1
|
Wang L, Foster CM, Mentzen WI, Tanvir R, Meng Y, Nikolau BJ, Wurtele ES, Li L. Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle. Int J Mol Sci 2024; 25:10850. [PMID: 39409177 PMCID: PMC11477042 DOI: 10.3390/ijms251910850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China;
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Carol M. Foster
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Wieslawa I. Mentzen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Yan Meng
- Department of Agriculture, Alcorn State University, Lorman, MS 39096, USA;
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA;
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; (C.M.F.); (W.I.M.)
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
| |
Collapse
|
2
|
Dong X, Yang H, Chai Y, Han B, Liu J, Tian L, Cui S, Xiong S, Zhong M, Fu B, Qu LQ. Simultaneous knockout of cytosolic and plastidial disproportionating enzymes disrupts grain setting and filling in rice. PLANT PHYSIOLOGY 2024; 196:1391-1406. [PMID: 39056538 DOI: 10.1093/plphys/kiae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Rice (Oryza sativa) plants contain plastidial and cytosolic disproportionating enzymes (DPE1 and DPE2). Our previous studies showed that DPE2 acts on maltose, the major product of starch degradation in pollens, releasing one glucose to fuel pollen tube growth and fertilization, whereas DPE1 participates in endosperm starch synthesis by transferring maltooligosyl groups from amylose to amylopectin, and removing excess short maltooligosaccharides. However, little is known about their integrated function. Here, we report that the coordinated actions of DPE1 and DPE2 contribute to grain setting and filling in rice. The dpe1dpe2 mutants could not be isolated from the progeny of heterozygous parental plants but were obtained via anther culture. Unlike that reported in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), the dpe1dpe2 rice plants grew normally but only yielded a small number of empty, unfilled seeds. In the dpe1dpe2 seeds, nutrient accumulation was substantially reduced, and dorsal vascular bundles were also severely malnourished. Zymogram analyses showed that changes in the activities of the major starch-synthesizing enzymes matched well with various endosperm phenotypes of mutant seeds. Mechanistically, DPE1 deficiency allowed normal starch mobilization in leaves and pollens but affected starch synthesis in endosperm, while DPE2 deficiency blocked starch degradation, resulting in substantially decreased levels of the sugars available for pollen tube growth and grain filling. Overall, our results demonstrate the great potential of DPE1-DPE2 as an important regulatory module to realize higher crop yields and present a promising target for regulating nutrient accumulation in cereal crop endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuai Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Manfang Zhong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Fu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Liu Y, Ge H, Lu D. Functional proteomics reveals that Slr0237 is a SigE-regulated glycogen debranching enzyme pivotal for glycogen breakdown. Proteomics 2024; 24:e2300222. [PMID: 38581091 DOI: 10.1002/pmic.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The group 2 σ factor for RNA polymerase SigE plays important role in regulating central carbon metabolism in cyanobacteria. However, the regulation of SigE for these pathways at a proteome level remains unknown. Using a sigE-deficient strain (ΔsigE) of Synechocystis sp. PCC 6803 and quantitative proteomics, we found that SigE depletion induces differential protein expression for sugar catabolic pathways including glycolysis, oxidative pentose phosphate (OPP) pathway, and glycogen catabolism. Two glycogen debranching enzyme homologues Slr1857 and Slr0237 are found differentially expressed in ΔsigE. Glycogen determination indicated that Δslr0237 accumulated glycogen under photomixotrophic condition but was unable to utilize these reserves in the dark, whereas Δslr1857 accumulates and utilizes glycogen in a similar way as the WT strain does in the same condition. These results suggest that Slr0237 plays the major role as the glycogen debranching enzyme in Synechocystis.
Collapse
Affiliation(s)
- Ye Liu
- Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
4
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Zhu Y, Liu C, Zhao M, Duan Y, Xie J, Wang C. Transcriptome profiling reveals key regulatory factors and metabolic pathways associated with curd formation and development in broccoli. FRONTIERS IN PLANT SCIENCE 2024; 15:1418319. [PMID: 39070909 PMCID: PMC11273133 DOI: 10.3389/fpls.2024.1418319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Broccoli, a cruciferous vegetable, has a unique indeterminate inflorescence structure known as curds. It is the main edible organ of broccoli and has a rich nutritional value and health benefits. However, the formation and development mechanism of the curd is still not well understood. In the present study, the shoot apical meristem (SAM) stage and three different development stages of curd (formation stage (FS), expansion stage (ES), and maturation stage (MS)) were identified and subjected to transcriptome sequencing to uncover the potential genes and regulatory networks involved in curd formation and development. The results indicated that the genes associated with the development of SAM such as BolAP1A, BolAP1C, BolCAL, and BolAGL6 play an important role in the abnormal differentiation of the curd apical buds. The genes, BolFRI, BolbHLH89, BolKAN4, BolAGL12, and BolAGL24, displayed significantly differential expression patterns in curd development may function in the regulation of the transition from inflorescence meristem (IM) to floral meristem (FM). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) indicate that phytohormones, such as auxin (AUX), gibberellins (GA), and abscisic acid (ABA) also play an important role in SAM proliferation and the transition from SAM to IM. In addition, the genes regulating photosynthetic reaction (BolLHCA1, BolLHCB1, BolPsbO, etc.) have a key involvement in the differentiation of secondary IMs during curd expansion. The genes associated with the metabolism of starch and sucrose (e.g., BolSPS4, BolBAM4) were significantly upregulated at the MS should contribute to the maturation of the curd. These findings provide new insights into the potential key regulatory factors and metabolic pathways involved in the formation and development of broccoli curds.
Collapse
Affiliation(s)
- Yinxia Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin, China
| | - Mengyao Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuxuan Duan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingjing Xie
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
He Z, Zeng J, Hu J, Chen J, Peng D, Du B, Li P. Effects of cooking methods on the physical properties and in vitro digestibility of starch isolated from Chinese yam. Int J Biol Macromol 2024; 267:131597. [PMID: 38621567 DOI: 10.1016/j.ijbiomac.2024.131597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.
Collapse
Affiliation(s)
- Zhilin He
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jieyu Zeng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianjun Hu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jiahuan Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
7
|
Reyes AV, Shrestha R, Grismer TS, Byun D, Xu SL. Impact of alternative splicing on Arabidopsis proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582853. [PMID: 38496481 PMCID: PMC10942332 DOI: 10.1101/2024.02.29.582853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Alternative splicing is an important regulatory process in eukaryotes. In plants, the major form of alternative splicing is intron retention. Despite its importance, the global impact of AS on the Arabidopsis proteome has not been investigated. In this study, we address this gap by performing a comprehensive integrated analysis of how changes in AS can affect the Arabidopsis proteome using mutants that disrupt ACINUS and PININ, two evolutionarily conserved alternative splicing factors. We used tandem mass tagging (TMT) with real-time search MS3 (RTS-SPS-MS3) coupled with extensive sample fractionations to achieve very high coverage and accurate protein quantification. We then integrated our proteomic data with transcriptomic data to assess how transcript changes and increased intron retention (IIR) affect the proteome. For differentially expressed transcripts, we have observed a weak to moderate correlation between transcript changes and protein changes. Our studies revealed that some IIRs have no effect on either transcript or protein levels, while some IIRs can significantly affect protein levels. Surprisingly, we found that IIRs have a much smaller effect on increasing protein diversity. Notably, the increased intron retention events detected in the double mutant are also detected in the WT under various biotic or abiotic stresses. We further investigated the characteristics of the retained introns. Our extensive proteomic data help to guide the phenotypic analysis and reveal that collective protein changes contribute to the observed phenotypes of the increased anthocyanin, pale green, reduced growth, and short root observed in the acinus pnn double mutant. Overall, our study provides insight into the intricate regulatory mechanism of intron retention and its impact on protein abundance in plants.
Collapse
Affiliation(s)
- Andres V Reyes
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Danbi Byun
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Division of biosphere science and engineering, Carnegie Institution for Science, Stanford, California, USA
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
8
|
Castellanos JF, Khan A, Fettke J. Gradual Analytics of Starch-Interacting Proteins Revealed the Involvement of Starch-Phosphorylating Enzymes during Synthesis of Storage Starch in Potato ( Solanum tuberosum L.) Tubers. Molecules 2023; 28:6219. [PMID: 37687048 PMCID: PMC10489031 DOI: 10.3390/molecules28176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The complete mechanism behind starch regulation has not been fully characterized. However, significant progress can be achieved through proteomic approaches. In this work, we aimed to characterize the starch-interacting proteins in potato (Solanum tuberosum L. cv. Desiree) tubers under variable circumstances. Starch-interacting proteins were extracted from developing tubers of wild type and transgenic lines containing antisense inhibition of glucan phosphorylases. Further, proteins were separated by SDS-PAGE and characterized through mass spectrometry. Additionally, starch-interacting proteins were analyzed in potato tubers stored at different temperatures. Most of the proteins strongly interacting with the potato starch granules corresponded to proteins involved in starch metabolism. GWD and PWD, two dikinases associated with starch degradation, were consistently found bound to the starch granules. This indicates that their activity is not only restricted to degradation but is also essential during storage starch synthesis. We confirmed the presence of protease inhibitors interacting with the potato starch surface as previously revealed by other authors. Starch interacting protein profiles of transgenic tubers appeared differently from wild type when tubers were stored under different temperatures, indicating a differential expression in response to changing environmental conditions.
Collapse
Affiliation(s)
| | | | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany; (J.F.C.); (A.K.)
| |
Collapse
|
9
|
López CM, Alseekh S, Torralbo F, Martínez Rivas FJ, Fernie AR, Amil-Ruiz F, Alamillo JM. Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3203-3219. [PMID: 36883579 DOI: 10.1093/jxb/erad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 05/21/2023]
Abstract
Common bean (Phaseolus vulgaris L.), one of the most important legume crops, uses atmospheric nitrogen through symbiosis with soil rhizobia, reducing the need for nitrogen fertilization. However, this legume is particularly sensitive to drought conditions, prevalent in arid regions where this crop is cultured. Therefore, studying the response to drought is important to sustain crop productivity. We have used integrated transcriptomic and metabolomic analysis to understand the molecular responses to water deficit in a marker-class common bean accession cultivated under N2 fixation or fertilized with nitrate (NO3-). RNA-seq revealed more transcriptional changes in the plants fertilized with NO3- than in the N2-fixing plants. However, changes in N2-fixing plants were more associated with drought tolerance than in those fertilized with NO3-. N2-fixing plants accumulated more ureides in response to drought, and GC/MS and LC/MS analysis of primary and secondary metabolite profiles revealed that N2-fixing plants also had higher levels of abscisic acid, proline, raffinose, amino acids, sphingolipids, and triacylglycerols than those fertilized with NO3-. Moreover, plants grown under nitrogen fixation recovered from drought better than plants fertilized with NO3-. Altogether we show that common bean plants grown under symbiotic nitrogen fixation were more protected against drought than the plants fertilized with nitrate.
Collapse
Affiliation(s)
- Cristina Mª López
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Torralbo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Francisco Amil-Ruiz
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Bioinformática, Campus de Rabanales, Córdoba, Spain
| | - Josefa M Alamillo
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus de Excelencia Internacional Agroalimentario, CEIA3, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
10
|
Wangpaiboon K, Charoenwongpaiboon T, Klaewkla M, Field RA, Panpetch P. Cassava pullulanase and its synergistic debranching action with isoamylase 3 in starch catabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1114215. [PMID: 36778707 PMCID: PMC9911869 DOI: 10.3389/fpls.2023.1114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Pullulanase (EC 3.2.1.41, PUL), a debranching enzyme belonging to glycoside hydrolase family 13 subfamily 13, catalyses the cleavage of α-1,6 linkages of pullulan and β-limit dextrin. The present work studied PUL from cassava Manihot esculenta Crantz (MePUL) tubers, an important economic crop. The Mepul gene was successfully cloned and expressed in E. coli and rMePUL was biochemically characterised. MePUL was present as monomer and homodimer, as judged by apparent mass of ~ 84 - 197 kDa by gel permeation chromatography analysis. Optimal pH and temperature were at pH 6.0 and 50 °C, and enzyme activity was enhanced by the addition of Ca2+ ions. Pullulan is the most favourable substrate for rMePUL, followed by β-limit dextrin. Additionally, maltooligosaccharides were potential allosteric modulators of rMePUL. Interestingly, short-chain maltooligosaccharides (DP 2 - 4) were significantly revealed at a higher level when rMePUL was mixed with cassava isoamylase 3 (rMeISA3), compared to that of each single enzyme reaction. This suggests that MePUL and MeISA3 debranch β-limit dextrin in a synergistic manner, which represents a major starch catabolising process in dicots. Additionally, subcellular localisation suggested the involvement of MePUL in starch catabolism, which normally takes place in plastids.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Methus Klaewkla
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Pawinee Panpetch
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Wang Z, Zhou Y, Ren XY, Wei K, Fan XL, Huang LC, Zhao DS, Zhang L, Zhang CQ, Liu QQ, Li QF. Co-Overexpression of Two Key Source Genes, OsBMY4 and OsISA3, Improves Multiple Key Traits of Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:615-625. [PMID: 36537359 DOI: 10.1021/acs.jafc.2c06039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optimized source-sink interactions are determinants of both rice yield and quality. However, most source genes have not been well studied in rice, a major grain crop. In this study, OsBMY4 and OsISA3, the key β-amylase and debranching enzymes that control transient starch degradation in rice leaves, were co-overexpressed in rice in order to accelerate starch degradation efficiency and increase the sugar supply for sink organs. Systematic analyses of the transgenic rice indicated that co-overexpression of OsBMY4 and OsISA3 not only promoted rice yield and quality, but also improved seed germination and stress tolerance. Moreover, since the OsBMY4 gene has not been characterized, we generated osbmy4 mutants using CRIPSR/Cas9 gene editing, which helped to reveal the roles of β-amylase in rice yield and quality. This study demonstrated that specific modulation of the expression of some key source genes improves the source-sink balance and leads to improvements in multiple key traits of rice seeds.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin-Yu Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
12
|
Li X, Apriyanto A, Castellanos JF, Compart J, Muntaha SN, Fettke J. Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling. FRONTIERS IN PLANT SCIENCE 2022; 13:1039534. [PMID: 36407636 PMCID: PMC9667719 DOI: 10.3389/fpls.2022.1039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.
Collapse
|
13
|
Long J, Xing W, Wang Y, Wu Z, Li W, Zou Y, Sun J, Zhang F, Pi Z. Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. BOTANICAL STUDIES 2022; 63:18. [PMID: 35670889 PMCID: PMC9174413 DOI: 10.1186/s40529-022-00349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low temperature, which is one of the main environmental factors that limits geographical distribution and sucrose yield, is a common abiotic stress during the growth and development of sugar beet. As a regulatory hub of plant response to abiotic stress, activity in the chloroplasts is related to many molecular and physiological processes, particularly in response to low temperature stress. RESULTS The contents of chlorophyll (Chl) and malondialdehyde (MDA), relative electrical conductivity (REL), and superoxide dismutase (SOD) activity were measured. The results showed that sugar beet could manage low temperature stress by regulating the levels of Chl, REL and MDA, and the activity of SOD. The physiological responses indicated that sugar beets respond positively to low temperature treatments and are not significantly damaged. Moreover, to determine the precise time to response low temperature in sugar beet, well-known abiotic stresses-responsive transcript factor family, namely DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB), was selected as the marker gene. The results of phylogenetic analyses showed that BvDREBA1 and BvDREBA4 were in the same branch as the cold- and drought-responsive AtDREB gene. In addition, the expression of BvDREBs reached its maximum level at 24 h after low temperature by RNA-Seq and qRT-PCR analysis. Furthermore, the changes in chloroplast proteome after low temperature at 24 h were detected using a label-free technique. A total of 416 differentially expressed proteins were identified. GO enrichment analysis showed that 16 GO terms were significantly enriched, particularly chloroplast stroma, chloroplast envelope, and chloroplast thylakoid membrane. It is notable that the transport of photosynthetic proteins (BvLTD and BvTOC100), the formation of starch granules (BvPU1, BvISA3, and BvGWD3) and the scavenging of reactive oxygen species (BvCu/Zn-SOD, BvCAT, BvPrx, and BvTrx) were the pathways used by sugar beets to respond to low temperatures at an early stage. CONCLUSIONS These results provide a preliminarily analysis of how chloroplasts of sugar beet respond to low temperature stress at the translational level and provide a theoretical basis for breeding low temperature resistant varieties of sugar beet.
Collapse
Affiliation(s)
- Jiali Long
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wang Xing
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Zedong Wu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wenjing Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yi Zou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jiaping Sun
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Fushun Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| | - Zhi Pi
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
14
|
David LC, Lee SK, Bruderer E, Abt MR, Fischer-Stettler M, Tschopp MA, Solhaug EM, Sanchez K, Zeeman SC. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. PLANT PHYSIOLOGY 2022; 188:191-207. [PMID: 34662400 PMCID: PMC8774843 DOI: 10.1093/plphys/kiab468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
β-Amylases (BAMs) are key enzymes of transitory starch degradation in chloroplasts, a process that buffers the availability of photosynthetically fixed carbon over the diel cycle to maintain energy levels and plant growth at night. However, during vascular plant evolution, the BAM gene family diversified, giving rise to isoforms with different compartmentation and biological activities. Here, we characterized BETA-AMYLASE 9 (BAM9) of Arabidopsis (Arabidopsis thaliana). Among the BAMs, BAM9 is most closely related to BAM4 but is more widely conserved in plants. BAM9 and BAM4 share features including their plastidial localization and lack of measurable α-1,4-glucan hydrolyzing capacity. BAM4 is a regulator of starch degradation, and bam4 mutants display a starch-excess phenotype. Although bam9 single mutants resemble the wild-type (WT), genetic experiments reveal that the loss of BAM9 markedly enhances the starch-excess phenotypes of mutants already impaired in starch degradation. Thus, BAM9 also regulates starch breakdown, but in a different way. Interestingly, BAM9 gene expression is responsive to several environmental changes, while that of BAM4 is not. Furthermore, overexpression of BAM9 in the WT reduced leaf starch content, but overexpression in bam4 failed to complement fully that mutant's starch-excess phenotype, suggesting that BAM9 and BAM4 are not redundant. We propose that BAM9 activates starch degradation, helping to manage carbohydrate availability in response to fluctuations in environmental conditions. As such, BAM9 represents an interesting gene target to explore in crop species.
Collapse
Affiliation(s)
- Laure C David
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Sang-Kyu Lee
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Eduard Bruderer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Michaela Fischer-Stettler
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Marie-Aude Tschopp
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Erik M Solhaug
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Katarzyna Sanchez
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
15
|
Shoaib N, Liu L, Ali A, Mughal N, Yu G, Huang Y. Molecular Functions and Pathways of Plastidial Starch Phosphorylase (PHO1) in Starch Metabolism: Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms221910450. [PMID: 34638789 PMCID: PMC8509025 DOI: 10.3390/ijms221910450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Starch phosphorylase is a member of the GT35-glycogen-phosphorylase superfamily. Glycogen phosphorylases have been researched in animals thoroughly when compared to plants. Genetic evidence signifies the integral role of plastidial starch phosphorylase (PHO1) in starch biosynthesis in model plants. The counterpart of PHO1 is PHO2, which specifically resides in cytosol and is reported to lack L80 peptide in the middle region of proteins as seen in animal and maltodextrin forms of phosphorylases. The function of this extra peptide varies among species and ranges from the substrate of proteasomes to modulate the degradation of PHO1 in Solanum tuberosum to a non-significant effect on biochemical activity in Oryza sativa and Hordeum vulgare. Various regulatory functions, e.g., phosphorylation, protein–protein interactions, and redox modulation, have been reported to affect the starch phosphorylase functions in higher plants. This review outlines the current findings on the regulation of starch phosphorylase genes and proteins with their possible role in the starch biosynthesis pathway. We highlight the gaps in present studies and elaborate on the molecular mechanisms of phosphorylase in starch metabolism. Moreover, we explore the possible role of PHO1 in crop improvement.
Collapse
Affiliation(s)
- Noman Shoaib
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Lun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Nishbah Mughal
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
- Correspondence: (G.Y.); (Y.H.); Tel.: +86-180-0803-9351 (G.Y.); +86-028-8629-0868 (Y.H.)
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (N.S.); (L.L.); (N.M.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (G.Y.); (Y.H.); Tel.: +86-180-0803-9351 (G.Y.); +86-028-8629-0868 (Y.H.)
| |
Collapse
|
16
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
17
|
Vinje MA, Henson CA, Duke SH, Simmons CH, Le K, Hall E, Hirsch CD. Description and functional analysis of the transcriptome from malting barley. Genomics 2021; 113:3310-3324. [PMID: 34273497 DOI: 10.1016/j.ygeno.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
The present study aimed to establish an early model of the malting barley transcriptome, which describes the expression of genes and their ontologies, identify the period during malting with the largest dynamic shift in gene expression for future investigation, and to determine the expression patterns of all starch degrading enzyme genes relevant to the malting and brewing industry. Large dynamic increases in gene expression occurred early in malting with differential expressed genes enriched for cell wall and starch hydrolases amongst many malting related categories. Twenty-five of forty starch degrading enzyme genes were differentially expressed in the malting barley transcriptome including eleven α-amylase genes, six β-amylase genes, three α-glucosidase genes, and all five starch debranching enzyme genes. Four new or novel α-amylase genes, one β-amylase gene (Bmy3), three α-glucosidase genes, and two isoamylase genes had appreciable expression that requires further exploration into their potential relevance to the malting and brewing industry.
Collapse
Affiliation(s)
- Marcus A Vinje
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA.
| | - Cynthia A Henson
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA; University of Wisconsin-Madison, Department of Agronomy, Madison, WI 53706, USA
| | - Stanley H Duke
- University of Wisconsin-Madison, Department of Agronomy, Madison, WI 53706, USA
| | - Carl H Simmons
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA
| | - Khoa Le
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| | - Evan Hall
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| | - Cory D Hirsch
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| |
Collapse
|
18
|
Li J, Li ML, Zhu TT, Zhang XN, Li MF, Wei JH. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:574-582. [PMID: 33660347 DOI: 10.1111/plb.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The root of Angelica sinensis is one of the most widely used traditional Chinese medicines. In commercial planting, early bolting and flowering (EBF) of ca. 40% of 2-year-old plants reduces root yield and quality. Although changes in physiology in bolted plants have been investigated, the mechanism activating EBF has not been identified. Here, transcriptomics profiles at four different growth stages (S1 to S4) were performed, gene expression was validated by qRT-PCR and the accumulation of endogenous hormones quantified by HPLC. A total of 60,282 unigenes were generated, with 2,282, 1,359 and 2,246 differentially expressed genes (DEGs) observed at S2 versus S1, S3 versus S2 and S4 versus S3, respectively; 558 genes that co-exist in at least three stages from S1 to S4 were obtained. Functional annotation classified 38 DEGs linked to flowering pathways: photoperiodism, hormone signalling, carbohydrate metabolism and floral development. The levels of gene expression, hormones (GA1 , GA4 and IAA) and soluble sugars were consistent with the EBF. It can be concluded that the EBF of A. sinensis is controlled by multiple genes. This integrated analysis of transcriptomics, together with targeted hormones and soluble sugars, provides new insights into the regulation of EBF of A. sinensis.
Collapse
Affiliation(s)
- J Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - M L Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - T T Zhu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - X N Zhang
- Gansu Herbal Medicine Planting Co., Ltd, Lanzhou, 730000, China
| | - M F Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - J H Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
19
|
Ceusters N, Ceusters J, Hurtado-Castano N, Dever LV, Boxall SF, Kneřová J, Waller JL, Rodick R, Van den Ende W, Hartwell J, Borland AM. Phosphorolytic degradation of leaf starch via plastidic α-glucan phosphorylase leads to optimized plant growth and water use efficiency over the diel phases of Crassulacean acid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4419-4434. [PMID: 33754643 PMCID: PMC8266541 DOI: 10.1093/jxb/erab132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
In plants with Crassulacean acid metabolism (CAM), it has been proposed that the requirement for nocturnal provision of phosphoenolpyruvate as a substrate for CO2 uptake has resulted in a re-routing of chloroplastic starch degradation from the amylolytic route to the phosphorolytic route. To test this hypothesis, we generated and characterized four independent RNAi lines of the obligate CAM species Kalanchoë fedtschenkoi with a >10-fold reduction in transcript abundance of plastidic α-glucan phosphorylase (PHS1). The rPHS1 lines showed diminished nocturnal starch degradation, reduced dark CO2 uptake, a reduction in diel water use efficiency (WUE), and an overall reduction in growth. A re-routing of starch degradation via the hydrolytic/amylolytic pathway was indicated by hyperaccumulation of maltose in all rPHS1 lines. Further examination indicated that whilst operation of the core circadian clock was not compromised, plasticity in modulating net dark CO2 uptake in response to changing photoperiods was curtailed. The data show that phosphorolytic starch degradation is critical for efficient operation of the CAM cycle and for optimizing WUE. This finding has clear relevance for ongoing efforts to engineer CAM into non-CAM species as a means of boosting crop WUE for a warmer, drier future.
Collapse
Affiliation(s)
- Nathalie Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Johan Ceusters
- Faculty of Engineering Technology, Department of Biosystems, Division of Crop Biotechnics, Campus Geel, KU Leuven, Kleinhoefstraat 4, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Natalia Hurtado-Castano
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Louisa V Dever
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Susanna F Boxall
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jana Kneřová
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jade L Waller
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rebecca Rodick
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Wim Van den Ende
- Faculty of Science, Department of Biology, Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Cvetkovic J, Haferkamp I, Rode R, Keller I, Pommerrenig B, Trentmann O, Altensell J, Fischer-Stettler M, Eicke S, Zeeman SC, Neuhaus HE. Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants. PLANT PHYSIOLOGY 2021; 186:315-329. [PMID: 33650638 PMCID: PMC8154053 DOI: 10.1093/plphys/kiab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1 chloroplasts a functional maltase (MAL) from baker's yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Regina Rode
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Oliver Trentmann
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Jacqueline Altensell
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | | | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
- Author for communication:
| |
Collapse
|
21
|
da Silva JR, Boaretto RM, Lavorenti JAL, dos Santos BCF, Coletta-Filho HD, Mattos D. Effects of Deficit Irrigation and Huanglongbing on Sweet Orange Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:731314. [PMID: 34721459 PMCID: PMC8554030 DOI: 10.3389/fpls.2021.731314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 05/21/2023]
Abstract
This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.
Collapse
|
22
|
Pfister B, Zeeman SC, Rugen MD, Field RA, Ebenhöh O, Raguin A. Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. PHOTOSYNTHESIS RESEARCH 2020; 145:55-70. [PMID: 31955343 PMCID: PMC7308250 DOI: 10.1007/s11120-019-00704-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Starch, a plant-derived insoluble carbohydrate composed of glucose polymers, is the principal carbohydrate in our diet and a valuable raw material for industry. The properties of starch depend on the arrangement of glucose units within the constituent polymers. However, key aspects of starch structure and the underlying biosynthetic processes are not well understood, limiting progress towards targeted improvement of our starch crops. In particular, the major component of starch, amylopectin, has a complex three-dimensional, branched architecture. This architecture stems from the combined actions of a multitude of enzymes, each having broad specificities that are difficult to capture experimentally. In this review, we reflect on experimental approaches and limitations to decipher the enzymes' specificities and explore possibilities for in silico simulations of these activities. We believe that the synergy between experimentation and simulation is needed for the correct interpretation of experimental data and holds the potential to greatly advance our understanding of the overall starch biosynthetic process. We furthermore propose that the formation of glucan secondary structures, concomitant with its synthesis, is a previously overlooked factor that directly affects amylopectin architecture through its impact on enzyme function.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michael D Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Oliver Ebenhöh
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Department of Biology, Cluster of Excellence on Plant Sciences, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Adélaïde Raguin
- Department of Biology, Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
23
|
Smith AM, Zeeman SC. Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:217-245. [PMID: 32075407 DOI: 10.1146/annurev-arplant-050718-100241] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
Collapse
Affiliation(s)
| | - Samuel C Zeeman
- Institute of Plant Molecular Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
24
|
Impa SM, Vennapusa AR, Bheemanahalli R, Sabela D, Boyle D, Walia H, Jagadish SVK. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. PLANT, CELL & ENVIRONMENT 2020; 43:431-447. [PMID: 31702834 DOI: 10.1111/pce.13671] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 05/26/2023]
Abstract
Unlike sporadic daytime heat spikes, a consistent increase in night-time temperatures can potentially derail the genetic gains being achieved. Ten winter wheat genotypes were exposed to six different night-time temperatures (15-27°C) during flowering and grain-filling stages in controlled environment chambers. We identified the night-time temperature of 23o C as the critical threshold beyond which a consistent decline in yields and quality was observed. Confocal laser scanning micrographs of central endosperm, bran, and germ tissue displayed differential accumulation of protein, lipid, and starch with increasing night-time temperatures. KS07077M-1 recorded a decrease in starch and an increase in protein and lipid in central endosperm with increasing night-time temperatures, whereas the same was significantly lower in the tolerant SY Monument. Expression analysis of genes encoding 21 enzymes (including isoforms) involved in grain-starch metabolism in developing grains revealed a high night-time temperature (HNT)-induced reduction in transcript levels of adenosine diphosphate glucose pyrophosphorylase small subunit involved in starch synthesis and a ≥2-fold increase in starch degrading enzymes isoamylase III, alpha-, and beta-amylase. The identified critical threshold, grain compositional changes, and the key enzymes in grain starch metabolism that lead to poor starch accumulation in grains establish the foundational knowledge for enhancing HNT tolerance in wheat.
Collapse
Affiliation(s)
- Somayanda M Impa
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506
| | | | | | - David Sabela
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506
| | - Dan Boyle
- Division of Biology, Kansas State University, Manhattan, KS, 66506
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583
| | | |
Collapse
|
25
|
Huang LF, Liu YK, Su SC, Lai CC, Wu CR, Chao TJ, Yang YH. Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production. Biotechnol Bioeng 2020; 117:933-944. [PMID: 31889302 DOI: 10.1002/bit.27262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
Rice straw, a common agricultural waste, is used as a potential feedstock for bioethanol production. Currently, bioethanol is made mostly from the microbial fermentation of starch-containing raw materials. Therefore, genetically engineered starch-excess rice straw through interference of starch degradation as a potential strategy to enhance bioethanol production was evaluated in this study. Arabidopsis Starch Excess 4 (SEX4) encodes a chloroplast-localized glucan phosphatase and plays a role in transitory starch degradation. Despite the identification of a SEX4 homolog in rice, OsSEX4, its biological function remains uncertain. Ectopic expression of OsSEX4 complementary DNA complemented the leaf starch-excess phenotype of the Arabidopsis sex4-4 mutant. OsSEX4-knockdown transgenic rice plants were generated using the RNA interference approach. Starch accumulation was higher in OsSEX4-knockdown suspension-cultured cells, leaves, and rice straw compared with the wild type, suggesting that OsSEX4 plays an important role in degradation of transitory starch. The OsSEX4-knockdown rice plants showed normal plant growth and no yield penalty. Starch-excess OsSEX4-knockdown rice straw used as feedstock for fermentation resulted in improved bioethanol yield, with a 50% increase in ethanol production in a vertical mass-flow type bioreactor, compared with that of the wild-type straw.
Collapse
Affiliation(s)
- Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Yu-Kuo Liu
- Department of Chemical and Materials Bioengineering, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Chieh Su
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Chang Lai
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Ching-Rong Wu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tai-Jang Chao
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Yung-Hsing Yang
- Department of Chemical and Materials Bioengineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q, Guo W. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:23. [PMID: 31937242 PMCID: PMC6961271 DOI: 10.1186/s12870-019-2187-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Salinity is one of the most significant environmental factors limiting the productivity of cotton. However, the key genetic components responsible for the reduction in cotton yield in saline-alkali soils are still unclear. RESULTS Here, we evaluated three main components of lint yield, single boll weight (SBW), lint percentage (LP) and boll number per plant (BNPP), across 316 G. hirsutum accessions under four salt conditions over two years. Phenotypic analysis indicated that LP was unchanged under different salt conditions, however BNPP decreased significantly and SBW increased slightly under high salt conditions. Based on 57,413 high-quality single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) analysis, a total of 42, 91 and 25 stable quantitative trait loci (QTLs) were identified for SBW, LP and BNPP, respectively. Phenotypic and QTL analysis suggested that there was little correlation among the three traits. For LP, 8 stable QTLs were detected simultaneously in four different salt conditions, while fewer repeated QTLs for SBW or BNPP were identified. Gene Ontology (GO) analysis indicated that their regulatory mechanisms were also quite different. Via transcriptome profile data, we detected that 10 genes from the 8 stable LP QTLs were predominantly expressed during fiber development. Further, haplotype analyses found that a MYB gene (GhMYB103), with the two SNP variations in cis-regulatory and coding regions, was significantly correlated with lint percentage, implying a crucial role in lint yield. We also identified that 40 candidate genes from BNPP QTLs were salt-inducible. Genes related to carbohydrate metabolism and cell structure maintenance were rich in plants grown in high salt conditions, while genes related to ion transport were active in plants grown in low salt conditions, implying different regulatory mechanisms for BNPP at high and low salt conditions. CONCLUSIONS This study provides a foundation for elucidating cotton salt tolerance mechanisms and contributes gene resources for developing upland cotton varieties with high yields and salt stress tolerance.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenwei Gao
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Fenglei Sun
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Sen Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Liu
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Yajie Huang
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Ni
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
27
|
Ancín M, Larraya L, Fernández-San Millán A, Veramendi J, Burch-Smith T, Farran I. NTRC and Thioredoxin f Overexpression Differentially Induces Starch Accumulation in Tobacco Leaves. PLANTS 2019; 8:plants8120543. [PMID: 31779140 PMCID: PMC6963466 DOI: 10.3390/plants8120543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known regarding the specific role of each protein in this complex mechanism. To shed light on this point, tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast genome were obtained and compared to previously generated Trx f-overexpressing transplastomic plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative analysis of enzyme activities related to starch synthesis and degradation were determined in all of the genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover during the dark period, which seems to be related to a significant reductive activation of ADP-glucose pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand, increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of soluble starch synthases during the light period. Taken together, these results suggest that NTRC and the ferredoxin/Trx system play distinct roles in starch turnover.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
- Correspondence: ; Tel.: +34-948-168-034
| |
Collapse
|
28
|
Li Y, Tu M, Feng Y, Wang W, Messing J. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:274. [PMID: 31832097 PMCID: PMC6868837 DOI: 10.1186/s13068-019-1612-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188). RESULTS Field experiments showed that Della and Rio had similar dynamics and internode patterns of sugar concentration, albeit distinct other phenotypes. Interestingly, cellulose synthases for primary cell wall and key genes in starch synthesis and degradation were coordinately upregulated in sweet genotypes. Sweet sorghums maintained active monolignol biosynthesis compared to the non-sweet genotypes. Comparative RNA-seq results support the role of candidate Tonoplast Sugar Transporter gene (TST), but not the Sugars Will Eventually be Exported Transporter genes (SWEETs) in the different sugar accumulations between sweet and non-sweet genotypes. CONCLUSIONS Comparisons of the expression dynamics of carbon metabolic genes across the RNA-seq data sets identify several candidate genes with contrasting expression patterns between sweet and non-sweet sorghum lines, including genes required for cellulose and monolignol synthesis (CesA, PTAL, and CCR), starch metabolism (AGPase, SS, SBE, and G6P-translocator SbGPT2), and sucrose metabolism and transport (TPP and TST2). The common transcriptome features of primary metabolism identified here suggest the metabolic networks contributing to carbon sink strength in sorghum internodes, prioritize the candidate genes for manipulating carbon allocation with bioenergy purposes, and provide a comparative and cohesive picture of the complexity of carbon sink strength in sorghum stem.
Collapse
Affiliation(s)
- Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Wenqing Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai, 200240 China
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
29
|
Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:771-784. [PMID: 30452691 DOI: 10.1093/jxb/ery412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 05/13/2023]
Abstract
Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
30
|
Gurrieri L, Distefano L, Pirone C, Horrer D, Seung D, Zaffagnini M, Rouhier N, Trost P, Santelia D, Sparla F. The Thioredoxin-Regulated α-Amylase 3 of Arabidopsis thaliana Is a Target of S-Glutathionylation. FRONTIERS IN PLANT SCIENCE 2019; 10:993. [PMID: 31417599 PMCID: PMC6685290 DOI: 10.3389/fpls.2019.00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/15/2019] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species (ROS) are produced in cells as normal cellular metabolic by-products. ROS concentration is normally low, but it increases under stress conditions. To stand ROS exposure, organisms evolved series of responsive mechanisms. One such mechanism is protein S-glutathionylation. S-glutathionylation is a post-translational modification typically occurring in response to oxidative stress, in which a glutathione reacts with cysteinyl residues, protecting them from overoxidation. α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. The Arabidopsis genome contains three genes encoding α-amylases. The sole chloroplastic member, AtAMY3, is involved in osmotic stress response and stomatal opening and is redox-regulated by thioredoxins. Here we show that AtAMY3 activity was sensitive to ROS, such as H2O2. Treatments with H2O2 inhibited enzyme activity and part of the inhibition was irreversible. However, in the presence of glutathione this irreversible inhibition was prevented through S-glutathionylation. The activity of oxidized AtAMY3 was completely restored by simultaneous reduction by both glutaredoxin (specific for the removal of glutathione-mixed disulfide) and thioredoxin (specific for the reduction of protein disulfide), supporting a possible liaison between both redox modifications. By comparing free cysteine residues between reduced and GSSG-treated AtAMY3 and performing oxidation experiments of Cys-to-Ser variants of AtAMY3 using biotin-conjugated GSSG, we could demonstrate that at least three distinct cysteinyl residues can be oxidized/glutathionylated, among those the two previously identified catalytic cysteines, Cys499 and Cys587. Measuring the pK a values of the catalytic cysteines by alkylation at different pHs and enzyme activity measurement (pK a1 = 5.70 ± 0.28; pK a2 = 7.83 ± 0.12) showed the tendency of one of the two catalytic cysteines to deprotonation, even at physiological pHs, supporting its propensity to undergo redox post-translational modifications. Taking into account previous and present findings, a functional model for redox regulation of AtAMY3 is proposed.
Collapse
Affiliation(s)
- Libero Gurrieri
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Luca Distefano
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Claudia Pirone
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | | | - Paolo Trost
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- *Correspondence: Diana Santelia,
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
32
|
Panpetch P, Field RA, Limpaseni T. Cloning of the full-length isoamylase3 gene from cassava Manihot esculenta Crantz 'KU50' and its heterologous expression in E. coli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:281-286. [PMID: 30240990 DOI: 10.1016/j.plaphy.2018.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Isoamylase (EC.3.2.1.68), an essential enzyme in starch metabolism, catalyses the cleavage of α-1,6 glucosidic linkages of branched α-polyglucans such as beta-limit dextrin and amylopectin, but not pullulan. Three different isoamylase isoforms have been reported in plants and algae. We herein report on the first success in preparation of full-length isoamylase3 gene (MeISA3) of cassava Manihot esculenta Crantz 'KU50' from 5' Rapid Amplification of cDNA Ends (5' RACE). The MeISA3 was cloned to pET21b and expressed in E. coli. The HistrapTM-purified rMeISA3 appeared as a single band protein with approximate molecular size of 75 kDa on SDS-PAGE and Western blot, while 80 kDa was shown by gel filtration chromatography. This indicated the existence of a monomeric enzyme. Biochemical characterisation of rMeISA3 showed that the enzyme was specific towards beta-limit dextrin, with optimal activity at 37 °C pH 6.0. Activity of rMeISA3 could be significantly promoted by Mg2+ and Co2+. rMeISA3 debranched glucan chains of amylopectin were confirmed by HPAEC-PAD analysis.
Collapse
Affiliation(s)
- Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Tipaporn Limpaseni
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
Azoulay‐Shemer T, Schwankl N, Rog I, Moshelion M, Schroeder JI. Starch biosynthesis by
AGP
ase, but not starch degradation by
BAM
1/3 and
SEX
1, is rate‐limiting for
CO
2
‐regulated stomatal movements under short‐day conditions. FEBS Lett 2018; 592:2739-2759. [DOI: 10.1002/1873-3468.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Tamar Azoulay‐Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| | - Nikki Schwankl
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| | - Ido Rog
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section University of California San Diego La Jolla CA USA
| |
Collapse
|
34
|
McKinley BA, Casto AL, Rooney WL, Mullet JE. Developmental dynamics of stem starch accumulation in Sorghum bicolor. PLANT DIRECT 2018; 2:e00074. [PMID: 31245742 PMCID: PMC6508807 DOI: 10.1002/pld3.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 05/26/2023]
Abstract
Sweet sorghums were identified that accumulate up to ~9% of their total stem dry weight as starch. Starch accumulated preferentially in stem pith parenchyma in close proximity to vascular bundles. Stem starch accumulated slowly between floral initiation and anthesis and more rapidly between anthesis and 43 days post-anthesis before declining in parallel with tiller outgrowth. Genes involved in stem starch metabolism were identified through phylogenetic approaches and RNA-seq analysis of Della stem gene expression during the starch accumulation phase of development. Genes differentially expressed in stems were identified that are involved in starch biosynthesis (i.e., AGPase SS/LS, starch synthases, starch-branching enzymes), degradation (i.e., glucan-water dikinase, β-amylase, disproportionating enzyme, alpha-glucan phosphorylase) and amyloplast sugar transport (glucose-6-P translocator). Transcripts encoding AGPase SS and LS subunits with plastid localization were differentially induced during stem starch accumulation indicating that ADP-glucose for starch biosynthesis is primarily generated in stem plastids. Cytosolic heteroglucan metabolism may play a role in stem sucrose/starch accumulation because genes encoding cytosolic forms of the disproportionating enzyme and alpha-glucan phosphorylase were induced in parallel with stem sucrose/starch accumulation. Information on the stem starch pathway obtained in this study will be useful for engineering sorghum stems with elevated starch thereby improving forage quality and the efficiency of biomass conversion to biofuels and bio-products.
Collapse
Affiliation(s)
- Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - Anna L. Casto
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexas
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| |
Collapse
|
35
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
36
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
37
|
Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS One 2017; 12:e0181444. [PMID: 28708852 PMCID: PMC5510849 DOI: 10.1371/journal.pone.0181444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/16/2023] Open
Abstract
Isoamylases hydrolyse (1–6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers.
Collapse
|
38
|
Ma L, Xue N, Fu X, Zhang H, Li G. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar. THE NEW PHYTOLOGIST 2017; 213:1682-1696. [PMID: 27859295 DOI: 10.1111/nph.14300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
In living organisms, daily light/dark cycles profoundly affect cellular processes. In plants, optimal growth and development, and adaptation to daily light-dark cycles, require starch synthesis and turnover. However, the underlying molecular mechanisms coordinating daily starch metabolism remain poorly understood. To explore the roles of Arabidopsis thaliana light signal transduction proteins FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) in starch metabolism, the contents of starch and water-soluble polysaccharides, and the structure of starch granules were investigated in fhy3, far1 and fhy3 far1 mutant plants. Disruption of FHY3 or FAR1 reduced starch accumulation and altered starch granule structure in the fhy3-4, far1-2, and fhy3-4 far1-2 mutant plants. Furthermore, molecular and genetic evidence revealed that the gene encoding the starch-debranching enzyme ISOAMYLASE2 (ISA2) is a direct target of FHY3 and FAR1, and functions in light-induced starch synthesis. Our data establish the first molecular link between light signal transduction and starch synthesis, suggesting that the light-signaling proteins FHY3 and FAR1 influence starch synthesis and starch granule formation through transcriptional activation of ISA2.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Na Xue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoyu Fu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
39
|
Li J, Zhou W, Francisco P, Wong R, Zhang D, Smith SM. Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation. PLoS One 2017; 12:e0172504. [PMID: 28225829 PMCID: PMC5321445 DOI: 10.1371/journal.pone.0172504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/06/2017] [Indexed: 01/31/2023] Open
Abstract
Starch breakdown in leaves at night is tightly matched to the duration of the dark period, but the mechanism by which this regulation is achieved is unknown. In Arabidopsis chloroplasts, β-amylase BAM3 hydrolyses transitory starch, producing maltose and residual maltotriose. The aim of the current research was to investigate the regulatory and kinetic properties of BAM3. The BAM3 protein was expressed in Escherichia coli and first assayed using a model substrate. Enzyme activity was stimulated by treatment with dithiothreitol and was increased 40% by 2–10 μM Ca2+ but did not require Mg2+. In order to investigate substrate specificity and possible regulatory effects of glucans, we developed a GC-MS method to assay reaction products. BAM3 readily hydrolysed maltohexaose with a Km of 1.7 mM and Kcat of 4300 s-1 but activity was 3.4-fold lower with maltopentaose and was negligible with maltotetraose. With maltohexaose or amylopectin as substrates and using [UL-13C12]maltose in an isotopic dilution method, we discovered that BAM3 activity is inhibited by maltotriose at physiological (mM) concentrations, but not by maltose. In contrast, the extracellular β-amylase of barley is only weakly inhibited by maltotriose. Our results may explain the impaired starch breakdown in maltotriose-accumulating mutants such as dpe1 which lacks the chloroplast disproportionating enzyme (DPE1) metabolising maltotriose to glucose. We hypothesise that the rate of starch breakdown in leaves can be regulated by inhibition of BAM3 by maltotriose, the concentration of which is determined by DPE, which is in turn influenced by the stromal concentration of glucose. Since the plastid glucose transporter pGlcT catalyses facilitated diffusion between stroma and cytosol, changes in consumption of glucose in the cytosol are expected to lead to concomitant changes in plastid glucose and maltotriose, and hence compensatory changes in BAM3 activity.
Collapse
Affiliation(s)
- Jing Li
- School of Plant Biology, The University of Western Australia, Western Australia, Australia
| | - Wenxu Zhou
- Centre for Energy, Faculty of Engineering, Computing and Mathematics, The University of Western Australia, Western Australia, Australia
| | - Perigio Francisco
- School of Plant Biology, The University of Western Australia, Western Australia, Australia
| | - Russell Wong
- School of Plant Biology, The University of Western Australia, Western Australia, Australia
| | - Dongke Zhang
- Centre for Energy, Faculty of Engineering, Computing and Mathematics, The University of Western Australia, Western Australia, Australia
| | - Steven M. Smith
- School of Biological Sciences, University of Tasmania, Tasmania, Australia
- * E-mail:
| |
Collapse
|
40
|
Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1778. [PMID: 27994606 PMCID: PMC5133247 DOI: 10.3389/fpls.2016.01778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/11/2016] [Indexed: 05/24/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage.
Collapse
Affiliation(s)
- Cyril Jourda
- CIRAD, UMR AGAPMontpellier, France
- CIRAD, UMR PVBMTSaint-Pierre, France
| | | | - Olivier Gibert
- CIRAD, UMR QUALISUDMontpellier, France
- CIRAD, UMR QUALISUDJakarta, Indonesia
| | | | | | | | | |
Collapse
|
41
|
Pfister B, Sánchez-Ferrer A, Diaz A, Lu K, Otto C, Holler M, Shaik FR, Meier F, Mezzenga R, Zeeman SC. Recreating the synthesis of starch granules in yeast. eLife 2016; 5:e15552. [PMID: 27871361 PMCID: PMC5119888 DOI: 10.7554/elife.15552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/08/2016] [Indexed: 11/13/2022] Open
Abstract
Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops.
Collapse
Affiliation(s)
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Kuanjen Lu
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Caroline Otto
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Seung D, Lu KJ, Stettler M, Streb S, Zeeman SC. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis. J Biol Chem 2016; 291:20718-28. [PMID: 27458017 PMCID: PMC5034061 DOI: 10.1074/jbc.m116.730648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/01/2023] Open
Abstract
Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3.
Collapse
Affiliation(s)
- David Seung
- From the Institute for Agricultural Sciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Kuan-Jen Lu
- From the Institute for Agricultural Sciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Michaela Stettler
- From the Institute for Agricultural Sciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Sebastian Streb
- From the Institute for Agricultural Sciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Samuel C Zeeman
- From the Institute for Agricultural Sciences, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Abstract
Starch-rich crops form the basis of our nutrition, but plants have still to yield all their secrets as to how they make this vital substance. Great progress has been made by studying both crop and model systems, and we approach the point of knowing the enzymatic machinery responsible for creating the massive, insoluble starch granules found in plant tissues. Here, we summarize our current understanding of these biosynthetic enzymes, highlighting recent progress in elucidating their specific functions. Yet, in many ways we have only scratched the surface: much uncertainty remains about how these components function together and are controlled. We flag-up recent observations suggesting a significant degree of flexibility during the synthesis of starch and that previously unsuspected non-enzymatic proteins may have a role. We conclude that starch research is not yet a mature subject and that novel experimental and theoretical approaches will be important to advance the field.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
44
|
Mahlow S, Orzechowski S, Fettke J. Starch phosphorylation: insights and perspectives. Cell Mol Life Sci 2016; 73:2753-64. [PMID: 27147464 PMCID: PMC11108486 DOI: 10.1007/s00018-016-2248-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.
Collapse
Affiliation(s)
- Sebastian Mahlow
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany
- Institute of General Botany, Friedrich Schiller University Jena, Am Planetarium 1, 07743, Jena, Germany
| | - Sławomir Orzechowski
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
45
|
Horrer D, Flütsch S, Pazmino D, Matthews JSA, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening. Curr Biol 2016; 26:362-70. [PMID: 26774787 DOI: 10.1016/j.cub.2015.12.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/28/2022]
Abstract
Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of β-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light.
Collapse
Affiliation(s)
- Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Sabrina Flütsch
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Jack S A Matthews
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Matthias Thalmann
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Arianna Nigro
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes (LBDP), UMR 7265 CNRS-CEA Université Aix-Marseille II, CEA Cadarache Bat 156, 13108 Saint Paul Lez Durance, France
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| |
Collapse
|
46
|
O'Neill EC, Stevenson CEM, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1). J Biol Chem 2015; 290:29834-53. [PMID: 26504082 PMCID: PMC4705983 DOI: 10.1074/jbc.m115.682245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The "gate" is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms.
Collapse
Affiliation(s)
- Ellis C O'Neill
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Clare E M Stevenson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Krit Tantanarat
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dimitrios Latousakis
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Matthew I Donaldson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Martin Rejzek
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Sergey A Nepogodiev
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Tipaporn Limpaseni
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - David M Lawson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| |
Collapse
|
47
|
Santelia D, Trost P, Sparla F. New insights into redox control of starch degradation. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:1-9. [PMID: 25899330 DOI: 10.1016/j.pbi.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 05/04/2023]
Abstract
Starch is one of the major sinks of fixed carbon in photosynthetic tissues of higher plants. Carbon fixation and the synthesis of primary starch occur during the day in the chloroplast stroma, whereas starch degradation typically occurs during the following night to fuel the whole plant with energy and carbon in the absence of photosynthesis. Redox-based regulatory systems play a central role in the modulation of several chloroplastic pathways. Reversible oxidations of cysteine residues are post-translational modifications that orchestrate the precise functioning of chloroplast pathways together with changes in pH, Mg(2+) and concentrations of metabolic intermediates. Leaf starch metabolism has been intensively studied. The enzymes involved in starch synthesis and degradation have been identified and characterized. However, the redox control of the enzymes responsible for starch degradation at night remains elusive, and their response to redox transitions conflicts with the timing of the physiological events. Most of the enzymes of starch degradation are activated by reducing conditions, characteristic of daytime. Thus, redox control may have only a minor role during starch degradation at night, but could become relevant for daily stomatal opening in guard cells or in the re-allocation of fixed carbon in mesophyll cells in response to stress conditions.
Collapse
Affiliation(s)
- Diana Santelia
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Paolo Trost
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
48
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
49
|
|
50
|
Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases. Carbohydr Res 2015; 401:96-108. [DOI: 10.1016/j.carres.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023]
|