1
|
Hao H, Yuan Y, Ito A, Eberand BM, Tjondro H, Cielesh M, Norris N, Moreno CL, Maxwell JWC, Neely GG, Payne RJ, Kebede MA, Urbauer RJB, Passam FH, Larance M, Haltiwanger RS. FUT10 and FUT11 are protein O-fucosyltransferases that modify protein EMI domains. Nat Chem Biol 2025:10.1038/s41589-024-01815-x. [PMID: 39775168 DOI: 10.1038/s41589-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively. Like POFUT1/2, POFUT3/4 function in the endoplasmic reticulum, require folded domain structures for modification and participate in a non-canonical endoplasmic reticulum quality control pathway for EMI domain-containing protein secretion. This finding expands the O-fucosylation repertoire and provides an entry point for further exploration in this emerging field of O-fucosylation.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Youxi Yuan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Regional Fish Institute, Ltd., Kyoto, Japan
| | - Benjamin M Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry Tjondro
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Norris
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Freda H Passam
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|
2
|
Tiwari M, Gas-Pascual E, Goyal M, Popov M, Matsumoto K, Grafe M, Graf R, Haltiwanger RS, Olszewski N, Orlando R, Samuelson J, West CM. Novel antibodies detect nucleocytoplasmic O-fucose in protist pathogens, cellular slime molds, and plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618526. [PMID: 39464065 PMCID: PMC11507795 DOI: 10.1101/2024.10.15.618526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-Fuc). A nucleocytoplasmic O-fucosyltransferase (OFT) occurs in the pathogen Toxoplasma gondii, the social amoeba Dictyostelium, and higher plants, where it is called Spy because mutants have a spindly appearance. O-fucosylation, which is required for optimal proliferation of Toxoplasma and Dictyostelium, is paralogous to the O-GlcNAcylation of nucleocytoplasmic proteins of plants and animals that is involved in stress and nutritional responses. O-Fuc was first discovered in Toxoplasma using Aleuria aurantia lectin, but its broad specificity for terminal fucose residues on N- and O-linked glycans in the secretory pathway limits its use. Here we present affinity purified rabbit antisera that are selective for the detection and enrichment of proteins bearing fucose-O-Ser or fucose-O-Thr. These antibodies detect numerous nucleocytoplasmic proteins in Toxoplasma, Dictyostelium, and Arabidopsis, as well as O-Fuc occurring on secretory proteins of Dictyostelium and mammalian cells, although the latter are frequently blocked by further glycosylation. The antibodies label Toxoplasma, Acanthamoeba, and Dictyostelium in a pattern reminiscent of O-GlcNAc in animal cells including nuclear pores. The O-fucome of Dictyostelium is partially conserved with that of Toxoplasma and is highly induced during starvation-induced development. These antisera demonstrate the unique antigenicity of O-Fuc, document conservation of the O-fucome among unrelated protists, and will enable the study of the O-fucomes of other organisms possessing OFT-like genes.
Collapse
Affiliation(s)
- Megna Tiwari
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Elisabet Gas-Pascual
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Manish Goyal
- Department of Molecular and Cell Biology, Boston University School of Medicine, Boston MA
| | | | - Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Current address: Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Marianne Grafe
- Dept. of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ralph Graf
- Dept. of Cell Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| | - Neil Olszewski
- Department of Plant & Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
- GlycoScientific LLC, Athens, GA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University School of Medicine, Boston MA
| | - Christopher M. West
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA
- Complex Carbohydrate Research Center, University of Georgia, Athens GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens GA
| |
Collapse
|
3
|
Rzepecka N, Ito Y, Yura K, Ito E, Uemura T. Identification of a novel Golgi-localized putative glycosyltransferase protein in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:35-44. [PMID: 39464868 PMCID: PMC11500582 DOI: 10.5511/plantbiotechnology.23.1214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 10/29/2024]
Abstract
SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized Arabidopsis thaliana protein reported to interact with a trans-Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP (Arabidopsis thaliana GlycosylTransferase-Like Protein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis. AtGTLP is a membrane-anchored protein, which exhibits a type II-like topology, with a single transmembrane helix and a globular domain in the C-terminal part of its amino acid sequence. Colocalization data we collected suggest that AtGTLP should localize mainly to Golgi apparatus, especially to certain zones of trans-Golgi. As single atgtlp-/- mutants showed no obvious difference in phenotype (primary root length and fresh mass), AtGTLP and proteins related to AtGTLP with high similarity in amino acid sequences may have redundant functions.
Collapse
Affiliation(s)
- Natalia Rzepecka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Emi Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
4
|
Ko JH, Ryu JS, Oh JH, Oh JY. Splenocytes with fucosylation deficiency promote T cell proliferation and differentiation through thrombospondin-1 downregulation. Immunology 2024; 171:262-269. [PMID: 37957948 DOI: 10.1111/imm.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Fucosylation plays a critical role in cell-to-cell interactions and disease progression. However, the effects of fucosylation on splenocytes and their interactions with T cells remain unclear. In this study, we aimed to explore the transcriptome profiles of splenocytes deficient in fucosyltransferase (FUT) 1, an enzyme that mediates fucosylation, and investigate their impact on the proliferation and differentiation of T cells. We analysed and compared the transcriptomes of splenocytes isolated from Fut1 knockout (KO) mice and those from wild-type (WT) mice using RNA-seq. Additionally, we examined the effects of Fut1 KO splenocytes on CD4 T cell proliferation and differentiation, in comparison to WT splenocytes, and elucidated the mechanisms involved. The comparative analysis of transcriptomes between Fut1 KO and WT splenocytes revealed that thrombospondin-1, among the genes related to immune response and inflammation, was the most highly downregulated gene in Fut1 KO splenocytes. The reduced expression of thrombospondin-1 was further confirmed using qRT-PCR and flow cytometry. In coculture experiments, Fut1 KO splenocytes promoted the proliferation of CD4 T cells and drove their differentiation toward Th1 and Th17 cells, compared with WT splenocytes. Moreover, the levels of IL-2, IFN-γ and IL-17 were increased, while IL-10 was decreased, in T cells cocultured with Fut1 KO splenocytes compared with those with WT splenocytes. These effects of Fut1 KO splenocytes on T cells were reversed when thrombospondin-1 was replenished. Taken together, our results demonstrate that splenocytes with Fut1 deficiency promote CD4 T cell proliferation and Th1/Th17 differentiation at least in part through thrombospondin-1 downregulation.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Houlahan CB, Kong Y, Johnston B, Cielesh M, Chau TH, Fenwick J, Coleman PR, Hao H, Haltiwanger RS, Thaysen-Andersen M, Passam FH, Larance M. Analysis of the Healthy Platelet Proteome Identifies a New Form of Domain-Specific O-Fucosylation. Mol Cell Proteomics 2024; 23:100717. [PMID: 38237698 PMCID: PMC10879016 DOI: 10.1016/j.mcpro.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.
Collapse
Affiliation(s)
- Callum B Houlahan
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yvonne Kong
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bede Johnston
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jemma Fenwick
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Coleman
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Huilin Hao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia; Institute for Glyco-Core Research, Nagoya University, Nagoya, Aichi, Japan
| | - Freda H Passam
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Lu L, Varshney S, Yuan Y, Wei HX, Tanwar A, Sundaram S, Nauman M, Haltiwanger RS, Stanley P. In vivo evidence for GDP-fucose transport in the absence of transporter SLC35C1 and putative transporter SLC35C2. J Biol Chem 2023; 299:105406. [PMID: 38270391 PMCID: PMC10709068 DOI: 10.1016/j.jbc.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024] Open
Abstract
Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.
Collapse
Affiliation(s)
- Linchao Lu
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shweta Varshney
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Youxi Yuan
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hua-Xing Wei
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ankit Tanwar
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Subha Sundaram
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mohd Nauman
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
7
|
Monagas-Valentin P, Bridger R, Chandel I, Koff M, Novikov B, Schroeder P, Wells L, Panin V. Protein tyrosine phosphatase 69D is a substrate of protein O-mannosyltransferases 1-2 that is required for the wiring of sensory axons in Drosophila. J Biol Chem 2023; 299:102890. [PMID: 36634851 PMCID: PMC9950532 DOI: 10.1016/j.jbc.2023.102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.
Collapse
Affiliation(s)
- Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Patrick Schroeder
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
8
|
Structural insights into mechanism and specificity of the plant protein O-fucosyltransferase SPINDLY. Nat Commun 2022; 13:7424. [PMID: 36456586 PMCID: PMC9715652 DOI: 10.1038/s41467-022-35234-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Arabidopsis glycosyltransferase family 41 (GT41) protein SPINDLY (SPY) plays pleiotropic roles in plant development. Despite the amino acid sequence is similar to human O-GlcNAc transferase, Arabidopsis SPY has been identified as a novel nucleocytoplasmic protein O-fucosyltransferase. SPY-like proteins extensively exist in diverse organisms, indicating that O-fucosylation by SPY is a common way to regulate intracellular protein functions. However, the details of how SPY recognizes and glycosylates substrates are unknown. Here, we present a crystal structure of Arabidopsis SPY/GDP complex at 2.85 Å resolution. SPY adopts a head-to-tail dimer. Strikingly, the conformation of a 'catalytic SPY'/GDP/'substrate SPY' complex formed by two symmetry-related SPY dimers is captured in the crystal lattice. The structure together with mutagenesis and enzymatic data demonstrate SPY can fucosylate itself and SPY's self-fucosylation region negatively regulates its enzyme activity, reveal SPY's substrate recognition and enzyme mechanism, and provide insights into the glycan donor substrate selection in GT41 proteins.
Collapse
|
9
|
Metabolic utilization and remodeling of glycan biosynthesis using fucose analogs. Biochim Biophys Acta Gen Subj 2022; 1866:130243. [PMID: 36087787 DOI: 10.1016/j.bbagen.2022.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fucose (Fuc), a monosaccharide present at the core or the termini of glycans, critically regulates various biological phenomena and is associated with various diseases. Specifically detecting Fuc residues or inhibiting the fucosylation pathway is pivotal in understanding the mechanisms of how fucosylated glycans are related to biological processes and diseases and in developing novel therapeutic agents. SCOPE OF REVIEW This review focuses on chemical biology approaches using Fuc analogs developed for metabolically labeling fucosylated glycans or inhibiting the biosynthesis of fucosylated glycans. MAJOR CONCLUSIONS Developed Fuc analogs have different potency, specificity and effects on protein and cellular functions. Developing highly enzyme-specific probes and inhibitors is desirable for future investigations. GENERAL SIGNIFICANCE Chemical glycobiology approaches using sugar analogs are useful for revealing novel mechanisms of inter-relationships among sugar metabolism pathways and manipulating glycan expression to develop new glycan-targeted therapies.
Collapse
|
10
|
Srivastava PN, Nayak B, Dewaker V, Mishra S. C-Mannosyltransferase Is Essential for Malaria Transmission in Plasmodium berghei. ACS Infect Dis 2022; 8:1116-1123. [PMID: 35594144 DOI: 10.1021/acsinfecdis.2c00239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-Mannosylation of the thrombospondin type I repeat (TSR) domains is one of the most important factors involved in their function. It occurs on the first tryptophan of the WXXWXXC conserved motif where the tryptophan is usually surrounded by arginine or lysine forming the ligand-binding stretch of this sticky domain. It is found in its canonical or modified forms in many Plasmodium proteins. TSR containing proteins such as thrombospondin-like anonymous protein (TRAP), circumsporozoite protein (CSP), CSP and TRAP related protein (CTRP), and secreted protein with altered thrombospondin repeat (SPATR) have all been shown to be important for various parasite processes and life cycle stages. Here, we show that C-mannosylation catalyzing enzyme C-mannosyltransferase (CmanT) plays an essential role in malaria transmission in Plasmodium berghei. Disruption of the CmanT does not affect asexual blood stage propagation or gametocyte development but abolishes the formation of oocysts in mosquitoes. CmanT knockout (CmanT-) parasites showed normal ookinete formation; however, these ookinetes failed in their ability to glide. CmanT- was complemented by reintroducing the gene, restoring mosquito transmission to wild-type level. We also investigated the effect of C-mannosylation on the folding and heparin-binding capacity of the Plasmodium falciparum TRAP TSR domain in silico, which suggested that this phenotype should be due to its involvement in the global stabilization of TSR residue side chain interactions.
Collapse
Affiliation(s)
- Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bandita Nayak
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Varun Dewaker
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
11
|
Berardinelli SJ, Eletsky A, Valero-González J, Ito A, Manjunath R, Hurtado-Guerrero R, Prestegard JH, Woods RJ, Haltiwanger RS. O-fucosylation stabilizes the TSR3 motif in thrombospondin-1 by interacting with nearby amino acids and protecting a disulfide bond. J Biol Chem 2022; 298:102047. [PMID: 35597280 PMCID: PMC9198472 DOI: 10.1016/j.jbc.2022.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Thrombospondin type-1 repeats (TSRs) are small protein motifs containing six conserved cysteines forming three disulfide bonds that can be modified with an O-linked fucose. Protein O-fucosyltransferase 2 (POFUT2) catalyzes the addition of O-fucose to TSRs containing the appropriate consensus sequence, and the O-fucose modification can be elongated to a Glucose-Fucose disaccharide with the addition of glucose by β3-glucosyltransferase (B3GLCT). Elimination of Pofut2 in mice results in embryonic lethality in mice, highlighting the biological significance of O-fucose modification on TSRs. Knockout of POFUT2 in HEK293T cells has been shown to cause complete or partial loss of secretion of many proteins containing O-fucosylated TSRs. In addition, POFUT2 is localized to the endoplasmic reticulum (ER) and only modifies folded TSRs, stabilizing their structures. These observations suggest that POFUT2 is involved in an ER quality control mechanism for TSR folding and that B3GLCT also participates in quality control by providing additional stabilization to TSRs. However, the mechanisms by which addition of these sugars result in stabilization are poorly understood. Here, we conducted molecular dynamics (MD) simulations and provide crystallographic and NMR evidence that the Glucose-Fucose disaccharide interacts with specific amino acids in the TSR3 domain in thrombospondin-1 that are within proximity to the O-fucosylation modification site resulting in protection of a nearby disulfide bond. We also show that mutation of these amino acids reduces the stabilizing effect of the sugars in vitro. These data provide mechanistic details regarding the importance of O-fucosylation and how it participates in quality control mechanisms inside the ER.
Collapse
Affiliation(s)
- Steven J Berardinelli
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Alexander Eletsky
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Jessika Valero-González
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Atsuko Ito
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Rajashri Manjunath
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Ramon Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - James H Prestegard
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert J Woods
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Resource Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
12
|
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biol 2022; 107:77-96. [DOI: 10.1016/j.matbio.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
13
|
Lauwen S, Baerenfaenger M, Ruigrok S, de Jong EK, Wessels HJCT, den Hollander AI, Lefeber DJ. Loss of the AMD-associated B3GLCT gene affects glycosylation of TSP1 without impairing secretion in retinal pigment epithelial cells. Exp Eye Res 2021; 213:108798. [PMID: 34695439 DOI: 10.1016/j.exer.2021.108798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/11/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Age-related macular degeneration (AMD) has been associated with protective genetic variants in the β1-3 glucosyltransferase (B3GLCT) locus through genome-wide association studies. B3GLCT mediates modification of proteins with thrombospondin type I repeats (TSR) that contain O-linked glucose β1-3 fucose and C-linked mannose glycosylation motifs. B3GLCT-mediated modification is required for proper secretion of TSR-containing proteins. We aimed to start understanding the role of B3GLCT in AMD by evaluating its effect on glycosylation and secretion of proteins from retinal pigment epithelium (RPE) cells. We generated B3GLCT knockout (KO) RPE cells and analyzed glycosylation and secretion of thrombospondin 1 (TSP1), a protein involved in cellular processes highly relevant to AMD. Glycopeptide analysis confirmed the presence of the glucose-β1,3-fucose product of B3GLCT on TSP1 in wildtype (WT) cells and its absence in KO cells. C-mannosylation was variably present on WT TSP1 and increased on TSR domains 1 and 3 in KO cells. Secretion of TSP1 was not affected by the absence of B3GLCT, even not when TSP1 was upregulated by TNFα treatment or when TSP1 was overexpressed in HEK293T cells. Future research is needed to elucidate the effect of the observed glycosylation defects in the context of AMD, which might involve functional loss of TSP1 or effects on other TSR proteins.
Collapse
Affiliation(s)
- Susette Lauwen
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Melissa Baerenfaenger
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Sanne Ruigrok
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands.
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Philips van Leydenlaan 15, 6525 EX, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Guo H, Damerow S, Penha L, Menzies S, Polanco G, Zegzouti H, Ferguson MAJ, Beverley SM. A broadly active fucosyltransferase LmjFUT1 whose mitochondrial localization and activity are essential in parasitic Leishmania. Proc Natl Acad Sci U S A 2021; 118:e2108963118. [PMID: 34385330 PMCID: PMC8379939 DOI: 10.1073/pnas.2108963118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sebastian Damerow
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luciana Penha
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stefanie Menzies
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gloria Polanco
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
15
|
Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, Haltiwanger RS. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem 2021; 297:100843. [PMID: 34058199 PMCID: PMC8233153 DOI: 10.1016/j.jbc.2021.100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes, have mutations in the gene encoding β1,3-glucosyltransferase [B3GLCT]). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - James L Mull
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
16
|
Howard MC, Nauser CL, Vizitiu DA, Sacks SH. Fucose as a new therapeutic target in renal transplantation. Pediatr Nephrol 2021; 36:1065-1073. [PMID: 32472330 PMCID: PMC8009799 DOI: 10.1007/s00467-020-04588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.
Collapse
Affiliation(s)
- Mark C Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Christopher L Nauser
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Steven H Sacks
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
17
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
18
|
Li W, De Schutter K, Van Damme EJM, Smagghe G. RNAi-Mediated Silencing of Pgants Shows Core 1 O-Glycans Are Required for Pupation in Tribolium castaneum. Front Physiol 2021; 12:629682. [PMID: 33841170 PMCID: PMC8024498 DOI: 10.3389/fphys.2021.629682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Protein glycosylation is one of the most common and most important post-translational modifications. Despite the growing knowledge on N-glycosylation, the research on O-glycosylation is lagging behind. This study investigates the importance of O-glycosylation in the post-embryonic development of insects using the red flour beetle, Tribolium castaneum, as a model. We identified 28 O-glycosylation-related genes (OGRGs) in the genome of the red flour beetle. 14 OGRGs were selected for functional analysis based on their involvement in the initial attachment of the carbohydrate in the different O-glycosylation pathways or the further elongation of the most abundant O-glycans and, in addition, showing severe RNAi-induced phenotypes in Drosophila melanogaster. The expression profile of these OGRGs was mapped throughout the developmental stages of the insect and in the different tissues of the pupa and adult. Subsequently, these genes were silenced using RNA interference (RNAi) to analyze their role in development. A broad spectrum of phenotypes was observed: from subtle effects and disrupted wing formation when silencing the genes involved in O-mannosylation, to blockage of pupation and high mortality after silencing of the genes involved in O-GalNAc and core 1 O-glycan (O-GalNAc-Gal) synthesis. RNAi experiments were also performed to assess the effects of blocking multiple pathways of O-glycosylation. However, the observed phenotypes induced by multiple RNAi were similar to those of the single gene RNAi experiments. The silencing of OGRGs often resulted in high mortality and wing phenotypes, indicating the importance of O-glycosylation for the survival of the insect and the formation of wings during the post-embryonic development of T. castaneum.
Collapse
Affiliation(s)
- Weidong Li
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Zhang A, Berardinelli SJ, Leonhard-Melief C, Vasudevan D, Liu TW, Taibi A, Giannone S, Apte SS, Holdener BC, Haltiwanger RS. O-Fucosylation of ADAMTSL2 is required for secretion and is impacted by geleophysic dysplasia-causing mutations. J Biol Chem 2020; 295:15742-15753. [PMID: 32913123 DOI: 10.1074/jbc.ra120.014557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Indexed: 01/20/2023] Open
Abstract
ADAMTSL2 mutations cause an autosomal recessive connective tissue disorder, geleophysic dysplasia 1 (GPHYSD1), which is characterized by short stature, small hands and feet, and cardiac defects. ADAMTSL2 is a matricellular protein previously shown to interact with latent transforming growth factor-β binding protein 1 and influence assembly of fibrillin 1 microfibrils. ADAMTSL2 contains seven thrombospondin type-1 repeats (TSRs), six of which contain the consensus sequence for O-fucosylation by protein O-fucosyltransferase 2 (POFUT2). O-fucose-modified TSRs are subsequently elongated to a glucose β1-3-fucose (GlcFuc) disaccharide by β1,3-glucosyltransferase (B3GLCT). B3GLCT mutations cause Peters Plus Syndrome (PTRPLS), which is characterized by skeletal defects similar to GPHYSD1. Several ADAMTSL2 TSRs also have consensus sequences for C-mannosylation. Six reported GPHYSD1 mutations occur within the TSRs and two lie near O-fucosylation sites. To investigate the effects of TSR glycosylation on ADAMTSL2 function, we used MS to identify glycan modifications at predicted consensus sequences on mouse ADAMTSL2. We found that most TSRs were modified with the GlcFuc disaccharide at high stoichiometry at O-fucosylation sites and variable mannose stoichiometry at C-mannosylation sites. Loss of ADAMTSL2 secretion in POFUT2 -/- but not in B3GLCT -/- cells suggested that impaired ADAMTSL2 secretion is not responsible for skeletal defects in PTRPLS patients. In contrast, secretion was significantly reduced for ADAMTSL2 carrying GPHYSD1 mutations (S641L in TSR3 and G817R in TSR6), and S641L eliminated O-fucosylation of TSR3. These results provide evidence that abnormalities in GPHYSD1 patients with this mutation are caused by loss of O-fucosylation on TSR3 and impaired ADAMTSL2 secretion.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | - Deepika Vasudevan
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Ta-Wei Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew Taibi
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Sharee Giannone
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Cell Biology, Stony Brook University, New York, USA.
| |
Collapse
|
20
|
Ma C, Takeuchi H, Hao H, Yonekawa C, Nakajima K, Nagae M, Okajima T, Haltiwanger RS, Kizuka Y. Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int J Mol Sci 2020; 21:ijms21176007. [PMID: 32825463 PMCID: PMC7503990 DOI: 10.3390/ijms21176007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycans critically regulate the physiological functions of proteins and cells. Alterations in levels of fucosylated glycans are associated with various diseases. For detection and functional modulation of fucosylated glycans, chemical biology approaches using fucose (Fuc) analogs are useful. However, little is known about how efficiently each unnatural Fuc analog is utilized by enzymes in the biosynthetic pathway of fucosylated glycans. We show here that three clickable Fuc analogs with similar but distinct structures labeled cellular glycans with different efficiency and protein specificity. For instance, 6-alkynyl (Alk)-Fuc modified O-Fuc glycans much more efficiently than 7-Alk-Fuc. The level of GDP-6-Alk-Fuc produced in cells was also higher than that of GDP-7-Alk-Fuc. Comprehensive in vitro fucosyltransferase assays revealed that 7-Alk-Fuc is commonly tolerated by most fucosyltransferases. Surprisingly, both protein O-fucosyltransferases (POFUTs) could transfer all Fuc analogs in vitro, likely because POFUT structures have a larger space around their Fuc binding sites. These findings demonstrate that labeling and detection of fucosylated glycans with Fuc analogs depend on multiple cellular steps, including conversion to GDP form, transport into the ER or Golgi, and utilization by each fucosyltransferase, providing insights into design of novel sugar analogs for specific detection of target glycans or inhibition of their functions.
Collapse
Affiliation(s)
- Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Huilin Hao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Chizuko Yonekawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Japan;
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Disease, Osaka University, Suita 565-0871, Japan;
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3356
| |
Collapse
|
21
|
Albuquerque-Wendt A, Jacot D, Dos Santos Pacheco N, Seegers C, Zarnovican P, Buettner FFR, Bakker H, Soldati-Favre D, Routier FH. C-Mannosylation of Toxoplasma gondii proteins promotes attachment to host cells and parasite virulence. J Biol Chem 2020; 295:1066-1076. [PMID: 31862733 DOI: 10.1074/jbc.ra119.010590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
C-Mannosylation is a common modification of thrombospondin type 1 repeats present in metazoans and recently identified also in apicomplexan parasites. This glycosylation is mediated by enzymes of the DPY19 family that transfer α-mannoses to tryptophan residues in the sequence WX 2WX 2C, which is part of the structurally essential tryptophan ladder. Here, deletion of the dpy19 gene in the parasite Toxoplasma gondii abolished C-mannosyltransferase activity and reduced levels of the micronemal protein MIC2. The loss of C-mannosyltransferase activity was associated with weakened parasite adhesion to host cells and with reduced parasite motility, host cell invasion, and parasite egress. Interestingly, the C-mannosyltransferase-deficient Δdpy19 parasites were strongly attenuated in virulence and induced protective immunity in mice. This parasite attenuation could not simply be explained by the decreased MIC2 level and strongly suggests that absence of C-mannosyltransferase activity leads to an insufficient level of additional proteins. In summary, our results indicate that T. gondii C-mannosyltransferase DPY19 is not essential for parasite survival, but is important for adhesion, motility, and virulence.
Collapse
Affiliation(s)
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1206 Geneva, Switzerland
| | | | - Carla Seegers
- Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Patricia Zarnovican
- Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Falk F R Buettner
- Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Bakker
- Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1206 Geneva, Switzerland
| | - Françoise H Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
22
|
Albuquerque-Wendt A, Jacot D, Dos Santos Pacheco N, Seegers C, Zarnovican P, Buettner FF, Bakker H, Soldati-Favre D, Routier FH. C-Mannosylation of Toxoplasma gondii proteins promotes attachment to host cells and parasite virulence. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49916-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J, Routier FH. Protein O- and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology 2019; 146:1755-1766. [PMID: 30773146 PMCID: PMC6939170 DOI: 10.1017/s0031182019000040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Apicomplexan parasites are amongst the most prevalent and morbidity-causing pathogens worldwide. They are responsible for severe diseases in humans and livestock and are thus of great public health and economic importance. Until the sequencing of apicomplexan genomes at the beginning of this century, the occurrence of N- and O-glycoproteins in these parasites was much debated. The synthesis of rudimentary and divergent N-glycans due to lineage-specific gene loss is now well established and has been recently reviewed. Here, we will focus on recent studies that clarified classical O-glycosylation pathways and described new nucleocytosolic glycosylations in Toxoplasma gondii, the causative agents of toxoplasmosis. We will also review the glycosylation of proteins containing thrombospondin type 1 repeats by O-fucosylation and C-mannosylation, newly discovered in Toxoplasma and the malaria parasite Plasmodium falciparum. The functional significance of these post-translational modifications has only started to emerge, but the evidence points towards roles for these protein glycosylation pathways in tissue cyst wall rigidity and persistence in the host, oxygen sensing, and stability of proteins involved in host invasion.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Andreia Albuquerque-Wendt
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Hegermann
- Hannover Medical School, Electron Microscopy Facility OE8840, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Françoise H. Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
24
|
A Plasmodium falciparum C-mannosyltransferase is dispensable for parasite asexual blood stage development. Parasitology 2019; 146:1767-1772. [PMID: 31559936 PMCID: PMC6939167 DOI: 10.1017/s0031182019001380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C-mannosylation was recently identified in the thrombospondin-related anonymous protein (TRAP) from Plasmodium falciparum salivary gland sporozoites. A candidate P. falciparum C-mannosyltransferase (PfDPY-19) was demonstrated to modify thrombospondin type 1 repeat (TSR) domains in vitro, exhibiting a different acceptor specificity than their mammalian counterparts. According to the described minimal acceptor of PfDPY19, several TSR domain-containing proteins of P. falciparum could be C-mannosylated in vivo. However, the relevance of this protein modification for the parasite viability remains unknown. In the present study, we used CRISPR/Cas9 technology to generate a PfDPY19 null mutant, demonstrating that this glycosyltransferase is not essential for the asexual blood development of the parasite. PfDPY19 gene disruption was not associated with a growth phenotype, not even under endoplasmic reticulum-stressing conditions that could impair protein folding. The data presented in this work strongly suggest that PfDPY19 is unlikely to play a critical role in the asexual blood stages of the parasite, at least under in vitro conditions.
Collapse
|
25
|
Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019; 58:14327-14333. [PMID: 31295389 PMCID: PMC6820142 DOI: 10.1002/anie.201907410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pankaj Sahai-Hernandez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
26
|
Hong S, Sahai‐Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single‐Step Metabolic Labeling with Fluorophore‐Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Pankaj Sahai‐Hernandez
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | | | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
| | - David Traver
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
27
|
Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, Liu F, Yang F, Sato T, Narimatsu H, Zhang Y. Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochim Biophys Acta Gen Subj 2019; 1863:870-882. [PMID: 30797803 DOI: 10.1016/j.bbagen.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycosylation plays important roles in various biological processes. It is initiated by a family of 20 conserved UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). Unlike most ppGalNAc-Ts localized to the Golgi apparatus, ppGalNAc-T18 is predominantly distributed on the endoplasmic reticulum (ER) and exhibits no ppGalNAc-T catalytic activity in vitro. Herein, we found that ppGalNAc-T18 silencing in cells decreased O-glycosylation levels and activated ER stress leading to apoptosis. After treatment with chemical chaperone 4-phenylbutyric acid (PBA) or forced expression of ppGalNAc-T18 in the ppGalNAc-T18 knockdown cell, these defects could be significantly alleviated, suggesting that ppGalNAc-T18 is important for ER homeostasis and protein O-glycosylation. Furthermore, we found that ppGalNAc-T18 exerts its functions in O-glycosylation and ER stress via a non-catalytic mechanism. These results reveal a novel molecular role of ppGalNAc-Ts that the ER-localized ppGalNAc-T18 could regulate the O-glycosylation and ER homeostasis in a non-catalytic manner.
Collapse
Affiliation(s)
- Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xing Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yingjiao Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; SCSB (China)-AIST (Japan) Joint Medical Glycomics Laboratory, Shanghai, China.
| |
Collapse
|
28
|
Li W, De Schutter K, Van Damme EJM, Smagghe G. Synthesis and biological roles of O-glycans in insects. Glycoconj J 2019; 37:47-56. [DOI: 10.1007/s10719-019-09867-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 11/24/2022]
|
29
|
Pereira NA, Chan KF, Lin PC, Song Z. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2019; 10:693-711. [PMID: 29733746 PMCID: PMC6150623 DOI: 10.1080/19420862.2018.1466767] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.
Collapse
Affiliation(s)
- Natasha A Pereira
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Kah Fai Chan
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Pao Chun Lin
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Zhiwei Song
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| |
Collapse
|
30
|
Zhang L, Ten Hagen KG. O-Linked glycosylation in Drosophila melanogaster. Curr Opin Struct Biol 2019; 56:139-145. [PMID: 30852302 DOI: 10.1016/j.sbi.2019.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glycosylation, or the addition of sugars to proteins, is a highly conserved protein modification defined by both the monosaccharide initially added as well as the amino acid to which it is attached. O-Linked glycosylation represents a diverse group of protein modifications occurring on the hydroxyl groups of serine and/or threonine residues. O-Glycosylation can have wide-ranging effects on protein stability and function, which translate into crucial consequences at the organismal level. This review will summarize structural and biological insights into the major O-glycans formed within the secretory apparatus (O-GalNAc, O-Man, O-Fuc, O-Glc and extracellular O-GlcNAc) from studies in the fruit fly Drosophila melanogaster. Drosophila has many advantages for investigating these complex modifications, boasting reduced functional redundancy within gene families, reduced length/complexity of glycan chains and sophisticated genetic tools. Gaining an understanding of the normal cellular and developmental roles of these conserved modifications in Drosophila will provide insight into how changes in O-glycans are involved in human disease and disease susceptibilities.
Collapse
Affiliation(s)
- Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, Building 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
31
|
Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol 2019; 56:78-86. [PMID: 30690220 DOI: 10.1016/j.sbi.2018.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be directly linked to protein via an O-linkage to Serine or Threonine residues located within consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both cases, the O-linked fucose can also be elongated with other sugars. Here, we describe the biological importance of these O-fucose glycans and molecular mechanisms by which they affect the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets including several extracellular proteases. Recent data show O-fucose glycans mediate their effects by participating in both intermolecular and intramolecular interactions.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
32
|
Swearingen KE, Eng JK, Shteynberg D, Vigdorovich V, Springer TA, Mendoza L, Sather DN, Deutsch EW, Kappe SHI, Moritz RL. A Tandem Mass Spectrometry Sequence Database Search Method for Identification of O-Fucosylated Proteins by Mass Spectrometry. J Proteome Res 2018; 18:652-663. [PMID: 30523691 DOI: 10.1021/acs.jproteome.8b00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thrombospondin type 1 repeats (TSRs), small adhesive protein domains with a wide range of functions, are usually modified with O-linked fucose, which may be extended to O-fucose-β1,3-glucose. Collision-induced dissociation (CID) spectra of O-fucosylated peptides cannot be sequenced by standard tandem mass spectrometry (MS/MS) sequence database search engines because O-linked glycans are highly labile in the gas phase and are effectively absent from the CID peptide fragment spectra, resulting in a large mass error. Electron transfer dissociation (ETD) preserves O-linked glycans on peptide fragments, but only a subset of tryptic peptides with low m/ z can be reliably sequenced from ETD spectra compared to CID. Accordingly, studies to date that have used MS to identify O-fucosylated TSRs have required manual interpretation of CID mass spectra even when ETD was also employed. In order to facilitate high-throughput, automatic identification of O-fucosylated peptides from CID spectra, we re-engineered the MS/MS sequence database search engine Comet and the MS data analysis suite Trans-Proteomic Pipeline to enable automated sequencing of peptides exhibiting the neutral losses characteristic of labile O-linked glycans. We used our approach to reanalyze published proteomics data from Plasmodium parasites and identified multiple glycoforms of TSR-containing proteins.
Collapse
Affiliation(s)
| | - Jimmy K Eng
- Proteomics Resource , University of Washington , Seattle , Washington 98195 , United States
| | - David Shteynberg
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research , Seattle Children's Research Institute , Seattle , Washington 98101 , United States
| | - Timothy A Springer
- Harvard Medical School and Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | - Luis Mendoza
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - D Noah Sather
- Center for Global Infectious Disease Research , Seattle Children's Research Institute , Seattle , Washington 98101 , United States
| | - Eric W Deutsch
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research , Seattle Children's Research Institute , Seattle , Washington 98101 , United States
| | - Robert L Moritz
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| |
Collapse
|
33
|
Bandini G, Leon DR, Hoppe CM, Zhang Y, Agop-Nersesian C, Shears MJ, Mahal LK, Routier FH, Costello CE, Samuelson J. O-Fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites. J Biol Chem 2018; 294:1967-1983. [PMID: 30538131 DOI: 10.1074/jbc.ra118.005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes disseminated infections that can produce neurological damage in fetuses and immunocompromised individuals. Microneme protein 2 (MIC2), a member of the thrombospondin-related anonymous protein (TRAP) family, is a secreted protein important for T. gondii motility, host cell attachment, invasion, and egress. MIC2 contains six thrombospondin type I repeats (TSRs) that are modified by C-mannose and O-fucose in Plasmodium spp. and mammals. Here, using MS analysis, we found that the four TSRs in T. gondii MIC2 with protein O-fucosyltransferase 2 (POFUT2) acceptor sites are modified by a dHexHex disaccharide, whereas Trp residues within three TSRs are also modified with C-mannose. Disruption of genes encoding either POFUT2 or the putative GDP-fucose transporter (NST2) resulted in loss of MIC2 O-fucosylation, as detected by an antibody against the GlcFuc disaccharide, and in markedly reduced cellular levels of MIC2. Furthermore, in 10-15% of the Δpofut2 or Δnst2 vacuoles, MIC2 accumulated earlier in the secretory pathway rather than localizing to micronemes. Dissemination of tachyzoites in human foreskin fibroblasts was reduced for these knockouts, which both exhibited defects in attachment to and invasion of host cells comparable with the Δmic2 phenotype. These results, indicating that O-fucosylation of TSRs is required for efficient processing of MIC2 and for normal parasite invasion, are consistent with the recent demonstration that Plasmodium falciparum Δpofut2 strain has decreased virulence and also support a conserved role for this glycosylation pathway in quality control of TSR-containing proteins in eukaryotes.
Collapse
Affiliation(s)
- Giulia Bandini
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carolin M Hoppe
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Yue Zhang
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Carolina Agop-Nersesian
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Melanie J Shears
- the Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Lara K Mahal
- the Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, New York 10003, and
| | - Françoise H Routier
- the Department of Clinical Biochemistry OE4340, Hannover Medical School, 30625 Hannover, Germany
| | - Catherine E Costello
- the Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - John Samuelson
- From the Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
34
|
Pennarubia F, Pinault E, Maftah A, Legardinier S. In vitro acellular method to reveal O-fucosylation on EGF-like domains. Glycobiology 2018; 29:5214357. [PMID: 30496416 DOI: 10.1093/glycob/cwy106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 02/28/2024] Open
Abstract
A hundred of human proteins have one or more EGF-like domains (EGF-LD) bearing the O-fucosylation consensus motif C2X4(S/T)C3 but to date, only a few of them have been shown to be O-fucosylated. The protein O-fucosyltransferase (POFUT1) specifically recognizes correctly folded EGF-LD of the human EGF (hEGF) type and transfers fucose on serine or threonine residue within the O-fucosylation motif. Here, we propose a strategy for a rapid screening for ability of any EGF-LD to be O-fucosylated, using copper-catalyzed azide-alkyne cycloaddition (CuAAC). By an oligonucleotide hybridization approach, double-stranded fragments encoding any EGF-LD can be first rapidly cloned into the prokaryotic vector pET-25b to promote its targeting to periplasm and formation of the three conserved disulfide bonds. After protein production and purification, an in vitro POFUT1-mediated O-fucosylation can be performed with azido GDP-fucose. Successful transfer of O-fucose is finally revealed by blotting technique after CuAAC. In this study, we specially focused on mouse NOTCH1 EGF12 and EGF26, which are both known to be O-fucosylated although having different binding affinities towards POFUT1. Indeed, we clearly showed here that addition of O-fucose by POFUT1 was much more efficient for EGF26 than for EGF12. This experimental approach is rapid and sufficiently sensitive to reveal propensity of any EGF-LD to be O-fucosylated; it is thus useful prior to perform structure-function studies on target proteins containing one or several EGF-LD.
Collapse
Affiliation(s)
- Florian Pennarubia
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| | - Emilie Pinault
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
- Univ. Limoges, BISCEm Mass Spectrometry Platform, F-87025 Limoges, France
| | - Abderrahman Maftah
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| | - Sébastien Legardinier
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| |
Collapse
|
35
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Lira-Navarrete E, Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation. Acta Crystallogr F Struct Biol Commun 2018; 74:443-450. [PMID: 30084393 PMCID: PMC6096484 DOI: 10.1107/s2053230x18004788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Protein O-fucosylation is an important post-translational modification (PTM) found in cysteine-rich repeats in proteins. Protein O-fucosyltransferases 1 and 2 (PoFUT1 and PoFUT2) are the enzymes responsible for this PTM and selectively glycosylate specific residues in epidermal growth factor-like (EGF) repeats and thrombospondin type I repeats (TSRs), respectively. Within the past six years, crystal structures of both enzymes have been reported, revealing important information on how they recognize protein substrates and achieve catalysis. Here, the structural information available today is summarized and how PoFUT1 and PoFUT2 employ different catalytic mechanisms is discussed.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI–IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Fundación ARAID, Avenida de Ranillas, 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
38
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
39
|
Functional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome. PLoS One 2017; 12:e0184903. [PMID: 28926587 PMCID: PMC5604996 DOI: 10.1371/journal.pone.0184903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Peters Plus Syndrome (PPS) is a rare autosomal recessive disease characterized by ocular defects, short stature, brachydactyly, characteristic facial features, developmental delay and other highly variable systemic defects. Classic PPS is caused by loss-of-function mutations in the B3GLCT gene encoding for a β3-glucosyltransferase that catalyzes the attachment of glucose via a β1–3 glycosidic linkage to O-linked fucose on thrombospondin type 1 repeats (TSRs). B3GLCT was shown to participate in a non-canonical ER quality control mechanism; however, the exact molecular processes affected in PPS are not well understood. Here we report the identification and characterization of two zebrafish orthologs of the human B3GLCT gene, b3glcta and b3glctb. The b3glcta and b3glctb genes encode for 496-aa and 493-aa proteins with 65% and 57% identity to human B3GLCT, respectively. Expression studies demonstrate that both orthologs are widely expressed with strong presence in embryonic tissues affected in PPS. In vitro glucosylation assays demonstrated that extracts from wildtype embryos contain active b3glct enzyme capable of transferring glucose from UDP-glucose to an O-fucosylated TSR, indicating functional conservation with human B3GLCT. To determine the developmental role of the zebrafish genes, single and double b3glct knockouts were generated using TALEN-induced genome editing. Extracts from double homozygous b3glct-/- embryos demonstrated complete loss of in vitro b3glct activity. Surprisingly, b3glct-/- homozygous fish developed normally. Transcriptome analyses of head and trunk tissues of b3glct-/- 24-hpf embryos identified 483 shared differentially regulated transcripts that may be involved in compensation for b3glct function in these embryos. The presented data show that both sequence and function of B3GLCT/b3glct genes is conserved in vertebrates. At the same time, complete b3glct deficiency in zebrafish appears to be inconsequential and possibly compensated for by a yet unknown mechanism.
Collapse
|
40
|
Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat Commun 2017; 8:561. [PMID: 28916755 PMCID: PMC5601480 DOI: 10.1038/s41467-017-00571-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism. The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Collapse
|
41
|
Badgett MJ, Boyes B, Orlando R. Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J Biomol Tech 2017; 28:122-126. [PMID: 28785176 DOI: 10.7171/jbt.17-2803-003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.
Collapse
Affiliation(s)
- Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| | - Barry Boyes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and.,Advanced Materials Technology, Wilmington, Delaware 19810, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA; and
| |
Collapse
|
42
|
Takeuchi H, Yu H, Hao H, Takeuchi M, Ito A, Li H, Haltiwanger RS. O-Glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J Biol Chem 2017; 292:15964-15973. [PMID: 28729422 DOI: 10.1074/jbc.m117.800102] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Indexed: 11/06/2022] Open
Abstract
Glycosylation in the endoplasmic reticulum (ER) is closely associated with protein folding and quality control. We recently described a non-canonical ER quality control mechanism for folding of thrombospondin type 1 repeats by protein O-fucosyltransferase 2 (POFUT2). Epidermal growth factor-like (EGF) repeats are also small cysteine-rich protein motifs that can be O-glycosylated by several ER-localized enzymes, including protein O-glucosyltransferase 1 (POGLUT1) and POFUT1. Both POGLUT1 and POFUT1 modify the Notch receptor on multiple EGF repeats and are essential for full Notch function. The fact that POGLUT1 and POFUT1 can distinguish between folded and unfolded EGF repeats raised the possibility that they participate in a quality control pathway for folding of EGF repeats in proteins such as Notch. Here, we demonstrate that cell-surface expression of endogenous Notch1 in HEK293T cells is dependent on the presence of POGLUT1 and POFUT1 in an additive manner. In vitro unfolding assays reveal that addition of O-glucose or O-fucose stabilizes a single EGF repeat and that addition of both O-glucose and O-fucose enhances stability in an additive manner. Finally, we solved the crystal structure of a single EGF repeat covalently modified by a full O-glucose trisaccharide at 2.2 Å resolution. The structure reveals that the glycan fills up a surface groove of the EGF with multiple contacts with the protein, providing a chemical basis for the stabilizing effects of the glycans. Taken together, this work suggests that O-fucose and O-glucose glycans cooperatively stabilize individual EGF repeats through intramolecular interactions, thereby regulating Notch trafficking in cells.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Hongjun Yu
- the Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503, and
| | - Huilin Hao
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Megumi Takeuchi
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Atsuko Ito
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Huilin Li
- the Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503, and
| | - Robert S Haltiwanger
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, .,the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
43
|
Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans. Mol Cell Biol 2017; 37:MCB.00426-16. [PMID: 28265002 DOI: 10.1128/mcb.00426-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation.
Collapse
|
44
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
45
|
Mueller TM, Yates SD, Haroutunian V, Meador-Woodruff JH. Altered fucosyltransferase expression in the superior temporal gyrus of elderly patients with schizophrenia. Schizophr Res 2017; 182:66-73. [PMID: 27773385 PMCID: PMC5376218 DOI: 10.1016/j.schres.2016.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022]
Abstract
Glycosylation is a post-translational modification that is an essential element in cell signaling and neurodevelopmental pathway regulation. Glycan attachment can influence the tertiary structure and molecular interactions of glycosylated substrates, adding an additional layer of regulatory complexity to functional mechanisms underlying central cell biological processes. One type of enzyme-mediated glycan attachment, fucosylation, can mediate glycoprotein and glycolipid cell surface expression, trafficking, secretion, and quality control to modulate a variety of inter- and intracellular signaling cascades. Building on prior reports of glycosylation abnormalities and evidence of dysregulated glycosylation enzyme expression in schizophrenia, we examined the protein expression of 5 key fucose-modifying enzymes: GDP-fucose:protein O-fucosyltransferase 1 (POFUT1), GDP-fucose:protein O-fucosyltransferase 2 (POFUT2), fucosyltransferase 8 (FUT8), fucosyltransferase 11 (FUT11), and plasma α-l-fucosidase (FUCA2) in postmortem superior temporal gyrus of schizophrenia (N=16) and comparison (N=14) subjects. We also used the fucose binding protein, Aleuria aurantia lectin (AAL), to assess α-1,6-fucosylated N-glycoprotein abundance in the same subjects. In schizophrenia, we found increased expression of POFUT2, a fucosyltransferase uniquely responsible for O-fucosylation of thrombospondin-like repeat domains that is involved in a non-canonical endoplasmic reticulum quality control pathway. We also found decreased expression of FUT8 in schizophrenia. Given that FUT8 is the only α-1,6-fucosyltransferase expressed in mammals, the concurrent decrease in AAL binding in schizophrenia, particularly evident for N-glycoproteins in the ~52-58kDa and ~60-70kDa molecular mass ranges, likely reflects a consequence of abnormal FUT8 expression in the disorder. Dysregulated FUT8 and POFUT2 expression could potentially explain a variety of molecular abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Toni M. Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA,Corresponding author: Toni M. Mueller, PhD, CIRC 593A, 1719 6th Ave South, Birmingham, AL 35233, USA, Tel: +1 205 996 6164, Fax: + 1 205 975 4879,
| | - Stefani D. Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
46
|
Zhang K, Wang H. [Role of Fucosylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:760-765. [PMID: 27866519 PMCID: PMC5999636 DOI: 10.3779/j.issn.1009-3419.2016.11.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
岩藻糖基化是重要的糖基化修饰方式,在哺乳动物中发挥重要作用,其参与ABO血型H抗原、Lewis血型抗原形成、选择素介导的白细胞外渗或归巢、宿主病原相互作用及信号通路修饰。在多种肿瘤中存在岩藻糖基化异常,其在肿瘤生长、侵袭、转移、免疫逃逸以及药物敏感性方面发挥重要作用,与肺癌的发生发展及预后密切相关。因此,靶向肿瘤中异常岩藻糖基化可能成为治疗肿瘤的新策略。本文将对岩藻糖基化在肿瘤发生发展中的作用进行综述。
Collapse
Affiliation(s)
- Kun Zhang
- Department of Lung Oncology, Affiliated Hospital of the PLA Military Academy of Medical Sciences, Beijing 100071, China
| | - Hong Wang
- Department of Lung Oncology, Affiliated Hospital of the PLA Military Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
47
|
López-Gutiérrez B, Dinglasan RR, Izquierdo L. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites. Biochem J 2017; 474:897-905. [PMID: 28104756 PMCID: PMC5340172 DOI: 10.1042/bcj20161030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.
Collapse
Affiliation(s)
- Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rhoel R Dinglasan
- Department of Infectious Diseases & Pathology, The University of Florida Emerging Pathogens Institute, Gainesville, FL 32611, U.S.A
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc Natl Acad Sci U S A 2017; 114:2574-2579. [PMID: 28202721 DOI: 10.1073/pnas.1613165114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin type 1 repeats (TSRs) occur in diverse proteins involved in adhesion and signaling. The two extracellular TSRs of the netrin receptor UNC5A contain WxxWxxWxxC motifs that can be C-mannosylated on all tryptophans. A single C-mannosyltransferase (dumpy-19, DPY-19), modifying the first two tryptophans, occurs in Caenorhabditis elegans, but four putative enzymes (DPY-19-like 1-4, DPY19L1-4) exist in mammals. Single and triple CRISPR-Cas9 knockouts of the three homologs that are expressed in Chinese hamster ovary cells (DPY19L1, DPY19L3, and DPY19L4) and complementation experiments with mouse homologs showed that DPY19L1 preferentially mannosylates the first two tryptophans and DPY19L3 prefers the third, whereas DPY19L4 has no function in TSR glycosylation. Mannosylation by DPY19L1 but not DPY19L3 is required for transport of UNC5A from the endoplasmic reticulum to the cell surface. In vertebrates, a new C-mannosyltransferase has apparently evolved to increase glycosylation of TSRs, potentially to increase the stability of the structurally essential tryptophan ladder or to provide additional adhesion functions.
Collapse
|
49
|
Sanz S, López-Gutiérrez B, Bandini G, Damerow S, Absalon S, Dinglasan RR, Samuelson J, Izquierdo L. The disruption of GDP-fucose de novo biosynthesis suggests the presence of a novel fucose-containing glycoconjugate in Plasmodium asexual blood stages. Sci Rep 2016; 6:37230. [PMID: 27849032 PMCID: PMC5110956 DOI: 10.1038/srep37230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 02/03/2023] Open
Abstract
Glycosylation is an important posttranslational protein modification in all eukaryotes. Besides glycosylphosphatidylinositol (GPI) anchors and N-glycosylation, O-fucosylation has been recently reported in key sporozoite proteins of the malaria parasite. Previous analyses showed the presence of GDP-fucose (GDP-Fuc), the precursor for all fucosylation reactions, in the blood stages of Plasmodium falciparum. The GDP-Fuc de novo pathway, which requires the action of GDP-mannose 4,6-dehydratase (GMD) and GDP-L-fucose synthase (FS), is conserved in the parasite genome, but the importance of fucose metabolism for the parasite is unknown. To functionally characterize the pathway we generated a PfGMD mutant and analyzed its phenotype. Although the labelling by the fucose-binding Ulex europaeus agglutinin I (UEA-I) was completely abrogated, GDP-Fuc was still detected in the mutant. This unexpected result suggests the presence of an alternative mechanism for maintaining GDP-Fuc in the parasite. Furthermore, PfGMD null mutant exhibited normal growth and invasion rates, revealing that the GDP-Fuc de novo metabolic pathway is not essential for the development in culture of the malaria parasite during the asexual blood stages. Nonetheless, the function of this metabolic route and the GDP-Fuc pool that is generated during this stage may be important for gametocytogenesis and sporogonic development in the mosquito.
Collapse
Affiliation(s)
- Sílvia Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Sebastian Damerow
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Sabrina Absalon
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston MA 02115, USA
| | - Rhoel R Dinglasan
- The University of Florida Emerging Pathogens Institute, Department of Infectious Diseases &Pathology, Gainesville FL 32611, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep 2016; 6:33974. [PMID: 27687499 PMCID: PMC5043182 DOI: 10.1038/srep33974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023] Open
Abstract
Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.
Collapse
|