1
|
MUG CCArly: A Novel Autologous 3D Cholangiocarcinoma Model Presents an Increased Angiogenic Potential. Cancers (Basel) 2023; 15:cancers15061757. [PMID: 36980644 PMCID: PMC10046314 DOI: 10.3390/cancers15061757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) are characterized by their desmoplastic and hypervascularized tumor microenvironment (TME), which is mainly composed of tumor cells and cancer-associated fibroblasts (CAFs). CAFs play a pivotal role in general and CCA tumor progression, angiogenesis, metastasis, and the development of treatment resistance. To our knowledge, no continuous human in vivo-like co-culture model is available for research. Therefore, we aimed to establish a new model system (called MUG CCArly) that mimics the desmoplastic microenvironment typically seen in CCA. Proteomic data comparing the new CCA tumor cell line with our co-culture tumor model (CCTM) indicated a higher gene expression correlation of the CCTM with physiological CCA characteristics. A pro-angiogenic TME that is typically observed in CCA could also be better simulated in the CCTM group. Further analysis of secreted proteins revealed CAFs to be the main source of these angiogenic factors. Our CCTM MUG CCArly represents a new, reproducible, and easy-to-handle 3D CCA model for preclinical studies focusing on CCA-stromal crosstalk, tumor angiogenesis, and invasion, as well as the immunosuppressive microenvironment and the involvement of CAFs in the way that drug resistance develops.
Collapse
|
2
|
Beyens A, Pottie L, Sips P, Callewaert B. Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:273-309. [PMID: 34807425 DOI: 10.1007/978-3-030-80614-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Department of Dermatology, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Harms FL, Parthasarathy P, Zorndt D, Alawi M, Fuchs S, Halliday BJ, McKeown C, Sampaio H, Radhakrishnan N, Radhakrishnan SK, Gorce M, Navet B, Ziegler A, Sachdev R, Robertson SP, Nampoothiri S, Kutsche K. Biallelic loss-of-function variants in TBC1D2B cause a neurodevelopmental disorder with seizures and gingival overgrowth. Hum Mutat 2020; 41:1645-1661. [PMID: 32623794 DOI: 10.1002/humu.24071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Padmini Parthasarathy
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Dennis Zorndt
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Colina McKeown
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Hugo Sampaio
- Department of Women and Children's Health, University of New South Wales, Randwick Campus, Randwick, NSW, Australia.,Sydney Children's Hospital, Randwick, NSW, Australia
| | - Natasha Radhakrishnan
- Department of Ophthalmology, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Suresh K Radhakrishnan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Magali Gorce
- Department of Metabolic Disease, Children University Hospital, Toulouse, France
| | - Benjamin Navet
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.,MitoLab, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.,MitoLab, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers, France
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun 2019; 10:295. [PMID: 30655611 PMCID: PMC6336889 DOI: 10.1038/s41467-018-08230-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Stability regulation of RAS that can affect its activity, in addition to the oncogenic mutations, occurs in human cancer. However, the mechanisms for stability regulation of RAS involved in their activity and its roles in tumorigenesis are poorly explored. Here, we identify WD40-repeat protein 76 (WDR76) as one of the HRAS binding proteins using proteomic analyses of hepatocellular carcinomas (HCC) tissue. WDR76 plays a role as an E3 linker protein and mediates the polyubiquitination-dependent degradation of RAS. WDR76-mediated RAS destabilization results in the inhibition of proliferation, transformation, and invasion of liver cancer cells. WDR76-/- mice are more susceptible to diethylnitrosamine-induced liver carcinogenesis. Liver-specific WDR76 induction destabilizes Ras and markedly reduces tumorigenesis in HRasG12V mouse livers. The clinical relevance of RAS regulation by WDR76 is indicated by the inverse correlation of their expressions in HCC tissues. Our study demonstrates that WDR76 functions as a tumor suppressor via RAS degradation.
Collapse
|
5
|
Morishita S, Wada N, Fukuda M, Nakamura T. Rab5 activation on macropinosomes requires ALS2, and subsequent Rab5 inactivation through ALS2 detachment requires active Rab7. FEBS Lett 2018; 593:230-241. [PMID: 30485418 DOI: 10.1002/1873-3468.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022]
Abstract
Macropinocytosis is a nonspecific bulk uptake of extracellular fluid. During endosome maturation, the Rab5-to-Rab7 switch machinery executes the conversion from early to late endosomes. However, how the Rab switch works during macropinosome maturation remains unclear. Here, we elucidate the Rab switch machinery in macropinosome maturation using Förster resonance energy transfer imaging. Rab5 is activated and concurrently recruited to macropinosomes during ruffle closure. ALS2 depletion abolishes transient Rab5 activation on macropinosomes, while ALS2 is recruited to macropinosomes simultaneously with Rab5 activation. Thus, we conclude ALS2 activates Rab5 on macropinosomes. The absence of active Rab7 prolongs ALS2 presence and Rab5 activation on macropinosomes, indicating that active Rab7 is necessary for Rab5 inactivation through ALS2 dissociation and plays key roles in the Rab switch on macropinosomes.
Collapse
Affiliation(s)
- So Morishita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
6
|
Hu SH, Han YQ, Mou TT, Huang ML, Lai JB, Ng CH, Lu J, Lu QQ, Lin QY, Zhang YZ, Hu JB, Wei N, Xu WJ, Zhou WH, Chen JK, Hu CC, Zhou XY, Lu SJ, Xu Y. Association of Genetic Polymorphisms with Age at Onset in Han Chinese Patients with Bipolar Disorder. Neurosci Bull 2018; 35:591-594. [PMID: 30367335 DOI: 10.1007/s12264-018-0301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Shao-Hua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Yu-Qing Han
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Mental Health Center, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, China
| | - Ting-Ting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Man-Li Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Jian-Bo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Chee H Ng
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Qiao-Qiao Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiu-Yan Lin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu-Zhi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jian-Bo Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Ning Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Wei-Juan Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Wei-Hua Zhou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Jing-Kai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Chan-Chan Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Xiao-Yi Zhou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Shao-Jia Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
| | - Yi Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Heaton BE, Kennedy EM, Dumm RE, Harding AT, Sacco MT, Sachs D, Heaton NS. A CRISPR Activation Screen Identifies a Pan-avian Influenza Virus Inhibitory Host Factor. Cell Rep 2018; 20:1503-1512. [PMID: 28813663 DOI: 10.1016/j.celrep.2017.07.060] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Influenza A virus (IAV) is a pathogen that poses significant risks to human health. It is therefore critical to develop strategies to prevent influenza disease. Many loss-of-function screens have been performed to identify the host proteins required for viral infection. However, there has been no systematic screen to identify the host factors that, when overexpressed, are sufficient to prevent infection. In this study, we used CRISPR/dCas9 activation technology to perform a genome-wide overexpression screen to identify IAV restriction factors. The major hit from our screen, B4GALNT2, showed inhibitory activity against influenza viruses with an α2,3-linked sialic acid receptor preference. B4GALNT2 overexpression prevented the infection of every avian influenza virus strain tested, including the H5, H9, and H7 subtypes, which have previously caused disease in humans. Thus, we have used CRISPR/dCas9 activation technology to identify a factor that can abolish infection by avian influenza viruses.
Collapse
Affiliation(s)
- Brook E Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward M Kennedy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebekah E Dumm
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alfred T Harding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew T Sacco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
8
|
van Amen-Hellebrekers CJM, Jansen S, Stegmann APA, Stevens SJC, Pfundt R, de Vries BBA. Biallelicframeshift mutation in RIN2 in a patient with intellectual disability and cataract, without RIN2 syndrome. Am J Med Genet A 2017; 173:3238-3240. [PMID: 29048725 DOI: 10.1002/ajmg.a.38396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Claudia J M van Amen-Hellebrekers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells. Proc Natl Acad Sci U S A 2017; 114:E2327-E2336. [PMID: 28270608 DOI: 10.1073/pnas.1602349114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.
Collapse
|
10
|
Rosato S, Syx D, Ivanovski I, Pollazzon M, Santodirocco D, De Marco L, Beltrami M, Callewaert B, Garavelli L, Malfait F. RIN2 syndrome: Expanding the clinical phenotype. Am J Med Genet A 2016; 170:2408-15. [PMID: 27277385 DOI: 10.1002/ajmg.a.37789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/22/2016] [Indexed: 01/12/2023]
Abstract
Biallelic defects in the RIN2 gene, encoding the Ras and Rab interactor 2 protein, are associated with a rare autosomal recessive connective tissue disorder, with only nine patients from four independent families reported to date. The condition was initially termed MACS syndrome (macrocephaly, alopecia, cutis laxa, and scoliosis), based on the clinical features of the first identified family; however, with the expansion of the clinical phenotype in additional families, it was subsequently coined RIN2 syndrome. Hallmark features of this condition include dysmorphic facial features with striking, progressive facial coarsening, sparse hair, normal to enlarged occipitofrontal circumference, soft redundant and/or hyperextensible skin, and scoliosis. Patients with RIN2 syndrome present phenotypic overlap with other conditions, including EDS (especially the dermatosparaxis and kyphoscoliosis subtypes). Here, we describe a 10th patient, the first patient of Caucasian origin and the oldest reported patient so far, who harbors the previously identified homozygous RIN2 mutation c.1878dupC (p. (Ile627Hisfs*7)). Besides the hallmark features, this patient also presents problems not previously associated with RIN2 syndrome, including cervical vertebral fusion, mild hearing loss, and colonic fibrosis. We provide an overview of the clinical findings in all reported patients with RIN2 mutations and summarize some of the possible pathogenic mechanisms that may underlie this condition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simonetta Rosato
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Delfien Syx
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ivan Ivanovski
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy.,Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marzia Pollazzon
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Daniela Santodirocco
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Loredana De Marco
- Anatomic Pathology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Marina Beltrami
- Department of Internal Medicine, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Livia Garavelli
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Wen MH, Wang JY, Chiu YT, Wang MP, Lee SP, Tai CY. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic 2016; 17:769-85. [DOI: 10.1111/tra.12402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Meng-Hsuan Wen
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
| | - Mei-Pin Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Chin-Yin Tai
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| |
Collapse
|
12
|
Rastogi R, Verma JK, Kapoor A, Langsley G, Mukhopadhyay A. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania. J Biol Chem 2016; 291:14732-46. [PMID: 27226564 DOI: 10.1074/jbc.m116.716514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania.
Collapse
Affiliation(s)
- Ruchir Rastogi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Jitender Kumar Verma
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Anjali Kapoor
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | - Gordon Langsley
- the INSERM U1016, CNRS UMR8104, Cochin Institute, 75014 Paris, France
| | - Amitabha Mukhopadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| |
Collapse
|
13
|
Cruz LA, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, Davis J, Rodriguez AJ. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken) 2015; 72:597-608. [PMID: 26615964 PMCID: PMC4968411 DOI: 10.1002/cm.21265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin-mediated endocytosis regulates epithelial monolayer structure and barrier function.
Collapse
Affiliation(s)
- Lissette A. Cruz
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Pavan Vedula
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Natasha Gutierrez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Neel Shah
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Steven Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Brian Ayee
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Justin Davis
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| | - Alexis J. Rodriguez
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
14
|
Maritzen T, Schachtner H, Legler DF. On the move: endocytic trafficking in cell migration. Cell Mol Life Sci 2015; 72:2119-34. [PMID: 25681867 PMCID: PMC11113590 DOI: 10.1007/s00018-015-1855-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
Directed cell migration is a fundamental process underlying diverse physiological and pathophysiological phenomena ranging from wound healing and induction of immune responses to cancer metastasis. Recent advances reveal that endocytic trafficking contributes to cell migration in multiple ways. (1) At the level of chemokines and chemokine receptors: internalization of chemokines by scavenger receptors is essential for shaping chemotactic gradients in tissue, whereas endocytosis of chemokine receptors and their subsequent recycling is key for maintaining a high responsiveness of migrating cells. (2) At the level of integrin trafficking and focal adhesion dynamics: endosomal pathways do not only modulate adhesion by delivering integrins to their site of action, but also by supplying factors for focal adhesion disassembly. (3) At the level of extracellular matrix reorganization: endosomal transport contributes to tumor cell migration not only by targeting integrins to invadosomes but also by delivering membrane type 1 matrix metalloprotease to the leading edge facilitating proteolysis-dependent chemotaxis. Consequently, numerous endocytic and endosomal factors have been shown to modulate cell migration. In fact key modulators of endocytic trafficking turn out to be also key regulators of cell migration. This review will highlight the recent progress in unraveling the contribution of cellular trafficking pathways to cell migration.
Collapse
Affiliation(s)
- Tanja Maritzen
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Hannah Schachtner
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
15
|
Matthews JC, Zhang Z, Patterson JD, Bridges PJ, Stromberg AJ, Boling JA. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium. Biol Trace Elem Res 2014; 160:321-39. [PMID: 24996959 DOI: 10.1007/s12011-014-0050-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/16/2014] [Indexed: 12/27/2022]
Abstract
Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced "phenotypes" that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.
Collapse
Affiliation(s)
- James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | | | |
Collapse
|
16
|
Rowshanravan B, Woodcock SA, Botella JA, Kiermayer C, Schneuwly S, Hughes DA. RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis. J Cell Sci 2014; 127:2849-61. [PMID: 24816559 DOI: 10.1242/jcs.139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon A Woodcock
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Claudia Kiermayer
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Schneuwly
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - David A Hughes
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Chen PI, Schauer K, Kong C, Harding AR, Goud B, Stahl PD. Rab5 isoforms orchestrate a "division of labor" in the endocytic network; Rab5C modulates Rac-mediated cell motility. PLoS One 2014; 9:e90384. [PMID: 24587345 PMCID: PMC3938722 DOI: 10.1371/journal.pone.0090384] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/29/2014] [Indexed: 11/30/2022] Open
Abstract
Rab5, the prototypical Rab GTPase and master regulator of the endocytic pathway, is encoded as three differentially expressed isoforms, Rab5A, Rab5B and Rab5C. Here, we examined the differential effects of Rab5 isoform silencing on cell motility and report that Rab5C, but neither Rab5A nor Rab5B, is selectively associated with the growth factor-activation of Rac1 and with enhanced cell motility. Initial observations revealed that silencing of Rab5C expression, but neither Rab5A nor Rab5C, led to spindle-shaped cells that displayed reduced formation of membrane ruffles. When subjected to a scratch wound assay, cells depleted of Rab5C, but not Rab5A or Rab5B, demonstrated reduced cell migration. U937 cells depleted of Rab5C also displayed reduced cell motility in a Transwell plate migration assay. To examine activation of Rac, HeLa cells stably expressing GFP-Rac1 were independently depleted of Rab5A, Rab5B or Rab5C and seeded onto coverslips imprinted with a crossbow pattern. 3-D GFP-Rac1 images of micro-patterned cells show that GFP-Rac1 was less localized to the cell periphery in the absence of Rab5C. To confirm the connection between Rab5C and Rac activation, HeLa cells depleted of Rab5 isoforms were starved and then stimulated with EGF. Rac1 pull-down assays revealed that EGF-stimulated Rac1 activity was significantly suppressed in Rab5C-suppressed cells. To determine whether events upstream of Rac activation were affected by Rab5C, we observed that EGF-stimulated Akt phosphorylation was suppressed in cells depleted of Rab5C. Finally, since spatio-temporal assembly/disassembly of adhesion complexes are essential components of cell migration, we examined the effect of Rab5 isoform depletion on the formation of focal adhesion complexes. Rab5C-depleted HeLa cells have significantly fewer focal adhesion foci, in accordance with the lack of persistent lamellipodial protrusions and reduced directional migration. We conclude that Rab5 isoforms selectively oversee the multiple signaling and trafficking events associated with the endocytic network.
Collapse
Affiliation(s)
- Pin-I Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kristine Schauer
- Molecular Mechanisms of Intracellular Transport, Institut Curie, Paris, France
| | - Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew R. Harding
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport, Institut Curie, Paris, France
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:27-99. [PMID: 23445808 DOI: 10.1016/b978-0-12-407697-6.00002-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | |
Collapse
|
19
|
Ramkhelawon B, Rivas D, Lehoux S. Shear stress activates extracellular signal-regulated kinase 1/2 via the angiotensin II type 1 receptor. FASEB J 2013; 27:3008-16. [PMID: 23585396 DOI: 10.1096/fj.12-222299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanical factors such as strain, pressure, and shear stress are key regulators of cell function, but the molecular mechanisms underlying the detection and responses to such stimuli are poorly understood. Whether the angiotensin II (AngII) AT1 receptor (AT1R) transduces shear stress in endothelial cells (ECs) is unknown. We exposed human umbilical cord endothelial cells (HUVECs) to a shear stress of 0 (control) or 15 dyn/cm(2) for 5 or 10 min. The colocalization of AT1R with caveolin-1 (Cav1), endosomal markers Rab5, EEA1, and Rab7, and lysosomal marker Lamp-1 increased in shear stimulated cells, detected by immunocytochemistry. Shear stress reduced labeling of wild-type mouse ECs (18±3% of unsheared control, P<0.01) but not Cav1(-/-) ECs (90±10%) with fluorescent AngII, confirming that internalization of AT1R requires Cav1. Shear stress activated ERK1/2 2-fold (P<0.01), which was prevented by the AT1R blocker losartan. NADPH oxidase inhibition with apocynin prevented both the colocalization of AT1R with Cav1 and the induction of ERK1/2 by shear stress. Moreover, shear-dependent ERK1/2 activation was minimal in CHO cells expressing an AT1Ra mutant that does not internalize, compared with cells expressing wild-type AT1Ra (P<0.05). Hence, AT1R may be an important transducer of shear stress-dependent activation of ERK1/2.
Collapse
|
20
|
Mizuno S, Nakamura T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14:888-919. [PMID: 23296269 PMCID: PMC3565297 DOI: 10.3390/ijms14010888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) was discovered in 1984 as a mitogen of rat hepatocytes in a primary culture system. In the mid-1980s, MET was identified as an oncogenic mutant protein that induces malignant phenotypes in a human cell line. In the early 1990s, wild-type MET was shown to be a functional receptor of HGF. Indeed, HGF exerts multiple functions, such as proliferation, morphogenesis and anti-apoptosis, in various cells via MET tyrosine kinase phosphorylation. During the past 20 years, we have accumulated evidence that HGF is an essential conductor for embryogenesis and tissue regeneration in various types of organs. Furthermore, we found in the mid-1990s that stroma-derived HGF is a major contributor to cancer invasion at least in vitro. Based on this background, we prepared NK4 as an antagonist of HGF: NK4 inhibits HGF-mediated MET tyrosine phosphorylation by competing with HGF for binding to MET. In vivo, NK4 treatments produced the anti-tumor outcomes in mice bearing distinct types of malignant cancers, associated with the loss in MET activation. There are now numerous reports showing that HGF-antagonists and MET-inhibitors are logical for inhibiting tumor growth and metastasis. Additionally, NK4 exerts anti-angiogenic effects, partly through perlecan-dependent cascades. This paper focuses on the chronology and significance of HGF-antagonisms in anti-tumor researches, with an interest in NK4 discovery. Tumor HGF–MET axis is now critical for drug resistance and cancer stem cell maintenance. Thus, oncologists cannot ignore this cascade for the future success of anti-metastatic therapy.
Collapse
Affiliation(s)
- Shinya Mizuno
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita 565-0871, Japan; E-Mail:
| | - Toshikazu Nakamura
- Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-6-6879-4130
| |
Collapse
|
21
|
Abstract
Endothelial cell adhesion to the extracellular matrix regulates migration and outgrowth of blood vessels during angiogenesis. Cell adhesion is mediated by integrins, which transduce signals from the extracellular environment into the cell and, in turn, are regulated by intracellular signaling molecules. In a paper recently published in Cell Research, Sandri et al. show that RIN2 connects three GTPases, R-Ras, Rab5 and Rac1, to promote endothelial cell adhesion through the regulation of integrin internalization and Rac1 activation.
Collapse
|
22
|
Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z. Cutis laxa: A review. J Am Acad Dermatol 2012; 66:842.e1-17. [DOI: 10.1016/j.jaad.2011.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/05/2010] [Accepted: 01/03/2011] [Indexed: 12/17/2022]
|
23
|
Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci 2012; 13:4564-4590. [PMID: 22605996 PMCID: PMC3344232 DOI: 10.3390/ijms13044564] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT)-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM) or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.
Collapse
|
24
|
Kajiho H, Fukushima S, Kontani K, Katada T. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin. PLoS One 2012; 7:e30575. [PMID: 22291991 PMCID: PMC3264577 DOI: 10.1371/journal.pone.0030575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shinichi Fukushima
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
New Insights into the Regulation of E-cadherin Distribution by Endocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:63-108. [DOI: 10.1016/b978-0-12-394306-4.00008-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 2011; 7:e1002217. [PMID: 22022256 PMCID: PMC3192815 DOI: 10.1371/journal.pcbi.1002217] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023] Open
Abstract
Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology. Intracellular compartmentalisation via membrane-delimited organelles is a fundamental feature of the eukaryotic cell. Understanding its origins and specialisation into functionally distinct compartments is a major challenge in evolutionary cell biology. We focus on the Rab enzymes, critical organisers of the trafficking pathways that link the endomembrane system. Rabs form a large family of evolutionarily related proteins, regulating distinct steps in vesicle transport. They mark pathways and organelles due to their specific subcellular and tissue localisation. We propose a solution to the problem of identifying and annotating Rabs in hundreds of sequenced genomes. We developed an accurate bioinformatics pipeline that is able to take into account pre-existing and often inconsistent, manual annotations. We made it available to the community in form of a web tool, as well as a database containing thousands of Rabs assigned to sub-families, which yields clear functional predictions. Thousands of Rabs allow for a new level of analysis. We illustrate this by characterising for the first time the global evolutionary dynamics of the Rab family. We dated the emergence of subfamilies and suggest that the Rab family expands by duplicates acquiring new functions.
Collapse
Affiliation(s)
- Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (YD); (JBPL)
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Marc Gouw
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Miguel C. Seabra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
27
|
Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell 2011; 20:751-63. [PMID: 21664574 DOI: 10.1016/j.devcel.2011.05.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/08/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma ear-containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/hepatocyte growth factor RTK when stimulated, to sort it for recycling in association with "gyrating" clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met toward degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation, and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling.
Collapse
|
28
|
Kajiho H, Sakurai K, Minoda T, Yoshikawa M, Nakagawa S, Fukushima S, Kontani K, Katada T. Characterization of RIN3 as a guanine nucleotide exchange factor for the Rab5 subfamily GTPase Rab31. J Biol Chem 2011; 286:24364-73. [PMID: 21586568 PMCID: PMC3129215 DOI: 10.1074/jbc.m110.172445] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 04/25/2011] [Indexed: 01/02/2023] Open
Abstract
The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.
Collapse
Affiliation(s)
- Hiroaki Kajiho
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Sakurai
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tomohiro Minoda
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Manabu Yoshikawa
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Nakagawa
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichi Fukushima
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Kontani
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- From the Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Albrecht B, de Brouwer AP, Lefeber DJ, Cremer K, Hausser I, Rossen N, Wortmann SB, Wevers RA, Kornak U, Morava E. MACS syndrome: A combined collagen and elastin disorder due to abnormal Golgi trafficking. Am J Med Genet A 2011; 152A:2916-8. [PMID: 20954239 DOI: 10.1002/ajmg.a.33712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Beate Albrecht
- Department of Human Genetics, University of Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yeh YC, Wu CC, Wang YK, Tang MJ. DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 2011; 22:940-53. [PMID: 21289093 PMCID: PMC3069019 DOI: 10.1091/mbc.e10-08-0678] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Discoidin domain receptor 1 (DDR1) promotes cell differentiation through the increase of E-cadherin-mediated cell-cell contact. Life cell imaging with E-cadherin conjugated with Eos fluorescence protein showed that DDR1 stabilizes membrane-bound E-cadherin and the inactivation of Cdc42 mediates DDR1-regulated cell adhesion and differentiation. Discoidin domain receptor 1 (DDR1) promotes E-cadherin–mediated adhesion. The underlying mechanism and its significance, however, have not been elucidated. Here we show that DDR1 overexpression augmented, whereas dominant negative mutant (DN-DDR1) or knockdown of DDR1 inhibited E-cadherin localized in cell-cell junctions in epithelial cells. DDR1 changed the localization and abundance of E-cadherin, as well as epithelial plasticity, as manifested by enhancement of microvilli formation and alteration of cytoskeletal organization. DDR1 also reduced protein abundance of mesenchymal markers, whereas DN-DDR1 and sh-DDR1 showed opposite effects. These results suggest that expression of DDR1 increases epithelial plasticity. Expression of DDR1 augmented E-cadherin protein levels by decreasing its degradation rate. Photobleaching and photoconversion of E-cadherin conjugated with Eos fluorescence protein demonstrated that DDR1 increased the stability of E-cadherin on the cell membrane, whereas sh-DDR1 decreased it. Pull-down assay and expression of constitutively active or dominant-negative Cdc42 showed that DDR1 stabilized E-cadherin through inactivation of Cdc42. Altogether, our results show that DDR1 promotes cell-cell adhesion and differentiation through stabilization of E-cadherin, which is mediated by Cdc42 inactivation.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
31
|
Valdembri D, Sandri C, Santambrogio M, Serini G. Regulation of integrins by conformation and traffic: it takes two to tango. MOLECULAR BIOSYSTEMS 2011; 7:2539-46. [DOI: 10.1039/c1mb05066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol 2010; 1:a003020. [PMID: 20066109 DOI: 10.1101/cshperspect.a003020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell-cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
33
|
The RIN2 syndrome: a new autosomal recessive connective tissue disorder caused by deficiency of Ras and Rab interactor 2 (RIN2). Hum Genet 2010; 128:79-88. [DOI: 10.1007/s00439-010-0829-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/17/2010] [Indexed: 10/19/2022]
|
34
|
Menakongka A, Suthiphongchai T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol 2010; 16:713-22. [PMID: 20135719 PMCID: PMC2817059 DOI: 10.3748/wjg.v16.i6.713] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of hepatocyte growth factor (HGF) in cholangiocarcinoma (CCA) cell invasiveness and the mechanisms underlying such cellular responses.
METHODS: Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines, HuCCA-1 and KKU-M213, using Transwell in vitro assay. Levels of proteins of interest and their phosphorylated forms were determined by Western blotting. Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography.
RESULTS: Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line. HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization, but did not affect the levels of secreted matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator, key matrix degrading enzymes involved in cell invasion. Concomitantly, HGF stimulated Akt and extracellular signal-regulated kinase (ERK)1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines. Inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway by the PI3K inhibitor, LY294002, markedly suppressed HGF-stimulated invasion of both CCA cell lines, and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells.
CONCLUSION: These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.
Collapse
|
35
|
Chen PI, Kong C, Su X, Stahl PD. Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 2009; 284:30328-38. [PMID: 19723633 DOI: 10.1074/jbc.m109.034546] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-mediated endocytosis is an intricate regulatory mechanism for epidermal growth factor receptor (EGFR) signal transduction. Coordinated trafficking of EGFR ensures its temporal and spatial communication with downstream signaling effectors. We focused our work on Rab5, a monomeric GTPase shown to participate in early stages of the endocytic pathway. Rab5 has three isoforms (A, B, and C) sharing more than 90% of sequence identity. We individually ablated endogenous isoforms in HeLa cells with short interfering RNAs and examined the loss-of-function phenotypes. We found that suppression of Rab5A or 5B hampered the degradation of EGFR, whereas Rab5C depletion had very little effect. The differential delay of EGFR degradation also corresponds with retarded progression of EGFR from early to late endosomes. We investigated the activators/effectors of Rab5A that can potentially separate its potency in EGFR degradation from other isoforms and found that Rin1, a Rab5 exchange factor, preferably associated with Rab5A. Moreover, Rab5A activation is sensitive to EGF stimulation, and suppression of Rin1 diminished this sensitivity. Based on our results together with previous work showing that Rin1 interacts with signal transducing adapter molecule to facilitate the degradation of EGFR (Kong, C., Su, X., Chen, P. I., and Stahl, P. D. (2007) J. Biol. Chem. 282, 15294-15301), we hypothesize that the selective association of Rab5A and Rin1 contributes to the dominance of Rab5A in EGFR trafficking, whereas the other isoforms may have major functions unrelated to the EGFR degradation pathway.
Collapse
Affiliation(s)
- Pin-I Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
36
|
Basel-Vanagaite L, Sarig O, Hershkovitz D, Fuchs-Telem D, Rapaport D, Gat A, Isman G, Shirazi I, Shohat M, Enk CD, Birk E, Kohlhase J, Matysiak-Scholze U, Maya I, Knopf C, Peffekoven A, Hennies HC, Bergman R, Horowitz M, Ishida-Yamamoto A, Sprecher E. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am J Hum Genet 2009; 85:254-63. [PMID: 19631308 DOI: 10.1016/j.ajhg.2009.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022] Open
Abstract
Inherited disorders of elastic tissue represent a complex and heterogeneous group of diseases, characterized often by sagging skin and occasionally by life-threatening visceral complications. In the present study, we report on an autosomal-recessive disorder that we have termed MACS syndrome (macrocephaly, alopecia, cutis laxa, and scoliosis). The disorder was mapped to chromosome 20p11.21-p11.23, and a homozygous frameshift mutation in RIN2 was found to segregate with the disease phenotype in a large consanguineous kindred. The mutation identified results in decreased expression of RIN2, a ubiquitously expressed protein that interacts with Rab5 and is involved in the regulation of endocytic trafficking. RIN2 deficiency was found to be associated with paucity of dermal microfibrils and deficiency of fibulin-5, which may underlie the abnormal skin phenotype displayed by the patients.
Collapse
|
37
|
Lawler K, O'Sullivan G, Long A, Kenny D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 2009; 100:1082-7. [PMID: 19432901 PMCID: PMC11159203 DOI: 10.1111/j.1349-7006.2009.01160.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Metastatic disease is dependent on tumor cell migration through the venous and lymphatic systems and requires dynamic rearrangement of adherens junctions. Endocytosis of cadherins is a key mechanism to dynamically arrange adherens junctions, signaling, and motility in tumor cells; however, the role of shear in regulating this process in metastatic cells is unknown. In this study, the role of shear in regulating cell surface expression of E-cadherin was investigated. We found that exposure to venous shear (shear rate, 200/s) induced internalization of E-cadherin in adherent metastatic oesophageal tumor cells (OC-1 tumor cell line). Internalized E-cadherin was found localized to Rab5-positive endosomes and was not present in lysosomes. As the Src family of tyrosine kinase have been implicated in regulating cadherin expression, we investigated the role of shear in regulating E-cadherin through Src activity. Pretreatment of OC-1 cells with the specific Src kinase inhibitor 4-amino-5- (4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) prevented shear-induced internalization of E-cadherin. Direct measurement of Src activity (phosphorylation on Y416) showed that Src is activated in sheared OC-1 cells and that the shear-induced increase in phospho-Src is inhibited by the presence of PP1. Moreover, we show that shear stress significantly increased the invasive capacity of OC-1 cells (P < 0.001), a process inhibited by the presence of PP1. These results indicate a novel role for shear in regulating the endocytosis of E-cadherin and invasiveness in metastatic cells.
Collapse
Affiliation(s)
- Karen Lawler
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | |
Collapse
|
38
|
Wang CZ, Yeh YC, Tang MJ. DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am J Physiol Cell Physiol 2009; 297:C419-29. [PMID: 19474292 DOI: 10.1152/ajpcell.00101.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Discoidin domain receptors (DDRs) 1 and 2, collagen receptors, regulate cell adhesion and a broad range of cell behavior. Their adhesion-dependent regulation of signaling associated with adhesion proteins has not been elucidated. We report a novel mechanism: the cross talk of DDR1 and E-cadherin negatively and adhesion dependently regulated both DDR1 activity and DDR1-suppressed cell spreading. E-cadherin forms complexes with both DDR1 isoforms (a and b). E-cadherin regulates DDR1 activity associated with the cell-junction complexes formed between DDR1 and E-cadherin. These complexes are formed independently of DDR1 activation and of beta-catenin and p120-catenin binding to E-cadherin; they are ubiquitous in epithelial cells. Small interfering RNA-mediated gene silencing of E-cadherin restores both DDR1 activity and DDR1-suppressed cell spreading and increases the apically and basally located DDR1 in E-cadherin-null cells. We conclude that E-cadherin-mediated adhesions decrease DDR1 activity, which subsequently eliminates DDR1-suppressed cell spreading, by sequestering DDR1 to cell junctions, which prevents its contact with collagen ligand.
Collapse
Affiliation(s)
- Chau-Zen Wang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
39
|
Abstract
Morphogenesis of epithelial tissues involves various forms of reshaping of cell layers, such as invagination or bending, convergent extension, and epithelial-mesenchymal transition. At the cellular level, these processes include changes in the shape, position, and assembly pattern of cells. During such morphogenetic processes, epithelial sheets in general maintain their multicellular architecture, implying that they must engage the mechanisms to change the spatial relationship with their neighbors without disrupting the junctions. A major junctional structure in epithelial tissues is the "adherens junction," which is composed of cadherin adhesion receptors and associated proteins including F-actin. The adherens junctions are required for the firm associations between cells, as disruption of them causes disorganization of the epithelial architecture. The adherens junctions, however, appear to be a dynamic entity, allowing the rearrangement of cells within cell sheets. This dynamic nature of the adherens junctions seems to be supported by various mechanisms, such as the interactions of cadherins with actin cytoskeleton, endocytosis and recycling of cadherins, and the cooperation of cadherins with other adhesion receptors. In this chapter, we provide an overview of these mechanisms analyzed in vitro and in vivo.
Collapse
|
40
|
Ogita H, Ikeda W, Takai Y. Roles of cell adhesion molecules nectin and nectin-like molecule-5 in the regulation of cell movement and proliferation. J Microsc 2008; 231:455-65. [PMID: 18755001 DOI: 10.1111/j.1365-2818.2008.02058.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In response to chemoattractants, migrating cells form protrusions, such as lamellipodia and filopodia, and structures, such as ruffles over lamellipodia, focal complexes and focal adhesions at leading edges. The formation of these leading edge structures is essential for directional cell movement. Nectin-like molecule-5 (Necl-5) interacts in cis with PDGF receptor and integrin alpha(v)beta(3), and enhances the activation of signalling molecules associated with these transmembrane proteins, which results in the formation of leading edge structures and enhancement of directional cell movement. When migrating cells come into contact with each other, cell-cell adhesion is initiated, resulting in reduced cell velocity. Necl-5 first interacts in trans with nectin-3. This interaction is transient and induces down-regulation of Necl-5 expression at the cell surface, resulting in reduced cell movement. Cell proliferation is also suppressed by the down-regulation of Necl-5, because the inhibitory effect of Necl-5 on Sprouty2, a negative regulator of the Ras signalling, is diminished. PDGF receptor and integrin alpha(v)beta(3), which have interacted with Necl-5, then form a complex with nectin, which initiates cell-cell adhesion and recruits cadherin to the nectin-based cell-cell adhesion sites to form stable adherens junctions. The formation of adherens junctions stops cell movement, in part through inactivation of integrin alpha(v)beta(3) caused by the trans-interaction of nectin. Thus, nectin and Necl-5 play key roles in the regulation of cell movement and proliferation.
Collapse
Affiliation(s)
- H Ogita
- Department of Molecular Biology and Biochemistry, Faculty of MedicineOsaka, University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | |
Collapse
|
41
|
Abstract
Once engaged by soluble or matrix-anchored ligands, cell surface proteins are commonly sorted to lysosomal degradation through several endocytic pathways. Defective vesicular trafficking of growth factor receptors, as well as unbalanced recycling of integrin- and cadherin-based adhesion complexes, has emerged in the past 5 years as a multifaceted hallmark of malignant cells. In line with the cooperative nature of endocytic machineries, multiple oncogenic alterations underlie defective endocytosis, such as altered ubiquitylation (Cbl and Nedd4 ubiquitin ligases, for example), altered cytoskeletal interactions and alterations to Rab family members. Pharmaceutical interception of the propensity of tumour cells to derail their signalling and their adhesion receptors may constitute a novel target for cancer therapy.
Collapse
Affiliation(s)
- Yaron Mosesson
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
42
|
Gloushankova NA. Changes in regulation of cell-cell adhesion during tumor transformation. BIOCHEMISTRY (MOSCOW) 2008; 73:742-50. [PMID: 18707582 DOI: 10.1134/s000629790807002x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cadherin-mediated cell-cell adhesion defines the integrity of most tissues. Cell-cell adherens junctions are dynamic structures whose functional state is regulated by interactions of cadherin with beta-catenin, p120, and actin cytoskeleton structures. Small GTPases of the Rho family and GTPase Rap1 play the central role in the formation and maintenance of cell-cell adhesion. Aberrant activation of signaling pathways, transcriptional repression of the E-cadherin gene, ectopic expression of N-cadherin, and disturbances in regulation of adhesive and transcriptional functions of beta-catenin stimulate tumor progression.
Collapse
Affiliation(s)
- N A Gloushankova
- Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
43
|
Nishimura N, Sasaki T. Regulation of epithelial cell adhesion and repulsion: role of endocytic recycling. THE JOURNAL OF MEDICAL INVESTIGATION 2008; 55:9-16. [PMID: 18319540 DOI: 10.2152/jmi.55.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A proper balance between cell adhesion and repulsion is essential for cellular morphogenesis during epithelial-mesenchymal transition and mesenchymal-epithelial transition. A number of ligand-receptor pairs including hepatocyte growth factor/scatter factor-Met and semaphorin-plexin are known to control this balance through the complex intracellular signaling pathways. Cell adhesion to other cells and extracellular matrix (ECM) is mediated by cell adhesion molecules (CAMs) and ECM receptors, respectively, which are associated with cytoskeleton through a variety of plaque proteins strengthening and/or weakening adhesion activities. Cell repulsion requires the downregulation of cell adhesion and the extensive changes in cytoskeletal dynamics. The endocytic recycling of CAMs and ECM receptors has recently emerged as an important mechanism to control the balance between cell adhesion and repulsion. Molecule interacting with CasL (MICAL) family proteins are originally identified as a plaque protein associated with ECM receptors integrins and implicated in semaphorin-plexin dependent repulsive axon guidance. We have recently shown that MICAL family protein JRAB/MICAL-L2 functions as an effector protein for Rab family small G protein Rab13 and regulates the endocytic recycling of tight junctional CAM occludin and controls the adhesion and repulsion of epithelial cells.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | |
Collapse
|
44
|
Yoshikawa M, Kajiho H, Sakurai K, Minoda T, Nakagawa S, Kontani K, Katada T. Tyr-phosphorylation signals translocate RIN3, the small GTPase Rab5-GEF, to early endocytic vesicles. Biochem Biophys Res Commun 2008; 372:168-72. [PMID: 18486601 DOI: 10.1016/j.bbrc.2008.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
The small GTPase Rab5 plays a key role in early endocytic pathway, and its activation requires guanine-nucleotide exchange factors (GEFs). Rab5-GEFs share a conserved VPS9 domain for the GEF action, and RIN3 containing additional domains, such as Src-homology 2, RIN-family homology (RH), and Ras-association (RA), was identified as a new Rab5-GEF. However, precise functions of the additional domains and the activation mechanism of RIN3 remain unknown. Here, we found tyrosine-phosphorylation signals are involved in the Rab5-GEF activation. Treatment of HeLa cells with pervanadate translocates RIN3 from cytoplasm to the Rab5-positive vesicles. This RIN3 translocation was applied to various mutants lacking each domain of RIN3. Our present results suggest that a Ras GTPase(s) activated by tyrosine-phosphorylation signals interacts with the inhibitory RA domain, resulting in an active conformation of RIN3 as a Rab5-GEF and that RIN-unique RH domain constitutes a Rab5-binding region for the progress of GEF action.
Collapse
Affiliation(s)
- Manabu Yoshikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Ogita H, Takai Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. ACTA ACUST UNITED AC 2008; 265:1-54. [PMID: 18275885 DOI: 10.1016/s0074-7696(07)65001-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Integrin, cadherin, and growth factor receptor are key molecules for fundamental cellular functions including cell movement, proliferation, differentiation, adhesion, and survival. These cell surface molecules cross-talk with each other in the regulation of such cellular functions. Nectin and nectin-like molecule (Necl) have been identified as cell adhesion molecules that belong to the immunoglobulin superfamily. Nectin and Necl play important roles in the integration of integrin, cadherin, and growth factor receptor at the cell-cell adhesion sites of contacting cells and at the leading edges of moving cells, and thus are also involved in the fundamental cellular functions together with integrin, cadherin, and growth factor receptor. This chapter describes how newly identified cell adhesion molecules, nectin and Necl, modulate the cross-talk among integrin, cadherin, and growth factor receptor and how these integrated molecules act in the regulation of fundamental cellular functions.
Collapse
Affiliation(s)
- Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
46
|
Souza-Rodrígues E, Estanyol JM, Friedrich-Heineken E, Olmedo E, Vera J, Canela N, Brun S, Agell N, Hübscher U, Bachs O, Jaumot M. Proteomic analysis of p16ink4a-binding proteins. Proteomics 2008; 7:4102-11. [PMID: 17955473 DOI: 10.1002/pmic.200700133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The p16(ink4a) tumor suppressor protein plays a critical role in cell cycle control, tumorogenesis and senescence. The best known activity for p16(ink4a) is the inhibition of the activity of CDK4 and CDK6 kinases, both playing a key role in cell cycle progression. With the aim to study new p16(ink4a) functions we used affinity chromatography and MS techniques to identify new p16(ink4a)-interacting proteins. We generated p16(ink4a) columns by coupling the protein to activated Sepharose 4B. The proteins from MOLT-4 cell line that bind to p16(ink4a) affinity columns were resolved by SDS-PAGE and identified by MS using a MALDI-TOF. Thirty-one p16(ink4a) -interacting proteins were identified and grouped in functional clusters. The identification of two of them, proliferating cell nuclear antigen (PCNA) and minichromosome maintenance protein 6 (MCM6), was confirmed by Western blotting and their in vivo interactions with p16(ink4a) were demonstrated by immunoprecipitation and immunofluorescence studies. Results also revealed that p16(ink4a) interacts directly with the DNA polymerase delta accessory protein PCNA and thereby inhibits the polymerase activity.
Collapse
Affiliation(s)
- Elielson Souza-Rodrígues
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sakisaka T, Takai Y. A cell-free assay for endocytosis of E-cadherin. Methods Mol Biol 2008; 440:77-87. [PMID: 18369938 DOI: 10.1007/978-1-59745-178-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
E-Cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of extracellular signals. To elucidate the mechanism of this endocytosis, we developed a new cell-free assay system for this reaction using the AJ-enriched fraction from rat liver. Non-trans-interacting E-cadherin, but not the trans-interacting one, underwent endocytosis in a clathrin-dependent manner. The endocytosis of trans-interacting E-cadherin was inhibited by Rac and Cdc42 small G proteins, which were activated by trans-interacting E-cadherin. Here, we describe the assay method for the endocytosis of E-cadherin from the AJ-enriched fraction prepared from rat liver.
Collapse
Affiliation(s)
- Toshiaki Sakisaka
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
48
|
Hisata S, Sakisaka T, Baba T, Yamada T, Aoki K, Matsuda M, Takai Y. Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth. ACTA ACUST UNITED AC 2007; 178:843-60. [PMID: 17724123 PMCID: PMC2064548 DOI: 10.1083/jcb.200610073] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurotrophins, such as NGF and BDNF, induce sustained activation of Rap1 small G protein and ERK, which are essential for neurite outgrowth. We show involvement of a GDP/GTP exchange factor (GEF) for Rap1, PDZ-GEF1, in these processes. PDZ-GEF1 is activated by GTP-Rap1 via a positive feedback mechanism. Upon NGF binding, the TrkA neurotrophin receptor is internalized from the cell surface, passes through early endosomes, and arrives in late endosomes. A tetrameric complex forms between PDZ-GEF1, synaptic scaffolding molecule and ankyrin repeat-rich membrane spanning protein which interacts directly with the TrkA receptor. At late endosomes, the complex induces sustained activation of Rap1 and ERK, resulting in neurite outgrowth. In cultured rat hippocampal neurons, PDZ-GEF1 is recruited to late endosomes in a BDNF-dependent manner involved in BDNF-induced neurite outgrowth. Thus, the interaction of PDZ-GEF1 with an internalized neurotrophin receptor transported to late endosomes induces sustained activation of both Rap1 and ERK and neurite outgrowth.
Collapse
Affiliation(s)
- Shu Hisata
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Omerovic J, Laude AJ, Prior IA. Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell Mol Life Sci 2007; 64:2575-89. [PMID: 17628742 PMCID: PMC2561238 DOI: 10.1007/s00018-007-7133-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ras GTPases mediate a wide variety of cellular processes by converting a multitude of extracellular stimuli into specific biological responses including proliferation, differentiation and survival. In mammalian cells, three ras genes encode four Ras isoforms (H-Ras, K-Ras4A, K-Ras4B and N-Ras) that are highly homologous but functionally distinct. Differences between the isoforms, including their post-translational modifications and intracellular sorting, mean that Ras has emerged as an important model system of compartmentalised signalling and membrane biology. Ras isoforms in different subcellular locations are proposed to recruit distinct upstream and downstream accessory proteins and activate multiple signalling pathways. Here, we summarise data relating to isoform-specific signalling, its role in disease and the mechanisms promoting compartmentalised signalling. Further understanding of this field will reveal the role of Ras signalling in development, cellular homeostasis and cancer and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- J. Omerovic
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - A. J. Laude
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| | - I. A. Prior
- Physiological Laboratory, University of Liverpool, Crown St., Liverpool, L69 3BX UK
| |
Collapse
|
50
|
Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC. Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 2007; 6:4343-55. [PMID: 17900104 DOI: 10.1021/pr0704276] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebral cavernous malformations (CCM) are sporadic or inherited vascular lesions of the central nervous system characterized by dilated, thin-walled, leaky vessels. Linkage studies have mapped autosomal dominant mutations to three loci: ccm1 (KRIT1), ccm2 (OSM), and ccm3 (PDCD10). All three proteins appear to be scaffolds or adaptor proteins, as no enzymatic function can be attributed to them. Our previous results demonstrated that OSM is a scaffold for the assembly of the GTPase Rac and the MAPK kinase kinase MEKK3, for the hyperosmotic stress-dependent activation of p38 MAPK. Herein, we show that the three CCM proteins are members of a larger signaling complex. To define this complex, epitope-tagged wild type OSM or OSM harboring the mutation of F217-->A, which renders the OSM phosphotyrosine binding (PTB) domain unable to bind KRIT1, were stably introduced into RAW264.7 mouse macrophages. FLAG-OSM or FLAG-OSMF217A and the associated complex members were purified by immunoprecipitation using anti-FLAG antibody. OSM binding partners were identified by gel-based methods combined with electrospray ionization-MS or by multidimensional protein identification technology (MudPIT). Previously identified proteins that associate with OSM including KRIT1, MEKK3, Rac, and the KRIT1-binding protein ICAP-1 were found in the immunoprecipitates. In addition, we show for the first time that PDCD10 binds to OSM and is found in cellular CCM complexes. Other prominent proteins that bound the CCM complex include EF1A1, RIN2, and tubulin, with each interaction disrupted with the OSMF217A mutant protein. We further show that PDCD10 binds phosphatidylinositol di- and triphosphates and OSM binds phosphatidylinositol monophosphates. The findings define the targeting of the CCM complex to membranes and to proteins regulating trafficking and the cytoskeleton.
Collapse
Affiliation(s)
- Thomas L Hilder
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, School of Dentistry, University of North Carolina, Chapel Hill, CB #7365, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|