1
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
2
|
Borio A, Holgado A, Passegger C, Strobl H, Beyaert R, Heine H, Zamyatina A. Exploring Species-Specificity in TLR4/MD-2 Inhibition with Amphiphilic Lipid A Mimicking Glycolipids. Molecules 2023; 28:5948. [PMID: 37630200 PMCID: PMC10459247 DOI: 10.3390/molecules28165948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex is a key receptor of the innate immune system and a major driver of inflammation that is responsible for the multifaceted defense response to Gram-negative infections. However, dysfunction in the tightly regulated mechanisms of TLR4-mediated signaling leads to the uncontrolled upregulation of local and systemic inflammation, often resulting in acute or chronic disease. Therefore, the TLR4/MD-2 receptor complex is an attractive target for the design and development of anti-inflammatory therapies which aim to control the unrestrained activation of TLR4-mediated signaling. Complex structure-activity relationships and species-specificity behind ligand recognition by the TLR4/MD-2 complex complicate the development of MD-2-specific TLR4 antagonists. The restriction of the conformational flexibility of the disaccharide polar head group is one of the key structural features of the newly developed lipid A-mimicking glycophospholipids, which are potential inhibitors of TLR4-mediated inflammation. Since phosphorylation has a crucial influence on MD-2-ligand interaction, glycolipids with variable numbers and positioning of phosphate groups were synthesized and evaluated for their ability to inhibit TLR4-mediated pro-inflammatory signaling in human and murine immune cells. A bis-phosphorylated glycolipid was found to have nanomolar antagonist activity on human TLR4 while acting as a partial agonist on murine TLR4. The glycolipid inhibited mTLR4/MD-2-mediated cytokine release, acting as an antagonist in the presence of lipopolysaccharide (LPS), but at the same time induced low-level cytokine production.
Collapse
Affiliation(s)
- Alessio Borio
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Christina Passegger
- Division of Immunology and Pathophysiology, Medical University Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Medical University Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Holger Heine
- Research Group Innate Immunity, Priority Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, 23845 Borstel, Germany
| | - Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
3
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Lu H, Xu J, Hu Y, Luo H, Chen Y, Xie B, Song X. Differences in the skin microbial community between patients with active and stable vitiligo based on 16S rRNA gene sequencing. Australas J Dermatol 2021; 62:e516-e523. [PMID: 34523726 DOI: 10.1111/ajd.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVE Recent studies have described an association between altered skin microbial community and epidemiology of skin diseases, such as vitiligo, atopic dermatitis and psoriasis. In this study, we conducted microbiological analysis on patients at different stages of vitiligo to determine whether the dysbiosis is associated with disease progression. METHODS To characterise the skin microbes in vitiligo patients, we profiled samples collected from 40 patients with active and stable vitiligo using the Novaseq sequencer. Alpha diversity was used to measure richness and uniformity, while Beta diversity (Non-Metric Multi-Dimensional Scaling) analysis was used to show the differences. Moreover, the species differences were evaluated by LEfSe analysis and the flora gene function was predicted using Statistical Analysis of Metagenomic Profiles (STAMP). RESULTS The alpha diversity results showed no significant differences between active vitiligo and stable vitiligo, while beta diversity and LEfSe analysis results showed the differences in community composition. Streptomyces and Streptococcus were enriched in active vitiligo compared to stable vitiligo. In addition, the flora gene function of mixed acid fermentation was more pronounced in active vitiligo, while the function of lipid IVA biosynthesis was more significant in stable vitiligo. CONCLUSION This study has shown the differences in epidermal microbes between active vitiligo and stable vitiligo. Our results suggest that maintaining the flora balance might be a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Zhang X, Wang H, Wang Y, Li H, Wu S, Gao J, Zhang T, Xie J, Wang X. Nalmefene non-enantioselectively targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling: wet-lab techniques and in silico simulations. Phys Chem Chem Phys 2021; 23:12260-12269. [PMID: 34013938 DOI: 10.1039/d1cp00237f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nalmefene is an opiate derivative having a similar structure to naltrexone. Recent evidence suggests that nalmefene, acting as the innate immune protein toll-like receptor 4 (TLR4) antagonist, effectively reduces the injury of lung ischemia-reperfusion and prevents neuroinflammation. However, the molecular recognition mechanism, especially the enantioselectivity, of nalmefene by the innate immune receptor is not well understood. Herein in vitro assays and in silico simulations were performed to dissect the innate immune recognition of nalmefene at the atomic, molecular, and cellular levels. Biophysical binding experiments and molecular dynamic simulations provide direct evidence that (-)-nalmefene and (+)-nalmefene bind to the hydrophobic cavity of myeloid differentiation protein 2 (MD-2) and behave similarly, which is primarily driven by hydrophobic interactions. The inhibition activity and the calculated binding free energies show that no enantioselectivity was observed during the interaction of nalmefene with MD-2 as well as the inhibition of TLR4 signaling. Interestingly, nalmefene showed ∼6 times better TLR4 antagonisic activity than naltrexone, indicating that the bioisosteric replacement with the methylene group is critical for the molecular recognition of nalmefene by MD-2. In all, this study provides molecular insight into the innate immune recognition of nalmefene, which demonstrates that nalmefene is non-enantioselectively sensed by MD-2.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Jingwei Gao
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Synergy between 15-lipoxygenase and secreted PLA 2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:25679-25689. [PMID: 32973091 DOI: 10.1073/pnas.2005111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response proteins in comparison to lipopolysaccharide (LPS), underlying the differences between pathogen-induced and sterile inflammation. Here we report that synergistic activities of 15-lipoxygenase (15-LO) and secreted phospholipase A2 (sPLA2) are needed for the formation of TLR4 agonists, which were identified as lysophospholipids (lysoPLs) with oxidized unsaturated acyl chain. Hydroxy, hydroperoxy, and keto products of 2-arachidonoyl-lysoPI oxidation by 15-LO were identified by mass spectrometry (MS), and they activated the same gene pattern as stressEVs. Extracellular PLA2 activity was detected in the synovial fluid from rheumatoid arthritis and gout patients. Furthermore, injection of sPLA2 promoted K/BxN serum-induced arthritis in mice, whereby ankle swelling was partially TLR4 dependent. Results confirm the role of oxidized lysoPL of stressEVs in sterile inflammation that promotes chronic diseases. Both 15-LO and sPLA2 enzymes are induced during inflammation, which opens the opportunity for therapy without compromising innate immunity against pathogens.
Collapse
|
7
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
8
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
9
|
Ouyang W, Zhou H, Liu C, Wang S, Han Y, Xia J, Xu F. 25-Hydroxycholesterol protects against acute lung injury via targeting MD-2. J Cell Mol Med 2018; 22:5494-5503. [PMID: 30091835 PMCID: PMC6201372 DOI: 10.1111/jcmm.13820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by uncontrolled inflammatory response, and it remains without effective therapeutic options. 25‐hydroxycholesterol (25HC) has been reported to be a potent regulator of inflammation. The aim of this study was to investigate the effects of 25HC on lipopolysaccharide (LPS)‐induced ALI. C57BL/6 mice were pretreated with 25HC intraperitoneally before intratracheal exposure to LPS. Our results showed that 25HC pretreatment improved survival rate, attenuated the pathological changes of the lung and decreased the release of inflammatory cytokines in mice. Consistently, 25HC reduced expression of Toll‐like receptor (TLR4)‐mediated inflammatory cytokines in vitro. These effects of 25HC were obtained by preventing LPS binding to TLR4 via interaction with myeloid differentiation protein 2 (MD‐2). Crystal structure analysis suggested that 25HC could bind MD‐2 with high affinity into its hydrophobic pocket. Furthermore, LPS‐induced activation of Akt/NF‐κB pathway was partially down‐regulated by 25HC pretreatment. In summary, this study demonstrates that 25HC could inhibit the overwhelming inflammatory response through MD‐2 interaction, which suppresses Akt/NF‐κB signalling pathway. These findings suggest 25HC may be a promising candidate for ALI prevention.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Zhang X, Cui F, Chen H, Zhang T, Yang K, Wang Y, Jiang Z, Rice KC, Watkins LR, Hutchinson MR, Li Y, Peng Y, Wang X. Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. J Chem Inf Model 2018. [PMID: 29518316 DOI: 10.1021/acs.jcim.7b00717] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opioid inactive isomer (+)-naltrexone is one of the rare Toll-like receptor 4 (TLR4) antagonists with good blood-brain barrier (BBB) permeability, which is a lead with promising potential for treating neuropathic pain and drug addiction. (+)-Naltrexone targets the lipopolysaccharides (LPS) binding pocket of myeloid differentiation protein 2 (MD-2) and blocks innate immune TLR4 signaling. However, the details of the molecular interactions of (+)-naltrexone and its derivatives with MD-2 are not fully understood, which hinders the ligand-based drug discovery. Herein, in silico and in vitro assays were performed to elucidate the innate immune recognition of the opioid inactive (+)-isomers. The results showed that the conserved LPS binding pocket of MD-2 accommodated these opioid inactive (+)-isomers. The calculated binding free energies of (+)-naltrexone and its derivatives in complex with MD-2 correlated well with their experimental binding affinities and TLR4 antagonistic activities. Hydrophobic residues in the MD-2 cavity interacted directly with these (+)-naltrexone based TLR4 antagonists and principally participated in ligand binding. Increasing the hydrophobicity of substituted group at N-17 improved its TLR4 antagonistic activity, while charged groups disfavored the binding with MD-2. Molecular dynamics (MD) simulations showed the binding of (+)-naltrexone or its derivatives to MD-2 stabilized the "collapsed" conformation of MD-2, consequently blocking the binding and signaling of TLR4. Thermodynamics and dynamic analysis showed the topology of substituted group at N-17 of (+)-naltrexone affected the binding with MD-2 and TLR4 antagonistic activity. This study provides a molecular insight into the innate immune recognition of opioid inactive (+)-isomers, which would be of great help for the development of next-generation of (+)-opioid based TLR4 antagonists.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China.,University of Chinese Academy of Sciences , Beijing , 100039 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Hongqian Chen
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Kecheng Yang
- University of Chinese Academy of Sciences , Beijing , 100039 , China.,Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Zhenyan Jiang
- School of Pharmaceutical Sciences , Jilin University , Changchun , Jilin 130021 , China
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism , National Institutes of Health , Rockville , Maryland 20892 , United States
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience , University of Colorado at Boulder , Boulder , Colorado 80309 , United States
| | - Mark R Hutchinson
- Discipline of Physiology, Adelaide Medical School and ARC Centre of Excellence for Nanoscale Biophotonics , University of Adelaide , Adelaide , South Australia 5000 , Australia
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals , Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| |
Collapse
|
11
|
Kaszowska M, Wojcik M, Siednienko J, Lugowski C, Lukasiewicz J. Structure-Activity Relationship of Plesiomonas shigelloides Lipid A to the Production of TNF-α, IL-1β, and IL-6 by Human and Murine Macrophages. Front Immunol 2017; 8:1741. [PMID: 29321776 PMCID: PMC5732152 DOI: 10.3389/fimmu.2017.01741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/23/2017] [Indexed: 01/27/2023] Open
Abstract
Plesiomonas shigelloides is a Gram-negative bacterium that is associated with diarrheal disease in humans. Lipopolysaccharide (LPS) is the main surface antigen and virulence factor of this bacterium. The lipid A (LA) moiety of LPS is the main region recognized by target cells of immune system. Here, we evaluated the biological activities of P. shigelloides LA for their abilities to induce the productions of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) by human and murine macrophages [THP-1 macrophages and immortalized murine bone marrow-derived macrophages (iBMDM)]. Four native P. shigelloides LA preparations differing in their phosphoethanolamine (PEtn) substitution, length, number, and saturation of fatty acids were compared with Escherichia coli O55 LA. The bisphosphorylated, hexaacylated, and asymmetric forms of the P. shigelloides and E. coli LA molecules had similar activities in human and murine macrophages, indicating that shortening of the acyl chains in P. shigelloides LA had no effect on its in vitro activities. The PEtn decoration also had no impact on the interaction with the toll-like receptor 4/MD-2 receptor complex. The heptaacylated form of P. shigelloides LA decorated with 16:0 exhibited strong effect on proinflammatory activity, significantly decreasing the levels of all tested cytokines in both murine and human macrophages. Our results revealed that despite the presence of shorter acyl chains and an unsaturated acyl residue (16:1), the bisphosphorylated, hexaacylated, and asymmetric forms of P. shigelloides LA represent highly immunostimulatory structures.
Collapse
Affiliation(s)
- Marta Kaszowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marta Wojcik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jakub Siednienko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Czeslaw Lugowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Department of Biotechnology and Molecular Biology, University of Opole, Opole, Poland
| | - Jolanta Lukasiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
12
|
Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR, De Leon M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 2017; 12:e0176793. [PMID: 28463985 PMCID: PMC5413048 DOI: 10.1371/journal.pone.0176793] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1β. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Hung
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Shane Glasgow
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Aruni Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Juli Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Anatomy and Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Basic Sciences, Division of Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| |
Collapse
|
13
|
TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation. Biomaterials 2017; 126:49-60. [PMID: 28254693 DOI: 10.1016/j.biomaterials.2017.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Negative regulation of Toll-like receptor-4 (TLR4) is anticipated to control the pathogen-induced exaggerated immune response. However, effective TLR4 antagonists with scarce off-target effects are yet to be developed. To fill this void, we sought to design small peptide-inhibitors of the TLR4/MD2-LPS interaction. Here we report novel TLR4-antagonistic peptides (TAP), identified through phage display, endowed with the LPS-induced proinflammation inhibition, and confirmed in mice. TAPs-attributed TLR4-antagonism were initially evaluated through NF-κB inhibition in HEK-blue hTLR4 and RAW264.7 cells, and further reinforced by the downregulation of MAPKs (mitogen-activated protein kinases), NF-κB, interleukin 6, and suppression of the oxidative-stress products and iNOS in macrophages and human peripheral blood mononuclear cells (hPBMCs). Among these, TAP2 specifically halted the TLR4, but not other TLRs signaling, which was further confirmed by the biophysical kinetic assay. Finally, TAP2 diminished LPS-elicited systemic cytokine response in vivo, suggesting that TAPs, specifically TAP2, have the potential to treat TLR4-mediated immune ailments.
Collapse
|
14
|
Vašl J, Oblak A, Peternelj TT, Klett J, Martín-Santamaría S, Gioannini TL, Weiss JP, Jerala R. Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2: Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2. THE JOURNAL OF IMMUNOLOGY 2016; 196:2309-18. [PMID: 26826249 DOI: 10.4049/jimmunol.1502074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/26/2015] [Indexed: 11/19/2022]
Abstract
Myeloid differentiation factor 2 (MD-2) is an extracellular protein, associated with the ectodomain of TLR4, that plays a critical role in the recognition of bacterial LPS. Despite high overall structural and functional similarity, human (h) and murine (m) MD-2 exhibit several species-related differences. hMD-2 is capable of binding LPS in the absence of TLR4, whereas mMD-2 supports LPS responsiveness only when mMD-2 and mTLR4 are coexpressed in the same cell. Previously, charged residues at the edge of the LPS binding pocket have been attributed to this difference. In this study, site-directed mutagenesis was used to explore the hydrophobic residues within the MD-2 binding pocket as the source of functional differences between hMD-2 and mMD-2. Whereas decreased hydrophobicity of residues 61 and 63 in the hMD-2 binding pocket retained the characteristics of wild-type hMD-2, a relatively minor change of valine to alanine at position 135 completely abolished the binding of LPS to the hMD-2 mutant. The mutant, however, retained the LPS binding in complex with TLR4 and also cell activation, resulting in a murine-like phenotype. These results were supported by the molecular dynamics simulation. We propose that the residue at position 135 of MD-2 governs the dynamics of the binding pocket and its ability to accommodate lipid A, which is allosterically affected by bound TLR4.
Collapse
Affiliation(s)
- Jožica Vašl
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Alja Oblak
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Tina T Peternelj
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Javier Klett
- Center for Biological Research, Superior Council for Scientific Research, 28040 Madrid, Spain
| | | | - Theresa L Gioannini
- Inflammation Program, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52241; Veterans Affairs Medical Center, Iowa City, IA 52246; and
| | - Jerrold P Weiss
- Inflammation Program, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52241
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Excellent Nuclear Magnetic Resonance-Future Innovation for Sustainable Technologies Center of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Maeshima N, Evans-Atkinson T, Hajjar AM, Fernandez RC. Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. J Biol Chem 2015; 290:13440-53. [PMID: 25837248 DOI: 10.1074/jbc.m115.653881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 12/22/2022] Open
Abstract
Lipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood. We previously showed that strain BP338 of the human pathogen Bordetella pertussis, the causative agent of whooping cough, modifies its lipid A by the addition of glucosamine moieties that promote TLR4 activation in human, but not mouse, macrophages. Using site-directed mutagenesis and an NFκB reporter assay screen, we have identified several charged amino acid residues in TLR4 and MD-2 that are important for these species-specific responses; some of these are novel for responses to penta-acyl B. pertussis LPS, and their mutation does not affect the response to hexa-acylated Escherichia coli LPS or tetra-acylated lipid IVA. We additionally show evidence that suggests that recognition of penta-acylated B. pertussis lipid A is dependent on uncharged amino acids in TLR4 and MD-2 and that this is true for both human and mouse TLR4-MD-2 receptors. Taken together, we have demonstrated that the TLR4-MD-2 receptor complex recognizes variation in lipid A molecules using multiple sites for receptor-ligand interaction and propose that host-specific immunity to a particular Gram-negative bacterium is, at least in part, mediated by very subtle tuning of one of the earliest interactions at the host-pathogen interface.
Collapse
Affiliation(s)
- Nina Maeshima
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| | - Tara Evans-Atkinson
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| | - Adeline M Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Rachel C Fernandez
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 and
| |
Collapse
|
16
|
Manček-Keber M, Jerala R. Postulates for validating TLR4 agonists. Eur J Immunol 2015; 45:356-70. [DOI: 10.1002/eji.201444462] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Mateja Manček-Keber
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| | - Roman Jerala
- Department of Biotechnology; National Institute of Chemistry; Ljubljana Slovenia
- EN-FIST Centre of Excellence; Ljubljana Slovenia
| |
Collapse
|
17
|
Anwar MA, Panneerselvam S, Shah M, Choi S. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection. Sci Rep 2015; 5:7657. [PMID: 25563849 PMCID: PMC4288214 DOI: 10.1038/srep07657] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 11/26/2022] Open
Abstract
TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagonist (4 acyl-chains) structure, and activates the TLR4 pathway in horses and hamsters, while inhibiting in humans and murine. In the time-evolved coordinates, the promising factors that dictated the differential response included the local and global mobility pattern of complexes, solvent-accessible surface area of ligand, and surface charge distributions of TLR4 and MD2. We showed that the GlcN1-GlcN2 backbone acquires agonist (3FXI)-like configurations in horses and hamsters, while acquiring antagonist (2E59)-like configurations in humans and murine systems. Moreover, analysis of F126 behavior in the MD2 F126 loop (amino acids 123-129) and loop EF (81-89) suggested that certain sequence variations also contribute to species-specific response. This study underlines the TLR4 signaling mechanism and provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
18
|
Species-specific activation of TLR4 by hypoacylated endotoxins governed by residues 82 and 122 of MD-2. PLoS One 2014; 9:e107520. [PMID: 25203747 PMCID: PMC4159346 DOI: 10.1371/journal.pone.0107520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation.
Collapse
|
19
|
The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol 2014; 63:134-42. [PMID: 25037631 DOI: 10.1016/j.molimm.2014.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Lipid A, a component of bacterial lipopolysaccharide, is a conserved microbe-associated molecular pattern that activates the MD-2/TLR4 receptor complex. Nevertheless, bacteria produce lipid A molecules of considerable structural diversity. The human MD-2/TLR4 receptor most efficiently recognizes hexaacylated bisphosphorylated lipid A produced by enterobacteria, but in some animal species the immune response can be elicited also by alternative lipid A varieties, such as tetraacylated lipid IVa or pentaacylated lipid A of Rhodobacter spheroides. Several crystal structures revealed that hexaacylated lipid A and tetraacylated lipid IVa activate the murine MD-2/TLR4 in a similar manner, but failed to explain the antagonistic vs. agonistic activity of lipid IVa in the human vs. equine receptor, respectively. Targeted mutagenesis studies of the receptor complex revealed intricate combination of electrostatic and hydrophobic interactions primarily within the MD-2 co-receptor, but with a contribution of TLR4 as well, that contribute to species-specific recognition of lipid A. We will review current knowledge regarding lipid A diversity and species-specific activation of the MD-2/TLR4 receptor complex in different species (e.g. human, mouse or equine) by lipid A varieties.
Collapse
|
20
|
|
21
|
Chan M, Hayashi T, Mathewson RD, Nour A, Hayashi Y, Yao S, Tawatao RI, Crain B, Tsigelny IF, Kouznetsova VL, Messer K, Pu M, Corr M, Carson DA, Cottam HB. Identification of substituted pyrimido[5,4-b]indoles as selective Toll-like receptor 4 ligands. J Med Chem 2013; 56:4206-23. [PMID: 23656327 PMCID: PMC3722616 DOI: 10.1021/jm301694x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
A cell-based
high-throughput screen to identify small molecular
weight stimulators of the innate immune system revealed substituted
pyrimido[5,4-b]indoles as potent NFκB activators.
The most potent hit compound selectively stimulated Toll-like receptor
4 (TLR4) in human and mouse cells. Synthetic modifications of the
pyrimido[5,4-b]indole scaffold at the carboxamide,
N-3, and N-5 positions revealed differential TLR4 dependent production
of NFκB and type I interferon associated cytokines, IL-6 and
interferon γ-induced protein 10 (IP-10) respectively. Specifically,
a subset of compounds bearing phenyl and substituted phenyl carboxamides
induced lower IL-6 release while maintaining higher IP-10 production,
skewing toward the type I interferon pathway. Substitution at N-5
with short alkyl substituents reduced the cytotoxicity of the leading
hit compound. Computational studies supported that active compounds
appeared to bind primarily to MD-2 in the TLR4/MD-2 complex. These
small molecules, which stimulate innate immune cells with minimal
toxicity, could potentially be used as adjuvants or immune modulators.
Collapse
Affiliation(s)
- Michael Chan
- Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Scior T, Alexander C, Zaehringer U. Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa. Comput Struct Biotechnol J 2013; 5:e201302012. [PMID: 24688705 PMCID: PMC3962135 DOI: 10.5936/csbj.201302012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/12/2013] [Accepted: 02/17/2013] [Indexed: 11/28/2022] Open
Abstract
There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS) in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism) but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli-type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564) acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species.
Collapse
Affiliation(s)
- Thomas Scior
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue., Mexico
| | - Christian Alexander
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Ulrich Zaehringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
23
|
Ogura N, Muroi M, Sugiura Y, Tanamoto KI. Lipid IVa incompletely activates MyD88-independent Toll-like receptor 4 signaling in mouse macrophage cell lines. Pathog Dis 2013; 67:199-205. [DOI: 10.1111/2049-632x.12031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Norihiko Ogura
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Yuka Sugiura
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| | - Ken-ichi Tanamoto
- Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo; Japan
| |
Collapse
|
24
|
Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013; 3:3. [PMID: 23408095 PMCID: PMC3569842 DOI: 10.3389/fcimb.2013.00003] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of almost all Gram-negative bacteria and consists of lipid A, core sugars, and O-antigen. LPS is recognized by Toll-like receptor 4 (TLR4) and MD-2 on host innate immune cells and can signal to activate the transcription factor NFκB, leading to the production of pro-inflammatory cytokines that initiate and shape the adaptive immune response. Most of what is known about how LPS is recognized by the TLR4-MD-2 receptor complex on animal cells has been studied using Escherichia coli lipid A, which is a strong agonist of TLR4 signaling. Recent work from several groups, including our own, has shown that several important pathogenic bacteria can modify their LPS or lipid A molecules in ways that significantly alter TLR4 signaling to NFκB. Thus, it has been hypothesized that expression of lipid A variants is one mechanism by which pathogens modulate or evade the host immune response. Additionally, several key differences in the amino acid sequences of human and mouse TLR4-MD-2 receptors have been shown to alter the ability to recognize these variations in lipid A, suggesting a host-specific effect on the immune response to these pathogens. In this review, we provide an overview of lipid A variants from several human pathogens, how the basic structure of lipid A is recognized by mouse and human TLR4-MD-2 receptor complexes, as well as how alteration of this pattern affects its recognition by TLR4 and impacts the downstream immune response.
Collapse
Affiliation(s)
- Nina Maeshima
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
25
|
Kelley SL, Lukk T, Nair SK, Tapping RI. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1304-11. [PMID: 23264655 PMCID: PMC3552104 DOI: 10.4049/jimmunol.1202446] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human monocyte differentiation Ag CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial LPS (endotoxin), lipoproteins, lipoteichoic acid, and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various TLR signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host but can also result in host fatality through sepsis. In this work, we have determined the x-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine-rich repeat proteins with an amino-terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures shows great similarity in overall protein fold. However, compared with mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The x-ray crystal structure of human CD14 presented in this article may foster additional ligand-bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS-induced sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Stacy L. Kelley
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Tiit Lukk
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Richard I. Tapping
- Department of Microbiology, University of Illinois at Urbana-Champaign
- College of Medicine, University of Illinois at Urbana-Champaign
| |
Collapse
|
26
|
Bowen WS, Gandhapudi SK, Kolb JP, Mitchell TC. Immunopharmacology of Lipid A Mimetics. ADVANCES IN PHARMACOLOGY 2013; 66:81-128. [DOI: 10.1016/b978-0-12-404717-4.00003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 2012; 109:7421-6. [PMID: 22532668 DOI: 10.1073/pnas.1201193109] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, activates the innate immune response through toll-like receptor 4 (TLR4) and its coreceptor, MD-2. MD-2 has a unique hydrophobic cavity that directly binds to lipid A, the active center of LPS. Tetraacylated lipid IVa, a synthetic lipid A precursor, acts as a weak agonist to mouse TLR4/MD-2, but as an antagonist to human TLR4/MD-2. However, it remains unclear as to how LPS and lipid IVa show agonistic or antagonistic activities in a species-specific manner. The present study reports the crystal structures of mouse TLR4/MD-2/LPS and TLR4/MD-2/lipid IVa complexes at 2.5 and 2.7 Å resolutions, respectively. Mouse TLR4/MD-2/LPS exhibited an agonistic "m"-shaped 2:2:2 complex similar to the human TLR4/MD-2/LPS complex. Mouse TLR4/MD-2/lipid IVa complex also showed an agonistic structural feature, exhibiting architecture similar to the 2:2:2 complex. Remarkably, lipid IVa in the mouse TLR4/MD-2 complex occupied nearly the same space as LPS, although lipid IVa lacked the two acyl chains. Human MD-2 binds lipid IVa in an antagonistic manner completely differently from the way mouse MD-2 does. Together, the results provide structural evidence of the agonistic property of lipid IVa on mouse TLR4/MD-2 and deepen understanding of the ligand binding and dimerization mechanism by the structurally diverse LPS variants.
Collapse
|
28
|
Piazza M, Calabrese V, Damore G, Cighetti R, Gioannini T, Weiss J, Peri F. A synthetic lipid A mimetic modulates human TLR4 activity. ChemMedChem 2011; 7:213-7. [PMID: 22140087 DOI: 10.1002/cmdc.201100494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Matteo Piazza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol Ther 2011; 133:291-8. [PMID: 22119168 DOI: 10.1016/j.pharmthera.2011.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharide (LPS), an endotoxin of Gram-negative bacteria, activates the innate immunity system through a receptor complex of myeloid differentiation 2 (MD-2) and toll-like receptor 4 (TLR4). MD-2 directly recognizes the lipid A domain of LPS, which triggers MD-2/TLR4-mediated cellular response aimed at eliminating the invaded pathogen. However, excess production of inflammatory mediators is harmful to host tissue and this can cause septic death in extreme cases. MD-2 represents an attractive therapeutic target of inflammatory and immune diseases in human. In particular, eritoran is a synthetic tetraacylated lipid A that binds directly to MD-2 and antagonizes LPS binding to the same site, and it ameliorates various inflammatory conditions due to infection or sterile organ injury. In this review, we outline the recent advances in the structure biology of ligand interaction with MD-2/TLR4, and highlight the MD-2-directed LPS antagonists, which are natural and synthetic chemicals, under development to treat inflammatory diseases.
Collapse
|
30
|
IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:255-63. [PMID: 22033459 DOI: 10.1016/j.bbamcr.2011.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022]
Abstract
TRAF6 plays a crucial role in signal transduction of the Toll-like receptor (TLR). It has been reported that TRAF6 catalyzes the formation of unique Lys63-linked polyubiquitin chains, which do not lead to proteasome-mediated degradation. Here we found that stimulation of J774.1 cells with various TLR ligands led to decreases in TRAF6 protein levels that occurred at a slower rate than IκBα degradation. The decrease in TRAF6 was inhibited by proteasome inhibitors MG-132, lactacystin and N-acetyl-leucyl-leucyl-norleucinal. Among intracellular TLR signaling molecules MyD88, IRAK-4, IRAK-1, TRAF6, and IKKβ, only IRAK-1 expression downregulated TRAF6 in HEK293 cells. The amount of TRAF6 expressed either transiently or stably was also reduced by co-expression of IRAK-1 and no TRAF6 cleavage products were detected. The levels of either a TRAF6 N-terminal deletion mutant or a ubiquitin ligase-defective mutant were not affected by IRAK-1 expression. Downregulation of TRAF6 required the TRAF6-binding site (Glu544, Glu587, Glu706) of IRAK-1 but not its catalytic site (Asp340). Upon IRAK-1 transfection, no significant TRAF6 ubiquitination was detected. Instead, TRAF6-associated IRAK-1 was ubiquitinated with both Lys48- and Lys63-linked polyubiquitin chains. TRAF6 downregulation was inhibited by co-expression of the E3 ubiquitin ligase Pellino 3, whose Lys63-linked polyubiquitination on IRAK-1 is reported to compete with Lys48-linked IRAK-1 polyubiquitination. Expression of IRAK-1 inhibited IκBα phosphorylation in response to TLR2 stimulation. These results indicate that stimulation of TLRs induces proteasome-dependent downregulation of TRAF6. We conclude that TRAF6 associated with ubiquitinated IRAK-1 is degraded together by the proteasome and that IRAK-1 possesses a negative regulatory role on TLR signaling.
Collapse
|
31
|
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Rev Anti Infect Ther 2011; 9:507-20. [PMID: 21609262 DOI: 10.1586/eri.11.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human innate immune system initiates inflammation in response to bacterial molecules, particularly Gram-negative bacterial endotoxin. The steps by which endotoxin exposure leads to systemic inflammation include binding to Toll-like receptor-4 that specifically recognizes endotoxin and subsequently triggers cellular and molecular inflammatory responses. Severe sepsis is a systemic inflammatory response to infection that induces organ dysfunction and threatens a person's survival. Severe sepsis is frequently associated with increased blood levels of endotoxin. It is a significant medical problem that effects approximately 700,000 patients every year in the USA, resulting in 250,000 deaths. Eritoran tetrasodium is a nonpathogenic analog of bacterial endotoxin that antagonizes inflammatory signaling by the immune receptor Toll-like receptor-4. Eritoran is being evaluated for the treatment of patients with severe sepsis.
Collapse
Affiliation(s)
- Mark Tidswell
- Adult Critical Care Division, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA.
| | | |
Collapse
|
32
|
DeMarco ML, Woods RJ. From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Mol Immunol 2011; 49:124-33. [PMID: 21924775 DOI: 10.1016/j.molimm.2011.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 11/17/2022]
Abstract
The human immune response to an infection by Gram-negative bacteria involves detection of lipopolysaccharides (LPS), also known as endotoxins, which comprise the bacterial outer cell wall. Distinct from mammalian glycolipid structures, LPS have a conserved chemical pattern that is recognized by the pattern recognition receptor complex formed by myeloid differentiation protein 2 (MD-2) and toll-like receptor 4 (TLR4). A remarkable immune-mediated structure-toxicity relationship has been defined that relates to the number of acyl chains in the endotoxin. While there is a clear correlation between endotoxin acylation and elicited agonist or antagonist responses, the 3D structural basis of this relationship remains unclear. In order to explore, at atomic-resolution, the effects of a range of chemically distinct endotoxins on the structure and dynamics of their MD-2·endotoxin complexes, we examined a series of variably acylated lipid A molecules from Escherichia coli and Neisseria meningitidis in complex with human MD-2. Through the application of molecular dynamics simulations, in concert with experimental data, we have identified specific structural and dynamic features of the MD-2-endotoxin complexes that may control dimerization of TLR4 molecules. As dimerization is central to the release of downstream chemical mediators, the results provide a structural foundation for the ability of endotoxins to act as either agonists or antagonists of the TLR4 pathway.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, GA 30602, USA.
| | | |
Collapse
|
33
|
The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells. Vet Immunol Immunopathol 2011; 143:167-9. [PMID: 21782253 DOI: 10.1016/j.vetimm.2011.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/03/2011] [Accepted: 06/09/2011] [Indexed: 11/21/2022]
Abstract
Lipid A, the active component of lipopolysaccharide (LPS), exists in the outer membrane of Gram-negative bacteria and binds to the Toll-like receptor 4 (TLR4) and MD-2 complex. On the other hand, the synthetic precursor of Escherichia coli lipid A, tetraacylated lipid IVa, is an agonist for TLR4 and MD-2 complex in murine, equine and feline cells but is an antagonist for lipid A in human cells. The aim of the study was to examine the function of canine Toll-like receptor 4 (TLR4) and MD-2 complex on canine blood mononuclear cells (BMC), by analyzing lipid A- or lipid IVa-induction of TNF-α production from these cells in order to understand canine innate immune system. After 5-h culture of canine BMC with lipid A (lipid A culture) or lipid IVa (lipid IVa culture), the TNF-α, as determined by ELISA, had increased in the supernatants of the lipid A cultures in a dose-dependent manner, whereas the TNF-α was undetectable in supernatant of lipid IVa-treated cultures. The TNF-α was statistically significantly different between the lipid A and lipid IVa cultures (100 and 1000 ng/ml). TNF-α production from canine BMC was inhibited, in a lipid IVa-dose-dependent manner, when the BMC were pre-cultured with lipid IVa for 60 min and then cultured with lipid A for 5h, while in control BMC cultures production if TNF-α was unchanged. These results indicate that the TNF-α production stimulated by lipid A was competed out by pre-exposing the BMC to lipid IVa. Thus, lipid A is an agonist for TNF-α production in canine BMC, whereas lipid IVa appears to be an antagonist against this lipid A stimulation of canine BMC.
Collapse
|
34
|
Coler RN, Bertholet S, Moutaftsi M, Guderian JA, Windish HP, Baldwin SL, Laughlin EM, Duthie MS, Fox CB, Carter D, Friede M, Vedvick TS, Reed SG. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One 2011; 6:e16333. [PMID: 21298114 PMCID: PMC3027669 DOI: 10.1371/journal.pone.0016333] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/10/2010] [Indexed: 12/18/2022] Open
Abstract
Innate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses. We demonstrate that GLA has multifunctional immunomodulatory activity similar to naturally-derived monophosphory lipid A (MPL) on murine DC, including the production of inflammatory cytokines, chemokines, DC maturation and antigen-presenting functions. In contrast, hexaacylated GLA was overall more potent on a molar basis than heterogeneous MPL when tested on human DC and peripheral blood mononuclear cells (PBMC). When administered in vivo, GLA enhanced the immunogenicity of co-administered recombinant antigens, producing strong cell-mediated immunity and a qualitative T(H)1 response. We conclude that the GLA adjuvant stimulates and directs innate and adaptive immune responses by inducing DC maturation and the concomitant release of pro-inflammatory cytokines and chemokines associated with immune cell trafficking, activities which have important implications for the development of future vaccine adjuvants.
Collapse
Affiliation(s)
- Rhea N. Coler
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sylvie Bertholet
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Magdalini Moutaftsi
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Jeff A. Guderian
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Hillarie Plessner Windish
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Susan L. Baldwin
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Elsa M. Laughlin
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Malcolm S. Duthie
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Darrick Carter
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Martin Friede
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - Thomas S. Vedvick
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Preclinical Biology, Infectious Disease Research Institute, Seattle, Washington, United States of America
- Immune Design Corp., Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding. Protein Expr Purif 2010; 76:173-83. [PMID: 21130168 PMCID: PMC3032050 DOI: 10.1016/j.pep.2010.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/03/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
Myeloid differentiation proteins MD-1 and MD-2 have both been shown to form a heterogeneous collection of oligomers when expressed in absence of their respective receptor, RP105 and TLR4. The biological relevance of these oligomers is not clear. Only monomeric proteins have been found to be active and able to trigger an immune response to endotoxin by modulating the TLR4 pathway. In this study, we produced variants of MD-1 and MD-2 in Pichia pastoris. To minimize the time and expense of initial expression tests, small-scale cultures have been set up to allow the rapid identification of the highest expressing clone and the optimal expression conditions. The expression vectors used, the site of linearization and the locus of integration affected the yield of transformation. Next we screened culture additives and found that they significantly increased the fraction of monomeric proteins secreted in the culture medium (up to 15% of the total MD protein produced). We confirmed their presence by size-exclusion chromatography. Optimal anti-aggregation agents were protein-dependent except for LPS that presented stabilizing effects for all MD proteins. Contrary to previous reports, this study suggests that MD-1 can bind to LPS.
Collapse
|
36
|
Shishido R, Ohishi K, Suzuki R, Takishita K, Ohtsu D, Okutsu K, Tokutake K, Katsumata E, Bando T, Fujise Y, Murayama T, Maruyama T. Cetacean Toll-like receptor 4 and myeloid differentiation factor 2, and possible cetacean-specific responses against Gram-negative bacteria. Comp Immunol Microbiol Infect Dis 2010; 33:e89-98. [DOI: 10.1016/j.cimid.2010.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
37
|
Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med 2010; 38:72-83. [PMID: 19661804 DOI: 10.1097/ccm.0b013e3181b07b78] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Endotoxin is a potent stimulus of proinflammatory response and systemic coagulation in patients with severe sepsis. Endotoxin is a component of Gram-negative bacteria that triggers an innate immune response through Toll-like receptor 4 signaling pathways in myeloid cells. We evaluated safety and tolerability of two dose regimens of eritoran tetrasodium (E5564), a synthetic Toll-like receptor 4 antagonist, and explored whether it decreases 28-day mortality rate in subjects with severe sepsis. DESIGN Prospective, randomized, double-blind, placebo-controlled, multicenter, ascending-dose phase II trial. SETTING Adult intensive care units in the United States and Canada. PATIENTS Three hundred adults within 12 hrs of recognition of severe sepsis, with Acute Physiology and Chronic Health Evaluation (APACHE) II-predicted risk of mortality between 20% and 80%. INTERVENTIONS Intravenous eritoran tetrasodium (total dose of either 45 mg or 105 mg) or placebo administered every 12 hrs for 6 days. MEASUREMENTS AND MAIN RESULTS Prevalence of adverse events was similar among subjects treated with 45 mg or 105 mg of eritoran tetrasodium or with placebo. For modified intent-to-treat subjects, 28-day all-cause mortality rates were 26.6% (eritoran tetrasodium 105 mg), 32.0% (eritoran tetrasodium 45 mg), and 33.3% in the placebo group. Mortality rate in the eritoran tetrasodium 105-mg group was not significantly different from placebo (p = .335). In prespecified subgroups, subjects at highest risk of mortality by APACHE II score quartile had a trend toward lower mortality rate in the eritoran tetrasodium 105-mg group (33.3% vs. 56.3% placebo group, p = .105). A trend toward a higher mortality rate was observed in subjects in the lowest APACHE II score quartile for the eritoran 105-mg group (12.0% vs. 0.0% placebo group, p = .083). CONCLUSIONS Eritoran tetrasodium treatment appears well tolerated. The observed trend toward a lower mortality rate at the 105-mg dose, in subjects with severe sepsis and high predicted risk of mortality, should be further investigated.
Collapse
|
38
|
Meng J, Lien E, Golenbock DT. MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. J Biol Chem 2009; 285:8695-702. [PMID: 20018893 DOI: 10.1074/jbc.m109.075127] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) activates innate immune responses through TLR4.MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4.MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IV(A), a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IV(A) activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IV(A) activation. Computational studies suggested that unique ionic interactions exist between lipid IV(A) and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4'-phosphate on lipid IV(A) interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys(367) and Arg(434)) at the dimerization interface. When replaced with their negatively charged human counterparts Glu(369) and Gln(436), mouse TLR4 was no longer responsive to lipid IV(A). In contrast, human TLR4 gained lipid IV(A) responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IV(A) species specificity. Thus, using lipid IV(A) as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.
Collapse
Affiliation(s)
- Jianmin Meng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
39
|
Vasl J, Oblak A, Gioannini TL, Weiss JP, Jerala R. Novel roles of lysines 122, 125, and 58 in functional differences between human and murine MD-2. THE JOURNAL OF IMMUNOLOGY 2009; 183:5138-45. [PMID: 19783674 DOI: 10.4049/jimmunol.0901544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MD-2/TLR4 complex provides a highly robust mechanism for recognition and response of mammalian innate immunity to Gram-negative bacterial endotoxins. Despite overall close structural and functional similarity, human (h) and murine (m) MD-2 show several species-related differences, including the ability of hMD-2, but not mMD-2, to bind endotoxin (E) in the absence of TLR4. Wild-type mMD-2 can support TLR4-dependent cell activation by E only when mMD-2 and mTLR4 are coexpressed in the same cell. However, replacement of Glu122, Leu125, and/or Asn58 of mMD-2 with the corresponding residues (lysines) of hMD-2 was sufficient to yield soluble extracellular MD-2 that reacted with monomeric E . sCD14 complex to form extracellular monomeric E . MD-2 that activated cells expressing TLR4 without MD-2. Moreover, in contrast to wild-type mMD-2, double and triple mMD-2 mutants also supported E-triggered signaling in combination with human TLR4. Conversely, a K125L mutant of hMD-2 reacted with E . CD14 and activated TLR4 only when coexpressed with TLR4, and not when secreted without TLR4. These findings reveal novel roles of lysines 122, 125, and 58 in human MD-2 that contribute to the functional differences between human and murine MD-2 and, potentially, to differences in the sensitivity of humans and mice to endotoxin.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
40
|
Cationic lipids activate cellular cascades. Which receptors are involved? Biochim Biophys Acta Gen Subj 2009; 1790:425-30. [DOI: 10.1016/j.bbagen.2009.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 12/14/2022]
|
41
|
O'Neill LAJ, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 2009; 61:177-97. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since first being described in the fruit fly Drosophila melanogaster, Toll-like receptors (TLRs) have proven to be of great interest to immunologists and investigators interested in the molecular basis to inflammation. They recognize pathogen-derived factors and also products of inflamed tissue, and trigger signaling pathways that lead to activation of transcription factors such as nuclear factor-kappaB and the interferon regulatory factors. These in turn lead to induction of immune and inflammatory genes, including such important cytokines as tumor necrosis factor-alpha and type I interferon. Much evidence points to a role for TLRs in immune and inflammatory diseases and increasingly in cancer. Examples include clear roles for TLR4 in sepsis, rheumatoid arthritis, ischemia/reperfusion injury, and allergy. TLR2 has been implicated in similar pathologic conditions and also in systemic lupus erythematosus (SLE) and tumor metastasis. TLR7 has also been shown to be important in SLE. TLR5 has been shown to be radioprotective. Recent advances in our understanding of signaling pathways activated by TLRs, structural insights into TLRs bound to their ligands and antagonists, and approaches to inhibit TLRs (including antibodies, peptides, and small molecules) are providing possiblemeans by which to interfere with TLRs clinically. Here we review these recent advances and speculate about whether manipulating TLRs is likely to be successful in fighting off different diseases.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland.
| | | | | |
Collapse
|
42
|
Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009; 284:15052-60. [PMID: 19321453 DOI: 10.1074/jbc.m901429200] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4.MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4.MD-2.LPS complex, driving TLR4 activation.
Collapse
Affiliation(s)
- Nusa Resman
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Bazin HG, Murray TJ, Bowen WS, Mozaffarian A, Fling SP, Bess LS, Livesay MT, Arnold JS, Johnson CL, Ryter KT, Cluff CW, Evans JT, Johnson DA. The 'Ethereal' nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics. Bioorg Med Chem Lett 2008; 18:5350-4. [PMID: 18835160 DOI: 10.1016/j.bmcl.2008.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 12/01/2022]
Abstract
To overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic. Glycolipids 2, 4, and 5 were synthesized via a new highly convergent method utilizing a common advanced intermediate strategy. A new method for preparing (R)-3-alkyloxytetradecanoic acids, a key component of ether lipids 4 and 5, is also described.
Collapse
Affiliation(s)
- Hélène G Bazin
- GlaxoSmithKline Biologicals, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. THE JOURNAL OF IMMUNOLOGY 2008; 181:1245-54. [PMID: 18606678 DOI: 10.4049/jimmunol.181.2.1245] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS signals through a membrane bound-complex of the lipid binding protein MD-2 and the receptor TLR4. In this study we identify discrete regions in both MD-2 and TLR4 that are required for signaling by lipid IVa, an LPS derivative that is an agonist in horse but an antagonist in humans. We show that changes in the electrostatic surface potential of both MD-2 and TLR4 are required in order that lipid IVa can induce signaling. In MD-2, replacing horse residues 57-66 and 82-89 with the equivalent human residues confers a level of constitutive activity on horse MD-2, suggesting that conformational switching in this protein is likely to be important in ligand-induced activation of MD-2/TLR4. We identify leucine-rich repeat 14 in the C terminus of TLR4 as essential for lipid IVa activation of MD-2/TLR4. Remarkably, we identify a single residue in the glycan-free flank of the horse TLR4 solenoid that confers the ability to signal in response to lipid IVa. These results suggest a mechanism of signaling that involves crosslinking mediated by both MD-2-receptor and receptor-receptor contacts in a model that shows striking similarities to the recently published structure (Cell 130: 1071-1082) of the ligand-bound TLR1/2 ectodomain heterodimer.
Collapse
Affiliation(s)
- Catherine Walsh
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lizundia R, Sauter KS, Taylor G, Werling D. Host species-specific usage of the TLR4-LPS receptor complex. Innate Immun 2008; 14:223-31. [PMID: 18669608 DOI: 10.1177/1753425908095957] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recognition of LPS depends on the interaction of at least three molecules forming the LPS-receptor complex. The most important ones, CD14, MD2 and Toll-like receptor (TLR) 4 share a high degree of homology between species. In the present study, we investigated the importance of species-specific restriction on the recognition of LPS using stably transfected HEK293 cell lines expressing either human or bovine LPS-receptor complex components. Species-specific MD2 appeared to confer LPS recognition, whereas species-specific CD14 only appeared to play a minor role. In addition to the recognition of LPS, there is evidence that the fusion (F) protein of respiratory syncytial virus (RSV), which is the most common viral respiratory pathogen during infancy world-wide, interacts with TLR4, and plays an important role in the initiation of the innate immune response. Our findings suggest that human and bovine RSV may activate human and bovine TLR4 receptors, respectively, in the presence of both MD2 and CD14. However, no clear role for the RSV F protein of either human or bovine RSV alone in stimulating TLR4-dependent NF-kappaB activation was observed.
Collapse
|
47
|
Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. THE JOURNAL OF IMMUNOLOGY 2008; 180:6107-15. [PMID: 18424732 DOI: 10.4049/jimmunol.180.9.6107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
48
|
Abstract
The ten human Toll-like receptors are able to respond to an extremely diverse range of microbial products ranging from di- and tri-acylated lipids to nucleic acids. An understanding of the molecular structure adopted by the receptor extracellular, transmembrane, and cytoplasmic domains and the way in which these structures interact with ligands and downstream signaling adapters can explain how recognition and signal transduction are achieved at a molecular level. In this article we discuss how the leucine-rich repeats of the receptor ectodomain have evolved to bind a wide variety of biological molecules. We also discuss how ligand binding induces dimerization of two receptor chains and initiates a series of protein conformational changes that lead to a signaling event in the cytoplasm of the immune system cell. Thus, the signaling process of the TLRs can be viewed as a unidirectional molecular switch.
Collapse
|
49
|
Teghanemt A, Re F, Prohinar P, Widstrom R, Gioannini TL, Weiss JP. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J Biol Chem 2007; 283:1257-1266. [PMID: 17977838 DOI: 10.1074/jbc.m705994200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E.CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E.CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E.CD14 +/- TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe(121) and Tyr(131) are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E.MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E.CD14 +/- TLR4. E.MD-2(F126A) binds TLR4 with high affinity (K(d) approximately 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E.MD-2. These findings reveal roles of Phe(121) and Tyr(131) in TLR4-independent interactions of human MD-2 with E.CD14 and, together with Phe(126), in activation of TLR4 by bound E.MD-2. These findings strongly suggest that the structural properties of E.MD-2, not E alone, determine agonist or antagonist effects on TLR4.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Fabio Re
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Polonca Prohinar
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Richard Widstrom
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Theresa L Gioannini
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Veterans' Administration Medical Center, Iowa City, Iowa 52246; Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jerrold P Weiss
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Department of Microbiology, Iowa City, Iowa 52242.
| |
Collapse
|
50
|
Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 2007; 130:906-17. [PMID: 17803912 DOI: 10.1016/j.cell.2007.08.002] [Citation(s) in RCA: 855] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/23/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
TLR4 and MD-2 form a heterodimer that recognizes LPS (lipopolysaccharide) from Gram-negative bacteria. Eritoran is an analog of LPS that antagonizes its activity by binding to the TLR4-MD-2 complex. We determined the structure of the full-length ectodomain of the mouse TLR4 and MD-2 complex. We also produced a series of hybrids of human TLR4 and hagfish VLR and determined their structures with and without bound MD-2 and Eritoran. TLR4 is an atypical member of the LRR family and is composed of N-terminal, central, and C-terminal domains. The beta sheet of the central domain shows unusually small radii and large twist angles. MD-2 binds to the concave surface of the N-terminal and central domains. The interaction with Eritoran is mediated by a hydrophobic internal pocket in MD-2. Based on structural analysis and mutagenesis experiments on MD-2 and TLR4, we propose a model of TLR4-MD-2 dimerization induced by LPS.
Collapse
Affiliation(s)
- Ho Min Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Korea 305-701
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|