1
|
Liu Y, Long H, Sun Q, Zhang D, Zheng J, Zhang H. External pressure induced the dysfunction of Sertoli cells via the Fas/ FasL signaling pathway. Syst Biol Reprod Med 2024; 70:289-298. [PMID: 39361820 DOI: 10.1080/19396368.2024.2403383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Cryptorchidism, a condition where the testis fails to fully descend into the scrotum during development, is associated with elevated environmental temperatures and pressures, leading to male infertility and germ cell tumors. Factors such as oxidative stress and high temperatures contribute to infertility in cryptorchidism. This study aims to explore how external pressure affects Sertoli cells and discover new mechanisms affecting spermatogenesis in cryptorchidism. Sertoli cells were subjected to various pressure levels (0 mmHg, 25 mmHg, 50 mmHg, 100 mmHg) and durations (0 h, 2 h, 4 h) using an enzyme-linked immunosorbent assay (ELISA) to measure androgen binding protein (ABP) and inhibin B (INH B) secretion. Cell morphology changes were observed using immunofluorescence; apoptosis rates were measured with terminal-deoxynucleotidyl transferase mediated nick end labelling (TUNEL) assay and flow cytometry; ultrastructural variations were examined via transmission electron microscopy; and the expression of apoptosis-related proteins (Fas, FasL, caspase 3, and caspase 8) was analyzed through immunohistochemistry, real-time polymerase chain reaction (real-time PCR), and western blotting. The results showed that elevated pressure suppressed ABP and INH B secretion from Sertoli cells. Structural changes were observed under pressure, including cytoskeleton loosening and nuclear fragmentation. Apoptosis rates increased with higher pressure levels. Ultrastructural analysis revealed chromatin changes, apoptotic bodies, and mitochondrial alterations. Increased expressions of Fas and FasL were detected, along with elevated levels of caspase 3 and caspase 8. The caspase 8 inhibitor blocked pressure-induced apoptosis and caspase 3 activation, while the cytochrome C inhibitor did not show the same effect. Our findings suggested that external pressure induces apoptosis of Sertoli cells via the Fas/FasL signaling pathway, potentially contributing to male infertility associated with cryptorchidism.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Houtao Long
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qihao Sun
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Daofeng Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junhao Zheng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haiyang Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Sabovic I, De Toni L, Di Nisio A, Radu CM, Gabbia D, De Martin S, Ferlin A. Additive effect of Bisphenol A and Pefluoro-sulphoctanoic acid exposure at subacute toxic levels, on a murine model of sertoli cell. J Endocrinol Invest 2024:10.1007/s40618-024-02498-w. [PMID: 39556264 DOI: 10.1007/s40618-024-02498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Endocrine disruptors (EDs) interfere with the endocrine system leading to health consquences and reproductive derangements. Most EDs are environmental pollutants whose risk evaluation is hampered by the simultaneous exposure to a number of chemicals. Here we investigated the possible mechanistic involvement of Sertoli cells, the nurse cell population in the seminiferous tubule, in the reproductive toxicity of Bisphenol A (BPA) and perfluoro-octane sulphonate (PFOS), two acknowledged EDs, at recognized subacute toxic levels. METHODS Mouse Sertoli cell line TM4 were exposed for 24 h to 40 ng/mL BPA or 30 ng/mL PFOS or their association. Cell proliferation was measuerd by MTT assay. Cell apoptosis was evaluated with Annexin-V/propidium iodide staining. Protein expression analysis was peformed by western blotting. RESULTS Compared to unexposed controls (100.0 ± 3.5%), cells exposed to BPA (79.5 ± 3.5%) or PFOS (76.0 ± 7.9%) showed reduced survival rate (P < 0.001 vs control). The exposure to the mixture of BPA and PFOS was associated with a further reduction of cell survival (63.9 ± 7.2%, P < 0.001 vs control) and an increase of the percentage of apoptotic cells (13.7 ± 4.6% control, 40.3 ± 13.5% BPA, PFOS 28.7 ± 5.6%, 67.1 ± 19.6% BPA + PFOS P = 0.001 vs control; P = 0.022 vs BPA). The exposure to the combination of BPA and PFOS was associated with Akt-signaling pathway activation and with the downstream caspase 3 cleavage. In addition, the exposure to the combination of BPA and PFOS was associated with NF-κB activation and increased expression of FasL. CONCLUSION Subacute toxic levels of BPA and PFOS display additive effects on Sertoli cell apoptosis with the possible involvement of FasL-dependent germ cell apoptosis.
Collapse
Affiliation(s)
- I Sabovic
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - L De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- Department of Health, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - C M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, University of Padova, Padova, Italy
| | - D Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - S De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
4
|
Gillette R, Tiwary R, Voss JJLP, Hewage SN, Richburg JH. Peritubular Macrophages Are Recruited to the Testis of Peripubertal Rats After Mono-(2-Ethylhexyl) Phthalate Exposure and Is Associated With Increases in the Numbers of Spermatogonia. Toxicol Sci 2021; 182:288-296. [PMID: 34010400 DOI: 10.1093/toxsci/kfab059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peripubertal exposure of male rodents to the phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) causes testicular inflammation, spermatocyte apoptosis, and disruption of the blood-testis barrier. The MEHP-induced inflammatory response in the testis includes an infiltration of macrophages and neutrophils, although the cause and purpose of this response is unknown. Recently, a population of testicular macrophages known as peritubular macrophages that are phenotypically distinct from those resident in interstitium was described in mice. Peritubular macrophages aggregate near the spermatogonial stem cell niche and are believed to stimulate their differentiation. We hypothesized that if testicular peritubular macrophages do indeed stimulate spermatogonial differentiation, MEHP exposure would result in an increase of peritubular macrophages to stimulate the replacement of lost spermatocytes. Male rats were exposed to 700 mg/kg MEHP or corn oil (vehicle control) via oral gavage at postnatal day 28 and euthanized at 48 h, 1 or 2 weeks later. Seminiferous tubules were stained with immunofluorescent markers for macrophages (major histocompatibility complex class II [MHC-II+]) and undifferentiated spermatogonia (PLZF). Peritubular macrophages were observed in rat testis: MHC-II+ cells on the surface of seminiferous tubules with heterogeneous morphology. Quantification of MHC-II+ cells revealed that, unlike in the mouse, their numbers did not increase through puberty (2-week period). MEHP increased macrophage presence by 6-fold 48 h after exposure and remained elevated by 2-fold 2 weeks after exposure. An increase of differentiating spermatogonia occurred 2 weeks after MEHP exposure. Taken together, our results suggest that peritubular macrophages play a crucial role in the testis response to acute injury and the subsequent recovery of spermatogenesis.
Collapse
Affiliation(s)
- Ross Gillette
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Richa Tiwary
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Jorine J L P Voss
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Shavini N Hewage
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Awny MM, Al-Mokaddem AK, Ali BM. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch Biochem Biophys 2021; 711:108982. [PMID: 34400143 DOI: 10.1016/j.abb.2021.108982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that causes reproductive defects in male animal models. This study was conducted to explore the plausible modulatory effects of mangiferin (MF) against DEHP-induced testicular injury in rats. Thirty-two adult male albino rats were allocated into four groups. Two groups were given DEHP (2 g/kg/day, p.o) for 14 days. One of these groups was treated with MF (20 mg/kg/day, i.p) for 7 days before and 14 days after DEHP administration. A vehicle-treated control was included, and another group of rats was given MF only. Results revealed that MF treatment suppressed oxidative testicular injury by amplifying the mRNA expression of nuclear factor-erythroid 2 related factor-2 (Nrf2) and increasing hemoxygenase-1 (HO-1), glutathione, and total antioxidant capacity (TAC) levels. This treatment also enhanced superoxide dismutase activity, but it decreased malondialdehyde and nitric oxide levels. MF had an anti-inflammatory characteristic, as demonstrated by the downregulation of the mRNA of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The content of tumor necrosis factor-alpha also decreased. MF modulated the apoptotic pathway by suppressing the mRNA of cytochrome c (Cyt c), Fas ligand content, Bax IHC expression, caspase-3 activity and cleaved caspase-3 IHC expression. It also upregulated the expression levels of heat-shock protein 70 (HSP70) and B-cell lymphoma 2. Moreover, MF upregulated the mRNA expression levels of HSP70 and c-kit and enriched the content of steroidogenic acute regulatory (StAR) protein, which were reflected in serum testosterone levels. This result indicated that MF played crucial roles in steroidogenesis and spermatogenesis. Besides, the activities of testicular marker enzymes, namely, acid and alkaline phosphatases, and lactate dehydrogenase, significantly increased. Histopathological observations provided evidence supporting the biochemical and molecular measurements. In conclusion, MF provided protective mechanisms against the DEHP-mediated deterioration of testicular functions partially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. It also involved the restoration of steroidogenesis and spermatogenesis through the modulation of Nrf2/HO-1, NF-κB/Cyt c/HSP70, and c-Kit signaling cascades.
Collapse
Affiliation(s)
- Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
6
|
Ibrahim IA, Shalaby AA, Abd Elaziz RT, Bahr HI. Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39126-39138. [PMID: 33754266 DOI: 10.1007/s11356-021-13411-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The current research was constructed to throw the light on the protective possibility of Chlorella vulgaris (C. vulgaris) and Spirulina platensis (S. platensis) against lead acetate-promoted testicular dysfunction in male rats. Forty rats were classified into four groups: (i) control, (ii) rats received lead acetate (30 mg/kg bw), (iii) rats concomitantly received lead acetate and C. vulgaris (300 mg/kg bw), (vi) rats were simultaneously treated with lead acetate and S. platensis (300 mg/kg bw) via oral gavage for 8 weeks. Lead acetate promoted testicular injury as expressed with fall in reproductive organ weights and gonadosomatic index (GSI). Lead acetate disrupted spermatogenesis as indicated by sperm cell count reduction and increased sperm malformation percentage. Lead acetate-deteriorated steroidogenesis is evoked by minimized serum testosterone along with maximized follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Testicular oxidative, inflammatory, and apoptotic cascades are revealed by elevated acid phosphatase (ACP) and sorbitol dehydrogenase (SDH) serum leakage, declined testicular total antioxidative capacity (TAC) with elevated total oxidative capacity (TOC), tumor necrosis factor alpha (TNF-α), caspase-3 levels, lessened androgen receptor (AR) expression, and histopathological lesions against control. Our research highlights that C. vulgaris or S. platensis therapy can modulate lead acetate-promoted testicular dysfunction via their antioxidant activity as expressed by elevated TAC and reduced TOC, immunomodulatory effect as indicated by lessened TNF-α level, and anti-apoptotic potential that was revealed by minimized caspase-3 levels. As well as restoration of testicular histoarchitecture, androgen receptor, steroidogenesis, and spermatogenesis were detected with better impacts to S. platensis comparing with C. vulgaris. Therefore, further clinical trials are needed to test S. platensis and C. vulgaris as a promising candidate in treating male infertility.
Collapse
Affiliation(s)
- Ibrahim A Ibrahim
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abeir A Shalaby
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Raghda T Abd Elaziz
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hoda I Bahr
- Department of Biochemistry, Faculty of Vet. Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
7
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front Endocrinol (Lausanne) 2019; 10:224. [PMID: 31040821 PMCID: PMC6476933 DOI: 10.3389/fendo.2019.00224] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sertoli cells are somatic cells present in seminiferous tubules which have essential roles in regulating spermatogenesis. Considering that each Sertoli cell is able to support a limited number of germ cells, the final number of Sertoli cells reached during the proliferative period determines sperm production capacity. Only immature Sertoli cells, which have not established the blood-testis barrier, proliferate. A number of hormonal cues regulate Sertoli cell proliferation. Among them, FSH, the insulin family of growth factors, activin, and cytokines action must be highlighted. It has been demonstrated that cAMP/PKA, ERK1/2, PI3K/Akt, and mTORC1/p70SK6 pathways are the main signal transduction pathways involved in Sertoli cell proliferation. Additionally, c-Myc and hypoxia inducible factor are transcription factors which participate in the induction by FSH of various genes of relevance in cell cycle progression. Cessation of proliferation is a pre-requisite to Sertoli cell maturation accompanied by the establishment of the blood-testis barrier. With respect to this barrier, the participation of androgens, estrogens, thyroid hormones, retinoic acid and opioids has been reported. Additionally, two central enzymes that are involved in sensing cell energy status have been associated with the suppression of Sertoli cell proliferation, namely AMPK and Sirtuin 1 (SIRT1). Among the molecular mechanisms involved in the cessation of proliferation and in the maturation of Sertoli cells, it is worth mentioning the up-regulation of the cell cycle inhibitors p21Cip1, p27Kip, and p19INK4, and of the gap junction protein connexin 43. A decrease in Sertoli cell proliferation due to administration of certain therapeutic drugs and exposure to xenobiotic agents before puberty has been experimentally demonstrated. This review focuses on the hormones, locally produced factors, signal transduction pathways, and molecular mechanisms controlling Sertoli cell proliferation and maturation. The comprehension of how the final number of Sertoli cells in adulthood is established constitutes a pre-requisite to understand the underlying causes responsible for the progressive decrease in sperm production that has been observed during the last 50 years in humans.
Collapse
|
9
|
Bao J, Perez CJ, Kim J, Zhang H, Murphy CJ, Hamidi T, Jaubert J, Platt CD, Chou J, Deng M, Zhou MH, Huang Y, Gaitán-Peñas H, Guénet JL, Lin K, Lu Y, Chen T, Bedford MT, Dent SY, Richburg JH, Estévez R, Pan HL, Geha RS, Shi Q, Benavides F. Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight 2018; 3:99767. [PMID: 30135305 DOI: 10.1172/jci.insight.99767] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Huan Zhang
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Caitlin J Murphy
- The University of Texas at Austin, College of Pharmacy, Austin, Texas, USA
| | - Tewfik Hamidi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jean Jaubert
- Unité de Génétique de la Souris, Institut Pasteur, Paris, France
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Meichun Deng
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Héctor Gaitán-Peñas
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,U-750, CIBERER, ISCIII, Barcelona, Spain
| | | | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sharon Yr Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John H Richburg
- The University of Texas at Austin, College of Pharmacy, Austin, Texas, USA
| | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,U-750, CIBERER, ISCIII, Barcelona, Spain
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Qinghua Shi
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
10
|
Voss JJLP, Stermer AR, Ghaffari R, Tiwary R, Richburg JH. MEHP-induced rat testicular inflammation does not exacerbate germ cell apoptosis. Reproduction 2018; 156:35-46. [PMID: 29743262 DOI: 10.1530/rep-18-0093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The testis is an organ that maintains an immune suppressive environment. We previously revealed that exposure of pre-pubertal rats to an acute dose of a well-described Sertoli cell toxicant, mono-(2-ethylhexyl) phthalate (MEHP), leads to an accumulation of CD11b+ immune cells in the testicular interstitial space that closely correlates with a robust incidence of germ cell (GC) apoptosis. Here, we test the hypothesis that the infiltrating immune cells contribute to GC apoptosis. Postnatal day 28 Fischer rats that received an oral dose of 700 mg/kg MEHP showed a significant infiltration of both CD11bc+/CD68+/CD163- macrophages and neutrophils. The infiltration peaked at 12 h, but had reduced by 48 h. Testicular macrophages from MEHP-treated rats showed significantly upregulated expression of Tnfa and Il6, and the Arg1/Nos2 ratio was reduced compared to controls. However, small increases in anti-inflammatory genes Il10 and Tgfb1 were also observed. Depletion of circulating monocytes with clodronate liposomes prior to MEHP treatment reduced the macrophage influx into the testis, but did not lower GC apoptosis. Additionally, depletion of neutrophils using an anti-polymorphonuclear cell antibody prevented both macrophage and neutrophil infiltration into the testis, and also did not affect GC apoptosis. Together, these results show that exposure to MEHP leads to a rapid and temporary influx of pro-inflammatory monocytes and neutrophils in the interstitium of the testis. However, with this acute dosing paradigm, these infiltrating leukocytes do not appear to contribute to MEHP-induced testicular GC apoptosis leaving the functional significance of these infiltrating cells in the pathogenesis of MEHP-induced testicular injury unresolved.
Collapse
Affiliation(s)
- Jorine J L P Voss
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Angela R Stermer
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Rashin Ghaffari
- University of Texas at AustinInstitute of Cellular and Molecular Biology, College of Natural Sciences, The Austin, Texas, USA
| | - Richa Tiwary
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - John H Richburg
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Yang X, Chen Y, Zhang J, Tang T, Kong Y, Ye F, Zhang X, Liu X, Lin S. Thymosin α1 treatment reduces hepatic inflammation and inhibits hepatocyte apoptosis in rats with acute liver failure. Exp Ther Med 2018; 15:3231-3238. [PMID: 29545840 PMCID: PMC5840938 DOI: 10.3892/etm.2018.5843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate whether thymosin α1 (Tα1) increases survival rates through the improvement of immunofunction and inhibition of hepatocyte apoptosis in rats with acute liver failure (ALF). A total of 25 rats were randomly divided into the control group (CG), the model group (MG) and the treatment group (TG). The CG received an intraperitoneal injection of saline (2 ml). The ALF rat model was established by the intraperitoneal injection of D-galactosamine (700 mg/kg) and lipopolysaccharide (10 µg/kg). The TG received an intraperitoneal injection of Tα1 (0.03 mg/kg) 1 h prior to and 30 min after modeling. The survival rates of the rats were recorded. An additional 63 rats were randomly divided into a CG (n=3), MG (n=30) and TG (n=30). Three rats were sacrificed at 3, 6, 9 and 12 h after establishment of the rat model to detect plasma alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), tumor necrosis factor (TNF)-α and interleukin-10 (IL-10). Liver samples were stained with hematoxylin and eosin and TUNEL, and reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) in liver tissue. The results indicated that the survival rate of the TG was significantly higher compared with that of the MG at 24 h (P<0.05). Plasma ALT, AST and TBIL in the MG and TG increased over time (3–12 h), with ALT, AST and TBIL observed to be significantly lower in the TG compared with the MG at each time-point (P<0.05). Hepatocellular necrosis, hemorrhage and inflammatory cell infiltration of ALF were aggravated over time (3–12 h) in the MG and TG. Notably, in the Tα1-treated rats, the hepatocytes appeared healthier with fewer apoptotic cells compared with those from the MG at the same time-points. Hepatocyte apoptotic index increased in the TG and MG, but was significantly lower in the TG compared with the MG at each time-point (P<0.05) in TUNEL assays. Plasma TNF-α and IL-10 in the MG and TG increased over time (3–12 h), with TNF-α observed to be significantly lower in the TG compared with the MG at each time-point (P<0.05), however, IL-10 was observed to be significantly higher in the TG compared with the MG at each time-point (P<0.05). Bax mRNA expression was significantly lower in the TG compared with the MG at each time-point (P<0.05), whereas Bcl-2 was significantly higher (P<0.05). In conclusion, Tα1 improved survival rates in an ALF rat model by downregulating TNF-α and upregulating IL-10, leading to the attenuation of hepatic inflammation and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xueliang Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunru Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Zhang
- The Second Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tiantian Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Ying Kong
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst Biol Reprod Med 2018; 64:93-102. [DOI: 10.1080/19396368.2017.1422046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mei Wang
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Ping Su
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| |
Collapse
|
13
|
Mono-(2-ethylhexyl) phthalate-induced Sertoli cell injury stimulates the production of pro-inflammatory cytokines in Fischer 344 rats. Reprod Toxicol 2017; 69:150-158. [PMID: 28238932 DOI: 10.1016/j.reprotox.2017.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Exposure of rodents to the Sertoli cell (SC) toxicant mono-(2-ethylhexyl) phthalate (MEHP) has been reported to trigger an infiltration of macrophages into the testis in an age- and species-dependent manner. Here we challenge the hypothesis that the peripubertal rat-specific infiltration of macrophages after MEHP exposure is due, in part, to an increase in SC-specific inflammatory cytokine expression. To rule out that germ cell(GC) apoptosis itself is responsible for macrophage recruitment, rats were exposed to a direct GC toxicant, methoxyacetic acid (MAA), but no infiltration of macrophages was observed. Next, mRNA levels of inflammatory cytokines were evaluated after MEHP exposure. IL-1α, IL-6, and MCP-1 expression were increased in vivo and correlated with macrophage infiltration in a species-specific manner. Additionally, IL-6 and MCP-1 expression was increased in SC-GC co-cultures and ASC-17D SCs. These results indicate that MEHP-injury in pubertal rats specifically stimulates secretion of pro-inflammatory cytokines and alters the immune microenvironment.
Collapse
|
14
|
Wang YX, Zeng Q, Sun Y, You L, Wang P, Li M, Yang P, Li J, Huang Z, Wang C, Li S, Dan Y, Li YF, Lu WQ. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: A cross-sectional study in China. ENVIRONMENTAL RESEARCH 2016; 150:557-565. [PMID: 26654563 DOI: 10.1016/j.envres.2015.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/17/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Exposure to phthalates has been demonstrated to cause reproductive toxicity in animals, but evidence of the association between phthalates and markers of male reproductive function have been inconsistent in human studies. Here we examined whether environmental exposure to phthalates contributes to altered reproductive hormone levels, sperm DNA damage and spermatozoa apoptosis in a Chinese population. From March to June 2013, repeated urine samples collected from male partners of couples attending an infertility clinic in Wuhan, China were analyzed for 8 phthalate metabolites. Associations of the urinary phthalate metabolites with serum hormone levels (n=483), sperm DNA damage parameters (n=509) and spermatozoa apoptosis measures (n=467) were assessed using multivariable linear regression models. After adjusting for potential confounders, mono-(2-ethylhexyl) phthalate (MEHP), a metabolite of di-(2-ethylhexyl)-phthalate (DEHP), was inversely associated with serum levels of estradiol, total testosterone (T) and free T (all P for trend<0.05). Additionally, we found positive dose-response relationships between the percentage of DEHP metabolites excreted as MEHP (%MEHP) and percentages of tail DNA (P for trend<0.05) and between three metabolites of DEHP [MEHP, mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)] and percentages of Annexin V+/PI- spermatozoa (all P for trend<0.05). Our findings strengthen the emerging evidence that exposure to DEHP may alter hormone levels, disrupt sperm DNA integrity and induce spermatozoa apoptosis.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shuai Li
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yang Dan
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
15
|
Changes in Inflammatory Cytokines Accompany Deregulation of Claudin-11, Resulting in Inter-Sertoli Tight Junctions in Varicocele Rat Testes. J Urol 2016; 196:1303-12. [PMID: 27164517 DOI: 10.1016/j.juro.2016.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
PURPOSE To elucidate the changes that occur in the blood-testis barrier during varicocele we examined changes in Cldn11 (claudin-11), an element of the blood-testis barrier, as well as steroidogenesis and proinflammatory cytokines in a model of varicocele rat testes. MATERIALS AND METHODS Male rats with experimentally induced varicocele were sacrificed 4 weeks after operation. Testicular histology and blood testosterone concentrations were examined. The expression of tight junctions, steroidogenic enzymes, apoptosis and immune cell markers, and proinflammatory cytokines in the testes were evaluated by reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. RESULTS Weight and Johnsen scores of varicocele testes were lower than those of normal testes. mRNA expression of Bad and Bax increased whereas Bcl-xl and Bcl2 mRNA decreased in varicocele testes compared to controls. Although blood testosterone did not change, Leydig cell 3βHsd immunoreactivity, testicular 3βHsd6 and 17βHsd3 mRNA were significantly decreased in varicocele testes. Cldn11 mRNA and protein levels in varicocele testes were higher than in normal testes together with altered expression of Ocln, Zo1 and N-cadherin mRNA. Cldn11 immunoreactivity appeared as wavy strands at the periphery of the seminiferous epithelium in normal testes but was frequently found in the Sertoli cell cytoplasm in varicocele testes. In varicocele testes Tnfα, Il1α, Il6, Cd45, Cd3g and Cd3d mRNA was increased. CONCLUSIONS An increase in proinflammatory cytokines might be responsible for deregulation of Cldn11 in the Sertoli cells in varicocele testes, leading to alterations in the permeability of the blood-testis barrier and immunological barriers to normal spermatogenesis.
Collapse
|
16
|
Toxicogenomic Screening of Replacements for Di(2-Ethylhexyl) Phthalate (DEHP) Using the Immortalized TM4 Sertoli Cell Line. PLoS One 2015; 10:e0138421. [PMID: 26445464 PMCID: PMC4596883 DOI: 10.1371/journal.pone.0138421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/29/2015] [Indexed: 12/04/2022] Open
Abstract
Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR’s themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH.
Collapse
|
17
|
Yang G, Zhang W, Qin Q, Wang J, Zheng H, Xiong W, Yuan J. Mono(2-ethylhexyl) phthalate induces apoptosis in p53-silenced L02 cells via activation of both mitochondrial and death receptor pathways. ENVIRONMENTAL TOXICOLOGY 2015; 30:1178-1191. [PMID: 24706461 DOI: 10.1002/tox.21990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is one of the main metabolites of di(2-ethylhexyl) phthalate. The evidence shows that DEHP may exert its toxic effects primarily via MEHP, which is 10-fold more potent than its parent compound in toxicity in vitro. MEHP-induced apoptosis is mediated by either p53-dependent or -independent pathway. However, the detailed mechanism of its toxicity remains unclear. In this study, immortalized normal human liver cell line L02 was chosen, as an in vitro model of nonmalignant liver, to elucidate the role of p53 in MEHP-induced apoptosis. The cells were treated with MEHP (6.25, 12.50, 25.00, 50.00, and 100.00 μM) for 24 and 36 h, then small interfering RNA (siRNA) was used to specifically silence p53 gene of L02 cells. The results indicated that MEHP caused oxidative DNA damage and apoptosis in L02 cells were associated with the p53 signaling pathway. Further study found that MEHP (50.00 and 100.00 μM) induced apoptosis in p53-silenced L02 cells, along with the up-regulations of Fas and FasL proteins as well as increased the Bax/Bcl-2 ratio and Caspase 3, 8, and 9 activities. Additionally, both FasL inhibitor (AF-016) and Caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone (Z-VAD-FMK) could prevent the cell apoptosis induced by MEHP. The findings suggested that MEHP-induced apoptosis in L02 cells involving a Caspases-mediated mitochondrial signaling pathway and/or death receptor pathway. p53 was not absolutely necessary for MEHP-induced L02 cell apoptosis.
Collapse
Affiliation(s)
- Guangtao Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenjuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Qizhi Qin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongyan Zheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xiong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| |
Collapse
|
18
|
Wang Y, Zhang JJ, Yang WR, Luo HY, Zhang JH, Wang XZ. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines andmiR-187. Mol Reprod Dev 2015; 82:880-91. [DOI: 10.1002/mrd.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/26/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Wei-Rong Yang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment; Southwest University; Beibei Chongqing P. R. China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| |
Collapse
|
19
|
Ebokaiwe AP, D'Cruz SC, Jubendradass R, Amala Rani JS, Mathur PP, Farombi EO. Nigerian bonny-light crude oil induces alteration in testicular stress response proteins and caspase-3 dependent apoptosis in albino wistar rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:242-252. [PMID: 24106129 DOI: 10.1002/tox.21902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
In the past few decades, there has been much concern about the adverse health effects of environmental contaminants in general and Crude Oil in particular around the Niger Delta region of Nigeria where all the crude Oil exploration is taking place. Studies have shown the repro-toxic effects of Bonny-light crude oil (BLCO). However, the insight into the mechanisms of gonadal toxicity induced by BLCO is not well known. In this study, we sought to elucidate the mechanism(s) underpinning the gonadal effects within hours of exposure to BLCO. Experimental rats were divided into five groups of four each. Animals were orally administered with a single dose of BLCO (800 mg/kg body weight) and killed at 0, 6, 12, 24, and 72 h post-treatment. The levels and time-course of induction of stress response proteins and apoptosis-related proteins like cytochorome C, caspase 3 and procaspase 9, Fas-FasL, NF-kB and TNF-α were determined to assess sequential induction of apoptosis in the rat testis. DNA damage was assessed by TUNEL assay. Administration of BLCO resulted in a significant increase in the levels of stress response proteins and apoptotis- related proteins as early as 6 h following exposure. Time-dependent elevations in the levels of the proteins were observed. The DNA damage was measured and showed time-dependent increase in the TUNEL positive cells of testicular cells. The study demonstrates induction of testicular apoptosis in adult rats following exposure to a single dose of BLCO.
Collapse
Affiliation(s)
- Azubuike P Ebokaiwe
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | |
Collapse
|
20
|
Murphy CJ, Richburg JH. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology. SPERMATOGENESIS 2015; 4:e979110. [PMID: 26413394 DOI: 10.4161/21565562.2014.979110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
After exposure to toxicants, degenerating germ cells represents the most common testicular histopathological alteration, regardless of the mechanism of toxicity. Therefore, deciphering the primary toxicant cellular target and mechanism of action can be extremely difficult. However, most testicular toxicants display a cell-specific and a stage-specific pattern of damage, which is the best evidence for identifying the primary cellular target (i.e. germ cell, Sertoli cell, peritubular myoid cell, or Leydig cell). Some toxicant-induced Sertoli cell injury presents with germ cell apoptosis occurring primarily in spermatocytes in rats in stages XI-XIV, I and II. Although some toxicants result in spermatid degeneration and apoptosis, it is still unclear if spermatid apoptosis is a result of Sertoli cell-selective apoptosis or a direct effect of toxicants on spermatids, therefore if this is seen as the earliest change, one cannot infer the mechanism of apoptosis. This review summarizes some of the distinguishing features of Sertoli cell-induced germ cell apoptosis and the associated mechanisms of cell death to provide the toxicologist observing similar cell death, with evidence about a potential mode of action.
Collapse
Affiliation(s)
- Caitlin J Murphy
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| | - John H Richburg
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
21
|
|
22
|
A mechanism of male germ cell apoptosis induced by bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation. PLoS One 2014; 9:e113793. [PMID: 25474107 PMCID: PMC4256297 DOI: 10.1371/journal.pone.0113793] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023] Open
Abstract
Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA) and Nonylphenol (NP) induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1) to determine whether BPA and NP induce ADAM17 activation; and 2) to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg) induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α) ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation) of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis.
Collapse
|
23
|
Zhang C, Lai JH, Hu B, Zhang S, Zhao J, Li W. A chromatin modifier regulates Sertoli cell response to mono-(2-ethylhexyl) phthalate (MEHP) via tissue inhibitor of metalloproteinase 2 (TIMP2) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1170-82. [DOI: 10.1016/j.bbagrm.2014.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/03/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
24
|
Dwyer JL, Richburg JH. Age-dependent alterations in spermatogenesis in itchy mice. SPERMATOGENESIS 2014; 2:104-116. [PMID: 22670220 PMCID: PMC3364791 DOI: 10.4161/spmg.20596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spermatogenesis is an intricate process in which spermatogonial stem cells divide and differentiate to produce mature sperm. This process strongly depends on protein turnover both in the developing germ cells and the supportive Sertoli cells, and recent evidence has demonstrated the role of the ubiquitin-proteasome system in this protein turnover in the testis. Itch, an E3 ligase important in the immune system, has been implicated in regulating the blood testis barrier. Although the specific role of Itch during spermatogenesis is not yet well understood, its ubiquitous expression and wide array of functional targets suggest multiple and tissue-specific roles. Here the testes of mice that lack Itch protein are evaluated at two developmental time points: peri-pubertal postnatal day (PND) 28 and adult PND 56. Itchy mice demonstrate an increased germ cell apoptotic index compared with wild type C57BL/6J mice at both PND 28 and PND 56. A corresponding 27% reduction in the total number of spermatid heads produced in PND 56 itchy mice was also evident. A histological evaluation of itchy mice revealed a delay in spermatogenesis at PND 28 and disorganization of late stage spermatids at PND 56. An analysis of several apoptotic markers revealed an age-dependent change in cleaved caspase 9, an intrinsic apoptosis mediator. The breeding success of the itchy mice was also significantly decreased, possibly due to a developmental defect. Taken together, these findings indicate that Itch is required for functional spermatogenesis, and that it may play differing cellular roles during development.
Collapse
|
25
|
Murphy CJ, Stermer AR, Richburg JH. Age- and species-dependent infiltration of macrophages into the testis of rats and mice exposed to mono-(2-Ethylhexyl) phthalate (MEHP). Biol Reprod 2014; 91:18. [PMID: 24876407 DOI: 10.1095/biolreprod.113.115527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism by which noninfectious testicular inflammation results in infertility is poorly understood. Here the infiltration of CD11b+ immunoreactive testicular interstitial cells (neutrophil, macrophages, dendritic cells) in immature (Postnatal Day [PND] 21, 28, and 35) and adult (PND 56) Fischer rats is described at 12, 24, and 48 h after an oral dose of 1 g/kg mono-(2-ethylhexyl) phthalate (MEHP), a well-described Sertoli cell toxicant. Increases of CD11b+ cells are evident 12 h after MEHP exposure in PND 21 and 28 rats. In PND 28 rats, CD11b+ cells remained significantly elevated at 48 h, while in PND 21 rats, it returned to control levels by 24 h. The peak number of CD11b+ cells in PND 35 rat testis is delayed until 24 h, but remains significantly elevated at 48 h. In PND 56 rats, no increase in CD11b+ cells occurs after MEHP exposure. In PND 21, 28, and 35 rats, a significant increase in monocyte chemoattractant protein-1 (MCP-1) by peritubular myoid cells occurs 12 h after MEHP. Interestingly, MEHP treatment of C57BL/6J mice did not incite an infiltration of CD11b+ cells at either PND 21 or 28. The peak level of germ cell apoptosis observed 24 h after MEHP exposure in young rats is not seen in mice at any age or in PND 56 rats. Taken together, these findings implicate MCP-1 released by peritubular myoid cells in provoking the migration of CD11b+ cells into the immature rat testis early after MEHP exposure and point to a role for CD11b+ cells in triggering germ cell apoptosis in an age- and species-dependent manner.
Collapse
Affiliation(s)
- Caitlin J Murphy
- Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Angela R Stermer
- Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John H Richburg
- Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
26
|
Lin YC, Richburg JH. Characterization of the role of tumor necrosis factor apoptosis inducing ligand (TRAIL) in spermatogenesis through the evaluation of trail gene-deficient mice. PLoS One 2014; 9:e93926. [PMID: 24736722 PMCID: PMC3988040 DOI: 10.1371/journal.pone.0093926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
TRAIL (TNFSF10/Apo2L) is a member of the tumor necrosis factor (TNF) superfamily of proteins and is expressed in human and rodent testis. Although the functional role of TRAIL in spermatogenesis is not known, TRAIL is recognized to induce apoptosis via binding to its cognate receptors; DR4 (TRAIL-R1/TNFRSF10A) and DR5 (TRAIL-R2/TNFRSF10B). Here, we utilize Trail gene-deficient (Trail-/-) mice to evaluate the role of TRAIL in spermatogenesis by measuring testis weight, germ cell apoptosis, and spermatid head count at postnatal day (PND) 28 (pubertal) and PND 56 (adult). Trail-/- mice have significantly reduced testis to body weight ratios as compared to wild-type C57BL/6J at both ages. Also, Trail-/- mice (PND 28) show a dramatic increase in basal germ cell apoptotic index (AI, 16.77) as compared to C57BL/6J (3.5). In the testis of adult C57BL/6J mice, the AI was lower than in PND 28 C57BL/6J mice (2.2). However, in adult Trail-/- mice, the AI was still higher than that of controls (9.0); indicating a relative high incidence of germ cell apoptosis. Expression of cleaved caspase-8 (CC8) and cleaved caspase-9 (CC9) (markers of the extrinsic and intrinsic apoptotic pathway, respectively) revealed a two-fold increase in the activity of both pathways in adult Trail-/- mice compared to C57BL/6J. Spermatid head counts in adult Trail-/- mice were dramatically reduced by 54% compared to C57BL/6J, indicating these animals suffer a marked decline in the production of mature spermatozoa. Taken together, these findings indicate that TRAIL is an important signaling molecule for maintaining germ cell homeostasis and functional spermatogenesis in the testis.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Division of Pharmacology and Toxicology; Center for Molecular and Cellular Toxicology, College of Pharmacy; The University of Texas at Austin, Austin, Texas, United States of America
| | - John H. Richburg
- Division of Pharmacology and Toxicology; Center for Molecular and Cellular Toxicology, College of Pharmacy; The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry. Biochem Biophys Res Commun 2013; 440:749-55. [DOI: 10.1016/j.bbrc.2013.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022]
|
28
|
Wara-aswapati N, Chayasadom A, Surarit R, Pitiphat W, Boch JA, Nagasawa T, Ishikawa I, Izumi Y. Induction of Toll-Like Receptor Expression by Porphyromonas gingivalis. J Periodontol 2013; 84:1010-8. [DOI: 10.1902/jop.2012.120362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Tetz LM, Cheng AA, Korte CS, Giese RW, Wang P, Harris C, Meeker JD, Loch-Caruso R. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro. Toxicol Appl Pharmacol 2013; 268:47-54. [PMID: 23360888 DOI: 10.1016/j.taap.2013.01.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 12/12/2022]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is an environmental contaminant commonly used as a plasticizer in polyvinyl chloride products. Exposure to DEHP has been linked to adverse pregnancy outcomes in humans including preterm birth, low birth-weight, and pregnancy loss. Although oxidative stress is linked to the pathology of adverse pregnancy outcomes, effects of DEHP metabolites, including the active metabolite, mono-2-ethylhexyl phthalate (MEHP), on oxidative stress responses in placental cells have not been previously evaluated. The objective of the current study is to identify MEHP-stimulated oxidative stress responses in human placental cells. We treated a human placental cell line, HTR-8/SVneo, with MEHP and then measured reactive oxygen species (ROS) generation using the dichlorofluorescein assay, oxidized thymine with mass-spectrometry, redox-sensitive gene expression with qRT-PCR, and apoptosis using a luminescence assay for caspase 3/7 activity. Treatment of HTR-8 cells with 180μM MEHP increased ROS generation, oxidative DNA damage, and caspase 3/7 activity, and resulted in differential expression of redox-sensitive genes. Notably, 90 and 180μM MEHP significantly induced mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2), an enzyme important for synthesis of prostaglandins implicated in initiation of labor. The results from the present study are the first to demonstrate that MEHP stimulates oxidative stress responses in placental cells. Furthermore, the MEHP concentrations used were within an order of magnitude of the highest concentrations measured previously in human umbilical cord or maternal serum. The findings from the current study warrant future mechanistic studies of oxidative stress, apoptosis, and prostaglandins as molecular mediators of DEHP/MEHP-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Lauren M Tetz
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Oura R, Arakaki R, Yamada A, Kudo Y, Tanaka E, Hayashi Y, Ishimaru N. Induction of rapid T cell death and phagocytic activity by Fas-deficient lpr macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 190:578-85. [PMID: 23255359 DOI: 10.4049/jimmunol.1103794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral T cells are maintained by the apoptosis of activated T cells through the Fas-Fas ligand system. Although it is well known that normal T cells fail to survive in the Fas-deficient immune condition, the molecular mechanism for the phenomenon has yet to be elucidated. In this study, we demonstrate that rapid cell death and clearance of normal T cells were induced by Fas-deficient lpr macrophages. Transfer of normal T cells into lpr mice revealed that Fas expression on donor T cells was promptly enhanced through the IFN-γ/IFN-γR. In addition, Fas ligand expression and phagocytic activity of lpr macrophages were promoted through increased NF-κB activation. Controlling Fas expression on macrophages plays an essential role in maintaining T cell homeostasis in the peripheral immune system. Our data suggest a critical implication to the therapeutic strategies such as transplantation and immunotherapy for immune disorder or autoimmunity related to abnormal Fas expression.
Collapse
Affiliation(s)
- Ritsuko Oura
- Department of Oral Molecular Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Lucas BEG, Fields C, Joshi N, Hofmann MC. Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology 2012; 299:10-9. [PMID: 22564763 DOI: 10.1016/j.tox.2012.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/14/2012] [Accepted: 04/21/2012] [Indexed: 01/13/2023]
Abstract
Many commercial and household products such as lubricants, cosmetics, plastics, and paint contain phthalates, in particular bis-(2-ethyhexyl)-phthalate (DEHP). As a consequence, phthalates have been found in a number of locations and foods (streambeds, household dust, bottled water and dairy products). Epidemiological and animal studies analysing phthalate exposure in males provide evidence of degradation in sperm quality, associated to an increase in the incidence of genital birth defects and testicular cancers. In the testis, spermatogenesis is maintained throughout life by a small number of spermatogonial stem cells (SSCs) that self-renew or differentiate to produce adequate numbers of spermatozoa. Disruption or alteration of SSC self-renewal induce decreased sperm count and sperm quality, or may potentially lead to testicular cancer. GDNF, or glial cell-line-derived neurotrophic factor, is a growth factor that is essential for the self-renewal of SSCs and continuous spermatogenesis. In the present study, the SSC-derived cell line C18-4 was used as a model for preliminary assessment of the effects of mono-(2-ethylhexyl)-phthalate (MEHP, main metabolite of DEHP) on spermatogonial stem cells. Our data demonstrate that MEHP disrupts one of the known GDNF signalling pathways in these cells. MEHP induced a decrease of C18-4 cell viability in a time- and dose-dependent manner, as well as a disruption of ERK1/2 activation but not of SRC signalling. As a result, we observed a decrease of expression of the transcription factor FOS, which is downstream of the GDNF/ERK1/2 axis in these cells. Taken together, our data suggest that MEHP exposure affects SSC proliferation through inhibition of specific signalling molecules.
Collapse
Affiliation(s)
- Benjamin E G Lucas
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
32
|
Kosir R, Juvan P, Perse M, Budefeld T, Majdic G, Fink M, Sassone-Corsi P, Rozman D. Novel insights into the downstream pathways and targets controlled by transcription factors CREM in the testis. PLoS One 2012; 7:e31798. [PMID: 22384077 PMCID: PMC3285179 DOI: 10.1371/journal.pone.0031798] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/17/2012] [Indexed: 02/07/2023] Open
Abstract
The essential role of the Crem gene in normal sperm development is widely accepted and is confirmed by azoospermia in male mice lacking the Crem gene. The exact number of genes affected by Crem absence is not known, however a large difference has been observed recently between the estimated number of differentially expressed genes found in Crem knock-out (KO) mice compared to the number of gene loci bound by CREM. We therefore re-examined global gene expression in male mice lacking the Crem gene using whole genome transcriptome analysis with Affymetrix microarrays and compared the lists of differentially expressed genes from Crem−/− mice to a dataset of genes where binding of CREM was determined by Chip-seq. We determined the global effect of CREM on spermatogenesis as well as distinguished between primary and secondary effects of the CREM absence. We demonstrated that the absence of Crem deregulates over 4700 genes in KO testis. Among them are 101 genes associated with spermatogenesis 41 of which are bound by CREM and are deregulated in Crem KO testis. Absence of several of these genes in mouse models has proven their importance for normal spermatogenesis and male fertility. Our study showed that the absence of Crem plays a more important role on different aspects of spermatogenesis as estimated previously, with its impact ranging from apoptosis induction to deregulation of major circadian clock genes, steroidogenesis and the cell-cell junction dynamics. Several new genes important for normal spermatogenesis and fertility are down-regulated in KO testis and are therefore possible novel targets of CREM.
Collapse
Affiliation(s)
- Rok Kosir
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Diagenomi Ltd, Ljubljana, Slovenia
| | - Peter Juvan
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Perse
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaz Budefeld
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdic
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Martina Fink
- Department of Haematology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Paolo Sassone-Corsi
- Department of Pharmacology, University of California Irvine, Irvine, California, United States of America
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
33
|
Bølling AK, Ovrevik J, Samuelsen JT, Holme JA, Rakkestad KE, Mathisen GH, Paulsen RE, Korsnes MS, Becher R. Mono-2-ethylhexylphthalate (MEHP) induces TNF-α release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol Lett 2011; 209:43-50. [PMID: 22143055 DOI: 10.1016/j.toxlet.2011.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 11/16/2022]
Abstract
Epidemiological studies have associated indoor phthalate exposure with increased incidences and severity of asthma in children and adults, and inflammatory effects have been suggested as a possible mechanism. Recent studies report that phthalates may activate mitogen-activated protein (MAP) kinase p38 and various peroxisome proliferator-activated receptor (PPAR) isoforms. Here we confirm and extend these findings by investigating possible signalling pathways activated in the murine monocyte-macrophage cell line RAW264.7, using mono-2-ethylhexylphthalate (MEHP) as a model compound. MEHP exposure (0.3-1.0 mM) for 3h increased tumour necrosis factor (TNF)-α release and changed the cellular morphology into elongated spindle-like appearance, resembling more differentiated anti-inflammatory macrophages (M2). This was accompanied by increased expression of the macrophage differentiation marker CD163. Western analysis showed phosphorylation of p38 and Akt after 30 min exposure. Experiments using specific inhibitors suggested that MEHP-induced activation of both p38 and the phosphoinositide-3 (PI3) kinase/Akt pathway were involved in the release of TNF-α; whereas only PI3kinase seemed to be involved in differentiation. In contrast, inhibitors of PPARα and γ reduced differentiation, but did not affect TNF-α release. In conclusion, MEHP induced cytokine release and triggered differentiation of RAW264.7 cells, possibly into M2-like macrophages, but different signalling pathways appear to be involved in these responses.
Collapse
Affiliation(s)
- Anette Kocbach Bølling
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mazaud-Guittot S. Dissecting the phthalate-induced Sertoli cell injury: the fragile balance of proteases and their inhibitors. Biol Reprod 2011; 85:1091-3. [PMID: 21900678 DOI: 10.1095/biolreprod.111.095976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Séverine Mazaud-Guittot
- Institut National de la Santé et de la Recherche Médicale, Unité 625, Université de Rennes 1, Rennes, France.
| |
Collapse
|
35
|
Yao PL, Lin YC, Richburg JH. Transcriptional suppression of Sertoli cell Timp2 in rodents following mono-(2-ethylhexyl) phthalate exposure is regulated by CEBPA and MYC. Biol Reprod 2011; 85:1203-15. [PMID: 21832167 DOI: 10.1095/biolreprod.111.093484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous studies showed that the prototypical testicular toxic phthalate monoester, mono-(2-ethylhexyl) phthalate (MEHP), suppresses Sertoli cell TIMP2 levels and allows for the activation of MMP2 in seminiferous epithelium. Activation of MMP2 is important for triggering germ cell apoptosis and instigating germ cell detachment from Sertoli cells. These novel findings led us to examine the transcriptional regulation of the Timp2 gene that accounts for the decrease in Sertoli cell TIMP2 levels following MEHP exposure. Sequential deletion of the Timp2 5'-upstream activating sequence (1200 bp) was used to survey transcriptional activation in the Timp2 promoter region in response to MEHP. Results indicate that under control conditions in rat Sertoli cells, CCAAT enhancer-binding protein alpha (CEBPA) acts as a transactivator to initiate Timp2 gene transcription, and its action is deactivated by exposure to MEHP. By contrast, MYC protein acts as an inhibitor of Timp2 gene transcription, and its activity is increased after MEHP treatment. Addition of follicle-stimulating hormone (FSH) to cells causes translocation of CEBPA into the Sertoli cell nucleus and rescues MEHP-suppressed TIMP2 levels. Down-regulation of TIMP2 expression by MEHP exposure is blocked by forskolin (a cAMP-elevating agent), suggesting that the decrease in Sertoli cell TIMP2 expression following MEHP exposure is cAMP-dependent. Taken together, these data indicate that MEHP both disrupts the FSH-stimulated cAMP signaling pathway and activates the inhibitory signaling mediated by MYC protein, to ultimately account for the cellular mechanism underlying the decreased expression of TIMP2 in Sertoli cells.
Collapse
Affiliation(s)
- Pei-Li Yao
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
36
|
The Damaging Effects of Different Bands Electromagnetic Radiation on The Rat Sertoli Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.3724/sp.j.1260.2011.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006. ENVIRONMENTAL RESEARCH 2011; 111:718-26. [PMID: 21349512 PMCID: PMC3110976 DOI: 10.1016/j.envres.2011.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
Phthalate esters are a class of compounds utilized extensively in widely-distributed consumer goods, and have been associated with various adverse health outcomes in previous epidemiologic research. Some of these health outcomes may be the result of phthalate-induced increases in oxidative stress or inflammation, which have been demonstrated in animal studies. The aim of this study was to explore the relationship between urinary phthalate metabolite concentrations and serum markers of inflammation and oxidative stress (C-reactive protein (CRP) and gamma glutamyltransferase (GGT), respectively). Subjects were participants in the National Health and Nutrition Examination Survey (NHANES) between the years 1999 and 2006. In multivariable linear regression models, we observed significant positive associations between CRP and mono-benzyl phthalate (MBzP) and mono-isobutyl phthalate (MiBP). There were CRP elevations of 6.0% (95% confidence interval (CI) 1.7-10.8%) and 8.3% (95% CI 2.9-14.0%) in relation to interquartile range (IQR) increases in urinary MBzP and MiBP, respectively. GGT was positively associated with mono(2-ethylhexyl) phthalate (MEHP) and an MEHP% variable calculated from the proportion of MEHP in comparison to other di(2-ethylhexyl) phthalate (DEHP) metabolites. IQR increases in MEHP and MEHP% were associated with 2.5% (95% CI 0.2-4.8%) and 3.7% (95% CI 1.7-5.7%) increases in GGT, respectively. CRP and GGT were also inversely related to several phthalate metabolites, primarily oxidized metabolites. In conclusion, several phthalate monoester metabolites that are detected in a high proportion of urine samples from the US general population are associated with increased serum markers of inflammation and oxidative stress. On the other hand, several oxidized phthalate metabolites were inversely associated with these markers. These relationships deserve further exploration in both experimental and observational studies.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | |
Collapse
|
38
|
Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1501-15. [PMID: 20403866 DOI: 10.1098/rstb.2009.0124] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.
Collapse
Affiliation(s)
- Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi 110067, India.
| | | | | |
Collapse
|
39
|
Rakkestad KE, Holme JA, Paulsen RE, Schwarze PE, Becher R. Mono(2-ethylhexyl) phthalate induces both pro- and anti-inflammatory responses in rat alveolar macrophages through crosstalk between p38, the lipoxygenase pathway and PPARalpha. Inhal Toxicol 2010; 22:140-50. [PMID: 19938896 DOI: 10.3109/08958370903019885] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Airway inflammation is important in asthma pathogenesis. Recent epidemiological data have indicated an association between asthma symptoms in children and exposure to di(2-ethylhexyl) phthalate (DEHP). Thus, we have studied inflammatory responses in primary rat alveolar macrophages (AMs) after exposure to mono(2-ethylhexyl) phthalate (MEHP), the major primary metabolite of DEHP. First, we show that MEHP induces a dose-dependent release of the pro-inflammatory tumour necrosis factor-alpha (TNF-alpha) in AMs, giving a maximal (5-fold) increase at 0.7 mM. This concentration also induced some cell death. MEHP also induced phosphorylation of MAPK p38, while the p38 inhibitor SB 202190 reduced MEHP-induced TNF-alpha, suggesting a p38-dependent cytokine production. Next, we elucidated possible effects of MEHP on the 5-lipoxygenase (5-LO) pathway and found that MEHP caused increased leukotriene (LTB(4)) release. Further, we found that the 5-LO inhibitor nordihydrogualaretic acid (NDGA) significantly reduced both MEHP-induced TNF-alpha release and MEHP-induced formation of reactive oxygen species (ROS), supporting an involvement of the 5-LO pathway in MEHP induced inflammatory reactions. Last, we found that MK-886, a known inhibitor of peroxisome proliferator-activated receptor alpha (PPARalpha), increased the MEHP-induced TNF-alpha response. This indicates that MEPH-PPARalpha binding mediates an anti-inflammatory signal.
Collapse
Affiliation(s)
- Kirsten E Rakkestad
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
40
|
Lin YC, Yao PL, Richburg JH. FasL gene-deficient mice display a limited disruption in spermatogenesis and inhibition of mono-(2-ethylhexyl) phthalate-induced germ cell apoptosis. Toxicol Sci 2010; 114:335-45. [PMID: 20100735 PMCID: PMC2840219 DOI: 10.1093/toxsci/kfq015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
FasL (TNFSF6, CD95L) is hypothesized to trigger testicular germ cell apoptosis that normally occurs during a distinct peripubertal period as well as in response to toxicant-induced Sertoli cell injury. To test this hypothesis, we evaluated the testis of FasL gene–deficient mice (FasL−/−) at two distinct developmental ages (postnatal day [PND] 28 and 44) and after toxicant-induced Sertoli cell injury. Testicular cross sections from peripubertal (PND 28) FasL−/− mice showed significant increases in the basal germ cell apoptotic index (AI; 20.58 ± 4.59) as compared to the testis of C57BL/6J wild-type mice (5.16 ± 0.08) and closely correlated with increased expression of TRAIL protein in the testis of FasL−/− mice. A limited, but significant, number of seminiferous tubules in the testis of PND 28 FasL−/− mice showed a severe loss of germ cells with only Sertoli cells present. In contrast, no apparent gross histological changes were observed in the testis of adult (PND 44) FasL−/− mice. However, PND 44 FasL−/− mice did show a 51% reduction in homogenization-resistant elongate spermatids as compared to age-matched C57BL/6J mice. Exposure of PND 28 FasL−/− mice to mono-(2-ethylhexyl) phthalate (MEHP), a well-described Sertoli cell toxicant, unexpectedly caused a rapid decrease in the germ cell AI that paralleled increased levels of the CFLAR (c-FLIP) protein, a known inhibitor of death receptor signaling. In contrast, MEHP treatment did not decrease c-FLIP levels in PND 28 C57BL/6J mice. Taken together, these findings indicate that FasL protein expression is required during the peripubertal period for the proper regulation of germ cell apoptosis that occurs normally during this period. The influence of FasL on the cellular regulation of c-FLIP protein levels appears to be a unique mechanism for modulating germ cell apoptosis after toxicant-induced Sertoli cell injury.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712-1074, USA
| | | | | |
Collapse
|
41
|
Tripathi R, Mishra DP, Shaha C. Male germ cell development: turning on the apoptotic pathways. J Reprod Immunol 2009; 83:31-5. [DOI: 10.1016/j.jri.2009.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
42
|
Yao PL, Lin YC, Richburg JH. Mono-(2-ethylhexyl) phthalate-induced disruption of junctional complexes in the seminiferous epithelium of the rodent testis is mediated by MMP2. Biol Reprod 2009; 82:516-27. [PMID: 19828778 DOI: 10.1095/biolreprod.109.080374] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Tight junctions between Sertoli cells of the testicular seminiferous epithelium establishes the blood-testis barrier (BTB) and creates a specialized adluminal microenvironment above the BTB that is required for the development of the germ cells that reside there. Actin filament-based anchoring junctions between Sertoli cells and germ cells are important for maintaining close physical contact between these cells as well as regulating the release of mature spermatids into the lumen. Previously, we reported that Sertoli cell injury in rodents after mono-(2-ethylhexyl) phthalate (MEHP) exposure results in the activation of matrix metalloproteinase 2 (MMP2) and increases the sensitivity of germ cells to undergo apoptosis. A disruption in the physical association between Sertoli cells and germ cells and premature loss of germ cells from the seminiferous epithelium has been widely described after phthalate treatment. In this study, we investigate the functional participation of MMP2 in the mechanism underlying MEHP-induced disruption of junction complexes and the resultant loss of germ cells. Exposure of C57BL/6J mice to MEHP (1 g/kg, oral gavage) decreased the expression of occludin in the tight junctions between Sertoli cells and caused gaps between adjacent Sertoli cells as observed by transmission electron microscopy. A reduced expression of laminin-gamma3 and beta1-integrin in apical ectoplasmic specializations between Sertoli cells and germ cells in a time-dependent manner was also observed. Treatment with specific MMP2 inhibitors (TIMP2 and SB-3CT) both in vitro and in vivo significantly suppressed MEHP-induced germ cell sloughing and changes in the expression of these junctional proteins, indicating that MMP-2 plays a primary role in this process. Furthermore, the detachment of germ cells from Sertoli cells appears to be independent of the apoptotic signaling process since MEHP-induced germ cell detachment from Sertoli cells could not be prevented by the addition of a pan-caspase inhibitor (z-VAD-FMK).
Collapse
Affiliation(s)
- Pei-Li Yao
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1 University Station, Austin, TX 78712-1074, USA
| | | | | |
Collapse
|
43
|
Fallarino F, Luca G, Calvitti M, Mancuso F, Nastruzzi C, Fioretti MC, Grohmann U, Becchetti E, Burgevin A, Kratzer R, van Endert P, Boon L, Puccetti P, Calafiore R. Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. ACTA ACUST UNITED AC 2009; 206:2511-26. [PMID: 19822646 PMCID: PMC2768846 DOI: 10.1084/jem.20090134] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type I diabetes mellitus is caused by autoimmune destruction of pancreatic β cells, and effective treatment of the disease might require rescuing β cell function in a context of reinstalled immune tolerance. Sertoli cells (SCs) are found in the testes, where their main task is to provide local immunological protection and nourishment to developing germ cells. SCs engraft, self-protect, and coprotect allogeneic and xenogeneic grafts from immune destruction in different experimental settings. SCs have also been successfully implanted into the central nervous system to create a regulatory environment to the surrounding tissue which is trophic and counter-inflammatory. We report that isolated neonatal porcine SC, administered alone in highly biocompatible microcapsules, led to diabetes prevention and reversion in the respective 88 and 81% of overtly diabetic (nonobese diabetic [NOD]) mice, with no need for additional β cell or insulin therapy. The effect was associated with restoration of systemic immune tolerance and detection of functional pancreatic islets that consisted of glucose-responsive and insulin-secreting cells. Curative effects by SC were strictly dependent on efficient tryptophan metabolism in the xenografts, leading to TGF-β–dependent emergence of autoantigen-specific regulatory T cells and recovery of β cell function in the diabetic recipients.
Collapse
Affiliation(s)
- Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, Hernandez-Avila M, Loch-Caruso R, Téllez-Rojo MM. Urinary phthalate metabolites in relation to preterm birth in Mexico city. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1587-92. [PMID: 20019910 PMCID: PMC2790514 DOI: 10.1289/ehp.0800522] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rates of preterm birth have been rising over the past several decades. Factors contributing to this trend remain largely unclear, and exposure to environmental contaminants may play a role. OBJECTIVE We investigated the relationship between phthalate exposure and preterm birth. METHODS Within a large Mexican birth cohort study, we compared third-trimester urinary phthalate metabolite concentrations in 30 women who delivered preterm (< 37 weeks of gestation) with those of 30 controls (> or = 37 weeks of gestation). RESULTS Concentrations of most of the metabolites were similar to those reported among U.S. females, although in the present study mono-n-butyl phthalate (MBP) concentrations were higher and monobenzyl phthalate (MBzP) concentrations lower. In a crude comparison before correcting for urinary dilution, geometric mean urinary concentrations were higher for the phthalate metabolites MBP, MBzP, mono(3-carboxylpropyl) phthalate, and four metabolites of di(2-ethyl-hexyl) phthalate among women who subsequently delivered preterm. These differences remained, but were somewhat lessened, after correction by specific gravity or creatinine. In multivariate logistic regression analysis adjusted for potential confounders, elevated odds of having phthalate metabolite concentrations above the median level were found. CONCLUSIONS We found that phthalate exposure is prevalent among this group of pregnant women in Mexico and that some phthalates may be associated with preterm birth.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Britanova LV, Kuprash DV. New putative control elements in the promoter of the gene for the CXCL13 chemokine, a target of the alternative NF-κB pathway. Mol Biol 2009. [DOI: 10.1134/s0026893309040128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Zhou W, Bolden-Tiller OU, Shetty G, Shao SH, Weng CC, Pakarinen P, Liu Z, Stivers DN, Meistrich ML. Changes in gene expression in somatic cells of rat testes resulting from hormonal modulation and radiation-induced germ cell depletion. Biol Reprod 2009; 82:54-65. [PMID: 19684331 DOI: 10.1095/biolreprod.109.078048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF(1) rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moxnes JF, Albert christophersen O. The Spanish flu as a worst case scenario? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701699067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Chauvigné F, Menuet A, Lesné L, Chagnon MC, Chevrier C, Regnier JF, Angerer J, Jégou B. Time- and dose-related effects of di-(2-ethylhexyl) phthalate and its main metabolites on the function of the rat fetal testis in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:515-21. [PMID: 19440488 PMCID: PMC2679593 DOI: 10.1289/ehp.11870] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 12/01/2008] [Indexed: 05/03/2023]
Abstract
BACKGROUND Endocrine-disrupting effects of phthalates are understood primarily from in utero exposures within the fetal rat testis. Nevertheless, their path of action, dose-response character, and cellular target(s) within the fetal testis are not known. OBJECTIVES In this study we investigated the effects of di-(2-ethylhexyl) phthalate (DEHP), mono-(2-ethylhexyl) phthalate (MEHP), and several of their metabolites on the development of organo-cultured testes from rat fetus. METHODS We removed testes from 14.5-day-old rat fetuses and cultured them for 1-3 days with or without DEHP, MEHP, and the metabolites. RESULTS DEHP (10(-5) M) produced a proandrogenic effect after 3 days of culture, whereas MEHP disrupted testis morphology and function. Leydig cells were the first affected by MEHP, with a number of them being inappropriately located within some seminiferous tubules. Additionally, we found a time- and dose-dependent reduction of testosterone. By 48 hr, gonocyte proliferation had decreased, whereas apoptosis increased. Sertoli cell number was unaffected, although some cells appeared vacuolated, and production of anti-Müllerian hormone decreased in a time- and dose-dependent manner. The derived metabolite mono-(2-ethyl-5-hydroxyhexyl) phthalate was the only one to cause deleterious effects to the rat fetal testis in vitro. CONCLUSION We hope that this in vitro method will facilitate the study of different phthalate esters and other endocrine disruptors for direct testicular effects.
Collapse
Affiliation(s)
- François Chauvigné
- INSERM (Institut National de la Santé et de la Recherche Médicale), U625, GERHM, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Arnaud Menuet
- INSERM (Institut National de la Santé et de la Recherche Médicale), U625, GERHM, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Laurianne Lesné
- INSERM (Institut National de la Santé et de la Recherche Médicale), U625, GERHM, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Marie-Christine Chagnon
- UMR FLAVIC, ENSBANA (Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l’Alimentation), Dijon, France
| | - Cécile Chevrier
- INSERM (Institut National de la Santé et de la Recherche Médicale), U625, GERHM, Université Rennes I, Campus de Beaulieu, Rennes, France
| | | | - Jürgen Angerer
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Erlangen, Germany
| | - Bernard Jégou
- INSERM (Institut National de la Santé et de la Recherche Médicale), U625, GERHM, Université Rennes I, Campus de Beaulieu, Rennes, France
- Address correspondence to B. Jégou, INSERM, U625, GERHM, Campus de Beaulieu, Université Rennes I, Rennes, Bretagne F-35042 France. Telephone: 33-0-2-23-23-69-11, Fax: 33-0-2-23-23-50-55, E-mail:
| |
Collapse
|
49
|
Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A, Diederich M. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol 2009; 77:397-411. [PMID: 18996094 DOI: 10.1016/j.bcp.2008.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.
Collapse
Affiliation(s)
- Simone Reuter
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dakhova O, O'Day D, Kinet N, Yucer N, Wiese M, Shetty G, Ducy P. Dickkopf-like1 regulates postpubertal spermatocyte apoptosis and testosterone production. Endocrinology 2009; 150:404-12. [PMID: 18818293 DOI: 10.1210/en.2008-0673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dickkopf-like1 (Dkkl1) encodes a glycoprotein secreted by postmeiotic male germ cells. We report here that adult Dkkl1-deficient males have elevated sperm counts caused by a decrease in postpubertal spermatocyte apoptosis and display, upon aging, increased local production of testosterone. Molecular analyses identified the Fas death ligand (FasL) as a target for Dkkl1 pro-apoptotic activity in adult mice. Accordingly, adult FasL-deficient gld mice display an increased sperm count and decreased spermatocyte apoptosis phenotype similar to the one observed in Dkkl1-deficient mice. We also show that the elevated testosterone level observed in aging Dkkl1-deficient males is secondary to increased expression in Leydig cells of CYP11A and CYP17, two genes implicated in steroidogenesis. Furthermore, treatment of Leydig cells with Dkkl1 decreases DNA binding and transcriptional activity of steroidogenic factor 1, a pivotal regulator of gene expression in testis. Thus, this study establishes Dkkl1 as a negative regulator of adult testis homeostasis and identifies a novel, Dkkl1/FasL-dependent, regulation that specifically controls the number of postpubertal spermatocytes.
Collapse
Affiliation(s)
- Olga Dakhova
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|