1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Berger M, Rosa da Mata S, Pizzolatti NM, Parizi LF, Konnai S, da Silva Vaz I, Seixas A, Tirloni L. An Ixodes persulcatus Inhibitor of Plasmin and Thrombin Hinders Keratinocyte Migration, Blood Coagulation, and Endothelial Permeability. J Invest Dermatol 2024; 144:1112-1123.e7. [PMID: 37996063 PMCID: PMC11034719 DOI: 10.1016/j.jid.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
The skin is the first host tissue that the tick mouthparts, tick saliva, and a tick-borne pathogen contact during feeding. Tick salivary glands have evolved a complex and sophisticated pharmacological arsenal, consisting of bioactive molecules, to assist blood feeding and pathogen transmission. In this work, persulcatin, a multifunctional molecule that targets keratinocyte function and hemostasis, was identified from Ixodes persulcatus female ticks. The recombinant persulcatin was expressed and purified and is a 25-kDa acidic protein with 2 Kunitz-type domains. Persulcatin is a classical tight-binding competitive inhibitor of proteases, targeting plasmin (Ki: 28 nM) and thrombin (Ki: 115 nM). It blocks plasmin generation on keratinocytes and inhibits their migration and matrix protein degradation; downregulates matrix metalloproteinase 2 and matrix metalloproteinase 9; and causes a delay in blood coagulation, endothelial cell activation, and thrombin-induced fibrinocoagulation. It interacts with exosite I of thrombin and reduces thrombin-induced endothelial cell permeability by inhibiting vascular endothelial-cadherin disruption. The multifaceted roles of persulcatin as an inhibitor and modulator within the plasminogen-plasmin system and thrombin not only unveil further insights into the intricate mechanisms governing wound healing but also provide a fresh perspective on the intricate interactions between ticks and their host organisms.
Collapse
Affiliation(s)
- Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sheila Rosa da Mata
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil
| | - Adriana Seixas
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Instituto Nacional de Ciência e Tecnologia-Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA.
| |
Collapse
|
3
|
Jiao Q, Zhi L, You B, Wang G, Wu N, Jia Y. Skin homeostasis: Mechanism and influencing factors. J Cosmet Dermatol 2024; 23:1518-1526. [PMID: 38409936 DOI: 10.1111/jocd.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.
Collapse
Affiliation(s)
- Qian Jiao
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Leilei Zhi
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Bing You
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | | | - Nan Wu
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Yan Jia
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
5
|
Sutter CH, Azim S, Wang A, Bhuju J, Simpson AS, Uberoi A, Grice EA, Sutter TR. Ligand Activation of the Aryl Hydrocarbon Receptor Upregulates Epidermal Uridine Diphosphate Glucose Ceramide Glucosyltransferase and Glucosylceramides. J Invest Dermatol 2023; 143:1964-1972.e4. [PMID: 37004877 PMCID: PMC10529782 DOI: 10.1016/j.jid.2023.03.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
Ligand activation of the aryl hydrocarbon receptor (AHR) accelerates keratinocyte differentiation and the formation of the epidermal permeability barrier. Several classes of lipids, including ceramides, are critical to the epidermal permeability barrier. In normal human epidermal keratinocytes, the AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, increased RNA levels of ceramide metabolism and transport genes: uridine diphosphate glucose ceramide glucosyltransferase (UGCG), ABCA12, GBA1, and SMPD1. Levels of abundant skin ceramides were also increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin. These included the metabolites synthesized by UGCG, glucosylceramides, and acyl glucosylceramides. Chromatin immunoprecipitation-sequence analysis and luciferase reporter assays identified UGCG as a direct AHR target. The AHR antagonist, GNF351, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated RNA and transcriptional increases. Tapinarof, an AHR ligand approved for the treatment of psoriasis, increased UGCG RNA, protein, and its lipid metabolites hexosylceramides as well as increased the RNA expression of ABCA12, GBA1, and SMPD1. In Ahr-null mice, Ugcg RNA and hexosylceramides were lower than those in the wild type. These results indicate that the AHR regulates the expression of UGCG, a ceramide-metabolizing enzyme required for ceramide trafficking, keratinocyte differentiation, and epidermal permeability barrier formation.
Collapse
Affiliation(s)
- Carrie Hayes Sutter
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Shafquat Azim
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Anyou Wang
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Jyoti Bhuju
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Sanegene Bio USA, Cambridge, Massachusetts, USA
| | - Amelia S Simpson
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA
| | - Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas R Sutter
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, USA; Department of Chemistry, The University of Memphis, Memphis, Tennessee, USA.
| |
Collapse
|
6
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
7
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
8
|
Merleev AA, Le ST, Alexanian C, Toussi A, Xie Y, Marusina AI, Watkins SM, Patel F, Billi AC, Wiedemann J, Izumiya Y, Kumar A, Uppala R, Kahlenberg JM, Liu FT, Adamopoulos IE, Wang EA, Ma C, Cheng MY, Xiong H, Kirane A, Luxardi G, Andersen B, Tsoi LC, Lebrilla CB, Gudjonsson JE, Maverakis E. Biogeographic and disease-specific alterations in epidermal lipid composition and single cell analysis of acral keratinocytes. JCI Insight 2022; 7:159762. [PMID: 35900871 PMCID: PMC9462509 DOI: 10.1172/jci.insight.159762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.
Collapse
Affiliation(s)
- Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Claire Alexanian
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Sacramento, United States of America
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | | | - Forum Patel
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Julie Wiedemann
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Ashish Kumar
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, United States of America
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Iannis E Adamopoulos
- Department of Rheumatology, University of California, Davis, Sacramento, United States of America
| | - Elizabeth A Wang
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Chelsea Ma
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Michelle Y Cheng
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Halani Xiong
- Verso Biosciences, Davis, United States of America
| | - Amanda Kirane
- Department of Surgery, University of California, Davis, Sacramento, United States of America
| | - Guillaume Luxardi
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| | - Bogi Andersen
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Sacramento, United States of America
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, United States of America
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, United States of America
| |
Collapse
|
9
|
Rabionet M, Bernard P, Pichery M, Marsching C, Bayerle A, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Asadi A, Ebel P, Hoekstra M, Dumas S, Ntambi JM, Jacobsson A, Willecke K, Medin JA, Jonca N, Sandhoff R. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022; 57:183-195. [PMID: 35318678 DOI: 10.1002/lipd.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Pauline Bernard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Melanie Pichery
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Philipp Ebel
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Menno Hoekstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, Netherlands
| | - Sabrina Dumas
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James M Ntambi
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathalie Jonca
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| |
Collapse
|
10
|
Pilz R, Opálka L, Majcher A, Grimm E, Van Maldergem L, Mihalceanu S, Schäkel K, Enk A, Aubin F, Bursztejn AC, Brischoux-Boucher E, Fischer J, Sandhoff R. Formation of keto-type ceramides in palmoplantar keratoderma based on biallelic KDSR mutations in patients. Hum Mol Genet 2021; 31:1105-1114. [PMID: 34686882 DOI: 10.1093/hmg/ddab309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Functional skin barrier requires sphingolipid homeostasis. 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In stratum corneum of both patients we identified hitherto unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed-shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.
Collapse
Affiliation(s)
- Robert Pilz
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Adam Majcher
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Elisabeth Grimm
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, 25000, Besançon, France.,Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), University Hospital, 25000, Besançon, France
| | - Silvia Mihalceanu
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - François Aubin
- Service de Dermatologie et INSERM 1098 RIGHT, CHU et UFR Santé, 25000, Besançon France
| | | | | | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021; 31:1416-1434. [PMID: 34080016 PMCID: PMC8684486 DOI: 10.1093/glycob/cwab046] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous clinical observations and exploitation of cellular and animal models indicate that glucosylceramide (GlcCer) and galactosylceramide (GalCer) are involved in many physiological and pathological phenomena. In many cases, the biological importance of these monohexosylcermides has been shown indirectly as the result of studies on enzymes involved in their synthesis and degradation. Under physiological conditions, GalCer plays a key role in the maintenance of proper structure and stability of myelin and differentiation of oligodendrocytes. On the other hand, GlcCer is necessary for the proper functions of epidermis. Such an important lysosomal storage disease as Gaucher disease (GD) and a neurodegenerative disorder as Parkinson’s disease are characterized by mutations in the GBA1 gene, decreased activity of lysosomal GBA1 glucosylceramidase and accumulation of GlcCer. In contrast, another lysosomal disease, Krabbe disease, is associated with mutations in the GALC gene, resulting in deficiency or decreased activity of lysosomal galactosylceramidase and accumulation of GalCer and galactosylsphingosine. Little is known about the role of both monohexosylceramides in tumor progression; however, numerous studies indicate that GlcCer and GalCer play important roles in the development of multidrug-resistance by cancer cells. It was shown that GlcCer is able to provoke immune reaction and acts as a self-antigen in GD. On the other hand, GalCer was recognized as an important cellular receptor for HIV-1. Altogether, these two molecules are excellent examples of how slight differences in chemical composition and molecular conformation contribute to profound differences in their physicochemical properties and biological functions.
Collapse
Affiliation(s)
- Safoura Reza
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| |
Collapse
|
12
|
Dabelsteen S, Pallesen EMH, Marinova IN, Nielsen MI, Adamopoulou M, Rømer TB, Levann A, Andersen MM, Ye Z, Thein D, Bennett EP, Büll C, Moons SJ, Boltje T, Clausen H, Vakhrushev SY, Bagdonaite I, Wandall HH. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell 2020; 54:669-684.e7. [PMID: 32710848 PMCID: PMC7497784 DOI: 10.1016/j.devcel.2020.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The glycome undergoes characteristic changes during histogenesis and organogenesis, but our understanding of the importance of select glycan structures for tissue formation and homeostasis is incomplete. Here, we present a human organotypic platform that allows genetic dissection of cellular glycosylation capacities and systematic interrogation of the roles of distinct glycan types in tissue formation. We used CRISPR-Cas9 gene targeting to generate a library of 3D organotypic skin tissues that selectively differ in their capacity to produce glycan structures on the main types of N- and O-linked glycoproteins and glycolipids. This tissue library revealed distinct changes in skin formation associated with a loss of features for all tested glycoconjugates. The organotypic skin model provides phenotypic cues for the distinct functions of glycoconjugates and serves as a unique resource for further genetic dissection and identification of the specific structural features involved. The strategy is also applicable to other organotypic tissue models.
Collapse
Affiliation(s)
- Sally Dabelsteen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Adamopoulou
- Department of Oral Pathology, School of Dentistry, University of Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Asha Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel M Andersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David Thein
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sam J Moons
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Thomas Boltje
- Institute for Molecules and Materials, Nijmegen 6525 AJ, the Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Lehmann N, Paret C, El Malki K, Russo A, Neu MA, Wingerter A, Seidmann L, Foersch S, Ziegler N, Roth L, Backes N, Sandhoff R, Faber J. Tumor Lipids of Pediatric Papillary Renal Cell Carcinoma Stimulate Unconventional T Cells. Front Immunol 2020; 11:1819. [PMID: 32973759 PMCID: PMC7468390 DOI: 10.3389/fimmu.2020.01819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/07/2020] [Indexed: 01/25/2023] Open
Abstract
Papillary renal cell carcinoma (PRCC) is a rare entity in children with no established therapy protocols for advanced diseases. Immunotherapy is emerging as an important therapeutic tool for childhood cancer. Tumor cells can be recognized and killed by conventional and unconventional T cells. Unconventional T cells are able to recognize lipid antigens presented via CD1 molecules independently from major histocompatibility complex, which offers new alternatives for cancer immunotherapies. The nature of those lipids is largely unknown and α-galactosylceramide is currently used as a synthetic model antigen. In this work, we analyzed infiltrating lymphocytes of two pediatric PRCCs using flow cytometry, immunohistochemistry and qRT-PCR. Moreover, we analyzed the CD1d expression within both tumors. Tumor lipids of PRCC samples and three normal kidney samples were fractionated and the recognition of tumor own lipid fractions by unconventional T cells was analyzed in an in vitro assay. We identified infiltrating lymphocytes including γδ T cells and iNKT cells, as well as CD1d expression in both samples. One lipid fraction, containing ceramides and monoacylglycerides amongst others, was able to induce the proliferation of iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) of healthy donors and of one matched PRCC patient. Furthermore, CD1d tetramer stainings revealed that a subset of iNKT cells is able to bind lipids being present in fraction 2 via CD1d. We conclude that PRCCs are infiltrated by conventional and unconventional T cells and express CD1d. Moreover, certain lipids, present in pediatric PRCC, are able to stimulate unconventional T cells. Manipulating these lipids and T cells may open new strategies for therapy of pediatric PRCCs.
Collapse
Affiliation(s)
- Nadine Lehmann
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marie Astrid Neu
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Ziegler
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lea Roth
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nora Backes
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, Heidelberg, Germany
| | - Joerg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents - Implications for oxidative UV damage. Redox Biol 2020; 37:101583. [PMID: 32713735 PMCID: PMC7767734 DOI: 10.1016/j.redox.2020.101583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
The epidermis is a multi-layered epithelium that consists mainly of keratinocytes which proliferate in its basal layer and then differentiate to form the stratum corneum, the skin's ultimate barrier to the environment. During differentiation keratinocyte function, chemical composition, physical properties, metabolism and secretion are profoundly changed. Extrinsic or intrinsic stressors, like ultraviolet (UV) radiation thus may differently affect the epidermal keratinocytes, depending on differentiation stage. Exposure to UV elicits the DNA damage responses, activation of pathways which detoxify or repair damage or induction of programmed cell death when the damage was irreparable. Recently, rapid diversion of glucose flux into the pentose phosphate pathway (PPP) was discovered as additional mechanism by which cells rapidly generate reduction equivalents and precursors for nucleotides - both being in demand after UV damage. There is however little known about the correlation of such metabolic activity with differentiation state, cell damage and tissue localization of epidermal cells. We developed a method to correlate the activity of G6PD, the first and rate-limiting enzyme of this metabolic UV response, at cellular resolution to cell type, differentiation state, and cell damage in human skin and in organotypic reconstructed epidermis. We thereby could verify rapid activation of G6PD as an immediate UVB response not only in basal but also in differentiating epidermal keratinocytes and found increased activity in cells which initiated DNA damage responses. When keratinocytes had been UVB irradiated before organotypic culture, their distribution within the skin equivalent was abnormal and the G6PD activity was reduced compared to neighboring cells. Finally, we found that the anti-diabetic and potential anti-aging drug metformin strongly induced G6PD activity throughout reconstructed epidermis. Activation of the protective pentose phosphate pathway may be useful to enhance the skin's antioxidant defense systems and DNA damage repair capacity on demand.
Collapse
|
15
|
Bayerle A, Marsching C, Rabionet M, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Herzer S, Jennemann R, Levade T, Medin JA, Sandhoff R. Endogenous levels of 1-O-acylceramides increase upon acidic ceramidase deficiency and decrease due to loss of Dgat1 in a tissue-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158741. [PMID: 32474112 DOI: 10.1016/j.bbalip.2020.158741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/19/2020] [Accepted: 05/15/2020] [Indexed: 02/03/2023]
Abstract
Except for epidermis and liver, little is known about endogenous expression of 1-O-acylceramides (1-OACs) in mammalian tissue. Therefore, we screened several organs (brain, lung, liver, spleen, lymph nodes, heart, kidney, thymus, small intestine, and colon) from mice for the presence of 1-OACs by LC-MS2. In most organs, low levels of about 0.25-1.3 pmol 1-OACs/mg wet weight were recorded. Higher levels were detected in liver, small and large intestines, with about 4-13 pmol 1-OACs/mg wet weight. 1-OACs were esterified mainly with palmitic, stearic, or oleic acids. Esterification with saturated very long-chain fatty acids, as in epidermis, was not observed. Western-type diet induced 3-fold increased 1-OAC levels in mice livers while ceramides were unaltered. In a mouse model of Farber disease with a decrease of acid ceramidase activity, we observed a strong, up to 50-fold increase of 1-OACs in lung, thymus, and spleen. In contrast, 1-OAC levels were reduced 0.54-fold in liver. Only in lung 1-OAC levels correlated to changes in ceramide levels - indicating tissue-specific mechanisms of regulation. Glucosylceramide synthase deficiency in liver did not cause changes in 1-OAC or ceramide levels, whereas increased ceramide levels in glucosylceramide synthase-deficient small intestine caused an increase in 1-OAC levels. Deficiency of Dgat1 in mice resulted in a reduction of 1-OACs to 30% in colon, but not in small intestine and liver, going along with constant free ceramides levels. From these data, we conclude that Dgat1 as well as lysosomal lipid metabolism contribute in vivo to homeostatic 1-OAC levels in an organ-specific manner.
Collapse
Affiliation(s)
- Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany; Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany; Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Silke Herzer
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, INSERM UMR1037 CRCT, Toulouse, France
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany; Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.
| |
Collapse
|
16
|
Majumder S, Kono M, Lee YT, Byrnes C, Li C, Tuymetova G, Proia RL. A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels. J Biol Chem 2020; 295:4341-4349. [PMID: 32029474 PMCID: PMC7105297 DOI: 10.1074/jbc.ac119.011170] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/28/2020] [Indexed: 01/12/2023] Open
Abstract
Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.
Collapse
Affiliation(s)
- Saurav Majumder
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Mari Kono
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Y Terry Lee
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
17
|
Nagarajan B, Harder A, Japp A, Häberlein F, Mingardo E, Kleinert H, Yilmaz Ö, Zoons A, Rau B, Christ A, Kubitscheck U, Eiberger B, Sandhoff R, Eckhardt M, Hartmann D, Odermatt B. CNS myelin protein 36K regulates oligodendrocyte differentiation through Notch. Glia 2019; 68:509-527. [PMID: 31702067 DOI: 10.1002/glia.23732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
In contrast to humans and other mammals, zebrafish can successfully regenerate and remyelinate central nervous system (CNS) axons following injury. In addition to common myelin proteins found in mammalian myelin, 36K protein is a major component of teleost fish CNS myelin. Although 36K is one of the most abundant proteins in zebrafish brain, its function remains unknown. Here we investigate the function of 36K using translation-blocking Morpholinos. Morphant larvae showed fewer dorsally migrated oligodendrocyte precursor cells as well as upregulation of Notch ligand. A gamma secretase inhibitor, which prevents activation of Notch, could rescue oligodendrocyte precursor cell numbers in 36K morphants, suggesting that 36K regulates initial myelination through inhibition of Notch signaling. Since 36K like other short chain dehydrogenases might act on lipids, we performed thin layer chromatography and mass spectrometry of lipids and found changes in lipid composition in 36K morphant larvae. Altogether, we suggest that during early development 36K regulates membrane lipid composition, thereby altering the amount of transmembrane Notch ligands and the efficiency of intramembrane gamma secretase processing of Notch and thereby influencing oligodendrocyte precursor cell differentiation and further myelination. Further studies on the role of 36K short chain dehydrogenase in oligodendrocyte precursor cell differentiation during remyelination might open up new strategies for remyelination therapies in human patients.
Collapse
Affiliation(s)
- Bhuvaneswari Nagarajan
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Alexander Harder
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Anna Japp
- Institute of Neuropathology, University Clinics, University of Bonn, Bonn, Germany
| | - Felix Häberlein
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany.,Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Enrico Mingardo
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Henning Kleinert
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Öznur Yilmaz
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Angelika Zoons
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Birgit Rau
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Andrea Christ
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Britta Eiberger
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Centre, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, University Clinics, University of Bonn, Bonn, Germany
| | - Dieter Hartmann
- Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Institute of Anatomy, Division of Anatomy and Cell Biology, University Clinics, University of Bonn, Bonn, Germany.,Institute of Anatomy, Division of Neuroanatomy, University Clinics, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Discrimination of urinary exosomes from microvesicles by lipidomics using thin layer liquid chromatography (TLC) coupled with MALDI-TOF mass spectrometry. Sci Rep 2019; 9:13834. [PMID: 31554842 PMCID: PMC6761130 DOI: 10.1038/s41598-019-50195-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Urinary extracellular vesicles (EVs), including microvesicles and exosomes, play several important roles in cell biology and serve as potential biomarkers in various kidney diseases. Although they have differential biophysical properties, specific biomarkers are required to discriminate these EVs during isolation/purification. The present study aimed to define differential lipidome profiles of urinary microvesicles vs. exosomes. Urine samples collected from eight healthy individuals were pooled and underwent lipid extraction using 2:1(v/v) chloroform/methanol. The recovered lipids were resolved by thin layer liquid chromatography (TLC) and analyzed by MALDI-TOF MS. From three and five TLC bands observed in microvesicles and exosomes, respectively, several fatty acids, glycerolipids and phospholipids were identified from both EVs without clear differential patterns. However, their sphingolipid profiles were unique. Ceramide phosphates (CerP), hexosyl sphingoid bases (HexSph), lactosyl ceramides (LacCer), mannosyl di-PI-ceramides (M(IP)2 C), sulfatides hexosyl ceramide (SHexCer) and sulfatides hexoxyl sphingoid bases (SHexSph) were detectable only in urinary exosomes, whereas phosphatidylinositol ceramides (PI-Cer) were detectable only in urinary microvesicles. The presence of CerP only in urinary exosomes was successfully validated by dot blot analysis. Our extensive lipidome analyses of urinary microvesicles vs. exosomes provide potential lipidome markers to discriminate exosomes from microvesicles and may lead to better understanding of EVs biogenesis.
Collapse
|
19
|
von Gerichten J, Lamprecht D, Opálka L, Soulard D, Marsching C, Pilz R, Sencio V, Herzer S, Galy B, Nordström V, Hopf C, Gröne HJ, Trottein F, Sandhoff R. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J Lipid Res 2019; 60:1892-1904. [PMID: 31484693 DOI: 10.1194/jlr.ra119000236] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Robert Pilz
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Valentin Sencio
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
20
|
Mieremet A, van Dijk R, Boiten W, Gooris G, Bouwstra JA, El Ghalbzouri A. Characterization of human skin equivalents developed at body's core and surface temperatures. J Tissue Eng Regen Med 2019; 13:1122-1133. [PMID: 30945465 PMCID: PMC6767576 DOI: 10.1002/term.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Human skin equivalents (HSEs) are in vitro developed three‐dimensional models resembling native human skin (NHS) to a high extent. However, the epidermal lipid biosynthesis, barrier lipid composition, and organization are altered, leading to an elevated diffusion rate of therapeutic molecules. The altered lipid barrier formation in HSEs may be induced by standardized culture conditions, including a culture temperature of 37°C, which is dissimilar to skin surface temperature. Therefore, we aim to determine the influence of culture temperature during the generation of full thickness models (FTMs) on epidermal morphogenesis and lipid barrier formation. For this purpose, FTMs were developed at conventional core temperature (37°C) or lower temperatures (35°C and 33°C) and evaluated over a time period of 4 weeks. The stratum corneum (SC) lipid composition was analysed using advanced liquid chromatography coupled to mass spectrometry analysis. Our results show that SC layers accumulated at a similar rate irrespective of culture temperature. At reduced culture temperature, an increased epidermal thickness, a disorganization of the lower epidermal cell layers, a delayed early differentiation, and an enlargement of granular cells were detected. Interestingly, melanogenesis was reduced at lower temperature. The ceramide subclass profile, chain length distribution, and level of unsaturated ceramides were similar in FTMs generated at 37°C and 35°C but changed when generated at 33°C, reducing the resemblance to NHS. Herein, we report that culture temperature affects epidermal morphogenesis substantially and to a lesser extent the lipid barrier formation, highlighting the importance of optimized external parameters during reconstruction of skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rianne van Dijk
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter Boiten
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gert Gooris
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Liou B, Zhang W, Fannin V, Quinn B, Ran H, Xu K, Setchell KDR, Witte D, Grabowski GA, Sun Y. Combination of acid β-glucosidase mutation and Saposin C deficiency in mice reveals Gba1 mutation dependent and tissue-specific disease phenotype. Sci Rep 2019; 9:5571. [PMID: 30944381 PMCID: PMC6447580 DOI: 10.1038/s41598-019-41914-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Gaucher disease is caused by mutations in GBA1 encoding acid β-glucosidase (GCase). Saposin C enhances GCase activity and protects GCase from intracellular proteolysis. Structure simulations indicated that the mutant GCases, N370S (0 S), V394L (4L) and D409V(9V)/H(9H), had altered function. To investigate the in vivo function of Gba1 mutants, mouse models were generated by backcrossing the above homozygous mutant GCase mice into Saposin C deficient (C*) mice. Without saposin C, the mutant GCase activities in the resultant mouse tissues were reduced by ~50% compared with those in the presence of Saposin C. In contrast to 9H and 4L mice that have normal histology and life span, the 9H;C* and 4L;C* mice had shorter life spans. 9H;C* mice developed significant visceral glucosylceramide (GC) and glucosylsphingosine (GS) accumulation (GC»GS) and storage macrophages, but lesser GC in the brain, compared to 4L;C* mice that presents with a severe neuronopathic phenotype and accumulated GC and GS primarily in the brain. Unlike 9V mice that developed normally for over a year, 9V;C* pups had a lethal skin defect as did 0S;C* mice resembled that of 0S mice. These variant Gaucher disease mouse models presented a mutation specific phenotype and underscored the in vivo role of Saposin C in the modulation of Gaucher disease.
Collapse
Affiliation(s)
- Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian Quinn
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Huimin Ran
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kui Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Witte
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
A unique structural distribution pattern discovered for the cerebrosides from starfish Asterias amurensis. Carbohydr Res 2018; 473:115-122. [PMID: 30682532 DOI: 10.1016/j.carres.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
Cerebroside is an important family of the mono-glycosylated ceramides involved in the larger family of glycosphingolipid and sulfatide. Cerebroside is synthesized from ceramide by the transfer of glucose from UDP-glucose, and degraded back to ceramide, which plays an important role at the epidermis protecting interior of the body as a barrier. Because cerebroside is regarded as the source molecule of ceramide and is amphiphilic in nature, cerebroside is considered valuable as the ingredient of cosmetic lotion. Various sources can be considered as raw material of cerebrosides. Starfish is considered as one of such potent source. However, the structure of the ceramide part of cerebroside is not fully investigated. Therefore, the individual structures of cerebroside molecules need to be identified including sphingosine and fatty acyl group composition to assess the potential of the molecule. We investigated and determined the structures of cerebrosides in starfish Asterias amurensis using LC-MS, GC-MS, tandem mass spectrometry (MS/MS), and 1H NMR. We also discovered a characteristic structure distribution that was divided into three major groups: 1) a group composed of a relatively long sphingosine (C22) and a short length of fatty acyl group (less than C16), 2) a group composed of a typical C18 sphingosine and long fatty acyl groups (greater than C23), and 3) a group composed of C18 sphingosine and fatty acyl groups with their length less than C18. The calculated Log P values of cerebrosides ranging from 9 to 11 covered about 80% of the molecules that were in the range of those used in cosmetics, thus showing the potential usefulness of starfish Asterias amurensis as a source of raw material for cerebrosides.
Collapse
|
23
|
Xu H, Boucher FR, Nguyen TT, Taylor GP, Tomlinson JJ, Ortega RA, Simons B, Schlossmacher MG, Saunders-Pullman R, Shaw W, Bennett SAL. DMS as an orthogonal separation to LC/ESI/MS/MS for quantifying isomeric cerebrosides in plasma and cerebrospinal fluid. J Lipid Res 2018; 60:200-211. [PMID: 30413651 DOI: 10.1194/jlr.d089797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Cerebrosides, including glucosylceramides (GlcCers) and galactosylceramides (GalCers), are important membrane components of animal cells with deficiencies resulting in devastating lysosomal storage disorders. Their quantification is essential for disease diagnosis and a better understanding of disease mechanisms. The simultaneous quantification of GlcCer and GalCer isomers is, however, particularly challenging due to their virtually identical structures. To address this challenge, we developed a new LC/MS-based method using differential ion mobility spectrometry (DMS) capable of rapidly and reproducibly separating and quantifying isomeric cerebrosides in a single run. We show that this LC/ESI/DMS/MS/MS method exhibits robust quantitative performance within an analyte concentration range of 2.8-355 nM. We further report the simultaneous quantification of nine GlcCers (16:0, 18:0, 20:0, 22:0, 23:0, 24:1, 24:0, 25:0, and 26:0) and five GalCers (16:0, 22:0, 23:0, 24:1, and 24:0) molecular species in human plasma, as well as six GalCers (18:0, 22:0, 23:0, 24:1, 24:0 and 25:0) and two GlcCers (24:1 and 24:0) in human cerebrospinal fluid. Our method expands the potential of DMS technology in the field of glycosphingolipid analysis for both biomarker discovery and drug screening by enabling the unambiguous assignment and quantification of cerebroside lipid species in biological samples.
Collapse
Affiliation(s)
- Hongbin Xu
- Neural Regeneration Laboratory and India Taylor Lipidomics Research Platform, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada .,Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Thao T Nguyen
- Neural Regeneration Laboratory and India Taylor Lipidomics Research Platform, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Graeme P Taylor
- Neural Regeneration Laboratory and India Taylor Lipidomics Research Platform, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, New York, NY.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Walt Shaw
- Avanti Polar Lipids, Inc., Alabaster, AL
| | - Steffany A L Bennett
- Neural Regeneration Laboratory and India Taylor Lipidomics Research Platform, Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada .,Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Micakovic T, Papagiannarou S, Clark E, Kuzay Y, Abramovic K, Peters J, Sticht C, Volk N, Fleming T, Nawroth P, Hammes HP, Alenina N, Gröne HJ, Hoffmann SC. The angiotensin II type 2 receptors protect renal tubule mitochondria in early stages of diabetes mellitus. Kidney Int 2018; 94:937-950. [PMID: 30190172 DOI: 10.1016/j.kint.2018.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.
Collapse
Affiliation(s)
- Tamara Micakovic
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stamatia Papagiannarou
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Euan Clark
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yalcin Kuzay
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katarina Abramovic
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine of Greifswald, Karlsburg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Volk
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Peter Hammes
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Cardiovascular Hormones - Berlin-Buch, Berlin, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sigrid Christa Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
25
|
Wegner MS, Schömel N, Gruber L, Örtel SB, Kjellberg MA, Mattjus P, Kurz J, Trautmann S, Peng B, Wegner M, Kaulich M, Ahrends R, Geisslinger G, Grösch S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell Mol Life Sci 2018; 75:3393-3410. [PMID: 29549423 PMCID: PMC11105721 DOI: 10.1007/s00018-018-2799-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lisa Gruber
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Beatrice Örtel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Matti Aleksi Kjellberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, 20520, Turku, Finland
| | - Jennifer Kurz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Bing Peng
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften, ISAS e. V., Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med 2018; 24:617-627. [PMID: 29662201 PMCID: PMC6095711 DOI: 10.1038/s41591-018-0003-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Proliferating cells depend on glucose uptake more than quiescent cells for their growth. While glucose transport in keratinocytes is mediated largely by the Glut1 facilitative transporter, the keratinocyte-specific ablation of Glut1 did not compromise mouse skin development and homeostasis. Ex vivo metabolic profiling revealed altered sphingolipid, hexose, amino acid, and nucleotide metabolism in Glut1-deficient keratinocytes, suggesting metabolic adaptation. On the other hand, Glut1-deficient keratinocytes in culture displayed metabolic and oxidative stress and impaired proliferation. Similarly, Glut1 deficiency impaired in vivo keratinocyte proliferation and migration within wounded or UV-damaged mouse skin. Notably, both genetic and pharmacological Glut1 inactivation reduced hyperplasia in mouse models of psoriasis-like disease. Topical application of a Glut1 inhibitor also reduced inflammation in these models. Glut1 inhibition decreased expression of pathology-associated genes in human psoriatic skin organoids. Thus, Glut1 is selectively required for injury- and inflammation-associated keratinocyte proliferation, and its inhibition offers a novel treatment strategy for psoriasis.
Collapse
|
27
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
28
|
Monies D, Anabrees J, Ibrahim N, Elbardisy H, Abouelhoda M, Meyer BF, Alkuraya FS. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin Genet 2018; 93:1252-1253. [PMID: 29417556 DOI: 10.1111/cge.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- D Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - J Anabrees
- Department of Pediatrics, Arrayan Hospital, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia
| | - N Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Elbardisy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - M Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - B F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Wegner MS, Gruber L, Mattjus P, Geisslinger G, Grösch S. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1). BMC Cancer 2018; 18:153. [PMID: 29409484 PMCID: PMC5801679 DOI: 10.1186/s12885-018-4084-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Lisa Gruber
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520, Turku, Finland
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Pichery M, Huchenq A, Sandhoff R, Severino-Freire M, Zaafouri S, Opálka L, Levade T, Soldan V, Bertrand-Michel J, Lhuillier E, Serre G, Maruani A, Mazereeuw-Hautier J, Jonca N. PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum Mol Genet 2017; 26:1787-1800. [PMID: 28369476 DOI: 10.1093/hmg/ddx079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of monogenic genodermatoses that encompasses non-syndromic disorders of keratinization. The pathophysiology of ARCI has been linked to a disturbance in epidermal lipid metabolism that impaired the stratum corneum function, leading to permeability barrier defects. Functional characterization of some genes involved in ARCI contributed to the identification of molecular actors involved in epidermal lipid synthesis, transport or processing. Recently, PNPLA1 has been identified as a gene causing ARCI. While other members of PNPLA family are key elements in lipid metabolism, the function of PNPLA1 remained unclear. We identified 5 novel PNPLA1 mutations in ARCI patients, mainly localized in the putative active enzymatic domain of PNPLA1. To investigate Pnpla1 biological role, we analysed Pnpla1-deficient mice. KO mice died soon after birth from severe epidermal permeability defects. Pnpla1-deficient skin presented an important impairment in the composition and organization of the epidermal lipids. Quantification of epidermal ceramide species highlighted a blockade in the production of ω-O-acylceramides with a concomitant accumulation of their precursors in the KO. The virtually loss of ω-O-acylceramides in the stratum corneum was linked to a defective lipid coverage of the resistant pericellular shell encapsulating corneocytes, the so-called cornified envelope, and most probably disorganized the extracellular lipid matrix. Finally, these defects in ω-O-acylceramides synthesis and cornified envelope formation were also evidenced in the stratum corneum from PNPLA1-mutated patients. Overall, our data support that PNPLA1/Pnpla1 is a key player in the formation of ω-O-acylceramide, a crucial process for the epidermal permeability barrier function.
Collapse
Affiliation(s)
- Mélanie Pichery
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Anne Huchenq
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group within the Department of Cellular and Molecular Pathology, German CanCer Research Centre (DKFZ), 69120 Heidelberg, Germany.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), 68163 Mannheim, Germany
| | - Maella Severino-Freire
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Reference Centre for Rare Skin Diseases, Larrey Hospital, Toulouse, France
| | - Sarra Zaafouri
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Lukáš Opálka
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové 50005, Czech Republic
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, IFB, CHU Purpan, 31059 Toulouse, France; INSERM UMR 1037, CRCT, Université Paul Sabatier Toulouse-III, 31062 Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Électronique Intégrative (METi), CBI (Centre de Biologie Intégrative) CNRS FR3743, Bat IBCG, F-31062, Toulouse, France
| | | | - Emeline Lhuillier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Plateau de Génomique GeT-Purpan, Genotoul, Hôpital Purpan, Place du Dr Baylac - TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Annabel Maruani
- University François Rabelais Tours, 37000 Tours, CHRU Tours, Department of Dermatology, Unit of Paediatric Dermatology, 37044 Tours, France
| | - Juliette Mazereeuw-Hautier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Reference Centre for Rare Skin Diseases, Larrey Hospital, Toulouse, France
| | - Nathalie Jonca
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| |
Collapse
|
31
|
Tan SP, Brown SB, Griffiths CE, Weller RB, Gibbs NK. Feeding filaggrin: effects of l-histidine supplementation in atopic dermatitis. Clin Cosmet Investig Dermatol 2017; 10:403-411. [PMID: 29042806 PMCID: PMC5634381 DOI: 10.2147/ccid.s146760] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atopic dermatitis (AD), also known as eczema, is one of the most common chronic skin conditions worldwide, affecting up to 16% of children and 10% of adults. It is incurable and has significant psychosocial and economic impacts on the affected individuals. AD etiology has been linked to deficiencies in the skin barrier protein, filaggrin. In mammalian skin, l-histidine is rapidly incorporated into filaggrin. Subsequent filaggrin proteolysis releases l-histidine as an important natural moisturizing factor (NMF). In vitro studies were conducted to investigate the influence of l-histidine on filaggrin processing and barrier function in human skin-equivalent models. Our further aim was to examine the effects of daily oral l-histidine supplementation on disease severity in adult AD patients. We conducted a randomized, double-blind, placebo-controlled, crossover, nutritional supplementation pilot study to explore the effects of oral l-histidine in adult AD patients (n=24). In vitro studies demonstrated that l-histidine significantly increased both filaggrin formation and skin barrier function (P<0.01, respectively). Data from the clinical study indicated that once daily oral l-histidine significantly reduced (P<0.003) AD disease severity by 34% (physician assessment using the SCORingAD tool) and 39% (patient self-assessment using the Patient Oriented Eczema Measure tool) after 4 weeks of treatment. No improvement was noted with the placebo (P>0.32). The clinical effect of oral l-histidine in AD was similar to that of mid-potency topical corticosteroids and combined with its safety profile suggests that it may be a safe, nonsteroidal approach suitable for long-term use in skin conditions that are associated with filaggrin deficits such as AD.
Collapse
Affiliation(s)
- Siao Pei Tan
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Simon B Brown
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Christopher Em Griffiths
- Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester
| | - Richard B Weller
- MRC Centre for Inflammation Research.,Department of Dermatology, The University of Edinburgh, Edinburgh
| | - Neil K Gibbs
- Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester.,Curapel, Life Sciences Hub Wales, Cardiff, UK
| |
Collapse
|
32
|
Schmidt KG, Herrero San Juan M, Trautmann S, Berninger L, Schwiebs A, Ottenlinger FM, Thomas D, Zaucke F, Pfeilschifter JM, Radeke HH. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. Front Immunol 2017; 8:1242. [PMID: 29033951 PMCID: PMC5626866 DOI: 10.3389/fimmu.2017.01242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare multi-organ autoimmune disease characterized by progressive skin fibrosis. Inflammation, type 2 immunity, and fibrogenic processes are involved in disease development and may be affected by sphingolipids. However, details about early-stage pathophysiological mechanisms and implicated mediators remain elusive. The sphingolipid sphingosine-1-phosphate (S1P) is elevated in the sera of SSc patients, and its receptor S1P5 is expressed in skin tissue. Nevertheless, almost nothing is known about the dermatological contribution of S1P5 to inflammatory and pro-fibrotic processes leading to the pathological changes seen in SSc. In this study, we observed a novel effect of S1P5 on the inflammatory processes during low-dose bleomycin (BLM)-induced fibrogenesis in murine skin. By comparing 2-week-treated skin areas of wild-type (WT) and S1P5-deficient mice, we found that S1P5 is important for the transcriptional upregulation of the Th2 characteristic transcription factor GATA-3 under treatment-induced inflammatory conditions, while T-bet (Th1) and FoxP3 (Treg) mRNA expression was regulated independently of S1P5. Additionally, treatment caused a regulation of S1P receptor 1 and S1P receptor 3 mRNA as well as a regulation of long-chain ceramide profiles, which both differ significantly between the genotypes. Despite S1P5-dependent differences regarding inflammatory processes, similar macroscopic evidence of fibrosis was detected in the skin histology of WT and S1P5-deficient mice after 4 weeks of subcutaneous BLM treatment. However, at the earlier 2-week point in time, the mRNA data of pro-collagen type 1 and SMAD7 indicate a pro-fibrotic S1P5 contribution in the applied SSc mouse model. In conclusion, we propose that S1P5 plays a role as a novel modulator during the early phase of BLM-caused fibrogenesis in murine skin. An immediate relationship between dermal S1P5 expression and fibrotic processes leading to skin alterations, such as formative for SSc pathogenesis, is indicated but should be studied more profound in further investigations. Therefore, this study is an initial step in understanding the role of S1P5-mediated effects during early stages of fibrogenesis, which may encourage the ongoing search for new therapeutic options for SSc patients.
Collapse
Affiliation(s)
- Katrin G Schmidt
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Martina Herrero San Juan
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Lucija Berninger
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Anja Schwiebs
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Florian M Ottenlinger
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Frank Zaucke
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Josef M Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Heinfried H Radeke
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| |
Collapse
|
33
|
Kruse V, Neess D, Færgeman NJ. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends Endocrinol Metab 2017; 28:669-683. [PMID: 28668301 DOI: 10.1016/j.tem.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.
Collapse
Affiliation(s)
- Vibeke Kruse
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
34
|
von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247-1258. [PMID: 28373486 DOI: 10.1194/jlr.d076190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kerstin Schlosser
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ivan Morace
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology and Center for Rare Diseases University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Richard Jennemann
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany .,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
35
|
Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc Natl Acad Sci U S A 2017; 114:E3285-E3294. [PMID: 28373578 DOI: 10.1073/pnas.1618133114] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensing and reacting to tissue damage is a fundamental function of immune systems. Macrophage inducible C-type lectin (Mincle) is an activating C-type lectin receptor that senses damaged cells. Notably, Mincle also recognizes glycolipid ligands on pathogens. To elucidate endogenous glycolipids ligands derived from damaged cells, we fractionated supernatants from damaged cells and identified a lipophilic component that activates reporter cells expressing Mincle. Mass spectrometry and NMR spectroscopy identified the component structure as β-glucosylceramide (GlcCer), which is a ubiquitous intracellular metabolite. Synthetic β-GlcCer activated myeloid cells and induced production of inflammatory cytokines; this production was abrogated in Mincle-deficient cells. Sterile inflammation induced by excessive cell death in the thymus was exacerbated by hematopoietic-specific deletion of degrading enzyme of β-GlcCer (β-glucosylceramidase, GBA1). However, this enhanced inflammation was ameliorated in a Mincle-deficient background. GBA1-deficient dendritic cells (DCs) in which β-GlcCer accumulates triggered antigen-specific T-cell responses more efficiently than WT DCs, whereas these responses were compromised in DCs from GBA1 × Mincle double-deficient mice. These results suggest that β-GlcCer is an endogenous ligand for Mincle and possesses immunostimulatory activity.
Collapse
|
36
|
Johannes L, Wunder C, Shafaq-Zadah M. Glycolipids and Lectins in Endocytic Uptake Processes. J Mol Biol 2016; 428:S0022-2836(16)30453-3. [PMID: 27984039 DOI: 10.1016/j.jmb.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
A host of endocytic processes has been described at the plasma membrane of eukaryotic cells. Their categorization has most commonly referenced cytosolic machinery, of which the clathrin coat has occupied a preponderant position. In what concerns intra-membrane constituents, the focus of interest has been on phosphatidylinositol lipids and their capacity to orchestrate endocytic events on the cytosolic leaflet of the membrane. The contribution of extracellular determinants to the construction of endocytic pits has received much less attention, depite the fact that (glyco)sphingolipids are exoplasmic leaflet fabric of membrane domains, termed rafts, whose contributions to predominantly clathrin-independent internalization processes is well recognized. Furthermore, sugar modifications on extracellular domains of proteins, and sugar-binding proteins, termed lectins, have also been linked to the uptake of endocytic cargoes at the plasma membrane. In this review, we first summarize these contributions by extracellular determinants to the endocytic process. We thus propose a molecular hypothesis - termed the GL-Lect hypothesis - on how GlycoLipids and Lectins drive the formation of compositional nanoenvrionments from which the endocytic uptake of glycosylated cargo proteins is operated via clathrin-independent carriers. Finally, we position this hypothesis within the global context of endocytic pathway proposals that have emerged in recent years.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
37
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
38
|
Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE, Obeid LM. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:56-68. [PMID: 27697478 DOI: 10.1016/j.bbalip.2016.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
Abstract
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Can E Senkal
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
39
|
Quantitative analysis of ceramides using a novel lipidomics approach with three dimensional response modelling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1652-1661. [PMID: 27422369 DOI: 10.1016/j.bbalip.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
Abstract
In the outermost layer of the skin, the stratum corneum (SC), ceramides form a diverse and essential pool of lipids. Due to their diversity and the limited availability of synthetic standards it is challenging to quantitatively analyse all SC ceramides independently. We aim to perform a detailed analysis of ceramides on SC harvested from in vivo and ex vivo skin, therefore, a LC/MS method was developed in which all steps from sample acquisition until data analysis were examined and optimized. Improving extraction efficiency of ceramides resulted in an increase in efficiency from 71.5% to 99.3%. It was shown that sample harvesting by tape-stripping in vivo was accurate and precise. A full scan MS method was developed, compatible with all sample types, enabling simultaneously qualitative and quantitative data analysis. A novel three dimensional response model was constructed to quantify all detected ceramides from full scan data using a limited amount of synthetic ceramides. The application is demonstrated on various SC sample types. When ex vivo SC was regenerated during human skin culture, increases are observed in the amount of the ceramide sphingosine subclasses, in mono unsaturated ceramides (which have an cis-double bond in the acyl chain), and ceramides with a short C34 carbon chain (ceramides with a total carbon chain of 34 carbon atoms), compared with native human skin. These changes in ceramide levels are also often encountered in diseased skin.
Collapse
|
40
|
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res 2016; 63:50-69. [PMID: 27107674 DOI: 10.1016/j.plipres.2016.04.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Ceramide (Cer) is a structural backbone of sphingolipids and is composed of a long-chain base and a fatty acid. Existence of a variety of Cer species, which differ in chain-length, hydroxylation status, and/or double bond number of either of their hydrophobic chains, has been reported. Ceramide is produced by Cer synthases. Mammals have six Cer synthases (CERS1-6), each of which exhibits characteristic substrate specificity toward acyl-CoAs with different chain-lengths. Knockout mice for each Cer synthase show corresponding, isozyme-specific phenotypes, revealing the functional differences of Cers with different chain-lengths. Cer diversity is especially prominent in epidermis. Changes in Cer levels, composition, and chain-lengths are associated with atopic dermatitis. Acylceramide (acyl-Cer) specifically exists in epidermis and plays an essential role in skin permeability barrier formation. Accordingly, defects in acyl-Cer synthesis cause the cutaneous disorder ichthyosis with accompanying severe skin barrier defects. Although the molecular mechanism by which acyl-Cer is generated was long unclear, most genes involved in its synthesis have been identified recently. In Cer degradation pathways, the long-chain base moiety of Cer is converted to acyl-CoA, which is then incorporated mainly into glycerophospholipids. This pathway generates the lipid mediator sphingosine 1-phosphate. This review will focus on recent advances in our understanding of the synthesis and degradation pathways, physiological functions, and pathology of Cers/acyl-Cers.
Collapse
Affiliation(s)
- Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
41
|
Checa A, Xu N, Sar DG, Haeggström JZ, Ståhle M, Wheelock CE. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment. Sci Rep 2015; 5:12017. [PMID: 26174087 PMCID: PMC4502512 DOI: 10.1038/srep12017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P < 0.001; n = 32), but not in mild (n = 32), psoriasis relative to healthy controls (n = 32). These alterations were not reversed in severe patients (n = 16) after anti-TNF-α treatment despite significant improvement in psoriasis lesions. Circulating levels of sphingomyelins and ceramides shifted in a fatty acid chain length-dependent manner. These alterations were also observed in psoriasis skin lesions and were associated with changes in mRNA levels of ceramide synthases. The lack of S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis.
Collapse
Affiliation(s)
- Antonio Checa
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Ning Xu
- Dermatology Unit, Department of Medicine, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Daniel G Sar
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Mona Ståhle
- Dermatology Unit, Department of Medicine, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
42
|
Rabionet M, Bayerle A, Jennemann R, Heid H, Fuchser J, Marsching C, Porubsky S, Bolenz C, Guillou F, Gröne HJ, Gorgas K, Sandhoff R. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors. Hum Mol Genet 2015; 24:4792-808. [DOI: 10.1093/hmg/ddv204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
|
43
|
Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 2014; 31:613-22. [PMID: 25351657 PMCID: PMC4245496 DOI: 10.1007/s10719-014-9563-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.
Collapse
Affiliation(s)
- Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9D-06; 10 Center DR MSC 1821, Bethesda, MD, 20892-1821, USA
| | | |
Collapse
|
44
|
Marsching C, Rabionet M, Mathow D, Jennemann R, Kremser C, Porubsky S, Bolenz C, Willecke K, Gröne HJ, Hopf C, Sandhoff R. Renal sulfatides: sphingoid base-dependent localization and region-specific compensation of CerS2-dysfunction. J Lipid Res 2014; 55:2354-69. [PMID: 25267995 DOI: 10.1194/jlr.m051839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mammalian kidneys are rich in sulfatides. Papillary sulfatides, especially, contribute to renal adaptation to chronic metabolic acidosis. Due to differences in their cer-amide (Cer) anchors, the structural diversity of renal sulfatides is large. However, the underling biological function of this complexity is not understood. As a compound's function and its tissue location are intimately connected, we analyzed individual renal sulfatide distributions of control and Cer synthase 2 (CerS)2-deficient mice by imaging MS (IMS) and by LC-MS(2) (in controls for the cortex, medulla, and papillae separately). To explain locally different structures, we compared our lipid data with regional mRNA levels of corresponding anabolic enzymes. The combination of IMS and in source decay-LC-MS(2) analyses revealed exclusive expression of C20-sphingosine-containing sulfatides within the renal papillae, whereas conventional C18-sphingosine-containing compounds were predominant in the medulla, and sulfatides with a C18-phytosphingosine were restricted to special cortical structures. CerS2 deletion resulted in bulk loss of sulfatides with C23/C24-acyl chains, but did not lead to decreased urinary pH, as previously observed in sulfatide-depleted kidneys. The reasons may be the almost unchanged C22-sulfatide levels and constant total renal sulfatide levels due to compensation with C16- to C20-acyl chain-containing compounds. Intriguingly, CerS2-deficient kidneys were completely depleted of phytosphingosine-containing cortical sulfatides without any compensation.
Collapse
Affiliation(s)
- Christian Marsching
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mariona Rabionet
- Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Mathow
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Christiane Kremser
- Molecular Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Christian Bolenz
- University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Hermann-Josef Gröne
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Hopf
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology
| | - Roger Sandhoff
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
45
|
Abstract
Darier's disease (DD) is caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (protein SERCA2). Current treatment modalities are ineffective for many patients. This report shows that impaired SERCA2 function, both in DD keratinocytes and in normal keratinocytes treated with the SERCA2-inhibitor thapsigargin, depletes ER Ca2+ stores, leading to constitutive ER stress and increased sensitivity to ER stressors. ER stress, in turn, leads to abnormal cell-to-cell adhesion via impaired redistribution of desmoplakin, desmoglein 3, desmocollin 3, and E-cadherin to the plasma membrane. This report illustrates how ER Ca2+ depletion and the resulting ER stress are central to the pathogenesis of the disease. Additionally, the authors introduce a possible new therapeutic agent, miglustat.
Collapse
|
46
|
Khan HA, Arif IA, Williams JB, Champagne AM, Shobrak M. Skin lipids from Saudi Arabian birds. Saudi J Biol Sci 2014; 21:173-7. [PMID: 24600311 PMCID: PMC3942862 DOI: 10.1016/j.sjbs.2013.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 09/10/2013] [Accepted: 09/15/2013] [Indexed: 02/05/2023] Open
Abstract
Skin lipids play an important role in the regulation of cutaneous water loss (CWL). Earlier studies have shown that Saudi desert birds exhibit a tendency of reduced CWL than birds from temperate environment due to adaptive changes in composition of their skin lipids. In this study, we used thin-layer chromatography (TLC) for separation and detection of non-polar and polar lipids from the skin of six bird species including sooty gull, brown booby, house sparrow, Arabian waxbill, sand partridge, and laughing dove. The lipids were separated and detected on Silica gel G coated TLC plates and quantified by using densitometric image analysis. Rf values of the non-polar lipids were as follows: cholesterol (0.29), free fatty acids (0.58), triacylglycerol (0.69), fatty acids methyl esters (0.84) and cholesterol ester (0.97). Rf values for the polar lipids were: cerebroside (0.42), ceramide (0.55) and cholesterol (0.73). The results showed the abundance of fatty acids methyl esters (47.75-60.46%) followed by triacylglycerol (12.69-24.14%). The remaining lipid compositions were as follows: cholesterol (4.09-13.18%), ceramide (2.18-13.27%), and cerebroside (2.53-12.81%). In conclusion, our findings showed that TLC is a simple and sensitive method for the separation and quantification of skin lipids. We also reported a new protocol for lipid extraction using the zirconia beads for efficient disruption of skin tissues. This study will help us better understand the role of skin lipids in adaptive physiology towards adverse climatic conditions.
Collapse
Affiliation(s)
- Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author. Address: Department of Biochemistry College of Science, Bld 5 King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia. Tel.: +966 11 4675859.
| | - Ibrahim A. Arif
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joseph B. Williams
- Department of Evolution, Ecology and Organismal Biology, Aronoff Laboratory, Ohio State University, Columbus, USA
| | - Alex M. Champagne
- Department of Evolution, Ecology and Organismal Biology, Aronoff Laboratory, Ohio State University, Columbus, USA
| | - Mohammad Shobrak
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
47
|
Haller JF, Cavallaro P, Hernandez NJ, Dolat L, Soscia SJ, Welti R, Grabowski GA, Fitzgerald ML, Freeman MW. Endogenous β-glucocerebrosidase activity in Abca12⁻/⁻epidermis elevates ceramide levels after topical lipid application but does not restore barrier function. J Lipid Res 2013; 55:493-503. [PMID: 24293640 DOI: 10.1194/jlr.m044941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12(-/-) skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [(14)C]serine labeling in ex vivo skin cultures. A defect was found in β-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12(-/-) epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12(+/+) epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12(-/-) stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12(-/-) epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies.
Collapse
Affiliation(s)
- Jorge F Haller
- Lipid Metabolism Unit and Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:280-94. [PMID: 24262790 DOI: 10.1016/j.bbalip.2013.11.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| | - Peter M Elias
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
49
|
Schulze H, Sandhoff K. Sphingolipids and lysosomal pathologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:799-810. [PMID: 24184515 DOI: 10.1016/j.bbalip.2013.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/12/2023]
Abstract
Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany
| | - Konrad Sandhoff
- LIMES, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53115 Bonn, Germany.
| |
Collapse
|
50
|
Rabionet M, Bayerle A, Marsching C, Jennemann R, Gröne HJ, Yildiz Y, Wachten D, Shaw W, Shayman JA, Sandhoff R. 1-O-acylceramides are natural components of human and mouse epidermis. J Lipid Res 2013; 54:3312-21. [PMID: 24078707 DOI: 10.1194/jlr.m040097] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid-rich stratum corneum functions as a barrier against pathogens and desiccation inter alia by an unbroken meshwork of extracellular lipid lamellae. These lamellae are composed of cholesterol, fatty acids, and ceramides (Cers) in an equimolar ratio. The huge class of skin Cers consists of three groups: group I, "classical" long and very long chain Cers; group II, ultra-long chain Cers; and group III, ω-esterified ultra-long chain Cers, which are esterified either with linoleic acid or with cornified envelope proteins and are required for the water permeability barrier. Here, we describe 1-O-acylceramides as a new class of epidermal Cers in humans and mice. These Cers contain, in both the N- and 1-O-position, long to very long acyl chains. They derive from the group I of classical Cers and make up 5% of all esterified Cers. Considering their chemical structure and hydrophobicity, we presume 1-O-acylceramides to contribute to the water barrier homeostasis. Biosynthesis of 1-O-acylceramides is not dependent on lysosomal phospholipase A2. However, glucosylceramide synthase deficiency was followed by a 7-fold increase of 1-O-acylceramides, which then contributed 30% to all esterified Cers. Furthermore, loss of neutral glucosylceramidase resulted in decreased levels of a 1-O-acylceramide subgroup. Therefore, we propose 1-O-acylceramides to be synthesized at endoplasmic reticulum-related sites.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group within, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|