease-specific single nucleotide polymorphisms, expression quantitative trait loci and coexpression networks reveal novel candidate genes for type 2 diabetes. Diabetologia 2012; 55:2205-13. [PMID: 22584726 PMCID: PMC3390705 DOI: 10.1007/s00125-012-2568-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/02/2012] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS While genome-wide association studies (GWASs) have been successful in identifying novel variants associated with various diseases, it has been much more difficult to determine the biological mechanisms underlying these associations. Expression quantitative trait loci (eQTL) provide another dimension to these data by associating single nucleotide polymorphisms (SNPs) with gene expression. We hypothesised that integrating SNPs known to be associated with type 2 diabetes with eQTLs and coexpression networks would enable the discovery of novel candidate genes for type 2 diabetes. METHODS We selected 32 SNPs associated with type 2 diabetes in two or more independent GWASs. We used previously described eQTLs mapped from genotype and gene expression data collected from 1,008 morbidly obese patients to find genes with expression associated with these SNPs. We linked these genes to coexpression modules, and ranked the other genes in these modules using an inverse sum score. RESULTS We found 62 genes with expression associated with type 2 diabetes SNPs. We validated our method by linking highly ranked genes in the coexpression modules back to SNPs through a combined eQTL dataset. We showed that the eQTLs highlighted by this method are significantly enriched for association with type 2 diabetes in data from the Wellcome Trust Case Control Consortium (WTCCC, p = 0.026) and the Gene Environment Association Studies (GENEVA, p = 0.042), validating our approach. Many of the highly ranked genes are also involved in the regulation or metabolism of insulin, glucose or lipids. CONCLUSIONS/INTERPRETATION We have devised a novel method, involving the integration of datasets of different modalities, to discover novel candidate genes for type 2 diabetes.
Collapse
Affiliation(s)
- H. P. Kang
- Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road, Room X163, Stanford, CA 94305 USA
- Lucile Packard Children’s Hospital, Palo Alto, CA USA
| | - X. Yang
- Sage Bionetworks, Seattle, WA USA
| | - R. Chen
- Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road, Room X163, Stanford, CA 94305 USA
- Lucile Packard Children’s Hospital, Palo Alto, CA USA
| | - B. Zhang
- Sage Bionetworks, Seattle, WA USA
| | - E. Corona
- Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road, Room X163, Stanford, CA 94305 USA
- Lucile Packard Children’s Hospital, Palo Alto, CA USA
| | - E. E. Schadt
- Department of Genetics and Genome Sciences, Mount Sinai School of Medicine, New York, NY USA
| | - A. J. Butte
- Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road, Room X163, Stanford, CA 94305 USA
- Lucile Packard Children’s Hospital, Palo Alto, CA USA
| |
Collapse
|
22
|
Bogan JS, Rubin BR, Yu C, Löffler MG, Orme CM, Belman JP, McNally LJ, Hao M, Cresswell JA. Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. J Biol Chem 2012; 287:23932-47. [PMID: 22610098 DOI: 10.1074/jbc.m112.339457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim JY, Kandror KV. The first luminal loop confers insulin responsiveness to glucose transporter 4. Mol Biol Cell 2012; 23:910-7. [PMID: 22262463 PMCID: PMC3290648 DOI: 10.1091/mbc.e11-10-0839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucose transporter isoform 4 (GLUT4) is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. It is translocated to the plasma membrane by specialized insulin-responsive vesicles. Targeting of GLUT4 to these vesicles is mediated by sortilin, which interacts with the first luminal loop of the transporter. Glucose transporter isoform 4 (GLUT4), is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. However, the nature of the insulin sensitivity of GLUT4 remains unknown. In this study, we replaced the first luminal loop of cellugyrin, a 4-transmembrane protein that does not respond to insulin, with that of GLUT4. The chimera protein is targeted to the intracellular insulin-responsive vesicles and is translocated to the plasma membrane upon insulin stimulation. The faithful targeting of the chimera depends on the expression of the sorting receptor sortilin, which interacts with the unique amino acid residues in the first luminal loop of GLUT4. Thus the first luminal loop may confer insulin responsiveness to the GLUT4 molecule.
Collapse
Affiliation(s)
- Ju Youn Kim
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
24
|
Hatakeyama H, Kanzaki M. Molecular basis of insulin-responsive GLUT4 trafficking systems revealed by single molecule imaging. Traffic 2011; 12:1805-20. [PMID: 21910807 DOI: 10.1111/j.1600-0854.2011.01279.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of a 'static retention' property of GLUT4, the insulin-responsive glucose transporter, has emerged as being essential for achieving its maximal insulin-induced surface exposure. Herein, employing quantum-dot-based nanometrology of intracellular GLUT4 behavior, we reveal the molecular basis of its systematization endowed upon adipogenic differentiation of 3T3L1 cells. Specifically, (i) the endosomes-to-trans-Golgi network (TGN) retrieval system specialized for GLUT4 develops in response to sortilin expression, which requires an intricately balanced interplay among retromers, golgin-97 and syntaxin-6, the housekeeping vesicle trafficking machinery. (ii) The Golgin-97-localizing subdomain of the differentiated TGN apparently serves as an intermediate transit route by which GLUT4 can further proceed to the stationary GLUT4 storage compartment. (iii) AS160/Tbc1d4 then renders the 'static retention' property insulin responsive, i.e. insulin liberates GLUT4 from the static state only in the presence of functional AS160/Tbc1d4. (iv) Moreover, sortilin malfunction and the resulting GLUT4 sorting defects along with retarded TGN function might be etiologically related to insulin resistance. Together, these observations provide a conceptual framework for understanding maturation/retardation of the insulin-responsive GLUT4 trafficking system that relies on the specialized subdomain of differentiated TGN.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | | |
Collapse
|
25
|
Jedrychowski MP, Gartner CA, Gygi SP, Zhou L, Herz J, Kandror KV, Pilch PF. Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J Biol Chem 2009; 285:104-14. [PMID: 19864425 DOI: 10.1074/jbc.m109.040428] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Insulin stimulates the translocation of intracellular GLUT4 to the plasma membrane where it functions in adipose and muscle tissue to clear glucose from circulation. The pathway and regulation of GLUT4 trafficking are complicated and incompletely understood and are likely to be contingent upon the various proteins other than GLUT4 that comprise and interact with GLUT4-containing vesicles. Moreover, not all GLUT4 intracellular pools are insulin-responsive as some represent precursor compartments, thus posing a biochemical challenge to the purification and characterization of their content. To address these issues, we immunodepleted precursor GLUT4-rich vesicles and then immunopurified GLUT4 storage vesicle (GSVs) from primary rat adipocytes and subjected them to semi-quantitative and quantitative proteomic analysis. The purified vesicles translocate to the cell surface almost completely in response to insulin, the expected behavior for bona fide GSVs. In total, over 100 proteins were identified, about 50 of which are novel in this experimental context. LRP1 (low density lipoprotein receptor-related protein 1) was identified as a major constituent of GSVs, and we show it interacts with the lumenal domains of GLUT4 and other GSV constituents. Its cytoplasmic tail interacts with the insulin-signaling pathway target, AS160 (Akt substrate of 160 kDa). Depletion of LRP1 from 3T3-L1 adipocytes reduces GLUT4 expression and correspondingly results in decreased insulin-stimulated 2-[(3)H]deoxyglucose uptake. Furthermore, adipose-specific LRP1 knock-out mice also exhibit decreased GLUT4 expression. These findings suggest LRP1 is an important component of GSVs, and its expression is needed for the formation of fully functional GSVs.
Collapse
Affiliation(s)
- Mark P Jedrychowski
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bethani I, Werner A, Kadian C, Geumann U, Jahn R, Rizzoli SO. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 2009; 10:1543-59. [PMID: 19624487 DOI: 10.1111/j.1600-0854.2009.00959.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically approximately 10%) were sufficient for a substantial amount of SNARE-SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Rubin BR, Bogan JS. Intracellular retention and insulin-stimulated mobilization of GLUT4 glucose transporters. VITAMINS AND HORMONES 2009; 80:155-92. [PMID: 19251038 DOI: 10.1016/s0083-6729(08)00607-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GLUT4 glucose transporters are expressed nearly exclusively in adipose and muscle cells, where they cycle to and from the plasma membrane. In cells not stimulated with insulin, GLUT4 is targeted to specialized GLUT4 storage vesicles (GSVs), which sequester it away from the cell surface. Insulin acts within minutes to mobilize these vesicles, translocating GLUT4 to the plasma membrane to enhance glucose uptake. The mechanisms controlling GSV sequestration and mobilization are poorly understood. An insulin-regulated aminopeptidase that cotraffics with GLUT4, IRAP, is required for basal GSV retention and insulin-stimulated mobilization. TUG and Ubc9 bind GLUT4, and likely retain GSVs within unstimulated cells. These proteins may be components of a retention receptor, which sequesters GLUT4 and IRAP away from recycling vesicles. Insulin may then act on this protein complex to liberate GLUT4 and IRAP, discharging GSVs into a recycling pathway for fusion at the cell surface. How GSVs are anchored intracellularly, and how insulin mobilizes these vesicles, are the important topics for ongoing research. Regulation of GLUT4 trafficking is tissue-specific, perhaps in part because the formation of GSVs requires cell type-specific expression of sortilin. Proteins controlling GSV retention and mobilization can then be more widely expressed. Indeed, GLUT4 likely participates in a general mechanism by which the cell surface delivery of various membrane proteins can be controlled by extracellular stimuli. Finally, it is not known if defects in the formation or intracellular retention of GSVs contribute to human insulin resistance, or play a role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Bradley R Rubin
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | | |
Collapse
|
28
|
Zeigerer A, Rodeheffer MS, McGraw TE, Friedman JM. Insulin regulates leptin secretion from 3T3-L1 adipocytes by a PI 3 kinase independent mechanism. Exp Cell Res 2008; 314:2249-56. [PMID: 18501893 PMCID: PMC2997521 DOI: 10.1016/j.yexcr.2008.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/29/2022]
Abstract
To better define the molecular mechanisms underlying leptin release from adipocytes, we developed a novel protocol that maximizes leptin production from 3T3-L1 adipocytes. The addition of a PPARgamma agonist to the Isobutylmethylxanthine/Dexamethasone/Insulin differentiation cocktail increased leptin mRNA levels by 5-fold, maintained insulin sensitivity, and yielded mature phenotype in cultured adipocytes. Under these conditions, acute insulin stimulation for 2 h induced a two-fold increase in leptin secretion, which was independent of new protein synthesis, and was not due to alterations in glucose metabolism. Stimulation with insulin for 15 min induced the same level of leptin release and was blocked by Brefeldin A. Inhibiting PI 3-kinase with wortmannin had no effect on insulin stimulation of leptin secretion. These studies show that insulin can stimulate leptin release via a PI3K independent mechanism and provide a cellular system for studying the effect of insulin and potentially other mediators on leptin secretion.
Collapse
Affiliation(s)
- Anja Zeigerer
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Matthew S. Rodeheffer
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jeffrey M. Friedman
- Department of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
29
|
Musch MW, Puffer AB, Goldstein L. Volume expansion stimulates monoubiquitination and endocytosis of surface-expressed skate anion-exchanger isoform. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1657-65. [DOI: 10.1152/ajpregu.00837.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In hyposmotic medium, skate erythrocytes swell and then lose taurine and other solutes with obligate water to achieve a regulatory volume decrease (RVD) over a 90-min period. The skate erythrocyte anion-exchanger isoform 1 (skAE1) participates in the RVD, and increased surface expression after hyposmolality-induced volume expansion occurs within 5 min but decreases to baseline within 120 min. The subsequent fate of skAE1 is the focus of these studies. SkAE1 sent to the surface becomes monoubiquitinated, a modification that is present while skAE1 is associated with clathrin and Rab5 but is removed before skAE1 is passed to the Rab4 compartment. Endocytosis of skAE1 involves clathrin-mediated internalization. Surface plasma membrane skAE1 forms tetramers and demonstrates increased tyrosine phosphorylation, and both of these processes decrease before skAE1 appears in the Rab5 compartment. Volume expansion-stimulated surface skAE1 comes from an intracellular pool in a buoyant membrane fraction resistant to nonionic detergent extraction (DRM), and the amount of skAE1 increases in this buoyant DRM fraction on the surface. Clathrin heavy chain is found largely in the erythrocyte DRM, but in dense, rather than buoyant, fractions. Rab5- and Rab4-containing membranes are largely detergent soluble, suggesting that as skAE1 is passed to clathrin and then to Rab5 compartments, the membrane microdomain composition changes. The present studies demonstrate that skAE1, which appears on the surface after hyposmolality-induced volume expansion, is monoubiquitinated, a modification that may serve as a signal for removal of skAE1 from the surface. This modification is eliminated after clathrin-mediated removal of skAE1 in a membrane domain containing Rab5, potentially permitting recycling and reuse of skAE1.
Collapse
|
30
|
Williams D, Pessin JE. Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes. ACTA ACUST UNITED AC 2008; 180:375-87. [PMID: 18227281 PMCID: PMC2213575 DOI: 10.1083/jcb.200709108] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The functional trafficking steps used by soluble NSF attachment protein receptor (SNARE) proteins have been difficult to establish because of substantial overlap in subcellular localization and because in vitro SNARE-dependent binding and fusion reactions can be promiscuous. Therefore, to functionally identify the site of action of the vesicle-associated membrane protein (VAMP) family of R-SNAREs, we have taken advantage of the temporal requirements of adipocyte biosynthetic sorting of a dual-tagged GLUT4 reporter (myc-GLUT4-GFP) coupled with small interfering RNA gene silencing. Using this approach, we confirm the requirement of VAMP2 and VAMP7 for insulin and osmotic shock trafficking from the vesicle storage sites, respectively, and fusion with the plasma membrane. Moreover, we identify a requirement for VAMP4 for the initial biosynthetic entry of GLUT4 from the Golgi apparatus into the insulin-responsive vesicle compartment, VAMP8, for plasma membrane endocytosis and VAMP2 for sorting to the specialized insulin-responsive compartment after plasma membrane endocytosis.
Collapse
Affiliation(s)
- Dumaine Williams
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
31
|
Pilch PF. The mass action hypothesis: formation of Glut4 storage vesicles, a tissue-specific, regulated exocytic compartment. Acta Physiol (Oxf) 2008; 192:89-101. [PMID: 18171432 DOI: 10.1111/j.1748-1716.2007.01788.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin stimulates glucose uptake into the target tissues of fat and muscle by recruiting or translocating Glut4 glucose transport proteins to their functional location at the cell surface. In the basal state, Glut4 is sequestered intracellularly in several vesicular compartments, one of which has come to be known as Glut4 storage vesicles (GSVs). The GSVs represent a tissue-specific compartment that is an ultimate target of the insulin signalling cascade. Glut4 translocation has been extensively studied because of its intrinsic scientific importance to cell biology as well as its relevance to the pathology of type 2 diabetes mellitus. I review herein the ontogeny of GSVs and their composition as it relates to a tissue-specific, hormone-sensitive exocytic compartment and propose a mechanism for their formation.
Collapse
Affiliation(s)
- P F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
32
|
Holloway ZG, Grabski R, Szul T, Styers ML, Coventry JA, Monaco AP, Sztul E. Activation of ADP-ribosylation factor regulates biogenesis of the ATP7A-containing trans-Golgi network compartment and its Cu-induced trafficking. Am J Physiol Cell Physiol 2007; 293:C1753-67. [PMID: 17913844 DOI: 10.1152/ajpcell.00253.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP7A (MNK) regulates copper homeostasis by translocating from a compartment localized within the trans-Golgi network to the plasma membrane (PM) in response to increased copper load. The mechanisms that regulate the biogenesis of the MNK compartment and the trafficking of MNK are unclear. Here we show that the architecture of the MNK compartment is linked to the structure of the Golgi ribbon. Depletion of p115 tethering factor, which causes fragmentation of the Golgi ribbon, also disrupts the MNK compartment. In p115-depleted cells, MNK localizes to punctate structures that pattern on Golgi ministacks dispersed throughout the cell. Despite altered localization MNK trafficking still occurs, and MNK relocates from and returns to the fragmented compartment in response to copper. We further show that the biogenesis of the MNK compartment requires activation of ADP-ribosylation factor (Arf)1 GTPase, shown previously to facilitate the biogenesis of the Golgi ribbon. Activation of cellular Arf1 is prevented by 1) expressing an inactive "empty" form of Arf (Arf1/N126I), 2) expressing an inactive form of GBF1 (GBF1/E794K), guanine nucleotide exchange factor for Arf1, or 3) treating cells with brefeldin A, an inhibitor of GBF1 that disrupts MNK into a diffuse pattern. Importantly, preventing Arf activation inhibits copper-responsive trafficking of MNK to the PM. Our findings support a model in which active Arf is essential for the generation of the MNK compartment and for copper-responsive trafficking of MNK from there to the PM. Our findings provide an exciting foundation for identifying Arf1 effectors that facilitate the biogenesis of the MNK compartment and MNK traffic.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics; University of Oxford, Headington, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
González MI, Susarla BTS, Fournier KM, Sheldon AL, Robinson MB. Constitutive endocytosis and recycling of the neuronal glutamate transporter, excitatory amino acid carrier 1. J Neurochem 2007; 103:1917-31. [PMID: 17868307 DOI: 10.1111/j.1471-4159.2007.04881.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has a diverse array of physiologic and metabolic functions. There is evidence that there is a relatively large intracellular pool of EAAC1 both in vivo and in vitro, that EAAC1 cycles on and off the plasma membrane, and that EAAC1 cell surface expression can be rapidly regulated by intracellular signals. Despite the possible relevance of EAAC1 trafficking to both physiologic and pathologic processes, the cellular machinery involved has not been defined. In the present study, we found that agents that disrupt clathrin-dependent endocytosis or plasma membrane cholesterol increased steady-state levels of biotinylated EAAC1 in C6 glioma cells and primary neuronal cultures. Acute depletion of cholesterol increased the V(max) for EAAC1-mediated activity and had no effect on Na(+)-dependent glycine transport in the same system. These agents also impaired endocytosis as measured using a reversible biotinylating reagent. Co-expression with dominant-negative variants of dynamin or the clathrin adaptor, epidermal growth factor receptor pathway substrate clone 15, increased the steady-state levels of biotinylated myc-EAAC1. EAAC1 immunoreactivity was found in a subcellular fraction enriched in early endosome antigen 1 (EEA1) isolated by differential centrifugation and partially co-localized with EEA1. Co-expression of a dominant-negative variant of Rab11 (Rab11 S25N) reduced steady-state levels of biotinylated myc-EAAC1 and slowed constitutive delivery of myc-EAAC1 to the plasma membrane. Together, these observations suggest that EAAC1 is constitutively internalized via a clathrin- and dynamin-dependent pathway into early endosomes and that EAAC1 is trafficked back to the cell surface via the endocytic recycling compartment in a Rab11-dependent mechanism. As one defines the machinery required for constitutive trafficking of EAAC1, it may be possible to determine how intracellular signals regulate EAAC1 cell surface expression.
Collapse
Affiliation(s)
- Marco I González
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Despite being one of the first recognized targets of insulin action, the acceleration of glucose transport into muscle and fat tissue remains one of the most enigmatic processes in the insulin action cascade. Glucose transport is accomplished by a shift in the distribution of the insulin-responsive glucose transporter GLUT4 from intracellular compartments to the plasma membrane in the presence of insulin. The complexity in deciphering the molecular blueprint of insulin regulation of glucose transport arises because it represents a convergence of two convoluted biological systems-vesicular transport and signal transduction. Whereas more than 60 molecular players have been implicated in this orchestral performance, it has been difficult to distinguish between mainly passive participants vs. those that are clearly driving the process. The maze-like nature of the endosomal system makes it almost impossible to dissect the anatomical nature of what appears to be a medley of many overlapping and rapidly changing transitions. A major limitation is technology. It is clear that further progress in teasing apart the GLUT4 code will require the development and application of novel and advanced technologies that can discriminate one molecule from another in the living cell and to superimpose this upon a system in which the molecular environment can be carefully manipulated. Many are now taking on this challenge.
Collapse
Affiliation(s)
- Mark Larance
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney 2010, Australia
| | | | | |
Collapse
|
35
|
Behre CJ, Gummesson A, Jernås M, Lystig TC, Fagerberg B, Carlsson B, Carlsson LMS. Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism 2007; 56:1022-8. [PMID: 17618945 DOI: 10.1016/j.metabol.2007.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 03/06/2007] [Indexed: 11/26/2022]
Abstract
The study aimed to examine if dysmetabolic subjects (MetS+) have lower adiponectin gene expression and lower circulating adiponectin levels than non-dysmetabolic obese subjects (MetS-) at baseline, if adiponectin expression and adiponectin concentration rise more in the dysmetabolic group during weight loss, and if v-SNARE Vti1a (vesicle transport soluble NSF attachment protein receptor vps10p tail interacting 1a) expression increases during the weight loss, as a mechanism for increased adiponectin secretion. Twenty-one obese MetS+ and 19 obese MetS- subjects underwent a very low-energy diet for 16 weeks followed by 2 weeks of refeeding. Abdominal subcutaneous adipose tissue biopsies and blood samples were taken before, during, and after dieting for DNA microarray, reverse transcriptase-polymerase chain reaction, and biochemical analyses. Serum adiponectin was also assessed in a sex- and age-matched healthy, nonobese reference group. Weight decreased by 26.3+/-9.8 kg in the MetS+ group and 28.2+/-8.4 kg in the MetS- group with concomitant reductions in insulin, hemoglobin A1c, and triglycerides that were more pronounced in the MetS+ group. Initially, the MetS+ subjects had lower serum adiponectin, but the differences disappeared at week 8, with a continuous increase in serum adiponectin throughout the study in both groups to a level that was higher than in the reference group. The expression of adiponectin and v-SNARE Vti1a did not differ between the groups or over time. In conclusion, obese subjects with the metabolic syndrome had lower circulating adiponectin than subjects without the syndrome. Weight loss increased serum levels of adiponectin without a parallel increase in adiponectin gene expression. The mechanisms involved in the regulation of adiponectin levels merits further investigation.
Collapse
Affiliation(s)
- Carl Johan Behre
- Wallenberg Laboratory for Cardiovascular Research, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-413 45 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Nishida M, Funahashi T, Shimomura I. Pathophysiological significance of adiponectin. Med Mol Morphol 2007; 40:55-67. [PMID: 17572841 DOI: 10.1007/s00795-007-0366-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 12/22/2022]
Abstract
Adipose tissue, which classically has been considered as an energy-storing organ, is now viewed as a massive source of bioactive substances such as leptin, tumor necrosis factor (TNF)-alpha, and adiponectin. Adiponectin was discovered to be the most abundant adipose-specific transcript. Its function had been unclear, but epidemiological and clinical studies have demonstrated that serum levels of adiponectin are inversely associated with body weight, especially abdominal visceral fat accumulation. In addition, adiponectin was inversely related to cardiovascular risk factors, such as insulin resistance, blood pressure, and low-density lipoprotein (LDL) cholesterol and triglyceride levels, and was positively related to high-density lipoprotein (HDL) cholesterol levels. Moreover, low adiponectin concentration is associated with a high incidence of cardiovascular disease (CVD), diabetes, some kinds of cancer, and other various diseases. These associations suggest the clinical significance of adiponectin, and a number of investigations are now being conducted to clarify the biological functions of adiponectin. Recent studies have revealed that adiponectin exhibits antiinflammatory, antiatherogenic, and antidiabetic properties. In addition, adiponectin has been thought to be a key molecule in "metabolic syndrome," which is an epidemiological target for preventing cardiovascular disease. Various functions of adiponectin may possibly serve to prevent and treat obesity-related diseases and CVD. Furthermore, enhancement of adiponectin secretion or action may become a promising therapeutic target.
Collapse
Affiliation(s)
- Makoto Nishida
- Health Care Center, Osaka University 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | | | | |
Collapse
|
37
|
Lapierre LA, Avant KM, Caldwell CM, Ham AJL, Hill S, Williams JA, Smolka AJ, Goldenring JR. Characterization of immunoisolated human gastric parietal cells tubulovesicles: identification of regulators of apical recycling. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1249-62. [PMID: 17255364 DOI: 10.1152/ajpgi.00505.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric parietal cells possess an amplified apical membrane recycling system dedicated to regulated apical recycling of H-K-ATPase. While amplified in parietal cells, apical recycling is critical to polarized secretory processes in most epithelial cells. To clarify putative regulators of apical recycling, we prepared immunoisolated parietal cell H-K-ATPase-containing recycling membranes from human stomachs and analyzed protein contents by tryptic digestion and mass spectrometry. We identified and validated by Western blots many of the proteins previously identified on immunoisolated rabbit tubulovesicles, including Rab11, Rab25, syntaxin 3, secretory carrier membrane proteins (SCAMPs), and vesicle-associated membrane protein (VAMP)2. In addition, we detected several previously unrecognized proteins, including Rab10, VAMP8, syntaxin 7, and syntaxin 12/13. We also identified the K(+) channel component KCNQ1. Immunostaining of human gastric mucosal sections confirmed the presence of each of these proteins in parietal cells and their colocalization with H-K-ATPase on tubulovesicles. To investigate the role of the identified soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in apical recycling, we transfected them as DsRed2 fusions into an enhanced green fluorescent protein (EGFP)-Rab11a-expressing Madin-Darby canine kidney (MDCK) cell line. Syntaxin 12/13 and VAMP8 caused a collapse of the EGFP-Rab11a compartment, whereas a less dramatic effect was observed in cells transfected with syntaxin 3, syntaxin 7, or VAMP2. The five DsRed2-SNARE chimeras were also transfected into a MDCK cell line overexpressing Rab11-FIP2(129-512). All five of the chimeras were drawn into the collapsed apical recycling system. This study, which represents the first proteomic analysis of an immunoisolated vesicle population from native human tissue, demonstrates the diversity of putative regulators of the apical recycling system.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Dept. of Surgery, Vanderbilt Univ. School of Medicine, 4160A MRB III, 465 21st St. S., Nashville, TN 37232-2733, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Adachi J, Kumar C, Zhang Y, Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 2007; 6:1257-73. [PMID: 17409382 DOI: 10.1074/mcp.m600476-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipocytes are central players in energy metabolism and the obesity epidemic, yet their protein composition remains largely unexplored. We investigated the adipocyte proteome by combining high accuracy, high sensitivity protein identification technology with subcellular fractionation of nuclei, mitochondria, membrane, and cytosol of 3T3-L1 adipocytes. We identified 3,287 proteins while essentially eliminating false positives, making this one of the largest high confidence proteomes reported to date. Comprehensive bioinformatics analysis revealed that the adipocyte proteome, despite its specialized role, is very complex. Comparison with microarray data showed that the mRNA abundance of detected versus non-detected proteins differed by less than 2-fold and that proteomics covered as large a proportion of the insulin signaling pathway. We used the Endeavour gene prioritization algorithm to associate a number of factors with vesicle transport in response to insulin stimulation, a key function of adipocytes. Our data and analysis can serve as a model for cellular proteomics. The adipocyte proteome is available as supplemental material and from the Max-Planck Unified Proteome database.
Collapse
Affiliation(s)
- Jun Adachi
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.
Collapse
Affiliation(s)
- Shaohui Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
40
|
Chen X, Sebastian BM, Nagy LE. Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol Endocrinol Metab 2007; 292:E621-8. [PMID: 17047161 PMCID: PMC1794258 DOI: 10.1152/ajpendo.00387.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic ethanol feeding to mice and rats decreases serum adiponectin concentration and adiponectin treatment attenuates chronic ethanol-induced liver injury. Although it is clear that lowered adiponectin has pathophysiological importance, the mechanisms by which chronic ethanol decreases adiponectin are not known. Here, we have investigated the impact of chronic ethanol feeding on adiponectin expression and secretion by adipose tissue. Rats were fed a 36% Lieber-DeCarli ethanol-containing liquid diet or pair-fed control diet for 4 wk. Chronic ethanol feeding decreased adiponectin mRNA but had no effect on adiponectin protein in subcutaneous adipose tissue. Chronic ethanol feeding also reduced adiponectin secretion by isolated subcutaneous and retroperitoneal adipocytes despite the maintenance of equivalent intracellular concentrations of adiponectin between subcutaneous adipocytes from ethanol- and pair-fed rats. Treatment with brefeldin A suppressed adiponectin secretion by subcutaneous adipocytes from pair-fed rats but had little effect after ethanol feeding. In subcutaneous adipocytes from pair-fed rats, adiponectin was enriched in endoplasmic reticulum (ER)/Golgi relative to plasma membrane; however, after chronic ethanol feeding, adiponectin was equally distributed between plasma membrane and ER/Golgi fractions. In conclusion, chronic ethanol feeding impaired adiponectin secretion by subcutaneous and retroperitoneal adipocytes; impaired secretion likely contributes to decreased adiponectin concentrations after chronic ethanol feeding.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106-4906
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Becky M. Sebastian
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106-4906
- Department of Gastroenterology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathobiology, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
41
|
Monterrat C, Boal F, Grise F, Hémar A, Lang J. Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:73-81. [PMID: 16386321 DOI: 10.1016/j.bbamcr.2005.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 11/12/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022]
Abstract
Synaptotagmins (syt) form a large family of transmembrane proteins and some of its isoforms are known to regulate calcium-induced membrane fusion during vesicular traffic. In view of the reported implication of the isoform syt8 in exocytosis we investigated the expression, localisation and calcium-sensitivity of syt8 in secretory cells. An immunopurified antipeptide antibody was generated which is directed against a C-terminal sequence and devoid of crossreactivity towards syt1 to 12. Subcellular fractionation and immunocytochemistry revealed two forms of synaptotagmin 8 (50 and 40 kDa). Whereas the 40-kDa was present in the cytosol in brain, in PC12 and in clonal beta-cells, the 50-kDa form was localised in very typical clusters and partially colocalised with the SNARE protein Vti1a. Moreover, in primary hippocampal neurons syt8 was only found within the soma. Amplification of syt8 by RT-PCR indicated that the observed protein variants were not generated by alternative splicing of the 6th exon and are most likely linked to variations in the N-terminal region. In contrast to the established calcium sensor syt2, endogenous cytosolic syt8 and transiently expressed syt8-C2AB-eGFP did not translocate upon a raise in cytosolic calcium in living cells. Syt8 is therefore not a calcium sensor in exocytotic membrane fusion in endocrine cells.
Collapse
Affiliation(s)
- Carole Monterrat
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, 33607 Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|