1
|
Liu Y, Tian X, Ke P, Gu J, Ma Y, Guo Y, Xu X, Chen Y, Yang M, Wang X, Xiao F. KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B. Neurosci Bull 2022; 38:841-856. [PMID: 35678994 PMCID: PMC9352834 DOI: 10.1007/s12264-022-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| |
Collapse
|
2
|
Wang J, Liu Z, Gao X, Du C, Hou C, Tang D, Lou B, Shen W, Zhu J. The potential function of KIF17 in large yellow croaker (Larimichthys crocea) spermatid remodeling: molecular characterization and expression pattern during spermiogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:603-616. [PMID: 35538183 DOI: 10.1007/s10695-021-01035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
KIF17, which belongs to the kinesin-2 protein family, plays an indispensable role in mammalian spermiogenesis. However, the role of KIF17 in fish spermatid remodeling during spermiogenesis remains poorly understood. Therefore, we aimed to study the role of KIF17 in spermatid remodeling during Larimichthys crocea (L. crocea) spermiogenesis. The kif17 cDNA sequence, 3247 bp in length, was cloned from L. crocea testis, which consisted of a 347-bp 5'-untranslated region (UTR), 413-bp 3' -UTR, and 2487-bp open reading frame. Bioinformatic analyses revealed that KIF17 obtained from L. crocea (Lc-KIF17) exhibited a high sequence identity compared with those from other teleosts and possessed the structural features of other kinesin-2 proteins. Based on structural similarity, we speculate that the role of Lc-KIF17 may be similar to that of KIF17 in other animals. Lc-kif17 mRNA was diffusely expressed in L. crocea tissues and was highly expressed in the testis, especially at stage IV testicular development. Immunofluorescence analysis revealed that Lc-KIF17 signals colocalized with β-tubulin signals and migrated from the perinuclear cytoplasm to the side of the nucleus where the tail forms during spermiogenesis. These findings revealed that KIF17 may be involved in L. crocea spermiogenesis. In particular, KIF17 may participate in spermatid remodeling by interacting with perinuclear microtubules during L. crocea spermiogenesis. Collectively, this study contributes to an improved understanding of the mechanism underlying L. crocea spermiogenesis and provides a basis for further research on L. crocea reproduction and development.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Zhao Liu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, People's Republic of China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology By the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
3
|
Welch MA, Jansen LAR, Baro DJ. SUMOylation of the Kv4.2 Ternary Complex Increases Surface Expression and Current Amplitude by Reducing Internalization in HEK 293 Cells. Front Mol Neurosci 2021; 14:757278. [PMID: 34795560 PMCID: PMC8593141 DOI: 10.3389/fnmol.2021.757278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Kv4 α-subunits exist as ternary complexes (TC) with potassium channel interacting proteins (KChIP) and dipeptidyl peptidase-like proteins (DPLP); multiple ancillary proteins also interact with the α-subunits throughout the channel’s lifetime. Dynamic regulation of Kv4.2 protein interactions adapts the transient potassium current, IA, mediated by Kv4 α-subunits. Small ubiquitin-like modifier (SUMO) is an 11 kD peptide post-translationally added to lysine (K) residues to regulate protein–protein interactions. We previously demonstrated that when expressed in human embryonic kidney (HEK) cells, Kv4.2 can be SUMOylated at two K residues, K437 and K579. SUMOylation at K437 increased surface expression of electrically silent channels while SUMOylation at K579 reduced IA maximal conductance (Gmax) without altering surface expression. KChIP and DPLP subunits are known to modify the pattern of Kv4.2 post-translational decorations and/or their effects. In this study, co-expressing Kv4.2 with KChIP2a and DPP10c altered the effects of enhanced Kv4.2 SUMOylation. First, the effect of enhanced SUMOylation was the same for a TC containing either the wild-type Kv4.2 or the mutant K437R Kv4.2, suggesting that either the experimental manipulation no longer enhanced K437 SUMOylation or K437 SUMOylation no longer influenced Kv4.2 surface expression. Second, instead of decreasing IA Gmax, enhanced SUMOylation at K579 now produced a significant ∼37–70% increase in IA maximum conductance (Gmax) and a significant ∼30–50% increase in Kv4.2g surface expression that was accompanied by a 65% reduction in TC internalization. Blocking clathrin-mediated endocytosis (CME) in HEK cells expressing the Kv4.2 TC mimicked and occluded the effect of SUMO on IA Gmax; however, the amount of Kv4.2 associated with the major adaptor for constitutive CME, adaptor protein 2 (AP2), was not SUMO dependent. Thus, SUMOylation reduced Kv4.2 internalization by acting downstream of Kv4.2 recruitment into clathrin-coated pits. In sum, the two major findings of this study are: SUMOylation of Kv4.2 at K579 regulates TC internalization most likely by promoting channel recycling. Additionally, there is a reciprocity between Kv4.2 SUMOylation and the Kv4.2 interactome such that SUMOylation regulates the interactome and the interactome influences the pattern and effect of SUMOylation.
Collapse
Affiliation(s)
- Meghyn A Welch
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | | | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
4
|
Bellotti A, Murphy J, Lin L, Petralia R, Wang YX, Hoffman D, O'Leary T. Paradoxical relationships between active transport and global protein distributions in neurons. Biophys J 2021; 120:2085-2101. [PMID: 33812847 PMCID: PMC8390833 DOI: 10.1016/j.bpj.2021.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Neural function depends on continual synthesis and targeted trafficking of intracellular components, including ion channel proteins. Many kinds of ion channels are trafficked over long distances to specific cellular compartments. This raises the question of whether cargo is directed with high specificity during transit or whether cargo is distributed widely and sequestered at specific sites. We addressed this question by experimentally measuring transport and expression densities of Kv4.2, a voltage-gated transient potassium channel that exhibits a specific dendritic expression that increases with distance from the soma and little or no functional expression in axons. In over 500 h of quantitative live imaging, we found substantially higher densities of actively transported Kv4.2 subunits in axons as opposed to dendrites. This paradoxical relationship between functional expression and traffic density supports a model—commonly known as the sushi belt model—in which trafficking specificity is relatively low and active sequestration occurs in compartments where cargo is expressed. In further support of this model, we find that kinetics of active transport differs qualitatively between axons and dendrites, with axons exhibiting strong superdiffusivity, whereas dendritic transport resembles a weakly directed random walk, promoting mixing and opportunity for sequestration. Finally, we use our data to constrain a compartmental reaction-diffusion model that can recapitulate the known Kv4.2 density profile. Together, our results show how nontrivial expression patterns can be maintained over long distances with a relatively simple trafficking mechanism and how the hallmarks of a global trafficking mechanism can be revealed in the kinetics and density of cargo.
Collapse
Affiliation(s)
- Adriano Bellotti
- National Institute of Child Health and Human Development, Bethesda, Maryland; Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Murphy
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Lin Lin
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Ronald Petralia
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Ya-Xian Wang
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Dax Hoffman
- National Institute of Child Health and Human Development, Bethesda, Maryland.
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
6
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Yang R, Bostick Z, Garbouchian A, Luisi J, Banker G, Bentley M. A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport. Traffic 2019; 20:851-866. [PMID: 31461551 PMCID: PMC7714429 DOI: 10.1111/tra.12692] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023]
Abstract
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle-bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin-1, -2, and -3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long-range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle-bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on-vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long-range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.
Collapse
Affiliation(s)
- Rui Yang
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
- Department of Biochemistry, Duke University, Durham, North Carolina
| | - Zoe Bostick
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Garbouchian
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Julie Luisi
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
| | - Gary Banker
- The Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
8
|
Prechtel H, Hartmann S, Minge D, Bähring R. Somatodendritic surface expression of epitope-tagged and KChIP binding-deficient Kv4.2 channels in hippocampal neurons. PLoS One 2018; 13:e0191911. [PMID: 29385176 PMCID: PMC5792006 DOI: 10.1371/journal.pone.0191911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Kv4.2 channels mediate a subthreshold-activating somatodendritic A-type current (ISA) in hippocampal neurons. We examined the role of accessory Kv channel interacting protein (KChIP) binding in somatodendritic surface expression and activity-dependent decrease in the availability of Kv4.2 channels. For this purpose we transfected cultured hippocampal neurons with cDNA coding for Kv4.2 wild-type (wt) or KChIP binding-deficient Kv4.2 mutants. All channels were equipped with an externally accessible hemagglutinin (HA)-tag and an EGFP-tag, which was attached to the C-terminal end. Combined analyses of EGFP self-fluorescence, surface HA immunostaining and patch-clamp recordings demonstrated similar dendritic trafficking and functional surface expression for Kv4.2[wt]HA,EGFP and the KChIP binding-deficient Kv4.2[A14K]HA,EGFP. Coexpression of exogenous KChIP2 augmented the surface expression of Kv4.2[wt]HA,EGFP but not Kv4.2[A14K]HA,EGFP. Notably, activity-dependent decrease in availability was more pronounced in Kv4.2[wt]HA,EGFP + KChIP2 coexpressing than in Kv4.2[A14K]HA,EGFP + KChIP2 coexpressing neurons. Our results do not support the notion that accessory KChIP binding is a prerequisite for dendritic trafficking and functional surface expression of Kv4.2 channels, however, accessory KChIP binding may play a potential role in Kv4.2 modulation during intrinsic plasticity processes.
Collapse
Affiliation(s)
- Helena Prechtel
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Hartmann
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Minge
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Misonou H. Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol 2017; 78:271-282. [PMID: 29218789 DOI: 10.1002/dneu.22565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/08/2022]
Abstract
Neurons are extremely large and complex cells, and they regulate membrane potentials in multiple subcellular compartments using a variety of ion channels. Voltage-gated sodium (Nav) and potassium (Kv) channels are crucial in regulating neuronal membrane excitability owing to their diversity in subtypes, biophysical properties, and localizations. In particular, specific localizations of Nav and Kv channels in specific membrane compartments are essential to achieve a precise control of local membrane excitability. Recent advancement in super-resolution microscopy further substantiated nanoscale localizations of different ion channels in neuronal membranes. New questions arise from these new lines of evidence regarding how Nav and Kv channels are trafficked to a specific location and maintained against lateral diffusion. In this review, the aim is to summarize current information about ion channel localizations at nanoscopic levels and discuss what we can infer regarding the mechanisms. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 271-282, 2018.
Collapse
Affiliation(s)
- Hiroaki Misonou
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
10
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load. Proc Natl Acad Sci U S A 2017; 114:E6830-E6838. [PMID: 28761002 DOI: 10.1073/pnas.1708157114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs.
Collapse
|
12
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
13
|
|
14
|
KV1 and KV3 Potassium Channels Identified at Presynaptic Terminals of the Corticostriatal Synapses in Rat. Neural Plast 2016; 2016:8782518. [PMID: 27379187 PMCID: PMC4917754 DOI: 10.1155/2016/8782518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength.
Collapse
|
15
|
Franker MA, Esteves da Silva M, Tas RP, Tortosa E, Cao Y, Frias CP, Janssen AFJ, Wulf PS, Kapitein LC, Hoogenraad CC. Three-Step Model for Polarized Sorting of KIF17 into Dendrites. Curr Biol 2016; 26:1705-1712. [PMID: 27265394 DOI: 10.1016/j.cub.2016.04.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 03/16/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Kinesin and dynein motors drive bidirectional cargo transport along microtubules and have a critical role in polarized cargo trafficking in neurons [1, 2]. The kinesin-2 family protein KIF17 is a dendrite-specific motor protein and has been shown to interact with several dendritic cargoes [3-7]. However, the mechanism underlying the dendritic targeting of KIF17 remains poorly understood [8-11]. Using live-cell imaging combined with inducible trafficking assays to directly probe KIF17 motor activity in living neurons, we found that the polarized sorting of KIF17 to dendrites is regulated in multiple steps. First, cargo binding of KIF17 relieves autoinhibition and initiates microtubule-based cargo transport. Second, KIF17 does not autonomously target dendrites, but enters the axon where the actin cytoskeleton at the axon initial segment (AIS) prevents KIF17 vesicles from moving further into the axon. Third, dynein-based motor activity is able to redirect KIF17-coupled cargoes into dendrites. We propose a three-step model for polarized targeting of KIF17, in which the collective function of multiple motor teams is required for proper dendritic sorting.
Collapse
Affiliation(s)
- Mariella A Franker
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Marta Esteves da Silva
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Elena Tortosa
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Yujie Cao
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Cátia P Frias
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Anne F J Janssen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Phebe S Wulf
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
16
|
Drum BML, Yuan C, Li L, Liu Q, Wordeman L, Santana LF. Oxidative stress decreases microtubule growth and stability in ventricular myocytes. J Mol Cell Cardiol 2016; 93:32-43. [PMID: 26902968 PMCID: PMC4902331 DOI: 10.1016/j.yjmcc.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023]
Abstract
Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.
Collapse
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Can Yuan
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Lei Li
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Qinghang Liu
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Linda Wordeman
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - L Fernando Santana
- Deparment of Physiology & Membrane Biology, University of California School of Medicine, Davis, CA 95616, United States.
| |
Collapse
|
17
|
Hanus C, Ehlers MD. Specialization of biosynthetic membrane trafficking for neuronal form and function. Curr Opin Neurobiol 2016; 39:8-16. [PMID: 27010827 DOI: 10.1016/j.conb.2016.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 10/24/2022]
Abstract
Neuronal growth and synaptic transmission require the continuous production of adhesion molecules, neurotransmitter receptors, ion-channels, and secreted trophic factors, and thus critically relies on the secretory pathway-the series of intracellular organelles including the endoplasmic reticulum (ER) and the Golgi apparatus (GA), where membrane lipids and proteins are synthesized. Commensurate with the gigantic size of the neuronal membrane and its compartmentalization by thousands of synapses with distinct compositions and activities, the neuronal secretory pathway has evolved to both traffic synaptic components over very long distances, and locally control the composition of specified segments of dendrites. Here we review new insights into the distribution and dynamics of dendritic secretory organelles and their impact on postsynaptic compartments.
Collapse
Affiliation(s)
- Cyril Hanus
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Michael D Ehlers
- Neuroscience Research Unit, BioTherapeutics, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA.
| |
Collapse
|
18
|
Bai X, Karasmanis EP, Spiliotis ET. Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport. Mol Biol Cell 2016; 27:897-906. [PMID: 26823018 PMCID: PMC4791134 DOI: 10.1091/mbc.e15-07-0493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Kinesin motor interactions with cargo and their regulation are not well understood. Septin 9 (SEPT9) interacts directly with kinesin KIF17 and interferes with binding of the cargo adaptor/scaffold mLin-10/Mint1, which links the NMDA receptor subunit 2B (NR2B) to KIF17. SEPT9 down-regulates NR2B transport without affecting the motile properties of KIF17. Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.
Collapse
Affiliation(s)
- Xiaobo Bai
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
19
|
Acharya BR, Espenel C, Libanje F, Raingeaud J, Morgan J, Jaulin F, Kreitzer G. KIF17 regulates RhoA-dependent actin remodeling at epithelial cell-cell adhesions. J Cell Sci 2016; 129:957-70. [PMID: 26759174 DOI: 10.1242/jcs.173674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilin(S3A) inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA-GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Cedric Espenel
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Fotine Libanje
- Gustave Roussy Institute, UMR-8126, 114 rue Edouard Vaillant, Villejuif 94805, France
| | - Joel Raingeaud
- Gustave Roussy Institute, UMR-8126, 114 rue Edouard Vaillant, Villejuif 94805, France
| | - Jessica Morgan
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Fanny Jaulin
- Gustave Roussy Institute, UMR-8126, 114 rue Edouard Vaillant, Villejuif 94805, France
| | - Geri Kreitzer
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
20
|
Farías GG, Guardia CM, Britt DJ, Guo X, Bonifacino JS. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone. Cell Rep 2015; 13:1221-1232. [PMID: 26527003 PMCID: PMC5410646 DOI: 10.1016/j.celrep.2015.09.074] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023] Open
Abstract
Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS) is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ). Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.
Collapse
Affiliation(s)
- Ginny G Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Carlos M Guardia
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Dylan J Britt
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Valenzuela JI, Perez F. Diversifying the secretory routes in neurons. Front Neurosci 2015; 9:358. [PMID: 26500481 PMCID: PMC4595659 DOI: 10.3389/fnins.2015.00358] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Nervous system homeostasis and synaptic function need dedicated mechanisms to locally regulate the molecular composition of the neuronal plasma membrane and allow the development, maintenance and plastic modification of the neuronal morphology. The cytoskeleton and intracellular trafficking lies at the core of all these processes. In most mammalian cells, the Golgi apparatus (GA) is at the center of the biosynthetic pathway, located in the proximity of the microtubule-organizing center. In addition to this central localization, the somatic GA in neurons is complemented by satellite Golgi outposts (GOPs) in dendrites, which are essential for dendritic morphogenesis and are emerging like local stations of membranes trafficking to synapses. Largely, GOPs participation in post-ER trafficking has been determined by imaging the transport of the exogenous protein VSVG. Here we review the diversity of neuronal cargoes that traffic through GOPs and the assortment of different biosynthetic routes to synapses. We also analyze the recent advances in understanding the role of cytoskeleton and Golgi matrix proteins in the biogenesis of GOPs and how the diversity of secretory routes can be generated.
Collapse
Affiliation(s)
- José I Valenzuela
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| | - Franck Perez
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| |
Collapse
|
22
|
Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. FASEB J 2015; 29:4866-80. [PMID: 26229057 DOI: 10.1096/fj.15-275677] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/27/2015] [Indexed: 01/22/2023]
Abstract
In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3.
Collapse
Affiliation(s)
- Li Jiang
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Beatrice M Tam
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Guoxing Ying
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Sen Wu
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - William W Hauswirth
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Jeanne M Frederick
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Orson L Moritz
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Wolfgang Baehr
- *Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Terauchi A, Timmons KM, Kikuma K, Pechmann Y, Kneussel M, Umemori H. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7. J Cell Sci 2014; 128:281-92. [PMID: 25431136 DOI: 10.1242/jcs.158337] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Kendall M Timmons
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Koto Kikuma
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Yvonne Pechmann
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Matthias Kneussel
- Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, D-20251 Hamburg, Germany
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
24
|
Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW, Ruocco F, Begum U, Guariglia SR, Brown WT, Junaid MA. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS One 2014; 9:e101674. [PMID: 25006883 PMCID: PMC4090150 DOI: 10.1371/journal.pone.0101674] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Background Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice. Methods Dams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR) and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring. Results Results from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns’ cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy and throughout the life course may have lasting effects, with alterations in brain development resulting in changes in behavior.
Collapse
Affiliation(s)
- Subit Barua
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Kathryn K. Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Salomon Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Diego Buenaventura
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Nathan W. Stapley
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Felicia Ruocco
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Umme Begum
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Sara R. Guariglia
- Department of Environmental Health Sciences, Columbia University, New York, United States of America
| | - W. Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Mohammed A. Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Graduate Center and College of Staten Island, City University of New York, Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Hanus C, Kochen L, Tom Dieck S, Racine V, Sibarita JB, Schuman EM, Ehlers MD. Synaptic control of secretory trafficking in dendrites. Cell Rep 2014; 7:1771-8. [PMID: 24931613 PMCID: PMC5321479 DOI: 10.1016/j.celrep.2014.05.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 03/16/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022] Open
Abstract
Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.
Collapse
Affiliation(s)
- Cyril Hanus
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany.
| | - Lisa Kochen
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | | | - Victor Racine
- Institute of Molecular & Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Jerng HH, Pfaffinger PJ. Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits. Front Cell Neurosci 2014; 8:82. [PMID: 24723849 PMCID: PMC3973911 DOI: 10.3389/fncel.2014.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
Collapse
Affiliation(s)
- Henry H. Jerng
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| | | |
Collapse
|
27
|
Jensen CS, Watanabe S, Rasmussen HB, Schmitt N, Olesen SP, Frost NA, Blanpied TA, Misonou H. Specific sorting and post-Golgi trafficking of dendritic potassium channels in living neurons. J Biol Chem 2014; 289:10566-10581. [PMID: 24569993 DOI: 10.1074/jbc.m113.534495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific subcompartments. However, the molecular mechanisms that control ion channel localization in distinct dendritic subcompartments are largely unknown. Here, we developed a quantitative live cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels that exhibit distinct localizations: Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms as evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms are crucial for their specific localizations within dendrites.
Collapse
Affiliation(s)
- Camilla Stampe Jensen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Department of Neural and Pain Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Shoji Watanabe
- Unit for Brain Pathology, Graduate School of Brain Science, Doshisha University, Kyoto 619-02225, Japan
| | - Hanne Borger Rasmussen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Nicholas A Frost
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201
| | - Hiroaki Misonou
- Department of Neural and Pain Sciences, University of Maryland, Baltimore, Maryland 21201; Unit for Brain Pathology, Graduate School of Brain Science, Doshisha University, Kyoto 619-02225, Japan.
| |
Collapse
|
28
|
Yammine M, Saade M, Chauvet S, Nguyen C. Spatial gene's (Tbata) implication in neurite outgrowth and dendrite patterning in hippocampal neurons. Mol Cell Neurosci 2013; 59:1-9. [PMID: 24361585 DOI: 10.1016/j.mcn.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 01/12/2023] Open
Abstract
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based kinesin motor transport to deliver essential cargo into axons and dendrites. In developing neurons, kinesin trafficking is essential for delivering organelles and molecules that are crucial for elongation and guidance of the growing axonal and dendritic termini. In mature neurons, kinesin cargo delivery is essential for neuron dynamic physiological functions which are critical in brain development. In this work, we followed Spatial (Tbata) gene expression during primary hippocampal neuron development and showed that it is highly expressed during dendrite formation. Spatial protein exhibits a somatodendritic distribution and we show that the kinesin motor Kif17, among other dendrite specific kinesins, is crucial for Spatial localization to dendrites of hippocampal neurons. Furthermore, Spatial down regulation in primary hippocampal cells revealed a role for Spatial in maintaining neurons' polarity by ensuring proper neurite outgrowth. This polarity is specified by intrinsic and extracellular signals that allow neurons to determine axon and dendrite fate during development. Neurotrophic factors, such as the Nerve Growth Factor (NGF), are candidate extracellular polarity-regulating cues which are proposed to accelerate neuronal polarization by enhancing dendrite growth. Here, we show that NGF treatment increases Spatial expression in hippocampal neurons. Altogether, these data suggest that Spatial, in response to NGF and through its transport by Kif17, is crucial for neuronal polarization and can be a key regulator of neurite outgrowth.
Collapse
Affiliation(s)
- Miriam Yammine
- Aix-Marseille Université, Inserm UMR 1090, TAGC, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Murielle Saade
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, C/Baldiri i Reixac, Barcelona, Spain
| | - Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Catherine Nguyen
- Aix-Marseille Université, Inserm UMR 1090, TAGC, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France.
| |
Collapse
|
29
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
30
|
Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, Takahashi TT, Liman ER, Ellis-Davies GCR, McGee AW, Sabatini BL, Roberts RW, Arnold DB. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 2013; 78:971-85. [PMID: 23791193 PMCID: PMC3779638 DOI: 10.1016/j.neuron.2013.04.017] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed Fibronectin intrabodies generated with mRNA display (FingRs), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and that, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices, FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo.
Collapse
Affiliation(s)
- Garrett G Gross
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scholey JM. Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu Rev Cell Dev Biol 2013; 29:443-69. [PMID: 23750925 DOI: 10.1146/annurev-cellbio-101512-122335] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinesin-2 was first purified as a heterotrimeric, anterograde, microtubule-based motor consisting of two distinct kinesin-related subunits and a novel associated protein (KAP) that is currently best known for its role in intraflagellar transport and ciliogenesis. Subsequent work, however, has revealed diversity in the oligomeric state of different kinesin-2 motors owing to the combinatorial heterodimerization of its subunits and the coexistence of both heterotrimeric and homodimeric kinesin-2 motors in some cells. Although the functional significance of the homo- versus heteromeric organization of kinesin-2 motor subunits and the role of KAP remain uncertain, functional studies suggest that cooperation between different types of kinesin-2 motors or between kinesin-2 and a member of a different motor family can generate diverse patterns of anterograde intracellular transport. Moreover, despite being restricted to ciliated eukaryotes, kinesin-2 motors are now known to drive diverse transport events outside cilia. Here, I review the organization, assembly, phylogeny, biological functions, and motility mechanism of this diverse family of intracellular transport motors.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, California 95616;
| |
Collapse
|
32
|
Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:665-73. [PMID: 23680626 DOI: 10.1016/j.bbamem.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022]
Abstract
The cytoskeleton and cardiac ion channel expression are closely linked. From the time that newly synthesized channels exit the endoplasmic reticulum, they are either traveling along the microtubule or actin cytoskeletons or likely anchored in the plasma membrane or in internal vesicular pools by those scaffolds. Molecular motors, small GTPases and even the dynamics of the cytoskeletons themselves influence the trafficking and expression of the channels. In some cases, the functioning of the channels themselves has profound influences on the cytoskeleton. Here we provide an overview of the current state of knowledge on the involvement of the actin and microtubule cytoskeletons in the trafficking, targeting and expression of cardiac ion channels and a few channels expressed elsewhere. We highlight, also, some of the many questions that remain about these processes. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- David F Steele
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - David Fedida
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Barry J, Gu C. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels. Neuroscientist 2013; 19:145-59. [PMID: 22910031 PMCID: PMC3625366 DOI: 10.1177/1073858412456088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Joshua Barry
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Chen Gu
- The Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Zhou R, Niwa S, Guillaud L, Tong Y, Hirokawa N. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor. Cell Rep 2013; 3:509-19. [DOI: 10.1016/j.celrep.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/09/2012] [Accepted: 01/14/2013] [Indexed: 01/05/2023] Open
|
35
|
Jenkins B, Decker H, Bentley M, Luisi J, Banker G. A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. ACTA ACUST UNITED AC 2012; 198:749-61. [PMID: 22908316 PMCID: PMC3514038 DOI: 10.1083/jcb.201205070] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel split kinesin assay identifies three Kinesin-3 family members that
specifically interact with dendritic vesicle populations in neurons. Identifying the kinesin motors that interact with different vesicle populations
is a longstanding and challenging problem with implications for many aspects of
cell biology. Here we introduce a new live-cell assay to assess
kinesin–vesicle interactions and use it to identify kinesins that bind to
vesicles undergoing dendrite-selective transport in cultured hippocampal
neurons. We prepared a library of “split kinesins,” comprising an
axon-selective kinesin motor domain and a series of kinesin tail domains that
can attach to their native vesicles; when the split kinesins were assembled by
chemical dimerization, bound vesicles were misdirected into the axon. This
method provided highly specific results, showing that three Kinesin-3 family
members—KIF1A, KIF13A, and KIF13B—interacted with dendritic
vesicle populations. This experimental paradigm allows a systematic approach to
evaluate motor–vesicle interactions in living cells.
Collapse
Affiliation(s)
- Brian Jenkins
- The Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
36
|
Differential trafficking of transport vesicles contributes to the localization of dendritic proteins. Cell Rep 2012; 2:89-100. [PMID: 22840400 DOI: 10.1016/j.celrep.2012.05.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/04/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022] Open
Abstract
In neurons, transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here, we use a novel pulse-chase system, which allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum to follow movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon, they very rarely moved beyond the axon initial segment but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.
Collapse
|
37
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Wong-Riley MTT, Besharse JC. The kinesin superfamily protein KIF17: one protein with many functions. Biomol Concepts 2012; 3:267-282. [PMID: 23762210 DOI: 10.1515/bmc-2011-0064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kinesins are ATP-dependent molecular motors that carry cargos along microtubules, generally in an anterograde direction. They are classified into 14 distinct families with varying structural and functional characteristics. KIF17 is a member of the kinesin-2 family that is plus end-directed. It is a homodimer with a pair of head motor domains that bind microtubules, a coiled-coil stalk, and a tail domain that binds cargos. In neurons, KIF17 transports N-methyl-D-aspartate receptor NR2B subunit, kainate receptor GluR5, and potassium Kv4.2 channels from cell bodies exclusively to dendrites. These cargos are necessary for synaptic transmission, learning, memory, and other functions. KIF17's interaction with NXF2 enables the transport of mRNA bidirectionally in dendrites. KIF17 or its homolog OSM-3 also mediates intraflagellar transport of cargos to the distal tips of flagella or cilia, thereby aiding in ciliogenesis. In many invertebrate and vertebrate sensory cells, KIF17 delivers cargos that contribute to chemosensory perception and signal transduction. In vertebrate photoreceptors, KIF17 is necessary for outer segment development and disc morphogenesis. In the testis, KIF17 (KIF17b) mediates microtubule-independent delivery of ACT from the nucleus to the cytoplasm and microtubule-dependent transport of Spatial-ε, both are presumably involved in spermatogenesis. KIF17 is also implicated in epithelial polarity and morphogenesis, placental transport and development, and the development of specific brain regions. The transcriptional regulation of KIF17 has recently been found to be mediated by nuclear respiratory factor 1 (NRF-1), which also regulates NR2B as well as energy metabolism in neurons. Dysfunctions of KIF17 are linked to a number of pathologies.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
39
|
Huang CF, Banker G. The translocation selectivity of the kinesins that mediate neuronal organelle transport. Traffic 2012; 13:549-64. [PMID: 22212743 DOI: 10.1111/j.1600-0854.2011.01325.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 12/22/2022]
Abstract
Polarized kinesin-driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule-binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin-2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.
Collapse
Affiliation(s)
- Chun-Fang Huang
- The Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
40
|
Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 2011; 145:1129-41. [PMID: 21703454 DOI: 10.1016/j.cell.2011.05.030] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/28/2011] [Accepted: 05/23/2011] [Indexed: 12/31/2022]
Abstract
Ciliogenesis precedes lineage-determining signaling in skin development. To understand why, we performed shRNA-mediated knockdown of seven intraflagellar transport proteins (IFTs) and conditional ablation of Ift-88 and Kif3a during embryogenesis. In both cultured keratinocytes and embryonic epidermis, all of these eliminated cilia, and many (not Kif3a) caused hyperproliferation. Surprisingly and independent of proliferation, ciliary mutants displayed defects in Notch signaling and commitment of progenitors to differentiate. Notch receptors and Notch-processing enzymes colocalized with cilia in wild-type epidermal cells. Moreover, differentiation defects in ciliary mutants were cell autonomous and rescued by activated Notch (NICD). By contrast, Shh signaling was neither operative nor required for epidermal ciliogenesis, Notch signaling, or differentiation. Rather, Shh signaling defects in ciliary mutants occurred later, arresting hair follicle morphogenesis in the skin. These findings unveil temporally and spatially distinct functions for primary cilia at the nexus of signaling, proliferation, and differentiation.
Collapse
Affiliation(s)
- Ellen J Ezratty
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
41
|
Murillo-Cuesta S, Rodríguez-de la Rosa L, Cediel R, Lassaletta L, Varela-Nieto I. The role of insulin-like growth factor-I in the physiopathology of hearing. Front Mol Neurosci 2011; 4:11. [PMID: 21845174 PMCID: PMC3146045 DOI: 10.3389/fnmol.2011.00011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/11/2011] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) belongs to the family of polypeptides of insulin, which play a central role in embryonic development and adult nervous system homeostasis by endocrine, autocrine, and paracrine mechanisms. IGF-I is fundamental for the regulation of cochlear development, growth, and differentiation, and its mutations are associated with hearing loss in mice and men. Low levels of IGF-I have been shown to correlate with different human syndromes showing hearing loss and with presbyacusis. Animal models are fundamental to understand the genetic, epigenetic, and environmental factors that contribute to human hearing loss. In the mouse, IGF-I serum levels decrease with aging and there is a concomitant hearing loss and retinal degeneration. In the Igf1(-/-) null mouse, hearing loss is due to neuronal loss, poor innervation of the sensory hair cells, and age-related stria vascularis alterations. In the inner ear, IGF-I actions are mediated by intracellular signaling networks, RAF, AKT, and p38 MAPK protein kinases modulate the expression and activity of transcription factors, as AP1, MEF2, FoxM1, and FoxP3, leading to the regulation of cell cycle and metabolism. Therapy with rhIGF-I has been approved in humans for the treatment of poor linear growth and certain neurodegenerative diseases. This review will discuss these findings and their implications in new IGF-I-based treatments for the protection or repair of hearing loss.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Servicio de Evaluación Neurofuncional no Invasiva, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Lasiecka ZM, Winckler B. Mechanisms of polarized membrane trafficking in neurons -- focusing in on endosomes. Mol Cell Neurosci 2011; 48:278-87. [PMID: 21762782 DOI: 10.1016/j.mcn.2011.06.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/21/2011] [Accepted: 06/25/2011] [Indexed: 12/13/2022] Open
Abstract
Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells are necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER via the Golgi and trans-Golgi-network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes.
Collapse
Affiliation(s)
- Zofia M Lasiecka
- Department of Neuroscience, University of Virginia Medical School, 409 Lane Rd. Extension, MR4-6116, Charlottesville, VA 22908, USA
| | | |
Collapse
|
43
|
Jensen CS, Rasmussen HB, Misonou H. Neuronal trafficking of voltage-gated potassium channels. Mol Cell Neurosci 2011; 48:288-97. [PMID: 21627990 DOI: 10.1016/j.mcn.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/01/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022] Open
Abstract
The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regulated by voltage-gated potassium (Kv) channels, such as Kv4.2, which are specifically localized in the dendritic membrane. The synaptic potentials eventually depolarize the membrane of the axon initial segment, thereby activating voltage-gated sodium channels to generate action potentials. Specific Kv channels localized in the axon initial segment, such as Kv1 and Kv7 channels, determine the shape and the rate of action potentials. Kv1 and Kv7 channels present at or near nodes of Ranvier and in presynaptic terminals also influence the propagation of action potentials and neurotransmitter release. The physiological significance of proper Kv channel localization is emphasized by the fact that defects in the trafficking of Kv channels are observed in several neurological disorders including epilepsy. In this review, we will summarize the current understanding of the mechanisms of Kv channel trafficking and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons.
Collapse
Affiliation(s)
- Camilla S Jensen
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
44
|
Gu C, Barry J. Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 2011; 94:115-32. [PMID: 21530607 DOI: 10.1016/j.pneurobio.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/20/2022]
Abstract
Precise localization of various ion channels into proper subcellular compartments is crucial for neuronal excitability and synaptic transmission. Axonal K(+) channels that are activated by depolarization of the membrane potential participate in the repolarizing phase of the action potential, and hence regulate action potential firing patterns, which encode output signals. Moreover, some of these channels can directly control neurotransmitter release at axonal terminals by constraining local membrane excitability and limiting Ca(2+) influx. K(+) channels differ not only in biophysical and pharmacological properties, but in expression and subcellular distribution as well. Importantly, proper targeting of channel proteins is a prerequisite for electrical and chemical functions of axons. In this review, we first highlight recent studies that demonstrate different roles of axonal K(+) channels in the local regulation of axonal excitability. Next, we focus on research progress in identifying axonal targeting motifs and machinery of several different types of K(+) channels present in axons. Regulation of K(+) channel targeting and activity may underlie a novel form of neuronal plasticity. This research field can contribute to generating novel therapeutic strategies through manipulating neuronal excitability in treating neurological diseases, such as multiple sclerosis, neuropathic pain, and Alzheimer's disease.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, USA.
| | | |
Collapse
|
45
|
Jo A, Kim HK. Up-regulation of dendritic Kv4.2 mRNA by activation of the NMDA receptor. Neurosci Lett 2011; 496:129-34. [PMID: 21511008 DOI: 10.1016/j.neulet.2011.03.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/03/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
The localization of Kv4.2 mRNAs in dendritic regions suggests that Kv4.2 channels, which originate from on-site protein synthesis in the dendrites, might play a role in synaptic function. In this study, we determined the molecular mechanisms of dendritic transport of Kv4.2 mRNA. Three hours of incubation following a brief depolarization resulted in significant increases in Kv4.2 mRNA levels in both cell bodies and dendrites. The increase in the mRNA in the dendrites was mediated by transcription- and translation-independent mechanisms. In order to further clarify the molecular mechanism of dendritic transport of Kv4.2 mRNA, we used the GFP-MS2 reporting system. Consistent with the in situ data, depolarization resulted in significant increases in dendritic levels of Kv4.2 mRNA at the maximal length at which Kv4.2 mRNA could be detected. These increases were mediated in a synaptic NMDA receptor- and Ca(2+)-dependent fashion. Collectively, these results indicate that Kv4.2 mRNA levels are regulated in response to synaptic activity, and this phenomenon may be the mechanism underlying the homeostasis of Kv4.2 protein on dendritic surfaces.
Collapse
Affiliation(s)
- Anna Jo
- Department of Medicine and Microbiology, College of Medicine, Signaling Disorder Research Center, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | |
Collapse
|
46
|
Ramírez OA, Couve A. The endoplasmic reticulum and protein trafficking in dendrites and axons. Trends Cell Biol 2011; 21:219-27. [DOI: 10.1016/j.tcb.2010.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/24/2010] [Accepted: 12/02/2010] [Indexed: 12/12/2022]
|
47
|
Yin X, Takei Y, Kido M, Hirokawa N. Molecular Motor KIF17 Is Fundamental for Memory and Learning via Differential Support of Synaptic NR2A/2B Levels. Neuron 2011; 70:310-25. [DOI: 10.1016/j.neuron.2011.02.049] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
48
|
A role for myosin VI in the localization of axonal proteins. PLoS Biol 2011; 9:e1001021. [PMID: 21390300 PMCID: PMC3046960 DOI: 10.1371/journal.pbio.1001021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins. Following synthesis in the endoplasmic reticulum (ER) and Golgi apparatus, neuronal proteins follow divergent trafficking pathways to the axonal and dendritic plasma membranes. This specialized trafficking depends on motor proteins that move along microtubules or actin in either a “plus-end” or “minus-end” direction. Although the molecular details of these pathways are poorly understood, recent work suggests that a plus-end-directed myosin motor guides proteins preferentially to dendrites. Here we find that Myosin VI, a minus-end-directed motor, plays a role in the concentration of proteins at the surface of the axon. Several studies have shown that many axonal proteins are targeted to both compartments initially, and are subsequently enriched on the axonal surface after they have been specifically removed from the surface of the dendrites by endocytosis. We show here that this dendrite-specific endocytosis is promoted by interaction with Myosin VI, whereas blocking Myosin VI function prevents axonal protein from being internalized from the surface of dendrites. Our results suggest a model where neuronal proteins are enriched on the surface of either axons or dendrites based on the properties of the myosin motor with which they interact.
Collapse
|
49
|
Perkins BD, Fadool JM. Photoreceptor structure and development analyses using GFP transgenes. Methods Cell Biol 2011; 100:205-18. [PMID: 21111218 DOI: 10.1016/b978-0-12-384892-5.00007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, studies of zebrafish rod and cone photoreceptors have yielded novel insights into the differentiation of distinct photoreceptor cell types and the mechanisms guiding photoreceptor regeneration following cell death, and they have provided models of human retinal degeneration. These studies were facilitated by the use of transgenic zebrafish expressing fluorescent reporter genes under the control of various cell-specific promoters. Improvements in transgenesis techniques (e.g., Tol2 transposition), the availability of numerous fluorescent reporter genes with different localization properties, and the ability to generate transgenes via recombineering (e.g., Gateway technology) have enabled researchers to quickly develop transgenic lines that improve our understanding of the causes of human blindness and ways to mitigate its effects.
Collapse
Affiliation(s)
- Brian D Perkins
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
50
|
Kinesin I transports tetramerized Kv3 channels through the axon initial segment via direct binding. J Neurosci 2010; 30:15987-6001. [PMID: 21106837 DOI: 10.1523/jneurosci.3565-10.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Precise targeting of various voltage-gated ion channels to proper membrane domains is crucial for their distinct roles in neuronal excitability and synaptic transmission. How each channel protein is transported within the cytoplasm is poorly understood. Here, we report that KIF5/kinesin I transports Kv3.1 voltage-gated K(+) (Kv) channels through the axon initial segment (AIS) via direct binding. First, we have identified a novel interaction between Kv3.1 and KIF5, confirmed by immunoprecipitation from mouse brain lysates and by pull-down assays with exogenously expressed proteins. The interaction is mediated by a direct binding between the Kv3.1 N-terminal T1 domain and a conserved region in KIF5 tail domains, in which proper T1 tetramerization is crucial. Overexpression of this region of KIF5B markedly reduces axonal levels of Kv3.1bHA. In mature hippocampal neurons, endogenous Kv3.1b and KIF5 colocalize. Suppressing the endogenous KIF5B level by RNA interference significantly reduces the Kv3.1b axonal level. Furthermore, mutating the Zn(2+)-binding site within T1 markedly decreases channel axonal targeting and forward trafficking, likely through disrupting T1 tetramerization and hence eliminating the binding to KIF5 tail. The mutation also alters channel activity. Interestingly, coexpression of the YFP (yellow fluorescent protein)-tagged KIF5B assists dendritic Kv3.1a and even mutants with a faulty axonal targeting motif to penetrate the AIS. Finally, fluorescently tagged Kv3.1 channels colocalize and comove with KIF5B along axons revealed by two-color time-lapse imaging. Our findings suggest that the binding to KIF5 ensures properly assembled and functioning Kv3.1 channels to be transported into axons.
Collapse
|