1
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
3
|
Meng Y, Hong C, Yang S, Qin Z, Yang L, Huang Y. Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 2023; 26:506. [PMID: 37920433 PMCID: PMC10618932 DOI: 10.3892/ol.2023.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Ubiquitin-specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X-targeted pharmacological therapeutics in cancer development are discussed.
Collapse
Affiliation(s)
- Yimei Meng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Sifu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhiquan Qin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yumei Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
4
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
5
|
Wang B, Tang X, Yao L, Wang Y, Chen Z, Li M, Wu N, Wu D, Dai X, Jiang H, Ai D. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest 2022; 132:154217. [PMID: 35389885 PMCID: PMC9106359 DOI: 10.1172/jci154217] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Subendothelial macrophage internalization of modified lipids and foam cell formation are hallmarks of atherosclerosis. Deubiquitinating enzymes (DUBs) are involved in various cellular activities; however, their role in foam cell formation is not fully understood. Here, using a loss-of-function lipid accumulation screening, we identified ubiquitin-specific peptidase 9 X-linked (USP9X) as a factor that suppressed lipid uptake in macrophages. We found that USP9X expression in lesional macrophages was reduced during atherosclerosis development in both humans and rodents. Atherosclerotic lesions from macrophage USP9X-deficient mice showed increased macrophage infiltration, lipid deposition, and necrotic core content than control apolipoprotein E–KO (Apoe–/–) mice. Additionally, loss-of-function USP9X exacerbated lipid uptake, foam cell formation, and inflammatory responses in macrophages. Mechanistically, the class A1 scavenger receptor (SR-A1) was identified as a USP9X substrate that removed the K63 polyubiquitin chain at the K27 site. Genetic or pharmacological inhibition of USP9X increased SR-A1 cell surface internalization after binding of oxidized LDL (ox-LDL). The K27R mutation of SR-A1 dramatically attenuated basal and USP9X knockdown–induced ox-LDL uptake. Moreover, blocking binding of USP9X to SR-A1 with a cell-penetrating peptide exacerbated foam cell formation and atherosclerosis. In this study, we identified macrophage USP9X as a beneficial regulator of atherosclerosis and revealed the specific mechanisms for the development of potential therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Biqing Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuening Tang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liu Yao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yuxin Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Chen
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Mengqi Li
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Naishi Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dawei Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangchen Dai
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Catino G, Genovese S, Di Tommaso S, Orlando V, Petti MT, De Bernardi ML, Dallapiccola B, Novelli A, Ulgheri L, Piscopo C, Alesi V. Reciprocal Xp11.4p11.3 microdeletion/microduplication spanning USP9X, DDX3X, and CASK genes in two patients with syndromic intellectual disability. Am J Med Genet A 2022; 188:1836-1847. [PMID: 35238482 DOI: 10.1002/ajmg.a.62694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022]
Abstract
Only a few patients with deletions or duplications at Xp11.4, bridging USP9X, DDX3X, and CASK genes, have been described so far. Here, we report on a female harboring a de novo Xp11.4p11.3 deletion and a male with an overlapping duplication inherited from an unaffected mother, presenting with syndromic intellectual disability. We discuss the role of USP9X, DDX3X, and CASK genes in human development and describe the effects of Xp11.4 deletion and duplications in female and male patients, respectively.
Collapse
Affiliation(s)
- Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Silvia Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Petti
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Bruno Dallapiccola
- Genetics and Rare Disease Research Division, Bambino Gesu Children Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Lucia Ulgheri
- Department of Biomedical Sciences, Clinical Genetics Service, Azienda Ospedaliero-Universitaria, Sassari, Italy
| | - Carmelo Piscopo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proc Natl Acad Sci U S A 2021; 118:2101592118. [PMID: 34518219 DOI: 10.1073/pnas.2101592118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype that lacks targeted treatment options. The activation of the Notch developmental signaling pathway, which is a feature of TNBC, results in the secretion of proinflammatory cytokines and the recruitment of protumoral macrophages to the tumor microenvironment. While the Notch pathway is an obvious therapeutic target, its activity is ubiquitous, and predictably, anti-Notch therapies are burdened with significant on-target side effects. Previously, we discovered that, under conditions of cellular stress commonly found in the tumor microenvironment, the deubiquitinase USP9x forms a multiprotein complex with the pseudokinase tribbles homolog 3 (TRB3) that together activate the Notch pathway. Herein, we provide preclinical studies that support the potential of therapeutic USP9x inhibition to deactivate Notch. Using a murine TNBC model, we show that USP9x knockdown abrogates Notch activation, reducing the production of the proinflammatory cytokines, C-C motif chemokine ligand 2 (CCL2) and interleukin-1 beta (IL-1β). Concomitant with these molecular changes, a reduction in tumor inflammation, the augmentation of antitumor immune response, and the suppression of tumor growth were observed. The pharmacological inhibition of USP9x using G9, a partially selective, small-molecule USP9x inhibitor, reduced Notch activity, remodeled the tumor immune landscape, and reduced tumor growth without associated toxicity. Proving the role of Notch, the ectopic expression of the activated Notch1 intracellular domain rescued G9-induced effects. This work supports the potential of USP9x inhibition to target Notch in metabolically vulnerable tissues like TNBC, while sparing normal Notch-dependent tissues.
Collapse
|
8
|
Kane EI, Waters KL, Spratt DE. Intersection of Redox Chemistry and Ubiquitylation: Post-Translational Modifications Required for Maintaining Cellular Homeostasis and Neuroprotection. Cells 2021; 10:2121. [PMID: 34440890 PMCID: PMC8394436 DOI: 10.3390/cells10082121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegeneration has been predominantly recognized as neuronal breakdown induced by the accumulation of aggregated and/or misfolded proteins and remains a preliminary factor in age-dependent disease. Recently, critical regulating molecular mechanisms and cellular pathways have been shown to induce neurodegeneration long before aggregate accumulation could occur. Although this opens the possibility of identifying biomarkers for early onset diagnosis, many of these pathways vary in their modes of dysfunction while presenting similar clinical phenotypes. With selectivity remaining difficult, it is promising that these neuroprotective pathways are regulated through the ubiquitin-proteasome system (UPS). This essential post-translational modification (PTM) involves the specific attachment of ubiquitin onto a substrate, specifically marking the ubiquitin-tagged protein for its intracellular fate based upon the site of attachment, the ubiquitin chain type built, and isopeptide linkages between different ubiquitin moieties. This review highlights both the direct and indirect impact ubiquitylation has in oxidative stress response and neuroprotection, and how irregularities in these intricate processes lead towards the onset of neurodegenerative disease (NDD).
Collapse
Affiliation(s)
| | | | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA; (E.I.K.); (K.L.W.)
| |
Collapse
|
9
|
Zhao Q, Li Y, Du X, Chen X, Jiao Q, Jiang H. Effects of deubiquitylases on the biological behaviors of neural stem cells. Dev Neurobiol 2021; 81:847-858. [PMID: 34241974 DOI: 10.1002/dneu.22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
New neurons are generated throughout life in distinct regions of the mammalian brain due to the proliferation and differentiation of neural stem cells (NSCs). Ubiquitin, a post-translational modification of cellular proteins, is an important factor in regulating neurogenesis. Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. Recent studies have provided growing evidence that deubiquitylases (DUBs) which reverse ubiquitylation process play critical roles in NSCs maintenance, differentiation and maturation. This review mainly focused on the relationship of DUBs and NSCs, and further summarized recent advances in our understanding of DUBs on regulating NSCs biological behaviors.
Collapse
Affiliation(s)
- Qiqi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yixin Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Mucke HA. Patent highlights February-March 2021. Pharm Pat Anal 2021; 10:183-190. [PMID: 34229448 DOI: 10.4155/ppa-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
11
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
12
|
Jiang L, Zhou W, Lu B, Yan Q. ITCH regulates oxidative stress induced by high glucose through thioredoxin interacting protein in cultured human lens epithelial cells. Mol Med Rep 2020; 22:4307-4319. [PMID: 32901881 PMCID: PMC7533507 DOI: 10.3892/mmr.2020.11499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 11/12/2022] Open
Abstract
Thioredoxin (Trx) is an important protein that controls oxidative damage in almost all eukaryotic cells. Trx interaction protein (Txnip) has been reported to negatively regulate the bioavailability of Trx and inhibit its biological function. The E3 ubiquitin ligase ITCH can specifically degrade Txnip via ubiquitination. The apoptosis of human lens epithelial cells (HLECs), which are highly sensitive to redox caused by oxidative stress, is a significant factor for the development of sugar cataract in a high-glucose environment. However, whether Trx, Txnip and ITCH contribute to the progression of sugar cataracts and the underlying mechanisms remain unknown, and thus, identifying these were the aims of the present study. The present results suggested that the expression levels of Trx, Txnip and ITCH in HLECs cultured with different glucose concentrations were detected by reverse transcription-quantitative PCR and western blotting, and the apoptotic rate of the cells was detected by flow cytometry and superoxide detection assay. The interaction between ITCH and Txnip was determined by co-localization immunofluorescence and co-immunoprecipitation. In addition, a vector and small interfering RNA of ITCH were transfected to overexpress and knockdown ITCH, respectively, to alter the expression of downstream proteins and cell apoptosis. It was found that Txnip was highly expressed in cultured HLECs in high-glucose environment, and the antioxidative function of Trx was restricted and suppressed, thus promoting apoptosis. The overexpression of ITCH increased the expression of Trx and decreased oxidative stress and apoptosis by decreasing Txnip in cultured HLECs, while downregulation of ITCH significantly decreased the expression of Trx and enhanced oxidative stress and apoptosis. Therefore, the present results indicated that ITCH could regulate the apoptosis of HLECs that were cultured in high-glucose concentration and that it may be a treatment target for sugar cataract.
Collapse
Affiliation(s)
- Lingfeng Jiang
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Ophthalmology Hospital of China Medical University, Key Laboratory of Lens in Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Wenkai Zhou
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Ophthalmology Hospital of China Medical University, Key Laboratory of Lens in Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Bo Lu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Ophthalmology Hospital of China Medical University, Key Laboratory of Lens in Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| | - Qichang Yan
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Ophthalmology Hospital of China Medical University, Key Laboratory of Lens in Liaoning Province, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
13
|
Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA. USP9X Deubiquitylates DVL2 to Regulate WNT Pathway Specification. Cell Rep 2020; 28:1074-1089.e5. [PMID: 31340145 PMCID: PMC6884140 DOI: 10.1016/j.celrep.2019.06.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer. DVL2 is a signal transducing protein that participates in canonical and noncanonical WNT signaling relays. Here, Nielsen et al. report that the deubiquitylase USP9X and the E3 ubiquitin ligase WWP1 operate on DVL2 to establish a ubiquitin rheostat that contributes to WNT pathway specification in human breast cancer cells.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
14
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|
15
|
Das S, Ramakrishna S, Kim KS. Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders. Mol Cells 2020; 43:203-214. [PMID: 32133826 PMCID: PMC7103888 DOI: 10.14348/molcells.2020.2289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity,axonal growth, and proper function of the nervous system.Moreover, mutations or downregulation of certain DUBshave been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Yin Q, Wyatt CJ, Han T, Smalley KSM, Wan L. ITCH as a potential therapeutic target in human cancers. Semin Cancer Biol 2020; 67:117-130. [PMID: 32165318 DOI: 10.1016/j.semcancer.2020.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The ITCH/AIP4 ubiquitin E3 ligase was discovered independently by two groups searching for atrophin-1 interacting proteins and studying the genetics of mouse coat color alteration, respectively. ITCH is classified as a NEDD4 family E3 ligase featured with the C-terminal HECT domain for E3 ligase function and WW domains for substrate recruiting. ITCH deficiency in the mouse causes severe multi-organ autoimmune disease. Its roles in maintaining a balanced immune response have been extensively characterized over the past two and a half decades. A wealth of reports demonstrate a multifaceted role of ITCH in human cancers. Given the versatility of ITCH in catalyzing both proteolytic and non-proteolytic ubiquitination of its over fifty substrates, ITCH's role in malignancies is believed to be context-dependent. In this review, we summarize the downstream substrates of ITCH, the functions of ITCH in both tumor cells and the immune system, as well as the implications of such functions in human cancers. Moreover, we describe the upstream regulatory mechanisms of ITCH and the efforts have been made to target ITCH using small molecule inhibitors.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Clayton J Wyatt
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
17
|
Nielsen CP, MacGurn JA. Coupling Conjugation and Deconjugation Activities to Achieve Cellular Ubiquitin Dynamics. Trends Biochem Sci 2020; 45:427-439. [PMID: 32311336 DOI: 10.1016/j.tibs.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, proteome remodeling is mediated by the ubiquitin-proteasome system, which regulates protein degradation, trafficking, and signaling events in the cell. Interplay between the cellular proteome and ubiquitin is complex and dynamic and many regulatory features that support this system have only recently come into focus. An unexpected recurring feature in this system is the physical interaction between E3 ubiquitin ligases and deubiquitylases (DUBs). Recent studies have reported on the regulatory significance of DUB-E3 interactions and it is becoming clear that they play important but complicated roles in the regulation of diverse cellular processes. Here, we summarize the current understanding of interactions between ubiquitin conjugation and deconjugation machineries and we examine the regulatory logic of these enigmatic complexes.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
O'Dea R, Santocanale C. Non-canonical regulation of homologous recombination DNA repair by the USP9X deubiquitylase. J Cell Sci 2020; 133:jcs233437. [PMID: 31964704 DOI: 10.1242/jcs.233437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
In order to prevent the deleterious effects of genotoxic agents, cells have developed complex surveillance mechanisms and DNA repair pathways that allow them to maintain genome integrity. The ubiquitin-specific protease 9X (USP9X) contributes to genome stability during DNA replication and chromosome segregation. Depletion of USP9X leads to DNA double-strand breaks, some of which are triggered by replication fork collapse. Here, we identify USP9X as a novel regulator of homologous recombination (HR) DNA repair in human cells. By performing cellular HR reporter, irradiation-induced focus formation and colony formation assays, we show that USP9X is required for efficient HR. Mechanistically, we show USP9X is important to sustain the expression levels of key HR factors, namely BRCA1 and RAD51 through a non-canonical regulation of their mRNA abundance. Intriguingly, we find that the contribution of USP9X to BRCA1 and RAD51 expression is independent of its known catalytic activity. Thus, this work identifies USP9X as a regulator of HR, demonstrates a novel mechanism by which USP9X can regulate protein levels, and provides insights in to the regulation of BRCA1 and RAD51 mRNA.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel O'Dea
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91W2TY, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91W2TY, Ireland
| |
Collapse
|
19
|
Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, Parnell E, Yoon S, Oh T, Lines M, Lefroy H, Kini U, Van Allen M, Grønborg S, Mercier S, Küry S, Bézieau S, Pasquier L, Raynaud M, Afenjar A, Billette de Villemeur T, Keren B, Désir J, Van Maldergem L, Marangoni M, Dikow N, Koolen DA, VanHasselt PM, Weiss M, Zwijnenburg P, Sa J, Reis CF, López-Otín C, Santiago-Fernández O, Fernández-Jaén A, Rauch A, Steindl K, Joset P, Goldstein A, Madan-Khetarpal S, Infante E, Zackai E, Mcdougall C, Narayanan V, Ramsey K, Mercimek-Andrews S, Pena L, Shashi V, Schoch K, Sullivan JA, Pinto E Vairo F, Pichurin PN, Ewing SA, Barnett SS, Klee EW, Perry MS, Koenig MK, Keegan CE, Schuette JL, Asher S, Perilla-Young Y, Smith LD, Rosenfeld JA, Bhoj E, Kaplan P, Li D, Oegema R, van Binsbergen E, van der Zwaag B, Smeland MF, Cutcutache I, Page M, Armstrong M, Lin AE, Steeves MA, Hollander ND, Hoffer MJV, Reijnders MRF, Demirdas S, Koboldt DC, Bartholomew D, Mosher TM, Hickey SE, Shieh C, Sanchez-Lara PA, Graham JM, Tezcan K, Schaefer GB, Danylchuk NR, Asamoah A, Jackson KE, Yachelevich N, Au M, Pérez-Jurado LA, Kleefstra T, Penzes P, Wood SA, Burne T, Pierson TM, Piper M, Gécz J, Jolly LA. Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biol Psychiatry 2020; 87:100-112. [PMID: 31443933 PMCID: PMC6925349 DOI: 10.1016/j.biopsych.2019.05.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor β signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor β signaling and hippocampal function.
Collapse
Affiliation(s)
- Brett V Johnson
- University of Adelaide and Robinson Research Institute, Adelaide, Australia
| | - Raman Kumar
- University of Adelaide and Robinson Research Institute, Adelaide, Australia
| | - Sabrina Oishi
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | | | - Atma Ivancevic
- University of Adelaide and Robinson Research Institute, Adelaide, Australia; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Alison Gardner
- University of Adelaide and Robinson Research Institute, Adelaide, Australia
| | - Deepti Domingo
- University of Adelaide and Robinson Research Institute, Adelaide, Australia
| | - Mark Corbett
- University of Adelaide and Robinson Research Institute, Adelaide, Australia
| | - Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tracey Oh
- Department of Medical Genetics, British Columbia Women's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Lines
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Henrietta Lefroy
- Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Services Foundation Trust, Oxford, United Kingdom
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Services Foundation Trust, Oxford, United Kingdom
| | - Margot Van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Pediatrics and Department of Clinical Genetics, University Hospital Copenhagen, Copenhagen, Denmark
| | - Sandra Mercier
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes and l'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Nantes, France
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes and l'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Nantes, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes and l'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Nantes, France
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre Hospitalier Universitaire Hôpital Sud, Rennes, France
| | - Martine Raynaud
- Centre Hospitalier Régional Universitaire de Tours, Service de Génétique, Unité Nixte de Recherche 1253, iBrain, Université de Tours, Institut National de la Santé et de la Recherche Médicale, Tours, France
| | - Alexandra Afenjar
- Groupe de Recherche Clinique No. 19, ConCer-LD, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Centres de Référence Maladies Rares des Déficits Intellectuels de Causes Rares, Paris, France
| | - Thierry Billette de Villemeur
- Sorbonne Université, Groupe de Recherche Clinique No. 19, ConCer-LD, Neuropédiatrie, Centres de Référence Maladies Rares Neurogénétique, Institut National de la Santé et de la Recherche Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France
| | - Julie Désir
- Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Martina Marangoni
- Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M VanHasselt
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjan Weiss
- Department of Clinical Genetics, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - Petra Zwijnenburg
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joaquim Sa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Claudia Falcao Reis
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitário de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Olaya Santiago-Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitário de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Amy Goldstein
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Elena Infante
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elaine Zackai
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Carey Mcdougall
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina
| | - Kelly Schoch
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina
| | - Filippo Pinto E Vairo
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Sarah A Ewing
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Sarah S Barnett
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - M Scott Perry
- Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, Texas
| | - Mary Kay Koenig
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Catherine E Keegan
- Division of Genetics, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Jane L Schuette
- Division of Genetics, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Stephanie Asher
- Translational Medicine & Human Genetics, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yezmin Perilla-Young
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, North Carolina
| | - Laurie D Smith
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, North Carolina
| | | | - Elizabeth Bhoj
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Paige Kaplan
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dong Li
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Matthew Page
- Translational Medicine, UCB Pharma, Braine-l'Alleud, Belgium
| | | | - Angela E Lin
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Marcie A Steeves
- Medical Genetics Unit, Mass General Hospital for Children, Boston, Massachusetts
| | | | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot R F Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Christine Shieh
- David Geffen School of Medicine, University of California-Los Angeles, California
| | | | - John M Graham
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kamer Tezcan
- Department of Genetics, Kaiser Permanente, Sacramento, California
| | - G B Schaefer
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Noelle R Danylchuk
- Department of Genetic Counseling, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alexander Asamoah
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kelly E Jackson
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Naomi Yachelevich
- Clinical Genetics Services, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Margaret Au
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Luis A Pérez-Jurado
- University of Adelaide and Robinson Research Institute, Adelaide, Australia; Women's and Children's Hospital, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia; Hospital del Mar Research Institute, Network Research Centre for Rare Diseases and Universitat Pompeu Fabra, Barcelona, Spain
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Thomas Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| | - Tyler Mark Pierson
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California; Department of Neurology and the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jozef Gécz
- University of Adelaide and Robinson Research Institute, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia.
| | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, Australia.
| |
Collapse
|
20
|
Le Clorennec C, Lazrek Y, Dubreuil O, Sampaio C, Larbouret C, Lanotte R, Poul MA, Barret JM, Prost JF, Pèlegrin A, Chardès T. ITCH-dependent proteasomal degradation of c-FLIP induced by the anti-HER3 antibody 9F7-F11 promotes DR5/caspase 8-mediated apoptosis of tumor cells. Cell Commun Signal 2019; 17:106. [PMID: 31443721 PMCID: PMC6708219 DOI: 10.1186/s12964-019-0413-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background HER3/ErbB3 receptor deletion or blockade leads to tumor cell apoptosis, whereas its overexpression confers anti-cancer drug resistance through upregulation of protective mechanisms against apoptosis. We produced the anti-HER3 antibody 9F7-F11 that promotes HER3 ubiquitination and degradation via JNK1/2-dependent activation of the E3 ubiquitin ligase ITCH, and that induces apoptosis of cancer cells. Cellular FLICE-like inhibitory protein (c-FLIP) is a key regulator of apoptotic pathways. Here, we wanted to determine the mechanisms underlying the pro-apoptotic effect of 9F7-F11. Methods Anti-HER3 antibody-induced apoptosis was assessed by western blot, and by flow cytometry measurement of Annexin V/7-AAD-labelled tumor cells (BxPC3, MDA-MB-468 and DU145 cell lines). c-FLIP/ITCH interaction and subsequent degradation/ubiquitination were investigated by co-immunoprecipitation of ITCH-silenced vs scramble control cells. The relationship between ITCH-mediated c-FLIP degradation and antibody-induced apoptosis was examined by western blot and flow cytometry of tumor cells, after ITCH RNA interference or by pre-treatment with ITCH chemical inhibitor chlorimipramine (CI). Results Following incubation with 9F7-F11, cancer cell apoptosis occurs through activation of caspase-8, − 9 and − 3 and the subsequent cleavage of poly (ADP-ribose) polymerase (PARP). Moreover we showed that ubiquitination and proteasomal degradation of the anti-apoptotic protein c-FLIP was mediated by USP8-regulated ITCH recruitment. This effect was abrogated by ITCH- and USP8-specific RNA interference (siRNA), or by the ITCH chemical inhibitor CI. Specifically, ITCH silencing or CI blocked 9F7-F11-induced caspase-8-mediated apoptosis of tumor cells, and restored c-FLIP expression. ITCH-silencing or CI concomitantly abrogated HER3-specific antibody-induced apoptosis of Annexin V/7-AAD-labelled BxPC3 cells. 9F7-F11 favored the extrinsic apoptosis pathway by inducing TRAIL-R2/DR5 upregulation and TRAIL expression that promoted the formation of death-inducing signaling complex (DISC), leading to caspase-8-mediated apoptosis. Incubation with 9F7-F11 also induced BID cleavage, BAX upregulation and BIM expression, which initiated the caspase-9/3-mediated mitochondrial death pathway. The anti-HER3 antibody pro-apoptotic effect occurred concomitantly with downregulation of the pro-survival proteins c-IAP2 and XIAP. Conclusions The allosteric non-neuregulin competing modulator 9F7-F11, sensitizes tumor cells to DR5/caspase-8-mediated apoptosis through ITCH-dependent downregulation of c-FLIP. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France.,Present Address: UCSD School of Medicine, Moores Cancer Center, La Jolla, CA, 92093-0815, USA
| | - Yassamine Lazrek
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France.,Present Address: Institut Pasteur de Guyane, F- 97306, Cayenne, France
| | - Olivier Dubreuil
- GamaMabs Pharma SA, Centre Pierre Potier, F-31106, Toulouse, France
| | - Carla Sampaio
- Laboratoire d'Immunologie et d'Immunothérapie des Cancers, EA7269, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Romain Lanotte
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Marie-Alix Poul
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Jean-Marc Barret
- GamaMabs Pharma SA, Centre Pierre Potier, F-31106, Toulouse, France
| | | | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), F-34298, Montpellier, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
21
|
Kodani A, Moyer T, Chen A, Holland A, Walsh CA, Reiter JF. SFI1 promotes centriole duplication by recruiting USP9X to stabilize the microcephaly protein STIL. J Cell Biol 2019; 218:2185-2197. [PMID: 31197030 PMCID: PMC6605807 DOI: 10.1083/jcb.201803041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
In mammals, centrioles participate in brain development, and human mutations affecting centriole duplication cause microcephaly. Here, we identify a role for the mammalian homologue of yeast SFI1, involved in the duplication of the yeast spindle pole body, as a critical regulator of centriole duplication in mammalian cells. Mammalian SFI1 interacts with USP9X, a deubiquitylase associated with human syndromic mental retardation. SFI1 localizes USP9X to the centrosome during S phase to deubiquitylate STIL, a critical regulator of centriole duplication. USP9X-mediated deubiquitylation protects STIL from degradation. Consistent with a role for USP9X in stabilizing STIL, cells from patients with USP9X loss-of-function mutations have reduced STIL levels. Together, these results demonstrate that SFI1 is a centrosomal protein that localizes USP9X to the centrosome to stabilize STIL and promote centriole duplication. We propose that the USP9X protection of STIL to facilitate centriole duplication underlies roles of both proteins in human neurodevelopment.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Tyler Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen Chen
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
23
|
Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9X. Proc Natl Acad Sci U S A 2019; 116:7288-7297. [PMID: 30914461 PMCID: PMC6462090 DOI: 10.1073/pnas.1815027116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ubiquitination is an important posttranslational modification that regulates almost every aspect of cellular functions. Ubiquitin can form chains of different topology; each has a distinctive role in dictating the function and fate of the modified proteins. Deubiquitinases (DUBs) reverse ubiquitination. How DUBs recognize ubiquitin chains is a topic of immense interest due to the therapeutic potentials of human DUBs. We obtained the atomic details of the USP9X catalytic core, a DUB involved in cancers and developmental disorders, and revealed its unusual mechanisms of action using a set of activity-based ubiquitin probes. These probes will propel future investigation of how DUBs recognize and process ubiquitin chains and identify potential new sites on DUBs for drug discovery. USP9X is a conserved deubiquitinase (DUB) that regulates multiple cellular processes. Dysregulation of USP9X has been linked to cancers and X-linked intellectual disability. Here, we report the crystal structure of the USP9X catalytic domain at 2.5-Å resolution. The structure reveals a canonical USP-fold comprised of fingers, palm, and thumb subdomains, as well as an unusual β-hairpin insertion. The catalytic triad of USP9X is aligned in an active configuration. USP9X is exclusively active against ubiquitin (Ub) but not Ub-like modifiers. Cleavage assays with di-, tri-, and tetraUb chains show that the USP9X catalytic domain has a clear preference for K11-, followed by K63-, K48-, and K6-linked polyUb chains. Using a set of activity-based diUb and triUb probes (ABPs), we demonstrate that the USP9X catalytic domain has an exo-cleavage preference for K48- and endo-cleavage preference for K11-linked polyUb chains. The structure model and biochemical data suggest that the USP9X catalytic domain harbors three Ub binding sites, and a zinc finger in the fingers subdomain and the β-hairpin insertion both play important roles in polyUb chain processing and linkage specificity. Furthermore, unexpected labeling of a secondary, noncatalytic cysteine located on a blocking loop adjacent to the catalytic site by K11-diUb ABP implicates a previously unreported mechanism of polyUb chain recognition. The structural features of USP9X revealed in our study are critical for understanding its DUB activity. The new Ub-based ABPs form a set of valuable tools to understand polyUb chain processing by the cysteine protease class of DUBs.
Collapse
|
24
|
Lu Q, Lu D, Shao ZM, Li DQ. Deubiquitinase ubiquitin-specific protease 9X regulates the stability and function of E3 ubiquitin ligase ring finger protein 115 in breast cancer cells. Cancer Sci 2019; 110:1268-1278. [PMID: 30689267 PMCID: PMC6447854 DOI: 10.1111/cas.13953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022] Open
Abstract
The E3 ubiquitin ligase ring finger protein 115 (RNF115) is overexpressed in more than half of human breast tumors and is implicated in the pathogenesis and progression of breast cancer. However, the mechanism behind RNF115 overexpression in breast tumors remains largely unknown. Here we report that ubiquitin‐specific protease 9X (USP9X), a substrate‐specific deubiquitinating enzyme, stabilizes RNF115 and thereby regulates its biological functions in breast cancer cells. Immunoprecipitation and GST pull‐down assays showed that USP9X interacted with RNF115. Depletion of RNF115 by siRNAs or overexpression of RNF115 did not significantly affect USP9X expression. In contrast, knockdown of USP9X in breast cancer cells by siRNAs reduced RNF115 protein abundance, which was partially restored following treatment with proteasome inhibitor MG‐132. Moreover, depletion of USP9X reduced the half‐life of RNF115 and increased its ubiquitination. Conversely, overexpression of USP9X resulted in an accumulation of RNF115 protein, accompanied by a decrease in its ubiquitination. RNF115 mRNA levels were unaffected by overexpression or knockdown of USP9X. Furthermore, USP9X protein expression levels correlated positively with RNF115 in breast cancer cell lines and breast tumor samples. Importantly, reintroduction of RNF115 in USP9X‐depleted cells partially rescued the reduced proliferation, migration, and invasion of breast cancer cells by USP9X knockdown. Collectively, these findings indicate that USP9X is a stabilizer of RNF115 protein and that the USP9X‐RNF115 signaling axis is implicated in the breast cancer malignant phenotype.
Collapse
Affiliation(s)
- Qin Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dayun Lu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, Jawad K, Dieterlen MT. Ischemic Cardiomyopathy Affects the Thioredoxin System in the Human Myocardium. J Card Fail 2019; 25:204-212. [PMID: 30721734 DOI: 10.1016/j.cardfail.2019.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/03/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oxidative stress due to reactive oxygen species (ROS) production is a key factor in the development of heart failure (HF). This study investigated the thioredoxin (Trx) system, which plays a major role in antioxidant defense, in patients suffering from ischemic (ICM) or dilated (DCM) cardiomyopathy. METHODS AND RESULTS Myocardial tissue from ICM (n = 13) and DCM (n = 13) patients, as well as septal tissue of patients with aortic stenosis but without diagnosed hypertrophic cardiomyopathy or subaortic stenosis (control; n = 12), was analyzed for Trx1, Trx-interacting protein (TXNIP) and E3 ligase ITCH (E3 ubiquitin-protein ligase Itchy homolog) expression. Trx-reductase 1 (TXNRD1) amount and activity, cytosolic cytochrome C content, and apoptosis markers were quantified by means of enzyme-linked immunosorbent assay and multiplexing. Compared with control samples, ITCH and Trx1 expression, TXNRD1 amount and activity were reduced and TXNIP expression was increased in ICM (ITCH: P = .013; Trx1: P = .028; TXNRD1 amount: P = .035; TXNRD1 activity: P = .005; TXNIP: P = .014) but not in DCM samples. A higher level of the downstream apoptosis marker caspase-9 (ICM: 582 ± 262 MFI [P = .995]; DCM: 1251 ± 548 MFI [P = .002], control: 561 ± 214 MFI) was detected in DCM tissue. A higher expression of Bcl-2 was found in DCM (P = .011). CONCLUSION The Trx system was impaired in ICM but not in DCM. ITCH appeared to be responsible for the down-regulation of the Trx system. ROS-induced mitochondrial instability appeared to play a role in DCM.
Collapse
Affiliation(s)
- Stephan Neidhardt
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Fabian Emrich
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Sven Lehmann
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Khalil Jawad
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany.
| |
Collapse
|
26
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
27
|
Dempsey DR, Jiang H, Kalin JH, Chen Z, Cole PA. Site-Specific Protein Labeling with N-Hydroxysuccinimide-Esters and the Analysis of Ubiquitin Ligase Mechanisms. J Am Chem Soc 2018; 140:9374-9378. [PMID: 30016585 DOI: 10.1021/jacs.8b05098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N-Hydroxysuccinimide (NHS)-esters are widely used to label proteins nonselectively on free amino groups. Such broad labeling can be disadvantageous because it can interfere with protein structure or function and because stoichiometry is poorly controlled. Here we describe a simple method to transform NHS-esters into site-specific protein labeling on N-terminal Cys residues. MESNA addition converts NHS-esters to chemoselective thioesters for N-Cys modification. This labeling strategy was applied to clarify mechanistic features of the ubiquitin E3 ligase WWP2 including its interaction with one of its substrates, the tumor suppressor PTEN, as well as its autoubiquitination molecularity. We propose that this convenient protein labeling strategy will allow for an expanded application of NHS-esters in biochemical investigation.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology , Harvard Medical School and Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
| | - Hanjie Jiang
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology , Harvard Medical School and Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology , Harvard Medical School and Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
28
|
Khan OM, Carvalho J, Spencer-Dene B, Mitter R, Frith D, Snijders AP, Wood SA, Behrens A. The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest 2018; 128:1326-1337. [PMID: 29346117 PMCID: PMC5873885 DOI: 10.1172/jci97325] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor FBW7 targets oncoproteins such as c-MYC for ubiquitylation and is mutated in several human cancers. We noted that in a substantial percentage of colon cancers, FBW7 protein is undetectable despite the presence of FBW7 mRNA. To understand the molecular mechanism of FBW7 regulation in these cancers, we employed proteomics and identified the deubiquitinase (DUB) USP9X as an FBW7 interactor. USP9X antagonized FBW7 ubiquitylation, and Usp9x deletion caused Fbw7 destabilization. Mice lacking Usp9x in the gut showed reduced secretory cell differentiation and increased progenitor proliferation, phenocopying Fbw7 loss. In addition, Usp9x inactivation impaired intestinal regeneration and increased tumor burden in colitis-associated intestinal cancer. c-Myc heterozygosity abrogated increased progenitor proliferation and tumor burden in Usp9x-deficient mice, suggesting that Usp9x suppresses tumor formation by regulating Fbw7 protein stability and thereby reducing c-Myc. Thus, we identify a tumor suppressor mechanism in the mammalian intestine that arises from the posttranslational regulation of FBW7 by USP9X independent of somatic FBW7 mutations.
Collapse
Affiliation(s)
| | | | | | | | - David Frith
- Proteomics, The Francis Crick Institute, London, United Kingdom
| | | | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Axel Behrens
- Adult Stem Cell Laboratory.,King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, United Kingdom
| |
Collapse
|
29
|
Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Sci Rep 2017; 7:8109. [PMID: 28808228 PMCID: PMC5556043 DOI: 10.1038/s41598-017-05451-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Development of neural progenitors depends upon the coordination of appropriate intrinsic responses to extrinsic signalling pathways. Here we show the deubiquitylating enzyme, Usp9x regulates components of both intrinsic and extrinsic fate determinants. Nestin-cre mediated ablation of Usp9x from embryonic neural progenitors in vivo resulted in a transient disruption of cell adhesion and apical-basal polarity and, an increased number and ectopic localisation of intermediate neural progenitors. In contrast to other adhesion and polarity proteins, levels of β-catenin protein, especially S33/S37/T41 phospho-β-catenin, were markedly increased in Usp9x−/Y embryonic cortices. Loss of Usp9x altered composition of the β-catenin destruction complex possibly impeding degradation of S33/S37/T41 phospho-β-catenin. Pathway analysis of transcriptomic data identified Wnt signalling as significantly affected in Usp9x−/Y embryonic brains. Depletion of Usp9x in cultured human neural progenitors resulted in Wnt-reporter activation. Usp9x also regulated components of the Notch signalling pathway. Usp9x co-localized and associated with both Itch and Numb in embryonic neocortices. Loss of Usp9x led to decreased Itch and Numb levels, and a concomitant increase in levels of the Notch intracellular domain as well as, increased expression of the Notch target gene Hes5. Therefore Usp9x modulates and potentially coordinates multiple fate determinants in neural progenitors.
Collapse
|
30
|
Deubiquitylating enzymes in receptor endocytosis and trafficking. Biochem J 2017; 473:4507-4525. [PMID: 27941029 DOI: 10.1042/bcj20160826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
In recent times, our knowledge of the roles ubiquitin plays in multiple cellular processes has expanded exponentially, with one example being the role of ubiquitin in receptor endocytosis and trafficking. This has prompted a multitude of studies examining how the different machinery involved in the addition and removal of ubiquitin can influence this process. Multiple deubiquitylating enzymes (DUBs) have been implicated either in facilitating receptor endocytosis and lysosomal degradation or in rescuing receptor levels by preventing endocytosis and/or promoting recycling to the plasma membrane. In this review, we will discuss in detail what is currently known about the role of DUBs in regulating the endocytosis of various transmembrane receptors and ion channels. We will also expand upon the role DUBs play in receptor sorting at the multivesicular body to determine whether a receptor is recycled or trafficked to the lysosome for degradation. Finally, we will briefly discuss how the DUBs implicated in these processes may contribute to the pathogenesis of a range of diseases, and thus the potential these have as therapeutic targets.
Collapse
|
31
|
Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci U S A 2017; 114:4691-4696. [PMID: 28416659 DOI: 10.1073/pnas.1620306114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hippo signaling controls the expression of genes regulating cell proliferation and survival and organ size. The regulation of core components in the Hippo pathway by phosphorylation has been extensively investigated, but the roles of ubiquitination-deubiquitination processes are largely unknown. To identify deubiquitinase(s) that regulates Hippo signaling, we performed unbiased siRNA screening and found that YOD1 controls biological responses mediated by YAP/TAZ. Mechanistically, YOD1 deubiquitinates ITCH, an E3 ligase of LATS, and enhances the stability of ITCH, which leads to reduced levels of LATS and a subsequent increase in the YAP/TAZ level. Furthermore, we show that the miR-21-mediated regulation of YOD1 is responsible for the cell-density-dependent changes in YAP/TAZ levels. Using a transgenic mouse model, we demonstrate that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, we find a strong correlation between YOD1 and YAP expression in liver cancer patients. Overall, our data strongly suggest that YOD1 is a regulator of the Hippo pathway and would be a therapeutic target to treat liver cancer.
Collapse
|
32
|
USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 2017; 8:14866. [PMID: 28361952 PMCID: PMC5380967 DOI: 10.1038/ncomms14866] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Defective centrosome duplication is implicated in microcephaly and primordial dwarfism as well as various ciliopathies and cancers. Yet, how the centrosome biogenesis is regulated remains poorly understood. Here we report that the X-linked deubiquitinase USP9X is physically associated with centriolar satellite protein CEP131, thereby stabilizing CEP131 through its deubiquitinase activity. We demonstrate that USP9X is an integral component of centrosome and is required for centrosome biogenesis. Loss-of-function of USP9X impairs centrosome duplication and gain-of-function of USP9X promotes centrosome amplification and chromosome instability. Significantly, USP9X is overexpressed in breast carcinomas, and its level of expression is correlated with that of CEP131 and higher histologic grades of breast cancer. Indeed, USP9X, through regulation of CEP131 abundance, promotes breast carcinogenesis. Our experiments identify USP9X as an important regulator of centrosome biogenesis and uncover a critical role for USP9X/CEP131 in breast carcinogenesis, supporting the pursuit of USP9X/CEP131 as potential targets for breast cancer intervention. USP9X is a deubiquitinating enzyme with many known substrates and functions; it has been linked to cancer but the mechanisms remain unclear. Here Li et al. report that USP9X stabilizes the centrosomal protein CEP131 leading to centrosome amplification and breast cancer development.
Collapse
|
33
|
Ho HC, MacGurn JA, Emr SD. Deubiquitinating enzymes Ubp2 and Ubp15 regulate endocytosis by limiting ubiquitination and degradation of ARTs. Mol Biol Cell 2017; 28:1271-1283. [PMID: 28298493 PMCID: PMC5415021 DOI: 10.1091/mbc.e17-01-0008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Endocytic down-regulation of cell-surface proteins is a fundamental cellular process for cell survival and adaptation to environmental stimuli. Ubiquitination of cargo proteins serves as the sorting signal for downstream trafficking and relies on the arrestin-related trafficking adaptor (ART)-Rsp5 ubiquitin ligase adaptor network in yeast. Hence proper regulation of the abundance and activity of these ligase-adaptor complexes is critical for main-tenance of optimal plasma membrane protein composition. Here we report that the stability of ARTs is regulated by the deubiquitinating enzymes (DUBs) Ubp2 and Ubp15. By counteracting the E3 ubiquitin ligase Rsp5, Ubp2 and Ubp15 prevent hyperubiquitination and proteasomal degradation of ARTs. Specifically, we show that loss of both Ubp2 and Ubp15 results in a defect in Hxt6 endocytosis associated with Art4 instability. Our results uncover a novel function for DUBs in the endocytic pathway by which Ubp2 and Ubp15 positively regulate the ART-Rsp5 network.
Collapse
Affiliation(s)
- Hsuan-Chung Ho
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
34
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
35
|
DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins. PLoS One 2017; 12:e0169587. [PMID: 28061504 PMCID: PMC5218808 DOI: 10.1371/journal.pone.0169587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 12/28/2022] Open
Abstract
The YAP and TAZ transcriptional coactivators promote oncogenic transformation. Elevated YAP/TAZ activity has been documented in human tumors. YAP and TAZ are negatively regulated by the Hippo tumor suppressor pathway. The activity and stability of several Hippo pathway components, including YAP/TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor by limiting YAP activity.
Collapse
|
36
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
37
|
The Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus Maturation. J Virol 2016; 90:8994-9007. [PMID: 27466427 DOI: 10.1128/jvi.01235-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cellular endosomal sorting complex required for transport (ESCRT) was recently found to mediate important morphogenesis processes at the nuclear envelope (NE). We previously showed that the Epstein-Barr virus (EBV) BFRF1 protein recruits the ESCRT-associated protein Alix to modulate NE structure and promote EBV nuclear egress. Here, we uncover new cellular factors and mechanisms involved in this process. BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. BFRF1 is ubiquitinated, and elimination of possible ubiquitination by either lysine mutations or fusion of a deubiquitinase hampers NE-derived vesicle formation and virus maturation. While it interacts with multiple Nedd4-like ubiquitin ligases, BFRF1 preferentially binds Itch ligase. We show that Itch associates with Alix and BFRF1 and is required for BFRF1-induced NE vesicle formation. Our data demonstrate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE and EBV maturation, uncovering novel regulatory mechanisms of nuclear egress of viral nucleocapsids. IMPORTANCE The nuclear envelope (NE) of eukaryotic cells not only serves as a transverse scaffold for cellular processes, but also as a natural barrier for most DNA viruses that assemble their nucleocapsids in the nucleus. Previously, we showed that the cellular endosomal sorting complex required for transport (ESCRT) machinery is required for the nuclear egress of EBV. Here, we further report the molecular interplay among viral BFRF1, the ESCRT adaptor Alix, and the ubiquitin ligase Itch. We found that BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. The lysine residues and the ubiquitination of BFRF1 regulate the formation of BFRF1-induced NE-derived vesicles and EBV maturation. During the process, a ubiquitin ligase, Itch, preferably associates with BFRF1 and is required for BFRF1-induced NE vesicle formation. Therefore, our data indicate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE, suggesting novel regulatory mechanisms for ESCRT-mediated NE modulation.
Collapse
|
38
|
Izrailit J, Jaiswal A, Zheng W, Moran MF, Reedijk M. Cellular stress induces TRB3/USP9x-dependent Notch activation in cancer. Oncogene 2016; 36:1048-1057. [PMID: 27593927 DOI: 10.1038/onc.2016.276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/29/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Expression of the Notch ligand JAG1 and Notch pathway activation promote poor prognosis, basal-like breast cancer. We have recently shown that the pseudokinase Tribbles homolog 3 (TRB3) regulates JAG1 expression in this malignancy. TRB3 is a stress and metabolic sensor, and here we show that nutrient deprivation or endoplasmic reticulum stress markedly upregulate TRB3, which serves as a scaffold for the deubiquitinase USP9x. USP9x in turn stimulates JAG1 activity through two mechanisms: (1) through TRB3 deubiquitination and stabilization, and (2) through deubiquitination and activation of Mind Bomb 1, an E3 ligase required for JAG1 ubiquitination-mediated endocytosis and Notch activation. These USP9x activities are confined to the signal-sending cell of a cell pair undergoing Notch signaling. We demonstrate that USP9x is required for TRB3 upregulation and Notch activation in response to cellular stress in basal-like breast cancer cells. These data suggest that TRB3 functions as a sensor of tumor microenvironmental stress and together with USP9x induces the cell survival and tumor-promoting activities of Notch. These findings identify a novel mechanism by which cancer cells survive in their hostile environment and provide potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- J Izrailit
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | - A Jaiswal
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | - W Zheng
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada
| | - M F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - M Reedijk
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada.,Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
39
|
Nanayakkara DM, Nguyen MN, Wood SA. Deubiquitylating enzyme, USP9X, regulates proliferation of cells of head and neck cancer lines. Cell Prolif 2016; 49:494-502. [PMID: 27374971 DOI: 10.1111/cpr.12273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Truncating mutations in USP9X have been identified in oral squamous cell carcinoma patients. The aim of this study was to determine USP9X's functional role, if any, in head and neck cancer cells. MATERIALS AND METHODS USP9X was depleted/overexpressed in head and neck cancer cell line: SCC15 (tongue), CAL27 (tongue), FaDu (pharynx) and Detroit 562 (pharynx). Cell proliferation was monitored using the CyQUANT assay, and cell cycle distribution was determined by flow cytometry. Immunoblot assays were conducted to assess protein levels. RT-qPCR was performed to determine Notch and Wnt pathway target gene expression. RESULTS Our data showed a direct correlation between USP9X protein levels and proliferation, as well as Notch pathway activity in head and neck cancer cells. However, at least in FaDu, USP9X did not appear to regulate proliferation through the Notch pathway. Immunoblotting revealed a dramatic reduction in downstream targets of mTOR complex 1, namely total ribosomal protein (S6) and its phosphorylated form (pS6), when USP9X was depleted in FaDu cells. In contrast, in immortalized but non-tumorigenic HaCaT keratinocytes, USP9X depletion led to increase in cell proliferation, maintaining direct regulation of Notch activity. CONCLUSIONS The functional role of USP9X was found to be context dependent. USP9X possibly promotes head and neck cancer cell proliferation through the mTOR pathway.
Collapse
Affiliation(s)
- D M Nanayakkara
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - M N Nguyen
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - S A Wood
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
40
|
Abstract
Itch or itchy E3 ubiquitin ligase was initially discovered by genetic studies on the mouse coat color changes, and its deletion results in an itchy phenotype with constant skin scratching and multi-organ inflammation. It is a member of the homologous to E6-associated protein C-terminus (HECT)-type family of E3 ligases, with the protein-interacting WW-domains for the recruitment of substrate and the HECT domain for the transfer of ubiquitin to the substrate. Since its discovery, numerous studies have demonstrated that Itch is involved in the control of many aspects of immune responses including T-cell activation and tolerance and T-helper cell differentiation. Itch is also implicated in other biological contexts such as tumorigenesis, development, and stress responses. Many signaling pathways are regulated by Itch-promoted ubiquitylation of diverse target proteins. Itch is also involved in human diseases. Here, we discuss the major progress in understanding the biological significance of Itch-promoted protein ubiquitylation in the immune and other systems and in Itch-mediated regulation of signal transduction.
Collapse
Affiliation(s)
- Daisuke Aki
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Wen Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
41
|
Le Clorennec C, Lazrek Y, Dubreuil O, Larbouret C, Poul MA, Mondon P, Melino G, Pèlegrin A, Chardès T. The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation. Oncotarget 2016; 7:37013-37029. [PMID: 27203743 PMCID: PMC5095055 DOI: 10.18632/oncotarget.9455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/28/2023] Open
Abstract
We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4). Overexpression of the ITCH/AIP4 inhibitor N4BP1 or small-interfering RNA-mediated knockdown of ITCH/AIP4 inhibited HER3 ubiquitination/degradation and PI3K/AKT signaling blockade induced by 9F7-F11. Moreover, 9F7-F11-mediated JNK1/2 phosphorylation led to ITCH/AIP4 activation and recruitment to HER3 for receptor ubiquitination and degradation. ITCH/AIP4 activity was activated by the deubiquitinases USP8 and USP9X, as demonstrated by RNA interference. Taken together, our results suggest that 9F7-F11-induced HER3 ubiquitination and degradation in cancer cells mainly occurs through JNK1/2-dependent ITCH/AIP4 activation.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Yassamine Lazrek
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
- Millegen SA, Labège, F-31670, France
- Institut Pasteur de Guyane, BP 6010, 97306, Cayenne Cedex, France
| | - Olivier Dubreuil
- Millegen SA, Labège, F-31670, France
- GamaMabs Pharma SA, Centre Pierre Potier, ONCOPOLE, BP 50624, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Philippe Mondon
- Millegen SA, Labège, F-31670, France
- LFB Biotechnologies, 59000, Lille, France
| | - Gerry Melino
- Biochemistry Laboratory, Instituto Dermopatico Dell'Immacolata, Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Toxicology Unit, Medical Research Council, Leicester University, Leicester LE1 9HN, United Kingdom
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- INSERM, U1194 Montpellier, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34298, France
- ICM, Institut Régional du Cancer Montpellier, Montpellier, F-34298, France
| |
Collapse
|
42
|
Oishi S, Premarathne S, Harvey TJ, Iyer S, Dixon C, Alexander S, Burne THJ, Wood SA, Piper M. Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Sci Rep 2016; 6:25783. [PMID: 27181636 PMCID: PMC4867638 DOI: 10.1038/srep25783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Within the adult mammalian brain, neurogenesis persists within two main discrete locations, the subventricular zone lining the lateral ventricles, and the hippocampal dentate gyrus. Neurogenesis within the adult dentate gyrus contributes to learning and memory, and deficiencies in neurogenesis have been linked to cognitive decline. Neural stem cells within the adult dentate gyrus reside within the subgranular zone (SGZ), and proteins intrinsic to stem cells, and factors within the niche microenvironment, are critical determinants for development and maintenance of this structure. Our understanding of the repertoire of these factors, however, remains limited. The deubiquitylating enzyme USP9X has recently emerged as a mediator of neural stem cell identity. Furthermore, mice lacking Usp9x exhibit a striking reduction in the overall size of the adult dentate gyrus. Here we reveal that the development of the postnatal SGZ is abnormal in mice lacking Usp9x. Usp9x conditional knockout mice exhibit a smaller hippocampus and shortened dentate gyrus blades from as early as P7. Moreover, the analysis of cellular populations within the dentate gyrus revealed reduced stem cell, neuroblast and neuronal numbers and abnormal neuroblast morphology. Collectively, these findings highlight the critical role played by USP9X in the normal morphological development of the postnatal dentate gyrus.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Susitha Premarathne
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Swati Iyer
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chantelle Dixon
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Suzanne Alexander
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, 4077, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas H J Burne
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, 4077, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stephen A Wood
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
43
|
Thanh Nguyen H, Andrejeva D, Gupta R, Choudhary C, Hong X, Eichhorn PJA, Loya AC, Cohen SM. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discov 2016; 2:16001. [PMID: 27462448 PMCID: PMC4849470 DOI: 10.1038/celldisc.2016.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway has been identified as a key barrier for tumorigenesis, acting through downregulation of YAP/TAZ activity. Elevated YAP/TAZ activity has been documented in many human cancers. Ubiquitylation has been shown to play a key role in regulating YAP/TAZ activity through downregulation of a number of Hippo pathway components. Several ubiquitin ligase complexes have been implicated in this process, however, little is known about the deubiquitylating enzymes that counteract these activities to regulate YAP/TAZ. Here we identify the deubiquitylating enzyme USP9x as a regulator of YAP/TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor, Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x mRNA levels were reduced in several cancers with low USPx expression correlating with poor prognosis in renal clear cell carcinoma. Our data indicate that USP9x may be a useful biomarker for renal clear cell carcinoma.
Collapse
Affiliation(s)
- Hung Thanh Nguyen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Diana Andrejeva
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Xin Hong
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pieter J A Eichhorn
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anand C Loya
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Noyes NC, Hampton B, Migliorini M, Strickland DK. Regulation of Itch and Nedd4 E3 Ligase Activity and Degradation by LRAD3. Biochemistry 2016; 55:1204-13. [DOI: 10.1021/acs.biochem.5b01218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nathaniel C. Noyes
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Brian Hampton
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases and the ‡Departments
of Surgery and §Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
45
|
Abstract
A majority of proteins in the cell can be modified by ubiquitination, thereby altering their function or stability. This ubiquitination is controlled by both ubiquitinating and deubiquitinating enzymes (DUBs). The number of ubiquitin ligases exceeds that of DUBs by about eightfold, indicating that DUBs may have much broader substrate specificity. Despite this, DUBs have been shown to have quite specific physiological functions. This functional specificity is likely due to very precise regulation of activity arising from the sophisticated use of all mechanisms of enzyme regulation. In this commentary, we briefly review key features of DUBs with more emphasis on regulation. In particular, we focus on localization of the enzymes as a critical regulatory mechanism which when integrated with control of expression, substrate activation, allosteric regulation, and post-translational modifications results in precise spatial and temporal deubiquitination of proteins and therefore specific physiological functions. Identification of compounds that target the structural elements in DUBs that dictate localization may be a more promising approach to development of drugs with specificity of action than targeting the enzymatic activity, which for most DUBs is dependent on a thiol group that can react non-specifically with many compounds in large-scale screening.
Collapse
Affiliation(s)
- Erin S Coyne
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Simon S Wing
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
46
|
Reijnders M, Zachariadis V, Latour B, Jolly L, Mancini G, Pfundt R, Wu K, van Ravenswaaij-Arts C, Veenstra-Knol H, Anderlid BM, Wood S, Cheung S, Barnicoat A, Probst F, Magoulas P, Brooks A, Malmgren H, Harila-Saari A, Marcelis C, Vreeburg M, Hobson E, Sutton V, Stark Z, Vogt J, Cooper N, Lim J, Price S, Lai A, Domingo D, Reversade B, Gecz J, Gilissen C, Brunner H, Kini U, Roepman R, Nordgren A, Kleefstra T, Kleefstra T. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet 2016; 98:373-81. [PMID: 26833328 DOI: 10.1016/j.ajhg.2015.12.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
47
|
Han KJ, Foster D, Harhaj EW, Dzieciatkowska M, Hansen K, Liu CW. Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25:1392-405. [PMID: 26908624 DOI: 10.1093/hmg/ddw021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons. Mechanisms that control SMN sorting in the cell remain largely unknown. Here, we report that the ubiquitin (Ub) ligase Itch directly interacts with and monoubiquitinates SMN. Monoubiquitination of SMN has a mild effect on promoting proteasomal degradation of SMN. We generated two SMN mutants, SMN(K0), in which all lysines are mutated to arginines and thereby abolishing SMN ubiquitination, and Ub-SMN(K0), in which a single Ub moiety is fused at the N-terminus of SMN(K0) and thereby mimicking SMN monoubiquitination. Immunostaining assays showed that SMN(K0) mainly localizes in the nucleus, whereas Ub-SMN(K0) localizes in both the cytoplasm and the nucleolus in neuronal SH-SY5Y cells. Interestingly, canonical CB foci and coilin/small nuclear ribonucleoprotein (snRNP) co-localization are significantly impaired in SH-SY5Y cells stably expressing SMN(K0) or Ub-SMN(K0). Thus, our studies discover that Itch monoubiquitinates SMN and monoubiquitination of SMN plays an important role in regulating its cellular localization. Moreover, mislocalization of SMN disrupts CB integrity and likely impairs snRNP maturation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Daniel Foster
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Edward W Harhaj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| |
Collapse
|
48
|
Savio MG, Wollscheid N, Cavallaro E, Algisi V, Di Fiore PP, Sigismund S, Maspero E, Polo S. USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15. Curr Biol 2016; 26:173-183. [PMID: 26748853 DOI: 10.1016/j.cub.2015.11.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/16/2015] [Accepted: 11/20/2015] [Indexed: 01/16/2023]
Abstract
Following activation by its cognate ligand(s), the epidermal growth factor receptor (EGFR) is rapidly routed to the lysosome for degradation in a ubiquitination-dependent fashion. This pathway represents the major mechanism of long-term attenuation of EGFR signaling, and its deregulation is a significant feature in different types of cancers. Here we demonstrate, through a systematic RNAi-based approach, that several deubiquitinating (DUB) enzymes extend or decrease EGFR half-life upon EGF stimulation. We focus on USP9X, whose depletion severely affects EGFR turnover, interfering with its internalization and trafficking. We identify the endocytic protein Eps15 as one of the critical substrates of USP9X, and we map the Eps15 ubiquitination sites. We found that Eps15 monoubiquitination occurs already at minimal dose of EGF stimulation and is essential for EGFR internalization. Overall, our findings identify USP9X as a novel regulator of EGFR endocytosis and suggest a model whereby cycles of ubiquitination and deubiquitination events on endocytic accessory proteins may regulate the internalization and trafficking of the EGFR toward the lysosomes.
Collapse
Affiliation(s)
- Michol Giovanna Savio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy
| | - Nadine Wollscheid
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Elena Cavallaro
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy; IEO, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy.
| |
Collapse
|
49
|
Otaki Y, Takahashi H, Watanabe T, Funayama A, Netsu S, Honda Y, Narumi T, Kadowaki S, Hasegawa H, Honda S, Arimoto T, Shishido T, Miyamoto T, Kamata H, Nakajima O, Kubota I. HECT-Type Ubiquitin E3 Ligase ITCH Interacts With Thioredoxin-Interacting Protein and Ameliorates Reactive Oxygen Species-Induced Cardiotoxicity. J Am Heart Assoc 2016; 5:JAHA.115.002485. [PMID: 26796253 PMCID: PMC4859366 DOI: 10.1161/jaha.115.002485] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The homologous to the E6‐AP carboxyl terminus (HECT)–type ubiquitin E3 ligase ITCH is an enzyme that plays a pivotal role in posttranslational modification by ubiquitin proteasomal protein degradation. Thioredoxin‐interacting protein (TXNIP) is a negative regulator of the thioredoxin system and an endogenous reactive oxygen species scavenger. In the present study, we focused on the functional role of ubiquitin E3 ligase ITCH and its interaction with TXNIP to elucidate the mechanism of cardiotoxicity induced by reactive oxygen species, such as doxorubicin and hydrogen peroxide. Methods and Results Protein interaction between TXNIP and ITCH in cardiomyocyte was confirmed by immunoprecipitation assays. Overexpression of ITCH increased proteasomal TXNIP degradation and augmented thioredoxin activity, leading to inhibition of reactive oxygen species generation, p38 MAPK, p53, and subsequent intrinsic pathway cardiomyocyte apoptosis in reactive oxygen species–induced cardiotoxicity. Conversely, knockdown of ITCH using small interfering RNA inhibited TXNIP degradation and resulted in a subsequent increase in cardiomyocyte apoptosis. Next, we generated a transgenic mouse with cardiac‐specific overexpression of ITCH, called the ITCH‐Tg mouse. The expression level of TXNIP in the myocardium in ITCH‐Tg mice was significantly lower than WT littermates. In ITCH‐Tg mice, cardiac dysfunction and remodeling were restored compared with WT littermates after doxorubicin injection and myocardial infarction surgery. Kaplan–Meier analysis revealed that ITCH‐Tg mice had a higher survival rate than WT littermates after doxorubicin injection and myocardial infarction surgery. Conclusion We demonstrated, for the first time, that ITCH targets TXNIP for ubiquitin‐proteasome degradation in cardiomyocytes and ameliorates reactive oxygen species–induced cardiotoxicity through the thioredoxin system.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Shunsuke Netsu
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Yuki Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Shinpei Kadowaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Hiromasa Hasegawa
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Shintaro Honda
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| | - Hideaki Kamata
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Medicine, University of Hiroshima, Japan (H.K.)
| | - Osamu Nakajima
- Research Laboratory for Molecular Genetics, Yamagata University School of Medicine, Yamagata, Japan (O.N.)
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan (Y.O., H.T., T.W., A.F., S.N., Y.H., T.N., S.K., H.H., S.H., T.A., T.S., T.M., I.K.)
| |
Collapse
|
50
|
Wolfsperger F, Hogh-Binder SA, Schittenhelm J, Psaras T, Ritter V, Bornes L, Huber SM, Jendrossek V, Rudner J. Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis 2016; 7:e2039. [PMID: 26775694 PMCID: PMC4816183 DOI: 10.1038/cddis.2015.405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
Abstract
Glioblastoma is a very aggressive form of brain tumor with limited therapeutic options. Usually, glioblastoma is treated with ionizing radiation (IR) and chemotherapy after surgical removal. However, radiotherapy is frequently unsuccessful, among others owing to resistance mechanisms the tumor cells have developed. Antiapoptotic B-cell leukemia (Bcl)-2 family members can contribute to radioresistance by interfering with apoptosis induction in response to IR. Bcl-2 and the closely related Bcl-xL and Mcl-1 are often overexpressed in glioblastoma cells. In contrast to Bcl-2 and Bcl-xL, Mcl-1 is a short-lived protein whose stability is closely regulated by ubiquitylation-dependent proteasomal degradation. Although ubiquitin ligases facilitate degradation, the deubiquitylating enzyme ubiquitin-specific protease 9x (USP9x) interferes with degradation by removing polyubiquitin chains from Mcl-1, thereby stabilizing this protein. Thus, an inability to downregulate Mcl-1 by enhanced USP9x activity might contribute to radioresistance. Here we analyzed the impact of USP9x on Mcl-1 levels and radiosensitivity in glioblastoma cells. Correlating Mcl-1 and USP9x expressions were significantly higher in human glioblastoma than in astrocytoma. Downregulation of Mcl-1 correlated with apoptosis induction in established glioblastoma cell lines. Although Mcl-1 knockdown by siRNA increased apoptosis induction after irradiation in all glioblastoma cell lines, USP9x knockdown significantly improved radiation-induced apoptosis in one of four cell lines and slightly increased apoptosis in another cell line. In the latter two cell lines, USP9x knockdown also increased radiation-induced clonogenic death. The massive downregulation of Mcl-1 and apoptosis induction in A172 cells transfected with USP9x siRNA shows that the deubiquitinase regulates cell survival by regulating Mcl-1 levels. In contrast, USP9x regulated radiosensitivity in Ln229 cells without affecting Mcl-1 levels. We conclude that USP9x can control survival and radiosensitivity in glioblastoma cells by Mcl-1-dependent and Mcl-1-independent mechanisms.
Collapse
Affiliation(s)
- F Wolfsperger
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - S A Hogh-Binder
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - J Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - T Psaras
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - V Ritter
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - L Bornes
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - S M Huber
- Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - V Jendrossek
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| | - J Rudner
- Institute for Cell Biology, University Hospital Essen, Essen, Germany
| |
Collapse
|