1
|
Egami Y, Kawai K, Araki N. Rit1-TBC1D10B signaling modulates FcγR-mediated phagosome formation in RAW264 macrophages. Life Sci Alliance 2024; 7:e202402651. [PMID: 39084876 PMCID: PMC11291910 DOI: 10.26508/lsa.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Phagocytosis is an important immune response that protects the host from pathogen invasion. Rit1 GTPase is known to be involved in diverse cellular processes. However, its role in FcγR-mediated phagocytosis remains unclear. Our live-cell imaging analysis revealed that Rit1 was localized to the membranes of F-actin-rich phagocytic cups in RAW264 macrophages. Rit1 knockout and expression of the GDP-locked Rit1 mutant suppressed phagosome formation. We also found that TBC1D10B, a GAP for the Rab family GTPases, colocalizes with Rit1 in the membranes of phagocytic cups. Expression and knockout studies have shown that TBC1D10B decreases phagosome formation in both Rab-GAP activity-dependent and -independent manners. Notably, the expression of the GDP-locked Rit1 mutant or Rit1 knockout inhibited the dissociation of TBC1D10B from phagocytic cups. In addition, the expression of the GTP-locked Rit1 mutant promoted the dissociation of TBC1D10B in phagocytic cups and restored the rate of phagosome formation in TBC1D10B-expressing cells. These data suggest that Rit1-TBC1D10B signaling regulates FcγR-mediated phagosome formation in macrophages.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| |
Collapse
|
2
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
3
|
Sun S, Liu Z, Jiang Q, Zou Y. Embryonic expression patterns of TBC1D10 subfamily genes in zebrafish. Gene Expr Patterns 2021; 43:119226. [PMID: 34843939 DOI: 10.1016/j.gep.2021.119226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022]
Abstract
TBC1D10 subfamily has three members TBC1D10A-C, with the physiological and pathological functions such as melanosome transport, exosome secretion, and T-cell activation. However, the gene expression patterns and functions of this subfamily during embryonic development remain mysterious. In this study, we took advantage of zebrafish model to elucidate the spatial and temporal expression patterns of TBC1D10 subfamily genes including tbc1d10aa, tbc1d10ab, tbc1d10b, and tbc1d10c. Whole-mount in situ hybridization results showed robust tbc1d10aa expression and faint tbc1d10b expression as maternal transcripts except tbc1d10ab and tbc1d10c. In addition to pectoral fins, otic vesicles, and pharyngeal arch tissues, varying degrees of expression of all four subfamily members were observed in brain tissues and eyes (retinal inner nuclear layer). Besides, tbc1d10ab exhibited unique and enriched expression in the developing liver. Despite genetic conservativeness, all four members of zebrafish TBC1D10 subfamily shared several similarities and exhibited some distinctions in the expression patterns, indicating that they might have different and exclusive functions to be further explored.
Collapse
Affiliation(s)
- Shuna Sun
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, PR China
| | - Ziyin Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Qiu Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
4
|
Miller MR, McDermitt DJ, Sauvanet C, Lombardo AJ, Zaman R, Bretscher A. The RabGAPs EPI64A and EPI64B regulate the apical structure of epithelial cells †. Mol Biol Cell 2021; 33:ar8. [PMID: 34757852 PMCID: PMC8886810 DOI: 10.1091/mbc.e21-05-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we report on the related TBC/RabGAPs EPI64A and EPI64B and show that they function to organize the apical aspect of epithelial cells. EPI64A binds the scaffolding protein EBP50/NHERF1, which itself binds active ezrin in epithelial cell microvilli. Epithelial cells additionally express EPI64B that also localizes to microvilli. However, EPI64B does not bind EBP50 and both proteins are shown to have a microvillar localization domain that spans the RabGAP domains. CRISPR/Cas9 was used to inactivate expression of each protein individually or both in Jeg-3 and Caco2 cells. In Jeg-3 cells, loss of EPI64B resulted in a reduction of apical microvilli, and a further reduction was seen in the double knockout, mostly likely due to misregulation of Rab8 and Rab35. In addition, apical junctions were partially disrupted in cells lacking EPI64A and accentuated in the double knockout. In Caco2 loss of EPI64B resulted in wavy junctions, whereas loss of both EPI64A and EPI64B had a severe phenotype often resulting in cells with a stellate apical morphology. In the knockout cells, the basal region of the cell remained unchanged, so EPI64A and EPI64B specifically localize to and regulate the morphology of the apical domain of polarized epithelial cells.
Collapse
Affiliation(s)
- Matthew R Miller
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| | - David J McDermitt
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| | - Cecile Sauvanet
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| | - Andrew J Lombardo
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| | - Riasat Zaman
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14850
| |
Collapse
|
5
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
6
|
Myung CH, Lee JE, Jo CS, Park JI, Hwang JS. Regulation of Melanophilin (Mlph) gene expression by the glucocorticoid receptor (GR). Sci Rep 2021; 11:16813. [PMID: 34413386 PMCID: PMC8376885 DOI: 10.1038/s41598-021-96276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Mlph plays a crucial role in regulating skin pigmentation through the melanosome transport process. Although Mlph is a major component involved in melanosome transport, the mechanism that regulates the expression of the Mlph gene has not been identified. In this study, we demonstrate that Mlph expression is regulated by the glucocorticoid receptor (GR). Alteration of GR activity using a specific GR agonist or antagonist only regulated the expression of Mlph among the 3 key melanosome transport proteins. Translocation of GR from the cytosol into the nucleus following Dex treatment was confirmed by separating the cytosol and nuclear fractions and by immunofluorescence staining. In ChIP assays, Dex induced GR binding to the Mlph promoter and we determined that Dex induced the GR binding motif on the Mlph promoter. Our findings contribute to understanding the regulation of Mlph expression and to the novel role of GR in Mlph gene expression.
Collapse
Affiliation(s)
- Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Chan Song Jo
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
7
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Wei Z, Zhang M, Li C, Huang W, Fan Y, Guo J, Khater M, Fukuda M, Dong Z, Hu G, Wu G. Specific TBC Domain-Containing Proteins Control the ER-Golgi-Plasma Membrane Trafficking of GPCRs. Cell Rep 2020; 28:554-566.e4. [PMID: 31291588 PMCID: PMC6639060 DOI: 10.1016/j.celrep.2019.05.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins. However, the molecular mechanisms underlying their cell surface delivery after synthesis remain poorly understood. Here, we screen the TBC domain-containing proteins, putative Rab GTPase-activating proteins (GAPs), in the intracellular trafficking of GPCRs and identify several TBC proteins that activity-dependently regulate the anterograde transport, en route from the endoplasmic reticulum to the Golgi or from the Golgi to the cell surface, of several prototypic GPCR members without affecting other plasma membrane proteins. We also show that TBC1D6 functions as a GAP for Rab26, physically associates with Rab26, and attenuates Rab26 interaction with GPCRs. Furthermore, both overexpression and depletion of TBC1D6 inhibit the post-Golgi traffic of GPCRs. These data demonstrate important roles of the TBC proteins in forward trafficking of nascent GPCRs and reveal regulatory mechanisms of GPCR targeting to the functional destination. Wei et al. report that several TBC proteins specifically and activity-dependently regulate ER-Golgi-plasma membrane transport of nascent GPCRs. They also show that TBC1D6 is a GAP for Rab26 and controls GPCR post-Golgi traffic. Their results reveal crucial roles of TBC proteins in and provide regulatory mechanisms of GPCR trafficking.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chunman Li
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yi Fan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jianhui Guo
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Zheng Dong
- Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
9
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
10
|
Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins. Sci Rep 2019; 9:13342. [PMID: 31527750 PMCID: PMC6746989 DOI: 10.1038/s41598-019-49646-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) and its ligands (VEGFs) are crucial players in vasculogenesis and angiogenesis. General blocking of this signaling system with antibodies or small molecule inhibitors is an established strategy to treat cancer and age-related macular degeneration. Nevertheless, the activated receptor can signal to discrete downstream signaling pathways and the equilibrium between these pathways is modulated by coreceptors and distinct isoforms of VEGF. Here we investigated the influence of Rab GTPase activating proteins (RabGAPs) on VEGFR2 signaling, tube formation, and migration of endothelial cells. We demonstrate that members of the TBC1D10 subfamily of RabGAPs have opposite effects. Whereas TBC1D10A leads to increased Erk1/2 signaling, TBC1D10B lowered Erk1/2 and p38 signaling and reduced tube formation in vitro. TBC1D10A is a RabGAP acting on RAB13 that was shown before to play a role in angiogenesis and we could indeed show colocalization of these two proteins with VEGFR2 in activated cells. In addition, we observed that cells expressing TBC1D10B show lower expression of VEGFR2 and NRP1 on filopodia of activated cells. Taken together, our systematic analysis of influence of RabGAPs on VEGFR2 signaling identifies the TBC1D10 subfamily members as modulators of angiogenesis.
Collapse
|
11
|
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, Morth JP, Neefjes J, Bakke O, Progida C. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci 2018; 131:jcs.216630. [PMID: 30111580 DOI: 10.1242/jcs.216630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Harmonie Perdreau-Dahl
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jens Preben Morth
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, 2300 RC Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
12
|
Koike S, Yamasaki K, Yamauchi T, Inoue M, Shimada-Ohmori R, Tsuchiyama K, Aiba S. Toll-like receptors 2 and 3 enhance melanogenesis and melanosome transport in human melanocytes. Pigment Cell Melanoma Res 2018; 31:570-584. [PMID: 29603875 DOI: 10.1111/pcmr.12703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
Abstract
Because little is known about how the innate immune response influences skin pigmentation, we examined whether Toll-like receptor (TLR) agonists participate in melanogenesis and melanosome transportation. We observed that TLR2/2 agonist HKLM and TLR3 agonist Poly(I:C) increased the amount of extracellular melanin from primary human epidermal melanocytes. HKLM, but not Poly(I:C), increased the melanogenic genes such as tyrosinase and dopachrome tautomerase. Poly(I:C) increased the expression of Rab27A, a molecule that facilitates melanosome transport to perimembranous actin filament. UVB irradiation induced Rab27A and melanosome transportation in a similar manner of Poly(I:C). SiRNA for TLR3 or Rab27A suppressed the perimembranous accumulation of Gp100-positive vesicles in melanocytes and decreased melanin transfer to neighboring keratinocytes induced by both Poly(I:C) and UVB. These results suggest that the microenvironment in the epidermis and innate immune stimuli, such as microbiome and ultraviolet represented here by TLR2 and TLR3 agonists, could affect the melanogenesis in human melanocytes.
Collapse
Affiliation(s)
- Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Inoue
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Shimada-Ohmori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichiro Tsuchiyama
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I. Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J 2017; 36:2790-2807. [PMID: 28848034 DOI: 10.15252/embj.201796463] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
Autophagy targets intracellular molecules, damaged organelles, and invading pathogens for degradation in lysosomes. Recent studies have identified autophagy receptors that facilitate this process by binding to ubiquitinated targets, including NDP52. Here, we demonstrate that the small guanosine triphosphatase Rab35 directs NDP52 to the corresponding targets of multiple forms of autophagy. The active GTP-bound form of Rab35 accumulates on bacteria-containing endosomes, and Rab35 directly binds and recruits NDP52 to internalized bacteria. Additionally, Rab35 promotes interaction of NDP52 with ubiquitin. This process is inhibited by TBC1D10A, a GAP that inactivates Rab35, but stimulated by autophagic activation via TBK1 kinase, which associates with NDP52. Rab35, TBC1D10A, and TBK1 regulate NDP52 recruitment to damaged mitochondria and to autophagosomes to promote mitophagy and maturation of autophagosomes, respectively. We propose that Rab35-GTP is a critical regulator of autophagy through recruiting autophagy receptor NDP52.
Collapse
Affiliation(s)
- Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho Sakyo-ku, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho Sakyo-ku, Kyoto, Japan
| | - Keiko Okamoto-Furuta
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho Sakyo-ku, Kyoto, Japan
| | - Haruyasu Kohda
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho Sakyo-ku, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho Sakyo-ku, Kyoto, Japan
| |
Collapse
|
14
|
Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem 2017; 292:11631-11640. [PMID: 28566286 PMCID: PMC5512060 DOI: 10.1074/jbc.m116.773333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Weibel–Palade bodies (WPB) are secretory organelles of endothelial cells that undergo evoked exocytosis following intracellular Ca2+ or cAMP elevation, thereby supplying the vasculature with factors controlling hemostasis. Several cytosolic and membrane-associated proteins, including the Rab family members Rab3, Rab15, and Rab27a, have been implicated in regulating the acute exocytosis of WPB. Here, we carried out a genome-wide screen to identify Rab pathways affecting WPB exocytosis. Overexpression of a specific subset of Rab GTPase–activating proteins (RabGAPs) inhibited histamine-evoked, Ca2+-dependent WPB exocytosis, presumably by inactivating the target Rab GTPases. Among these RabGAPs, we concentrated on TBC1D10A and showed that the inhibitory effect depends on its GAP activity. We confirmed that Rab35 was a target Rab of TBC1D10A in human endothelial cells; Rab35 interacted with TBC1D10A, and expression of the GAP-insensitive Rab35(Q67A) mutant rescued the inhibitory effect of TBC1D10A overexpression on WPB exocytosis. Furthermore, knockdown of Rab35 and expression of a dominant-negative Rab35 mutant both inhibited histamine-evoked secretion of the WPB cargos von Willebrand factor and P-selectin. Pulldown and co-immunoprecipitation experiments identified the ArfGAP with coiled-coil, Ank repeat, and pleckstrin homology domain–containing protein ACAP2 as an Rab35 effector in endothelial cells, and depletion as well as overexpression approaches revealed that ACAP2 acts as a negative regulator of WPB exocytosis. Interestingly, a known ACAP2 target, the small GTPase Arf6, supported histamine-evoked WPB exocytosis, as shown by knockdown and overexpression of a dominant-negative Arf6 mutant. Our data identify Rab35 as a novel regulator of WPB exocytosis, most likely acting through the downstream effectors ACAP2 and Arf6.
Collapse
Affiliation(s)
- Anja Biesemann
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Alexandra Gorontzi
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Francis Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
15
|
The small GTPase, Rab27, and its effectors and regulators participate in granule exocytosis by parotid acinar cells. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes – extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling.
Collapse
Affiliation(s)
- Ian John McGough
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Jean-Paul Vincent
- Laboratory of Epithelial Interactions, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
17
|
Yamaoka M, Ishizaki T, Kimura T. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells. Biol Pharm Bull 2016; 38:663-8. [PMID: 25947911 DOI: 10.1248/bpb.b14-00886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Collapse
Affiliation(s)
- Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine
| | | | | |
Collapse
|
18
|
Yamaoka M, Ando T, Terabayashi T, Okamoto M, Takei M, Nishioka T, Kaibuchi K, Matsunaga K, Ishizaki R, Izumi T, Niki I, Ishizaki T, Kimura T. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a. J Cell Sci 2015; 129:637-49. [PMID: 26683831 DOI: 10.1242/jcs.180141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023] Open
Abstract
In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages.
Collapse
Affiliation(s)
- Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Tomomi Ando
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Mitsuhiro Okamoto
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Masahiro Takei
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan JST, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ichiro Niki
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| |
Collapse
|
19
|
Marubashi S, Shimada H, Fukuda M, Ohbayashi N. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes. J Biol Chem 2015; 291:1427-40. [PMID: 26620560 DOI: 10.1074/jbc.m115.684043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes.
Collapse
Affiliation(s)
- Soujiro Marubashi
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan and
| | - Hikaru Shimada
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan and
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan and
| | - Norihiko Ohbayashi
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan and the Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
20
|
Yamaoka M, Ishizaki T, Kimura T. Interplay between Rab27a effectors in pancreatic β-cells. World J Diabetes 2015; 6:508-516. [PMID: 25897360 PMCID: PMC4398906 DOI: 10.4239/wjd.v6.i3.508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic β-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the β-cell volume constant.
Collapse
|
21
|
Cheng Y, Wang J, Wang Y, Ding M. Synaptotagmin 1 directs repetitive release by coupling vesicle exocytosis to the Rab3 cycle. eLife 2015; 4. [PMID: 25710274 PMCID: PMC4374511 DOI: 10.7554/elife.05118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
In response to Ca2+ influx, a synapse needs to release neurotransmitters quickly while immediately preparing for repeat firing. How this harmonization is achieved is not known. In this study, we found that the Ca2+ sensor synaptotagmin 1 orchestrates the membrane association/disassociation cycle of Rab3, which functions in activity-dependent recruitment of synaptic vesicles. In the absence of Ca2+, synaptotagmin 1 binds to Rab3 GTPase activating protein (GAP) and inhibits the GTP hydrolysis of Rab3 protein. Rab3 GAP resides on synaptic vesicles, and synaptotagmin 1 is essential for the synaptic localization of Rab3 GAP. In the presence of Ca2+, synaptotagmin 1 releases Rab3 GAP and promotes membrane disassociation of Rab3. Without synaptotagmin 1, the tight coupling between vesicle exocytosis and Rab3 membrane disassociation is disrupted. We uncovered the long-sought molecular apparatus linking vesicle exocytosis to Rab3 cycling and we also revealed the important function of synaptotagmin 1 in repetitive synaptic vesicle release. DOI:http://dx.doi.org/10.7554/eLife.05118.001 Neurons communicate with one another at junctions called synapses. The arrival of an electrical signal called an action potential causes calcium ions to enter the first cell, which in turn triggers the release of molecules called neurotransmitters into the gap between the neurons. The binding of these molecules to receptors on the second cell then enables the action potential to be regenerated. For cells to respond rapidly and reliably to incoming electrical signals, they must maintain a supply of vesicles—the packages that contain neurotransmitters—close to the site where they are released from the first cell. The vesicles are held in contact with the cell membrane by a structure called the docking complex. A number of the proteins in this docking complex have been identified, including two that have been referred to as the ‘yin and yang’ of vesicle fusion: synaptotagmin, which promotes fusion, and Rab3, which limits it. However, little is known about how these and other proteins interact to keep vesicles docked at the membrane. Cheng, Wang et al. have now clarified the docking process with the aid of experiments in nematode worms. In resting neurons that are not releasing neurotransmitters, synaptotagmin (‘yin’) binds to an enzyme called GAP and prevents it from converting GTP—an energy-storage molecule—into GDP. Given that Rab3 (‘yang’) requires a molecule of GTP to power its own activity, the actions of synaptotagmin ensure that Rab3 has enough energy to remain bound to other proteins within the docking complex. However, when an action potential arrives, calcium ions enter the neuron, and some of them bind to synaptotagmin. This disrupts its interaction with the GAP enzyme, which thus becomes free to convert the GTP molecule bound to Rab3 into GDP. The loss of its energy source causes Rab3 to separate from its binding partners, and docking complex collapses. As a result, vesicles fuse with the membrane and release neurotransmitter molecules into the synapse. Given that Rab3 and synaptotagmin have changed little over the course of evolution, it is highly likely that the same indirect interaction between these two proteins also regulates the release of transmitter at synapses in the mammalian brain. DOI:http://dx.doi.org/10.7554/eLife.05118.002
Collapse
Affiliation(s)
- Yunsheng Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaming Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T. Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells. Biomed Pharmacother 2015; 70:206-12. [PMID: 25776502 DOI: 10.1016/j.biopha.2015.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022] Open
Abstract
4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation.
Collapse
Affiliation(s)
- Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan.
| | - Mizuho Inagaki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| |
Collapse
|
23
|
Gallo LI, Liao Y, Ruiz WG, Clayton DR, Li M, Liu YJ, Jiang Y, Fukuda M, Apodaca G, Yin XM. TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Mol Biol Cell 2014; 25:3779-97. [PMID: 25232007 PMCID: PMC4230784 DOI: 10.1091/mbc.e13-10-0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the GEFs and GAPs that regulate its GTP-GDP cycle. TBC1D9B is identified as a Rab11a GAP in MDCK cells, where it regulates the Rab11a-dependent basolateral-to-apical transcytotic pathway. Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs) that regulate its GTP-GDP cycle. We observed that in the presence of Mg2+ (2.5 mM), TBC1D9B interacted via its Tre2-Bub2-Cdc16 (TBC) domain with Rab11a, Rab11b, and Rab4a in a nucleotide-dependent manner. However, only Rab11a was a substrate for TBC1D9B-stimulated GTP hydrolysis. At limiting Mg2+ concentrations (<0.5 mM), Rab8a was an additional substrate for this GAP. In polarized Madin–Darby canine kidney cells, endogenous TBC1D9B colocalized with Rab11a-positive recycling endosomes but less so with EEA1-positive early endosomes, transferrin-positive recycling endosomes, or late endosomes. Overexpression of TBC1D9B, but not an inactive mutant, decreased the rate of basolateral-to-apical IgA transcytosis—a Rab11a-dependent pathway—and shRNA-mediated depletion of TBC1D9B increased the rate of this process. In contrast, TBC1D9B had no effect on two Rab11a-independent pathways—basolateral recycling of the transferrin receptor or degradation of the epidermal growth factor receptor. Finally, expression of TBC1D9B decreased the amount of active Rab11a in the cell and concomitantly disrupted the interaction between Rab11a and its effector, Sec15A. We conclude that TBC1D9B is a Rab11a GAP that regulates basolateral-to-apical transcytosis in polarized MDCK cells.
Collapse
Affiliation(s)
- Luciana I Gallo
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yong Liao
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dennis R Clayton
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Min Li
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yu Jiang
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gerard Apodaca
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiao-Ming Yin
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
24
|
Abstract
Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates tight junction assembly and polarized membrane transport in epithelial cells. Using yeast two-hybrid screen, we identified MICAL-like1 (MICAL-L1), a protein that interacts with GTP-bound Rab13 and shares a similar domain organization with MICAL protein family. MICAL-L1 has a calponin homology, Lin11, Isl-1 & Mec-3 (LIM), proline-rich, and coiled-coil domains. It is associated with late and recycling endosomes. Time-lapse video microscopy shows that GFP-Rab7 and cherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of tight junction proteins, but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in late endosomal compartments. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data show that MICAL-L1 inhibits EGFR degradation, suggesting that MICAL-L1 is involved in sorting/targeting the receptor to the recycling pathway. They provide novel insights into MICAL-L1/Rab protein complex that can regulate EGFR trafficking/signaling.
Collapse
Affiliation(s)
- Ahmed Zahraoui
- Phagocytosis and Bacterial Invasion Laboratory, INSERM U.1016-CNRS UMR8104, Institut Cochin, Université Paris Descartes, Paris, France.
| |
Collapse
|
25
|
Arango Duque G, Fukuda M, Turco SJ, Stäger S, Descoteaux A. Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI. THE JOURNAL OF IMMUNOLOGY 2014; 193:2363-72. [PMID: 25063865 DOI: 10.4049/jimmunol.1303043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; and
| | - Salvatore J Turco
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
26
|
Cazares VA, Subramani A, Saldate JJ, Hoerauf W, Stuenkel EL. Distinct actions of Rab3 and Rab27 GTPases on late stages of exocytosis of insulin. Traffic 2014; 15:997-1015. [PMID: 24909540 DOI: 10.1111/tra.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.
Collapse
Affiliation(s)
- Victor A Cazares
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | |
Collapse
|
27
|
Matsui T, Noguchi K, Fukuda M. Dennd3 functions as a guanine nucleotide exchange factor for small GTPase Rab12 in mouse embryonic fibroblasts. J Biol Chem 2014; 289:13986-95. [PMID: 24719330 DOI: 10.1074/jbc.m113.546689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPase Rab12 regulates mTORC1 (mammalian target of rapamycin complex 1) activity and autophagy through controlling PAT4 (proton/amino acid transporter 4) trafficking from recycling endosomes to lysosomes, where PAT4 is degraded. However, the precise regulatory mechanism of the Rab12-mediated membrane trafficking pathway remained to be determined because a physiological Rab12-GEF (guanine nucleotide exchange factor) had yet to be identified. In this study we performed functional analyses of Dennd3, which has recently been shown to possess a GEF activity toward Rab12 in vitro. The results showed that knockdown of Dennd3 in mouse embryonic fibroblast cells caused an increase in the amount of PAT4 protein, the same as Rab12 knockdown did, and knockdown of Dennd3 and overexpression of Dennd3 were found to result in an increase and a decrease, respectively, in the intracellular amino acid concentration. Dennd3 overexpression was also found to reduce mTORC1 activity and promoted autophagy in a Rab12-dependent manner. Unexpectedly, however, Dennd3 knockdown had no effect on mTORC1 activity or autophagy despite increasing the intracellular amino acid concentration. Further study showed that Dennd3 knockdown reduced Akt activity, and the reduction in Akt activity is likely to have canceled out amino acid-induced mTORC1 activation through PAT4. These findings indicated that Dennd3 not only functions as a Rab12-GEF but also modulates Akt signaling in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Takahide Matsui
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenta Noguchi
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
28
|
Li W, Hu Y, Jiang T, Han Y, Han G, Chen J, Li X. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64. APMIS 2014; 122:1080-7. [PMID: 24673604 DOI: 10.1111/apm.12261] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
Abstract
Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.
Collapse
Affiliation(s)
- Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Ishida M, Arai SP, Ohbayashi N, Fukuda M. The GTPase-deficient Rab27A(Q78L) mutant inhibits melanosome transport in melanocytes through trapping of Rab27A effector protein Slac2-a/melanophilin in their cytosol: development of a novel melanosome-targetinG tag. J Biol Chem 2014; 289:11059-11067. [PMID: 24584932 DOI: 10.1074/jbc.m114.552281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPase Rab27A is a crucial regulator of actin-based melanosome transport in melanocytes, and functionally defective Rab27A causes human Griscelli syndrome type 2, which is characterized by silvery hair. A GTPase-deficient, constitutively active Rab27A(Q78L) mutant has been shown to act as an inhibitor of melanosome transport and to induce perinuclear aggregation of melanosomes, but the molecular mechanism by which Rab27A(Q78L) inhibits melanosome transport remained to be determined. In this study, we attempted to identify the primary cause of the perinuclear melanosome aggregation induced by Rab27A(Q78L). The results showed that Rab27A(Q78L) is unable to localize on mature melanosomes and that its inhibitory activity on melanosome transport is completely dependent on its binding to the Rab27A effector Slac2-a/melanophilin. When we forcibly expressed Rab27A(Q78L) on mature melanosomes by using a novel melanosome-targeting tag that we developed in this study and named the MST tag, the MST-Rab27A(Q78L) fusion protein behaved in the same manner as wild-type Rab27A. It localized on mature melanosomes without inducing melanosome aggregation and restored normal peripheral melanosome distribution in Rab27A-deficient cells. These findings indicate that the GTPase activity of Rab27A is required for its melanosome localization but is not required for melanosome transport.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Saki P Arai
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
30
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
31
|
Hou Y, Chen X, Tolmachova T, Ernst SA, Williams JA. EPI64B acts as a GTPase-activating protein for Rab27B in pancreatic acinar cells. J Biol Chem 2013; 288:19548-57. [PMID: 23671284 DOI: 10.1074/jbc.m113.472134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
32
|
Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 2013; 14:450-7. [PMID: 23478338 DOI: 10.1038/embor.2013.32] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino-acid transporter. Knockdown of Rab12 results in inhibition of autophagy and in increased activity of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), an upstream regulator of autophagy. We also found that Rab12 promotes constitutive degradation of PAT4 (proton-coupled amino-acid transporter 4), whose accumulation in Rab12-knockdown cells modulates mTORC1 activity and autophagy. Our findings reveal a new mechanism of regulation of mTORC1 signalling and autophagy, that is, quality control of PAT4 by Rab12.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | |
Collapse
|
33
|
Nagai H, Yasuda S, Ohba Y, Fukuda M, Nakamura T. All members of the EPI64 subfamily of TBC/RabGAPs also have GAP activities towards Ras. J Biochem 2012; 153:283-8. [PMID: 23248241 DOI: 10.1093/jb/mvs147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The importance of interconnective signalling networks between distinct GTPases and their regulators is being recognized. EPI64C/TBC1D10C/carabin, a haematopoietically enriched GTPase-activating protein (GAP) for Rab35, has been shown to exhibit RasGAP activity. Owing to the diverged Rab specificities among the EPI64 members (EPI64A-C) and the relatively weak sequence conservation between EPI64A/B and EPI64C in their catalytic TBC domains, it is difficult to predict whether EPI64A and B will also have RasGAP activities. Therefore, in this study, we examined the RasGAP activities of all three EPI64 subfamily members. We found that EPI64A-C exhibited in vivo GAP activities towards Ras using three independent methods, spectrofluorometry with Förster resonance energy transfer (FRET) sensors, the Bos' pull-down assay and time-lapse FRET imaging. EPI64A and B were predominantly localized at the periphery of COS-7 cells. In COS-7 cells, confocal FRET imaging showed that H-Ras activity was higher at the Golgi than at the plasma membrane. Thus, we propose that EPI64A and B, which are ubiquitously expressed members of the EPI64 subfamily, inactivate Ras and certain Rabs at the periphery of cells.
Collapse
Affiliation(s)
- Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
34
|
Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A 2012; 109:19691-6. [PMID: 23150559 PMCID: PMC3511769 DOI: 10.1073/pnas.1210916109] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations affecting ciliary components cause a series of related genetic disorders in humans, including nephronophthisis (NPHP), Joubert syndrome (JBTS), Meckel-Gruber syndrome (MKS), and Bardet-Biedl syndrome (BBS), which are collectively termed "ciliopathies." Recent protein-protein interaction studies combined with genetic analyses revealed that ciliopathy-related proteins form several functional networks/modules that build and maintain the primary cilium. However, the precise function of many ciliopathy-related proteins and the mechanisms by which these proteins are targeted to primary cilia are still not well understood. Here, we describe a protein-protein interaction network of inositol polyphosphate-5-phosphatase E (INPP5E), a prenylated protein associated with JBTS, and its ciliary targeting mechanisms. INPP5E is targeted to the primary cilium through a motif near the C terminus and prenyl-binding protein phosphodiesterase 6D (PDE6D)-dependent mechanisms. Ciliary targeting of INPP5E is facilitated by another JBTS protein, ADP-ribosylation factor-like 13B (ARL13B), but not by ARL2 or ARL3. ARL13B missense mutations that cause JBTS in humans disrupt the ARL13B-INPP5E interaction. We further demonstrate interactions of INPP5E with several ciliary and centrosomal proteins, including a recently identified ciliopathy protein centrosomal protein 164 (CEP164). These findings indicate that ARL13B, INPP5E, PDE6D, and CEP164 form a distinct functional network that is involved in JBTS and NPHP but independent of the ones previously defined by NPHP and MKS proteins.
Collapse
Affiliation(s)
| | - Katie Weihbrecht
- Department of Ophthalmology and Visual Sciences
- Department of Pediatrics
| | | | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, IA 52242
| | - Robert M. Pope
- Proteomics Facility, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
35
|
Ishida M, Ohbayashi N, Maruta Y, Ebata Y, Fukuda M. Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J Cell Sci 2012; 125:5177-87. [PMID: 22854043 DOI: 10.1242/jcs.109314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanosomes are transported to the cell periphery of melanocytes by coordination between bidirectional microtubule-dependent movements and unidirectional actin-dependent movement. Although both the mechanism of the actin-dependent melanosome transport and the mechanism of the microtubule-dependent retrograde melanosome transport in mammalian skin melanocytes have already been determined, almost nothing is known about the mechanism of the microtubule-dependent anterograde melanosome transport. Small GTPase Rab proteins are common regulators of membrane traffic in all eukaryotes, and in this study we performed genome-wide screening for Rab proteins that are involved in anterograde melanosome transport by expressing 60 different constitutive active (and negative) mutants, and succeeded in identifying Rab1A, originally described as a Golgi-resident Rab, as a prime candidate. Endogenous Rab1A protein was found to be localized to mature melanosomes in melanocytes, and its functional ablation either by siRNA-mediated knockdown or by overexpression of a cytosolic form of Rab1A-GTPase-activating protein/TBC1D20 induced perinuclear melanosome aggregation. The results of time-lapse imaging further revealed that long-range anterograde melanosome movements were specifically suppressed in Rab1A-deficient melanocytes, whereas retrograde melanosome transport occurred normally. Taken together, these findings indicate that Rab1A is the first crucial component of the anterograde melanosome transport machinery to be identified in mammalian skin melanocytes.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
36
|
Schottenfeld-Roames J, Ghabrial AS. Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. Nat Cell Biol 2012; 14:386-93. [PMID: 22407366 PMCID: PMC3334817 DOI: 10.1038/ncb2454] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/03/2012] [Indexed: 11/27/2022]
Abstract
Seamless tubes form intracellularly without cell-cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres. We find that mutations in multiple components of the dynein motor complex block seamless tube growth, raising the possibility that the lumenal membrane forms through minus-end-directed transport of apical membrane components along microtubules. Growth of seamless tubes is polarized along the proximodistal axis by Rab35 and its apical membrane-localized GAP, Whacked. Strikingly, loss of whacked (or constitutive activation of Rab35) leads to tube overgrowth at terminal cell branch tips, whereas overexpression of Whacked (or dominant-negative Rab35) causes formation of ectopic tubes surrounding the terminal cell nucleus. Thus, vesicle trafficking has key roles in making and shaping seamless tubes.
Collapse
Affiliation(s)
- Jodi Schottenfeld-Roames
- Department of Cell & Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd., 1214 BRB II/III, Philadelphia, PA 19104
| | - Amin S. Ghabrial
- Department of Cell & Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd., 1214 BRB II/III, Philadelphia, PA 19104
| |
Collapse
|
37
|
Ohbayashi N, Fukuda M. Role of Rab family GTPases and their effectors in melanosomal logistics. J Biochem 2012; 151:343-51. [DOI: 10.1093/jb/mvs009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13:67-73. [PMID: 22251903 DOI: 10.1038/nrm3267] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs) are characterized by the presence of highly conserved TBC domains and act as negative regulators of RABs. The importance of TBC/RABGAPs in the regulation of specific intracellular trafficking routes is now emerging, as is their role in different diseases. Importantly, TBC/RABGAPs act as key regulatory nodes, integrating signalling between RABs and other small GTPases and ensuring the appropriate retrieval, transport and delivery of different intracellular vesicles.
Collapse
|
39
|
Hokanson DE, Bretscher AP. EPI64 interacts with Slp1/JFC1 to coordinate Rab8a and Arf6 membrane trafficking. Mol Biol Cell 2012; 23:701-15. [PMID: 22219378 PMCID: PMC3279397 DOI: 10.1091/mbc.e11-06-0521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ETOC: EPI64 is a TBC domain containing a microvillar protein that binds to Arf6 and induces actin-coated vacuole accumulation when overexpressed. EPI64 does this by stabilizing Arf6-GTP levels to induce clathrin-independent endocytosis and by preventing endosomes from maturing to the tubular endosome by lowering Rab8a GTP levels via association with JFC1. Cell function requires the integration of cytoskeletal organization and membrane trafficking. Small GTP-binding proteins are key regulators of these processes. We find that EPI64, an apical microvillar protein with a Tre-2/Bub2/Cdc16 (TBC) domain that stabilizes active Arf6 and has RabGAP activity, regulates Arf6-dependent membrane trafficking. Expression of EPI64 in HeLa cells induces the accumulation of actin-coated vacuoles, a distinctive phenotype seen in cells expressing constitutively active Arf6. Expression of EPI64 with defective RabGAP activity does not induce vacuole formation. Coexpression of Rab8a suppresses the vacuole phenotype induced by EPI64, and EPI64 expression lowers the level of Rab8-GTP in cells, strongly suggesting that EPI64 has GAP activity toward Rab8a. JFC1, an effector for Rab8a, colocalizes with and binds directly to a C-terminal region of EPI64. Together this region and the N-terminal TBC domain of EPI64 are required for the accumulation of vacuoles. Through analysis of mutants that uncouple JFC1 from either EPI64 or from Rab8-GTP, our data suggest a model in which EPI64 binds JFC1 to recruit Rab8a-GTP for deactivation by the RabGAP activity of EPI64. We propose that EPI64 regulates membrane trafficking both by stabilizing Arf6-GTP and by inhibiting the recycling of membrane through the tubular endosome by decreasing Rab8a-GTP levels.
Collapse
Affiliation(s)
- David E Hokanson
- Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Ohbayashi N, Yatsu A, Tamura K, Fukuda M. The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol Biol Cell 2011; 23:669-78. [PMID: 22171327 PMCID: PMC3279394 DOI: 10.1091/mbc.e11-04-0324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ETOC: Varp contains two Rab-signaling domains—VPS9/Rab21-GEF domain and ANKR1/Rab32/38 effector domain—whose functional relationship had not previously been determined. It is shown that the Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for forskolin-induced dendrite formation in melanocytes. Vacuolar protein sorting 9 (VPS9)–ankyrin-repeat protein (Varp) has recently been identified as an effector molecule for two small GTPases—Rab32 and Rab38—in the transport of a melanogenic enzyme tyrosinase-related protein 1 (Tyrp1) to melanosomes in melanocytes. Although Varp contains a Rab21–guanine nucleotide exchange factor (GEF) domain (i.e., VPS9 domain), since Rab21-GEF activity is not required for Tyrp1 transport, nothing is known about the physiological significance of the Rab21-GEF activity in melanocytes. Here we show by knockdown-rescue experiments that the Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for forskolin-induced dendrite formation of cultured melanocytes. We found that Varp-deficient cells are unable to extend dendrites in response to forskolin stimulation and that reexpression of wild-type Varp or a Rab32/38-binding–deficient mutant Varp(Q509A/Y550A) in Varp-deficient cells completely restores their ability to form dendrites. By contrast, VPS9 mutants (D310A and Y350A) and a vesicle-associated membrane protein 7 (VAMP7)-binding–deficient mutant were unable to support forskolin-induced dendrite formation in Varp-deficient cells. These findings indicate that the Rab21-GEF activity and Rab32/38 binding activity of Varp are required for different melanocyte functions, that is, Rab21 activation by the VPS9 domain is required for dendrite formation, and the Rab32/38 effector function of the ankyrin repeat 1 domain is required for Tyrp1 transport to melanosomes, although VAMP7-binding ability is required for both functions.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing evidence in vertebrate cells that class V myosins not only tether organelles to actin but also can serve as short-range, point-to-point organelle transporters, usually following long-range, microtubule-dependent organelle transport.
Collapse
|
42
|
Imai A, Yoshie S, Ishibashi K, Haga-Tsujimura M, Nashida T, Shimomura H, Fukuda M. EPI64 protein functions as a physiological GTPase-activating protein for Rab27 protein and regulates amylase release in rat parotid acinar cells. J Biol Chem 2011; 286:33854-62. [PMID: 21832089 DOI: 10.1074/jbc.m111.281394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab27, a small GTPase, is generally recognized as an important regulator of secretion that interacts with Rab27-specific effectors to regulate events in a wide variety of cells, including endocrine and exocrine cells. However, the mechanisms governing the spatio-temporal regulation of GTPase activity of Rab27 are not firmly established, and no GTPase-activating protein (GAP) specific for Rab27 has been identified in secretory cells. We previously showed that expression of EPI64, a Tre-2/Bub2/Cdc16 (TBC)-domain-containing protein, in melanocytes inactivates endogenous Rab27A on melanosomes (Itoh, T., and Fukuda, M. (2006) J. Biol. Chem. 281, 31823-31831), but the EPI64 role in secretory cells has never been investigated. In this study, we investigated the effect of EPI64 on Rab27 in isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Subcellular fractionation and immunohistochemical analyses indicated that EPI64 was enriched on the apical plasma membrane of parotid acinar cells. We found that an antibody against the TBC/Rab-GAP domain of EPI64 inhibited the reduction in levels of the endogenous GTP-Rab27 in streptolysin-O-permeabilized parotid acinar cells and suppressed amylase release in a dose-dependent manner. We also found that the levels of EPI64 mRNA and EPI64 protein increased after IPR stimulation, and that treatment with actinomycin D or antisense-EPI64 oligonucleotides suppressed the increase of EPI64 mRNA/EPI64 protein and the amount of amylase released. Our findings indicated that EPI64 acted as a physiological Rab27-GAP that enhanced GTPase activity of Rab27 in response to IPR stimulation, and that this activity is required for IPR-induced amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Matsui T, Itoh T, Fukuda M. Small GTPase Rab12 regulates constitutive degradation of transferrin receptor. Traffic 2011; 12:1432-43. [PMID: 21718402 DOI: 10.1111/j.1600-0854.2011.01240.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transferrin receptor (TfR) is a well-characterized plasma membrane protein that travels between the plasma membrane and intracellular membrane compartments. Although TfR itself should undergo degradation, the same as other intracellular proteins, whether a specific TfR degradation pathway exists has never been investigated. In this study, we screened small GTPase Rab proteins, common regulators of membrane traffic in all eukaryotes, for proteins that are specifically involved in TfR degradation. We performed the screening by three sequential methods, i.e. colocalization of Rab with TfR, colocalization with lysosomes, and knockdown of Rab by specific small interfering RNA (siRNA), and succeeded in identifying Rab12, a previously uncharacterized Rab isoform, as a prime candidate among the 60 human or mouse Rabs screened. We showed that expression of a constitutive active mutant of Rab12 reduced the amount of TfR protein, whereas functional ablation of Rab12 by knockdown of either Rab12 itself or its upstream activator Dennd3 increased the amount of TfR protein. Interestingly, however, knockdown of Rab12 had no effect on the degradation of epidermal growth factor receptor (EGFR) protein, i.e. on a conventional degradation pathway. Our findings indicated that TfR is constitutively degraded by a Rab12-dependent pathway (presumably from recycling endosomes to lysosomes), which is independent of the conventional degradation pathway.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | |
Collapse
|
44
|
Fukuda M, Kobayashi H, Ishibashi K, Ohbayashi N. Genome-wide investigation of the Rab binding activity of RUN domains: development of a novel tool that specifically traps GTP-Rab35. Cell Struct Funct 2011; 36:155-70. [PMID: 21737958 DOI: 10.1247/csf.11001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RUN domain is a less conserved protein motif that consists of approximately 70 amino acids, and because RUN domains are often found in proteins involved in the regulation of Rab small GTPases, the RUN domain has been suggested to be involved in Rab-mediated membrane trafficking, possibly as a Rab-binding site. However, since the Rab binding activity of most RUN domains has never been investigated, in this study we performed a genome-wide analysis of the Rab binding activity of the RUN domains of 19 different RUN domain-containing proteins by yeast two-hybrid assays with 60 different Rabs as bait. The results showed that only six of them interact with specific Rab isoforms with different Rab binding specificity, i.e., DENND5A/B with Rab6A/B, PLEKHM2 with Rab1A, RUFY2/3 with Rab33, and RUSC2 with Rab1/Rab35/Rab41. We also identified the minimal functional Rab35-binding site of RUSC2 (amino acid residues 982-1199) and succeeded in developing a novel GTP-Rab35-specific trapper, which we named RBD35 (Rab-binding domain specific for Rab35). Recombinant RBD35 was found to trap GTP-Rab35 specifically both in vitro and in PC12 cells, and overexpression of fluorescently tagged RBD35 in PC12 cells strongly inhibited nerve growth factor-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Japan.
| | | | | | | |
Collapse
|
45
|
Kimura T, Niki I. Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:219-23. [PMID: 21762718 DOI: 10.1016/j.pbiomolbio.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
The small GTPases have the 'active' GTP-bound and 'inactive' GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 8795593, Japan
| | | |
Collapse
|
46
|
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. ACTA ACUST UNITED AC 2011; 192:839-53. [PMID: 21383079 PMCID: PMC3051816 DOI: 10.1083/jcb.201008107] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GAP activity of OATL1, which is recruited to autophagosomes by Atg8, regulates autophagosome–lysosome fusion. Macroautophagy is a bulk degradation system conserved in all eukaryotic cells. A ubiquitin-like protein, Atg8, and its homologues are essential for autophagosome formation and act as a landmark for selective autophagy of aggregated proteins and damaged organelles. In this study, we report evidence demonstrating that OATL1, a putative Rab guanosine triphosphatase–activating protein (GAP), is a novel binding partner of Atg8 homologues in mammalian cells. OATL1 is recruited to isolation membranes and autophagosomes through direct interaction with Atg8 homologues and is involved in the fusion between autophagosomes and lysosomes through its GAP activity. We further provide evidence that Rab33B, an Atg16L1-binding protein, is a target substrate of OATL1 and is involved in the fusion between autophagosomes and lysosomes, the same as OATL1. Because both its GAP activity and its Atg8 homologue–binding activity are required for OATL1 to function, we propose a model that OATL1 uses Atg8 homologues as a scaffold to exert its GAP activity and to regulate autophagosomal maturation.
Collapse
Affiliation(s)
- Takashi Itoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.
Collapse
|
48
|
Abstract
The output and time-course of insulin release from pancreatic beta-cells are elegantly controlled. The secretory process comprises pre-exocytotic stages, exocytosis and post-exocytotic stages. The small GTPase Rab27a is known to regulate pre-exocytotic stages that determine the size of the readily-releasable pool of insulin granules. GTP-Rab27a and its specific effectors are responsible for this process like other GTPases. Recently, we searched for Rab27a-interacting proteins and identified coronin 3. Unexpectedly, coronin 3 only bound GDP-Rab27a and this interaction regulated post-exocytotic stages via reorganization of the actin cytoskeleton. Since glucose converts Rab27a from the GTP- to GDP-bound form, we suggested that Rab27a plays a crucial role in stimulus-endocytosis coupling in pancreatic beta-cells, and that this is the key molecule for membrane recycling of insulin granules. In this review, we provide an overview of the roles of Rab27a and its GTP- and GDP-dependent effectors in the insulin secretory pathway of pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | | |
Collapse
|
49
|
Garbett D, LaLonde DP, Bretscher A. The scaffolding protein EBP50 regulates microvillar assembly in a phosphorylation-dependent manner. ACTA ACUST UNITED AC 2010; 191:397-413. [PMID: 20937695 PMCID: PMC2958488 DOI: 10.1083/jcb.201004115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanisms by which epithelial cells regulate the presence of microvilli on their apical surface are largely unknown. A potential regulator is EBP50/NHERF1 (ERM-binding phosphoprotein of 50 kD/Na(+)-H(+) exchanger regulatory factor), a microvillar scaffolding protein with two PDZ domains followed by a C-terminal ezrin-binding domain. Using RNAi and expression of RNAi-resistant EBP50 mutants we systematically show that EBP50 is necessary for microvillar assembly and requires that EBP50 has both a functional first PDZ domain and an ezrin-binding site. Expression of mutants mimicking Cdc2 or PKC phosphorylation are nonfunctional in microvillar assembly. Biochemical analysis reveals that these mutants are defective in PDZ1 accessibility when PDZ2 is occupied, and can be rendered functional in vivo by additional mutation of PDZ2. EBP50 is not necessary for mitotic cell microvilli, and PKC activation causes a rearrangement of microvilli on cells due to phosphorylation-dependent loss of EBP50 function. Thus, EBP50 is a critical factor that regulates microvilli assembly and whose activity is regulated by signaling pathways and occupation of its PDZ2 domain.
Collapse
Affiliation(s)
- Damien Garbett
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
50
|
Hsu C, Morohashi Y, Yoshimura SI, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. ACTA ACUST UNITED AC 2010; 189:223-32. [PMID: 20404108 PMCID: PMC2856897 DOI: 10.1083/jcb.200911018] [Citation(s) in RCA: 616] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A screen in oligodendrocytes establishes a Rab family member and its GAPs as regulators of exosome secretion by controlling endocytic vesicle docking with the plasma membrane. Oligodendrocytes secrete vesicles into the extracellular space, where they might play a role in neuron–glia communication. These exosomes are small vesicles with a diameter of 50–100 nm that are formed within multivesicular bodies and are released after fusion with the plasma membrane. The intracellular pathways that generate exosomes are poorly defined. Because Rab family guanosine triphosphatases (GTPases) together with their regulators are important membrane trafficking organizers, we investigated which Rab GTPase-activating proteins interfere with exosome release. We find that TBC1D10A–C regulate exosome secretion in a catalytic activity–dependent manner. We show that Rab35 is the target of TBC1D10A–C and that the inhibition of Rab35 function leads to intracellular accumulation of endosomal vesicles and impairs exosome secretion. Rab35 localizes to the surface of oligodendroglia in a GTP-dependent manner, where it increases the density of vesicles, suggesting a function in docking or tethering. These findings provide a basis for understanding the biogenesis and function of exosomes in the central nervous system.
Collapse
Affiliation(s)
- Chieh Hsu
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|