1
|
MacKenzie ACE, Sams MP, Lin J, Batista CR, Lim M, Riarh CK, DeKoter RP. Negative regulation of activation-induced cytidine deaminase gene transcription in developing B cells by a PU.1-interacting intronic region. Mol Immunol 2024; 175:103-111. [PMID: 39332244 DOI: 10.1016/j.molimm.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Activation-induced cytidine deaminase (AID, encoded by Aicda) plays a key role in somatic hypermutation and class switch recombination in germinal center B cells. However, off-target effects of AID are implicated in human leukemia and lymphoma. A mouse model of precursor B cell acute lymphoblastic leukemia driven by deletion of the related transcription factors PU.1 and Spi-B revealed C->T transition mutations compatible with being induced by AID. Therefore, we hypothesized that PU.1 negatively regulates Aicda during B cell development. Aicda mRNA transcript levels were increased in leukemia cells and bone marrow pre-B cells lacking PU.1 and/or Spi-B, relative to wild type cells. Using chromatin immunoprecipitation, PU.1 was found to interact with a negative regulatory region (R2-1) within the first intron of Aicda. CRISPR-Cas9-induced mutagenesis of R2-1 in cultured pre-B cells resulted in upregulation of Aicda in response to lipopolysaccharide stimulation. Mutation of the PU.1 interaction site and neighboring sequences resulted in reduced repressive ability of R2-1 in transient transfection analysis followed by luciferase assays. These results show that a PU.1-interacting intronic region negatively regulates Aicda transcription in developing B cells.
Collapse
Affiliation(s)
- Allanna C E MacKenzie
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mia P Sams
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jane Lin
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Carolina Reyes Batista
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michelle Lim
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Chanpreet K Riarh
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
2
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
3
|
Screening of Sepsis Biomarkers Based on Bioinformatics Data Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6788569. [PMID: 36199375 PMCID: PMC9529510 DOI: 10.1155/2022/6788569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Methods Gene expression profiles of GSE13904, GSE26378, GSE26440, GSE65682, and GSE69528 were obtained from the National Center for Biotechnology Information (NCBI). The differentially expressed genes (DEGs) were searched using limma software package. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs and screen hub genes. Results A total of 108 DEGs were identified in the study, of which 67 were upregulated and 41 were downregulated. 15 superlative diagnostic biomarkers (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) for sepsis were identified by bioinformatics analysis. Conclusion 15 hub genes (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) have been elucidated in this study, and these biomarkers may be helpful in the diagnosis and therapy of patients with sepsis.
Collapse
|
4
|
Pozdeyev N, Fishbein L, Gay LM, Sokol ES, Hartmaier R, Ross JS, Darabi S, Demeure MJ, Kar A, Foust L, Koc K, Bowles DW, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr Relat Cancer 2021; 28:671-681. [PMID: 34410225 PMCID: PMC8384129 DOI: 10.1530/erc-21-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | | | | | | | - Jeffrey S. Ross
- Foundation Medicine Inc. Cambridge Massachusetts
- Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | - Sourat Darabi
- Hoag Family Center Institute, Newport Beach, California
| | - Michael J. Demeure
- Hoag Family Center Institute, Newport Beach, California
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lindsey Foust
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Daniel W. Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| |
Collapse
|
5
|
Le Coz C, Nguyen DN, Su C, Nolan BE, Albrecht AV, Xhani S, Sun D, Demaree B, Pillarisetti P, Khanna C, Wright F, Chen PA, Yoon S, Stiegler AL, Maurer K, Garifallou JP, Rymaszewski A, Kroft SH, Olson TS, Seif AE, Wertheim G, Grant SFA, Vo LT, Puck JM, Sullivan KE, Routes JM, Zakharova V, Shcherbina A, Mukhina A, Rudy NL, Hurst ACE, Atkinson TP, Boggon TJ, Hakonarson H, Abate AR, Hajjar J, Nicholas SK, Lupski JR, Verbsky J, Chinn IK, Gonzalez MV, Wells AD, Marson A, Poon GMK, Romberg N. Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients. J Exp Med 2021; 218:212070. [PMID: 33951726 PMCID: PMC8105723 DOI: 10.1084/jem.20201750] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro–B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro– to pre–B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1’s critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.
Collapse
Affiliation(s)
- Carole Le Coz
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David N Nguyen
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA.,Diabetes Center, University of California San Francisco, San Francisco, CA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA.,Gladstone-University of California San Francisco Institute of Genomic Immunology, San Francisco, CA
| | - Chun Su
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brian E Nolan
- Division of Rheumatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Amanda V Albrecht
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA
| | - Suela Xhani
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA
| | - Di Sun
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA.,University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA
| | - Piyush Pillarisetti
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Caroline Khanna
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Francis Wright
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
| | - Peixin Amy Chen
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA.,Diabetes Center, University of California San Francisco, San Francisco, CA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA.,Gladstone-University of California San Francisco Institute of Genomic Immunology, San Francisco, CA
| | - Samuel Yoon
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amy L Stiegler
- Departments of Pharmacology, Yale University, New Haven, CT
| | - Kelly Maurer
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA
| | - James P Garifallou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amy Rymaszewski
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Steven H Kroft
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy S Olson
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| | - Alix E Seif
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Linda T Vo
- Diabetes Center, University of California San Francisco, San Francisco, CA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, CA.,University of California San Francsico Institute for Human Genetics and Smith Cardiovascular Research Institute, University of California, San Francisco, CA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John M Routes
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Viktoria Zakharova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL.,Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Titus J Boggon
- Departments of Pharmacology, Yale University, New Haven, CT.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA.,University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Joud Hajjar
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX.,Department of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX
| | - Sarah K Nicholas
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX.,Department of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Texas Children's Hospital, Houston, TX.,Baylor-Hopkins Center for Mendelian Genomics, Houston, TX
| | - James Verbsky
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Ivan K Chinn
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX.,Department of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX
| | - Michael V Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alex Marson
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA.,Diabetes Center, University of California San Francisco, San Francisco, CA.,Innovative Genomics Institute, University of California Berkeley, Berkeley, CA.,Gladstone-University of California San Francisco Institute of Genomic Immunology, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood 2020; 135:1685-1695. [PMID: 32315407 DOI: 10.1182/blood.2019003880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma (T-LBL) are aggressive hematological malignancies that are currently treated with high-dose chemotherapy. Over the last several years, the search toward novel and less-toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell-intrinsic properties of the tumor cell. However, non-cell-autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous interleukin 7 (IL7) can increase the expression of the oncogenic kinase proviral integration site for Moloney-murine leukemia 1 (PIM1) in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared with bulk nontreated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL patient-derived xenograft (PDX) cells, ultimately resulting in non-cell-autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7-responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy.
Collapse
|
7
|
He P, Williams BA, Trout D, Marinov GK, Amrhein H, Berghella L, Goh ST, Plajzer-Frick I, Afzal V, Pennacchio LA, Dickel DE, Visel A, Ren B, Hardison RC, Zhang Y, Wold BJ. The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature 2020; 583:760-767. [PMID: 32728245 PMCID: PMC7410830 DOI: 10.1038/s41586-020-2536-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
During mammalian embryogenesis, differential gene expression gradually builds the identity and complexity of each tissue and organ system1. Here we systematically quantified mouse polyA-RNA from day 10.5 of embryonic development to birth, sampling 17 tissues and organs. The resulting developmental transcriptome is globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation gene sets that were further characterized by the transcription factor motif codes of their promoters. We decomposed the tissue-level transcriptome using single-cell RNA-seq (sequencing of RNA reverse transcribed into cDNA) and found that neurogenesis and haematopoiesis dominate at both the gene and cellular levels, jointly accounting for one-third of differential gene expression and more than 40% of identified cell types. By integrating promoter sequence motifs with companion ENCODE epigenomic profiles, we identified a prominent promoter de-repression mechanism in neuronal expression clusters that was attributable to known and novel repressors. Focusing on the developing limb, single-cell RNA data identified 25 candidate cell types that included progenitor and differentiating states with computationally inferred lineage relationships. We extracted cell-type transcription factor networks and complementary sets of candidate enhancer elements by using single-cell RNA-seq to decompose integrative cis-element (IDEAS) models that were derived from whole-tissue epigenome chromatin data. These ENCODE reference data, computed network components and IDEAS chromatin segmentations are companion resources to the matching epigenomic developmental matrix, and are available for researchers to further mine and integrate.
Collapse
Affiliation(s)
- Peng He
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Henry Amrhein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Libera Berghella
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Say-Tar Goh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Veena Afzal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Yu Zhang
- Department of Statistics, Pennsylvania State University, University Park, PA, USA
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Liu C, Dai SK, Sun Z, Wang Z, Liu PP, Du HZ, Yu S, Liu CM, Teng ZQ. GA-binding protein GABPβ1 is required for the proliferation of neural stem/progenitor cells. Stem Cell Res 2019; 39:101501. [PMID: 31344652 DOI: 10.1016/j.scr.2019.101501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
GA binding protein (GABP) is a ubiquitously expressed transcription factor that regulates the development of multiple cell types, including osteoblast, hematopoietic stem cells, B cells and T cells. However, so little is known about its biological function in the development of central nervous system. In this report, we show that GABP is highly expressed in neural stem/progenitor cells (NSPCs) and down-regulated in neurons, and that GABPβ1 is required for the proper proliferation of NSPCs. Knockdown of GABPα resulted in an elevated expression level of GABPβ1, and GABPβ1 down-regulation significantly decreased the proliferation of NSPCs, whereas GABPβ2 knockdown did not result in any changes in the proliferation of NSPCs. We observed that there was nearly a 21-fold increase of the GABPβ1S mRNA level in GABPβ1L KO NSPCs compared to WT cells, and knocking down of GABPβ1S in GABPβ1L KO NSPCs could further reduce their proliferation potential. We also found that knockdown of GABPβ1 promoted neuronal and astrocytic differentiation of NSPCs. Finally, we identified dozens of downstream target genes of GABPβ1, which are closely associated with the cell proliferation and differentiation. Collectively, our results suggest that both GABPβ1L and GABPβ1S play an essential role in regulating the proper proliferation and differentiation of NSPCs.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Montecino-Rodriguez E, Casero D, Fice M, Le J, Dorshkind K. Differential Expression of PU.1 and Key T Lineage Transcription Factors Distinguishes Fetal and Adult T Cell Development. THE JOURNAL OF IMMUNOLOGY 2018; 200:2046-2056. [PMID: 29436414 DOI: 10.4049/jimmunol.1701336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
The PU.1 transcription factor plays a critical role in the regulation of T cell development, so a report that it is dispensable for fetal thymopoiesis is puzzling. To understand this paradox, we examined the requirement for PU.1, encoded by Spi1, during fetal, neonatal, and adult thymopoiesis in a PU.1 hypomorphic mouse generated by deletion of the Spi1 14-kb upstream regulatory element and by analysis of patterns of gene expression in fetal and adult T cell progenitors. Our data demonstrate that the initiation of thymopoiesis during early gestation is less dependent on PU.1 compared with T cell differentiation in adults and that fetal T cell progenitors express lower levels of Spi1 compared with their adult counterparts. We also show that expression of the core network of T lineage transcription factors regulated by PU.1 differs in fetal and adult T cell progenitors. In particular, PU.1-regulated genes that promote T cell differentiation are differentially expressed in fetal versus adult early T lineage progenitors. These results indicate that the transcriptional differences between the fetal and adult T cell developmental programs are driven in part by differential levels of PU.1 expression and that this likely underlies the differences in the properties of fetal and adult T cell progenitors.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Fice
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jonathan Le
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
10
|
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 2017; 8:1426. [PMID: 29127283 PMCID: PMC5681560 DOI: 10.1038/s41467-017-01605-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.
Collapse
|
11
|
Marcos-Vadillo E, García-Sánchez A, Sanz C, Davila I, Isidoro-García M. PTGDR gene expression and response to dexamethasone treatment in an in vitro model. PLoS One 2017; 12:e0186957. [PMID: 29088248 PMCID: PMC5663384 DOI: 10.1371/journal.pone.0186957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a multifactorial pathology influenced by environmental and genetic factors. Glucocorticoid treatment decreases symptoms by regulating genes involved in the inflammatory process through binding to specific DNA sequences. Polymorphisms located in the promoter region of the Prostaglandin D Receptor (PTGDR) gene have been related to asthma. We aimed to analyze the effect of PTGDR promoter haplotypes on gene expression and response to corticosteroid therapy. A549 lung epithelial cells were transfected with vectors carrying four different PTGDR haplotypes (CTCT, CCCC, CCCT and TCCT), and treated with dexamethasone. Different approaches to study the promoter activity (Dual Luciferase Reporter System), gene expression levels (qPCR) and cytokine secretion (Multiplexed Bead-based Flow Cytometric) were used. In addition, in silico analysis was also performed. Cells carrying the TCCT haplotype showed the lowest promoter activity (p-value<0.05) and mRNA expression levels in basal conditions. After dexamethasone treatment, cells carrying the wild-type variant CTCT showed the highest response, and those carrying the TCCT variant the lowest (p-value<0.05) in luciferase assays. Different transcription factor binding patterns were identified in silico. Moreover, differences in cytokine secretion were also found among different promoter haplotypes. Polymorphisms of PTGDR gene influence basal promoter activity and gene expression, as well as the cytokine secretory pattern. Furthermore, an association between these positions and response to corticoid treatment was observed.
Collapse
Affiliation(s)
| | - Asunción García-Sánchez
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Ignacio Davila
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Department of Allergy, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| | - María Isidoro-García
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Batista CR, Li SKH, Xu LS, Solomon LA, DeKoter RP. PU.1 Regulates Ig Light Chain Transcription and Rearrangement in Pre-B Cells during B Cell Development. THE JOURNAL OF IMMUNOLOGY 2017; 198:1565-1574. [PMID: 28062693 DOI: 10.4049/jimmunol.1601709] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022]
Abstract
B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.
Collapse
Affiliation(s)
- Carolina R Batista
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Stephen K H Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Li S Xu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; .,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
13
|
Montecino-Rodriguez E, Fice M, Casero D, Berent-Maoz B, Barber CL, Dorshkind K. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity 2016; 45:527-539. [PMID: 27566938 DOI: 10.1016/j.immuni.2016.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
B cell development is often depicted as a linear process initiating in the fetus and continuing postnatally. Using a PU.1 hypomorphic mouse model, we found that B-1 and B-2 lymphopoiesis occurred in distinct fetal and adult waves differentially dependent on the Sfpi1 14 kB upstream regulatory element. The initial wave of fetal B-1 development was absent in PU.1 hypomorphic mice, while subsequent fetal and adult waves emerged. In contrast, B-2 lymphopoiesis occurred in distinct fetal and adult waves. Whole-transcriptome profiling of fetal and adult B cell progenitors supported the existence of three waves of B-1 and two waves of B-2 development and revealed that the network of transcription factors governing B lineage specification and commitment was highly divergent between B-1 and B-2 progenitors. These findings support the view that the B-1 and B-2 lineages are distinct and provide a genetic basis for layering of immune system development.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Fice
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chad L Barber
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Malu K, Garhwal R, Pelletier MGH, Gotur D, Halene S, Zwerger M, Yang ZF, Rosmarin AG, Gaines P. Cooperative Activity of GABP with PU.1 or C/EBPε Regulates Lamin B Receptor Gene Expression, Implicating Their Roles in Granulocyte Nuclear Maturation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:910-22. [PMID: 27342846 PMCID: PMC5022553 DOI: 10.4049/jimmunol.1402285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted E-twenty-six (ETS) factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils.
Collapse
Affiliation(s)
- Krishnakumar Malu
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Rahul Garhwal
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Margery G H Pelletier
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Deepali Gotur
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
| | - Monika Zwerger
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; and
| | - Zhong-Fa Yang
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alan G Rosmarin
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Peter Gaines
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854;
| |
Collapse
|
15
|
Passtoors WM, van den Akker EB, Deelen J, Maier AB, van der Breggen R, Jansen R, Trompet S, van Heemst D, Derhovanessian E, Pawelec G, van Ommen GJB, Slagboom PE, Beekman M. IL7R gene expression network associates with human healthy ageing. IMMUNITY & AGEING 2015; 12:21. [PMID: 26566388 PMCID: PMC4642670 DOI: 10.1186/s12979-015-0048-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/29/2015] [Indexed: 01/29/2023]
Abstract
Background The level of expression of the interleukin 7 receptor (IL7R) gene in blood has recently been found to be associated with familial longevity and healthy ageing. IL7R is crucial for T cell development and important for immune competence. To further investigate the IL7R pathway in ageing, we identified the closest interacting genes to construct an IL7R gene network that consisted of IL7R and six interacting genes: IL2RG, IL7, TSLP, CRLF2, JAK1 and JAK3. This network was explored for association with chronological age, familial longevity and immune-related diseases (type 2 diabetes, chronic obstructive pulmonary disease and rheumatoid arthritis) in 87 nonagenarians, 337 of their middle-aged offspring and 321 middle-aged controls from the Leiden Longevity Study (LLS). Results We observed that expression levels within the IL7R gene network were significantly different between the nonagenarians and middle-aged controls (P = 4.6 × 10−4), being driven by significantly lower levels of expression in the elderly of IL7, IL2RG and IL7R. After adjustment for multiple testing and white blood cell composition and in comparison with similarly aged controls, middle-aged offspring of nonagenarian siblings exhibit a lower expression level of IL7R only (P = 0.006). Higher IL7R gene expression in the combined group of middle-aged offspring and controls is associated with a higher prevalence of immune-related disease (P = 0.001). On the one hand, our results indicate that lower IL7R expression levels, as exhibited by the members of long-lived families that can be considered as ‘healthy agers’, are beneficial in middle age. This is augmented by the observation that higher IL7R gene expression associates with immune-related disease. On the other hand, IL7R gene expression in blood is lower in older individuals, indicating that low IL7R gene expression might associate with reduced health. Interestingly, this contradictory result is supported by the observation that a higher IL7R gene expression level is associated with better prospective survival, both in the nonagenarians (Hazard ratio (HR) = 0.63, P = 0.037) and the middle-aged individuals (HR = 0.33, P = 1.9 × 10–4). Conclusions Overall, we conclude that the IL7R network reflected by gene expression levels in blood may be involved in the rate of ageing and health status of elderly individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12979-015-0048-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Willemijn M Passtoors
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Erik B van den Akker
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; The Delft Bioinformatics Lab, Delft University of Technology, 2600 GA Delft, The Netherlands
| | - Joris Deelen
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Andrea B Maier
- Section of Gerontology and Geriatrics, Department of Internal Medicine, VU University Medical Center, Amsterdam, Netherlands
| | - Ruud van der Breggen
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, 72072 Tübingen, Germany
| | - Gert-Jan B van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; The Netherlands Center for Medical Systems Biology, Leiden, The Netherlands
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology, Leiden University Medical Center, Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands ; Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
16
|
Abe A, Tani-ichi S, Shitara S, Cui G, Yamada H, Miyachi H, Kitano S, Hara T, Abe R, Yoshikai Y, Ikuta K. An Enhancer of the IL-7 Receptor α-Chain Locus Controls IL-7 Receptor Expression and Maintenance of Peripheral T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3129-38. [PMID: 26336149 DOI: 10.4049/jimmunol.1302447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
The IL-7R plays critical roles in lymphocyte development and homeostasis. Although IL-7R expression is strictly regulated during lymphocyte differentiation and the immune response, little is known regarding its in vivo regulation. To address this issue, we established a mouse line with targeted deletion of the conserved non-coding sequence 1 (CNS1) element found 3.6 kb upstream of the IL-7Rα promoter. We report that IL-7Rα is expressed normally on T and B cells in thymus and bone marrow of CNS1(-/-) mice except for in regulatory T cells. In contrast, these mice show reduced IL-7Rα expression in conventional CD4 and CD8 T cells as well as regulatory T, NKT, and γδ T cells in the periphery. CD4 T cells of CNS1(-/-) mice showed IL-7Rα upregulation in the absence of growth factors and IL-7Rα downregulation by IL-7 or TCR stimulation, although the expression levels were lower than those in control mice. Naive CD4 and CD8 T cells of CNS1(-/-) mice show attenuated survival by culture with IL-7 and reduced homeostatic proliferation after transfer into lymphopenic hosts. CNS1(-/-) mice exhibit impaired maintenance of Ag-stimulated T cells. Furthermore, IL-7Rα upregulation by glucocorticoids and TNF-α was abrogated in CNS1(-/-) mice. This work demonstrates that the CNS1 element controls IL-7Rα expression and maintenance of peripheral T cells, suggesting differential regulation of IL-7Rα expression between central and peripheral lymphoid organs.
Collapse
Affiliation(s)
- Akifumi Abe
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Soichiro Shitara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Guangwei Cui
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hisataka Yamada
- Division of Host Defense, Network Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | - Takahiro Hara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Network Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
17
|
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev 2014; 261:102-15. [PMID: 25123279 PMCID: PMC4312928 DOI: 10.1111/imr.12206] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| |
Collapse
|
18
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
19
|
Abstract
T cells are essential for immune defenses against pathogens, such that viability of naïve T cells before antigen encounter is critical to preserve a polyclonal repertoire and prevent immunodeficiencies. The viability of naïve T cells before antigen recognition is ensured by IL-7, which drives expression of the prosurvival factor Bcl-2. Quiescent naïve T cells have low basal activity of the transcription factor NF-κB, which was assumed to have no functional consequences. In contrast to this postulate, our data show that basal nuclear NF-κB activity plays an important role in the transcription of IL-7 receptor α-subunit (CD127), enabling responsiveness of naïve T cells to the prosurvival effects of IL-7 and allowing T-cell persistence in vivo. Moreover, we show that this property of basal NF-κB activity is shared by mouse and human naïve T cells. Thus, NF-κB drives a distinct transcriptional program in T cells before antigen encounter by controlling susceptibility to IL-7. Our results reveal an evolutionarily conserved role of NF-κB in T cells before antigenic stimulation and identify a novel molecular pathway that controls T-cell homeostasis.
Collapse
|
20
|
Gender differences of B cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. J Immunol Res 2014; 2014:814598. [PMID: 24741625 PMCID: PMC3987971 DOI: 10.1155/2014/814598] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to investigate mechanism of the gender differences of B cells. The results showed that 358 differential gene expressions (DEGs) were displayed between healthy females and males. Compared with male, 226 and 132 genes were found to be up- and downregulated in the female. 116 genes displayed possible correlation with estrogen. Moreover, the upregulated DEGs (Cav1, CD200R1, TNFRSF17, and CXCR3) and downregulated DEGs (EIF1AY and DDX3Y) in healthy female may be involved in gender predominance of some immune diseases. Furthermore, signaling pathway analysis for estrogen-relevant DEGs showed that only 26 genes were downregulated in SLE female versus SLE male, of which expressions of 8 genes had significant difference between SLE females and SLE males but are having nonsignificant difference between healthy females and healthy males. Except for the 5 Y-chromosome-related genes or varients, only 3 DEGs (LTF, CAMP, and DEFA4) were selected and qRT-PCR confirmed that the expressions of LTF and CAMP decreased significantly in B cells from female SLE patients. These data indicated that the gender differences were existent in global gene expression of B cells and the difference may be related to estrogen.
Collapse
|
21
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Skoglund K, Moreno SB, Baytar M, Jönsson JI, Gréen H. ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 6:63-72. [PMID: 24019750 PMCID: PMC3760445 DOI: 10.2147/pgpm.s45522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in the gene coding for the efflux-transport protein ABCB1 (P-glycoprotein) are commonly inherited as haplotypes. ABCB1 SNPs and haplotypes have been suggested to influence the pharmacokinetics and therapeutic outcome of the tyrosine kinase inhibitor (TKI) imatinib, used for treatment of chronic myeloid leukemia (CML). However, no consensus has yet been reached with respect to the significance of variant ABCB1 in CML treatment. Functional studies of variant ABCB1 transport of imatinib as well as other TKIs might aid the interpretation of results from in vivo association studies, but are currently lacking. The aim of this study was to investigate the consequences of ABCB1 variant haplotypes for transport and efficacy of TKIs (imatinib, its major metabolite N-desmethyl imatinib [CGP74588], dasatinib, nilotinib, and bosutinib) in CML cells. Variant haplotypes – including the 61A>G, 1199G>A, 1236C>T, 1795G>A, 2677G>T/A, and 3435T>C SNPs – were constructed in ABCB1 complementary DNA and transduced to K562 cells using retroviral gene transfer. The ability of variant cells to express ABCB1 protein and protect against TKI cytotoxicity was investigated. It was found that dasatinib and the imatinib metabolite CGP74588 are effectively transported by ABCB1, while imatinib, nilotinib, and bosutinib are comparatively weaker ABCB1 substrates. None of the investigated haplotypes altered the protective effect of ABCB1 expression against TKI cytotoxicity. These findings imply that the ABCB1 haplotypes investigated here are not likely to influence TKI pharmacokinetics or therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Karin Skoglund
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
23
|
Ligons DL, Tuncer C, Linowes BA, Akcay IM, Kurtulus S, Deniz E, Atasever Arslan B, Cevik SI, Keller HR, Luckey MA, Feigenbaum L, Möröy T, Ersahin T, Atalay R, Erman B, Park JH. CD8 lineage-specific regulation of interleukin-7 receptor expression by the transcriptional repressor Gfi1. J Biol Chem 2012; 287:34386-99. [PMID: 22865857 DOI: 10.1074/jbc.m112.378687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 receptor α (IL-7Rα) is essential for T cell survival and differentiation. Glucocorticoids are potent enhancers of IL-7Rα expression with diverse roles in T cell biology. Here we identify the transcriptional repressor, growth factor independent-1 (Gfi1), as a novel intermediary in glucocorticoid-induced IL-7Rα up-regulation. We found Gfi1 to be a major inhibitory target of dexamethasone by microarray expression profiling of 3B4.15 T-hybridoma cells. Concordantly, retroviral transduction of Gfi1 significantly blunted IL-7Rα up-regulation by dexamethasone. To further assess the role of Gfi1 in vivo, we generated bacterial artificial chromosome (BAC) transgenic mice, in which a modified Il7r locus expresses GFP to report Il7r gene transcription. By introducing this BAC reporter transgene into either Gfi1-deficient or Gfi1-transgenic mice, we document in vivo that IL-7Rα transcription is up-regulated in the absence of Gfi1 and down-regulated when Gfi1 is overexpressed. Strikingly, the in vivo regulatory role of Gfi1 was specific for CD8(+), and not CD4(+) T cells or immature thymocytes. These results identify Gfi1 as a specific transcriptional repressor of the Il7r gene in CD8 T lymphocytes in vivo.
Collapse
Affiliation(s)
- Davinna L Ligons
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang H, Liang H, Yan JS, Tao R, Hao SG, Ma LY. Down-regulation of hematopoiesis master regulator PU.1 via aberrant methylation in chronic myeloid leukemia. Int J Hematol 2012; 96:65-73. [PMID: 22674382 DOI: 10.1007/s12185-012-1106-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
Abstract
The PU.1 transcription factor is a crucial regulator of hematopoiesis, and its expression is altered in various leukemic processes. It has been shown that expression of PU.1 is severely impaired in patients with chronic myeloid leukemia (CML), but the mechanism underlying this effect remains unknown. Through bisulfite sequencing, semi-quantitative PCR, and indirect immunofluorescence and Western blot techniques, we found aberrant methylation in the promoter region of transcription factor PU.1 in CML patients both in the chronic and blast crisis phases, as well as in the CML blast K562 cell line. Of these, several CpG sites were more highly methylated in blast crisis than chronic phase, while no methylation of these sites was observed in healthy individuals. Interestingly, CML patients achieved complete cytogenetic remission under imatinib mesylate treatment, but the aberrant methylation status of PU.1 was not reversed. Down-regulation of PU.1 expression at the mRNA and protein levels was also observed in association with aberrant methylation. Thus, for the first time, we have revealed a potential epigenetic modification of PU.1 in CML, which may be responsible for the down-regulation of PU.1. These data suggest that aberrant methylation of PU.1 may play a role in CML pathogenesis, and may therefore serve as a useful biomarker and potential target for demethylating drugs.
Collapse
MESH Headings
- Base Sequence
- CpG Islands
- DNA Methylation
- Down-Regulation/genetics
- Gene Expression Regulation, Leukemic
- Hematopoiesis/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Hui Yang
- Department of Hematology, Xin Hua Hospital-Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
25
|
IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol 2012; 24:190-7. [PMID: 22421575 DOI: 10.1016/j.smim.2012.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/15/2012] [Indexed: 12/28/2022]
Abstract
The development and homeostasis of adaptive and innate lymphocytes is dependent on the stromal cytokine IL-7. The initial priming of immune responses to pathogenic challenges is executed by innate lymphoid cells (ILCs) with programmed capacity to rapidly secrete effector cytokines. How ILCs are controlled by IL-7 in distinct anatomical locale has evolved into a more complex problem as IL-7 receptor is not only expressed on ILCs, but also on surrounding neighbors, including vascular endothelium and mesenchymal cells that compete for limiting IL-7. For the generation of γδ T and B cells IL-7 is required for the production of antigen receptors, and it is likely that IL-7 performs critical function in facilitating ILC effector programming in addition to its regulatory actions on cell survival and proliferation. Most of our current understanding of the highly calibrated regulatory circuits of IL-7 function and IL-7 receptor signaling has derived from studies of adaptive, conventional lymphocytes. Here we highlight recent advances in mapping the gene circuits and cellular interactions that regulate temporospatial activities of IL-7 in diverse macro and micro niches that have direct relevance to deciphering the sphere of impact of IL-7 on ILC differentiation.
Collapse
|
26
|
Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS One 2012; 7:e27759. [PMID: 22247756 PMCID: PMC3256132 DOI: 10.1371/journal.pone.0027759] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/24/2011] [Indexed: 12/03/2022] Open
Abstract
The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that associated with age. Next, we determined which of these probes associated with longevity by comparing the offspring of the nonagenarians (50 subjects) and the middle-aged controls. The expression of 360 probes was found to change differentially with age in members of the long-lived families. In a RT-qPCR replication experiment utilizing 312 controls, 332 offspring and 79 nonagenarians, we confirmed a nonagenarian specific expression profile for 21 genes out of 25 tested. Since only some of the offspring will have inherited the beneficial longevity profile from their long-lived parents, the contrast between offspring and controls is expected to be weak. Despite this dilution of the longevity effects, reduced expression levels of two genes, ASF1A and IL7R, involved in maintenance of chromatin structure and the immune system, associated with familial longevity already in middle-age. The size of this association increased when controls were compared to a subfraction of the offspring that had the highest probability to age healthily and become long-lived according to beneficial metabolic parameters. In conclusion, an “aging-signature” formed of 21 genes was identified, of which reduced expression of ASF1A and IL7R marked familial longevity already in middle-age. This indicates that expression changes of genes involved in metabolism, epigenetic control and immune function occur as a function of age, and some of these, like ASF1A and IL7R, represent early features of familial longevity and healthy ageing.
Collapse
|
27
|
González-García S, García-Peydró M, Alcain J, Toribio ML. Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Curr Top Microbiol Immunol 2012; 360:47-73. [PMID: 22695916 DOI: 10.1007/82_2012_231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.
Collapse
Affiliation(s)
- Sara González-García
- Centro de Biología Molecular, Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Lorenzo LPE, Chen H, Shatynski KE, Clark S, Yuan R, Harrison DE, Yarowsky PJ, Williams MS. Defective hematopoietic stem cell and lymphoid progenitor development in the Ts65Dn mouse model of Down syndrome: potential role of oxidative stress. Antioxid Redox Signal 2011; 15:2083-94. [PMID: 21504363 PMCID: PMC3166202 DOI: 10.1089/ars.2010.3798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. RESULTS Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. INNOVATION The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. CONCLUSION The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice.
Collapse
Affiliation(s)
- Laureanne Pilar E Lorenzo
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yu S, Zhou X, Hsiao JJ, Yu D, Saunders TL, Xue HH. Fidelity of a BAC-EGFP transgene in reporting dynamic expression of IL-7Rα in T cells. Transgenic Res 2011; 21:201-15. [PMID: 21533667 DOI: 10.1007/s11248-011-9508-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
Interleukin-7 receptor α chain (IL-7Rα)-derived signals are critical for normal T cell development, mature T cell homeostasis, and longevity of memory T cells. IL-7Rα expression in T cells is dynamically regulated at different developmental and antigen-responding stages. However, the molecular mechanism underlying the dynamic regulation is not completely understood. Here we describe generation of a bacterial artificial chromosome (BAC)-based reporter transgenic mouse strain, which contains 210 kb DNA sequence flanking the Il7r locus. We used in vitro validated EGFP reporter and insulator sequences to facilitate the reporter transgene expression. Consistent with endogenous IL-7Rα expression, the BAC transgene was expressed in mature T cells, a portion of natural killer cells but not in mature B cells. In the thymus, the EGFP reporter and endogenous IL-7Rα showed synchronized silencing in CD4(+)CD8(+) double positive stage, were both upregulated in CD4(+) or CD8(+) single positive thymocytes, and both continued to be co-expressed in naïve T cells in the periphery. Upon encountering antigen, the antigen-specific effector CD8(+) T cells downregulated both endogenous IL-7Rα and the EGFP reporter, which were upregulated in synchrony in antigen-specific memory CD8 T cells. These results indicate that the BAC-EGFP transgene reports endogenous IL-7Rα regulation with high fidelity, and further suggest that the 210 kb sequence flanking the Il7r locus contains sufficient genetic information to regulate its expression changes in T lineage cells. Our approach thus represents a critical initial step towards systematic dissection of the cis regulatory elements controlling dynamic IL-7Rα regulation during T cell development and cellular immune responses.
Collapse
Affiliation(s)
- Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ouyang W, Li MO. Foxo: in command of T lymphocyte homeostasis and tolerance. Trends Immunol 2010; 32:26-33. [PMID: 21106439 DOI: 10.1016/j.it.2010.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/31/2022]
Abstract
The forkhead box O (Foxo) family of transcription factors consists of the mammalian orthologs of the Caenorhabditis elegans longevity protein Daf-16, and has an evolutionarily conserved function in the regulation of nutrient sensing and stress responses. Recent studies have shown that Foxo proteins control expression of immune system-specific genes such as Il7ra in naïve T cells and Foxp3 in regulatory T cells, which are crucial regulators of T cell homeostasis and tolerance. These findings reveal that the ancient Foxo pathway has been co-opted to regulate highly specialized T cell activities. The Foxo pathway probably enables a diverse and self-tolerant population of T cells in the steady state, which is an important prerequisite for the establishment of a functional adaptive immune system.
Collapse
Affiliation(s)
- Weiming Ouyang
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
31
|
|
32
|
Amino acid residues in the β3 strand and subsequent loop of the conserved ETS domain that mediate basic leucine zipper (bZIP) recruitment and potentially distinguish functional attributes of Ets proteins. Biochem J 2010; 430:129-39. [DOI: 10.1042/bj20091742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ets family members share a conserved DNA-binding ETS domain, and serve a variety of roles in development, differentiation and oncogenesis. Besides DNA binding, the ETS domain also participates in protein–protein interactions with other structurally unrelated transcription factors. Although this mechanism appears to confer tissue- or development stage-specific functions on individual Ets proteins, the biological significance of many of these interactions remains to be evaluated, because their molecular basis has been elusive. We previously demonstrated a direct interaction between the ETS domain of the widely expressed GABPα (GA-binding protein α) and the granulocyte inducer C/EBPα (CCAAT/enhancer-binding protein α), and suggested its involvement in co-operative transcriptional activation of myeloid-specific genes, such as human FCAR encoding FcαR [Fc receptor for IgA (CD89)]. By deletion analysis, we identified helix α3 and the β3/β4 region as the C/EBPα-interacting region. Domain-swapping of individual sub-domains with those of other Ets proteins allowed us to highlight β-strand 3 and the subsequent loop, which when exchanged by those of Elf-1 (E74-like factor 1) reduced the ability to recruit C/EBPα. Further analysis identified a four-amino acid swap mutation of this region (I387L/C388A/K393Q/F395L) that reduces both physical interaction and co-operative transcriptional activation with C/EBPα without affecting its transactivation capacity by itself. Moreover, re-ChIP (re-chromatin immunoprecipitation) analysis demonstrated that GABPα recruits C/EBPα to the FCAR promoter, depending on these residues. The identified amino acid residues could confer the specificity of the action on the Ets proteins in diverse biological processes through mediating the recruitment of its partner factor.
Collapse
|
33
|
Li LX, Goetz CA, Katerndahl CDS, Sakaguchi N, Farrar MA. A Flt3- and Ras-dependent pathway primes B cell development by inducing a state of IL-7 responsiveness. THE JOURNAL OF IMMUNOLOGY 2010; 184:1728-36. [PMID: 20065110 DOI: 10.4049/jimmunol.0903023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant-negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors. This developmental block parallels that found in flt3(-/-) mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of common lymphoid progenitors and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL-7Ralpha levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation.
Collapse
Affiliation(s)
- Lin-Xi Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
34
|
Fahl SP, Crittenden RB, Allman D, Bender TP. c-Myb is required for pro-B cell differentiation. THE JOURNAL OF IMMUNOLOGY 2009; 183:5582-92. [PMID: 19843942 DOI: 10.4049/jimmunol.0901187] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The c-Myb transcription factor is required for normal adult hematopoiesis. However, the embryonic lethality of Myb-null mutations has been an impediment to identifying roles for c-Myb during lymphocyte development. We have used tissue-specific inactivation of the Myb locus in early progenitor cells to demonstrate that c-Myb is absolutely required for the differentiation of CD19(+) B-lineage cells and B cell differentiation is profoundly blocked beyond the pre-pro-B cell stage in Myb(f/f) Mb1-cre mice. We demonstrate that c-Myb is required for the intrinsic survival of CD19(+) pro-B cells as well as the proper expression of the alpha-chain of the IL-7 receptor (CD127) and Ebf1. However, survival of c-Myb-deficient CD19(+) pro-B cells cannot be rescued by transduction with CD127-producing retrovirus, suggesting that c-Myb controls a survival pathway independent of CD127. Furthermore, c-Myb-deficient progenitor cells inefficiently generate CD19(+) B-lineage cells during stromal cell culture but this process can be partially rescued with exogenous Ebf1. Thus, c-Myb does not appear to be required for commitment to B cell differentiation but is crucial for B cell differentiation to the CD19(+) pro-B cell stage as well as survival of CD19(+) pro-B cells. Surprisingly, forced c-Myb expression in lymphoid-primed multipotent progenitors favors differentiation toward the myeloid lineage, suggesting that proper c-Myb expression is crucial for B-lineage development.
Collapse
Affiliation(s)
- Shawn P Fahl
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
35
|
González-García S, García-Peydró M, Martín-Gayo E, Ballestar E, Esteller M, Bornstein R, de la Pompa JL, Ferrando AA, Toribio ML. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. ACTA ACUST UNITED AC 2009; 206:779-91. [PMID: 19349467 PMCID: PMC2715119 DOI: 10.1084/jem.20081922] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Notch1 activation is essential for T-lineage specification of lymphomyeloid progenitors seeding the thymus. Progression along the T cell lineage further requires cooperative signaling provided by the interleukin 7 receptor (IL-7R), but the molecular mechanisms responsible for the dynamic and lineage-specific regulation of IL-7R during thymopoiesis are unknown. We show that active Notch1 binds to a conserved CSL-binding site in the human IL7R gene promoter and critically regulates IL7R transcription and IL-7R α chain (IL-7Rα) expression via the CSL–MAML complex. Defective Notch1 signaling selectively impaired IL-7Rα expression in T-lineage cells, but not B-lineage cells, and resulted in a compromised expansion of early human developing thymocytes, which was rescued upon ectopic IL-7Rα expression. The pathological implications of these findings are demonstrated by the regulation of IL-7Rα expression downstream of Notch1 in T cell leukemias. Thus, Notch1 controls early T cell development, in part by regulating the stage- and lineage-specific expression of IL-7Rα.
Collapse
Affiliation(s)
- Sara González-García
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Zhou H, Chervenak R, Moscatello KM, Brunson LE, Chervenak DC, Wolcott RM. Ethanol exhibits specificity in its effects on differentiation of hematopoietic progenitors. Cell Immunol 2008; 255:1-7. [PMID: 18834972 DOI: 10.1016/j.cellimm.2008.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 01/28/2023]
Abstract
Ethanol is a known teratogen but the mechanisms by which this simple compound affects fetal development remain unresolved. The goal of the current study was to determine the mechanism by which ethanol affects lymphoid differentiation using an in vitro model of ethanol exposure. Primitive hematopoietic oligoclonal-neonatal-progenitor cells (ONP), with the phenotype Lin(-)HSA(lo)CD43(lo)Sca-1(-)c-Kit(+) that are present in neonatal but not adult bone marrow were sorted from the bone marrow of 2-week-old C57BL/6J mice and cultured under conditions that favor either B cell or myeloid cell differentiation with or without addition of ethanol. The overall growth of the ONP cells was not significantly affected by inclusion of up to 100mM ethanol in the culture medium. However, the differentiation of the progenitor cells along the B-cell pathway was significantly impaired by ethanol in a dose-dependent manner. Exposure of ONP cells to 100mM ethanol resulted in greater than 95% inhibition of B cell differentiation. Conversely, ethanol concentrations up to and including 100mM had no significant effect on differentiation along the myeloid pathway. The effect of ethanol on transcription factor expression was consistent with the effects on differentiation. ONP cells grown in 100mM ethanol failed to upregulate Pax5 and EBF, transcriptional regulators that are necessary for B cell development. However, ethanol had no significant effect on the upregulation of PU.1, a transcription factor that, when expressed in high concentration, favors myeloid cell development. Taken together, these results suggest that ethanol has specificity in its effects on differentiation of hematopoietic progenitors.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center in Shreveport, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jing X, Zhao DM, Waldschmidt TJ, Xue HH. GABPbeta2 is dispensible for normal lymphocyte development but moderately affects B cell responses. J Biol Chem 2008; 283:24326-33. [PMID: 18628204 DOI: 10.1074/jbc.m804487200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GA-binding protein (GABP) is the only Ets family transcription factor that functions as a heterodimer. The GABPalpha subunit binds to DNA, and the GABPbeta subunit possesses the ability to transactivate target genes. Inactivation of GABPalpha caused embryonic lethality and defective lymphocyte development and immune responses. There are 3 isoforms of the GABPbeta subunit, but whether they have distinct functions has not been addressed. In this study, we selectively ablated the expression of GABPbeta2 using a gene trap strategy. GABPbeta2-deficient mice were viable and had normal T and B cell development, suggesting that loss of GABPbeta2 is compensated for by other GABPbeta isoforms during these processes. GABPbeta2-deficient T cells can be activated and proliferate similarly to wild-type controls. In contrast, B cells lacking GABPbeta2 showed 2-3-fold increases in proliferation in response to B cell receptor stimulation. In addition, GABPbeta2-deficient mice exhibited moderately increased antibody production and germinal center responses when challenged with T-dependent antigens. These results indicate that albeit GABPbeta isoforms are redundant in lymphocyte development, GABPbeta2 has a distinct role in restraining B cell expansion and humoral responses.
Collapse
Affiliation(s)
- Xuefang Jing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
38
|
Chandele A, Joshi NS, Zhu J, Paul WE, Leonard WJ, Kaech SM. Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. THE JOURNAL OF IMMUNOLOGY 2008; 180:5309-19. [PMID: 18390712 DOI: 10.4049/jimmunol.180.8.5309] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-7 is essential for the survival of naive and memory T cells, and IL-7 receptor alpha-chain (IL-7Ralpha) expression is dynamically regulated in activated CD8 T cells during acute viral and bacterial infections. Most virus-specific CD8 T cells become IL-7Ralpha(low) and are relatively short-lived, but some escape IL-7Ralpha repression (referred to as IL-7Ralpha(high) memory precursor effector cells) and preferentially enter the memory CD8 T cell pool. How antiviral effector CD8 T cells regulate IL-7Ralpha expression in an "on and off" fashion remains to be characterized. During lymphocytic choriomeningitis virus infection, we found that opposing actions of the transcription factors GABPalpha (GA binding protein alpha) and Gfi-1 (growth factor independence 1) control IL-7Ralpha expression in effector CD8 T cells. Specifically, GABPalpha was required for IL-7Ralpha expression in memory precursor effector cells, and this correlated with hyperacetylation of the Il7ra promoter. In contrast, Gfi-1 was required for stable IL-7Ralpha repression in effector CD8 T cells and acted by antagonizing GABPalpha binding and recruiting histone deacetylase 1, which deacetylated the Il7ra promoter. Thus, Il7ra promoter acetylation and activity was dependent on the reciprocal binding of GABPalpha and Gfi-1, and these data provide a biochemical mechanism for the generation of stable IL-7Ralpha(high) and IL-7Ralpha(low) states in virus-specific effector CD8 T cells.
Collapse
Affiliation(s)
- Anmol Chandele
- Department of Immunobiology, Yale Medical School, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cario G, Fetz A, Bretscher C, Möricke A, Schrauder A, Stanulla M, Schrappe M. Initial leukemic gene expression profiles of patients with poor in vivo prednisone response are similar to those of blasts persisting under prednisone treatment in childhood acute lymphoblastic leukemia. Ann Hematol 2008; 87:709-16. [PMID: 18521602 DOI: 10.1007/s00277-008-0504-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 04/21/2008] [Indexed: 11/28/2022]
Abstract
Response to initial glucocorticoid (GC) treatment is a strong prognostic factor in childhood acute lymphoblastic leukemia (ALL). Patients with a poor prednisone response (PPR) have a poor event-free survival as compared to those with a good prednisone response (PGR). Causes of prednisone resistance are still not well understood. We hypothesized that GC resistance is an intrinsic feature of ALL cells which is reflected in the gene expression pattern and analyzed genome-wide gene expression using microarrays. A case-control study was performed comparing gene expression profiles from initial ALL samples of 20 patients with PPR and those of 20 patients with PGR. Differential gene expression of a subset of genes was confirmed by real-time quantitative polymerase chain reaction analysis and validation was performed in a second independent patient sample (n=20). We identified 121 genes that clearly distinguished prednisone-resistant from sensitive ALL samples (FDR<5%, fold change>or=1.5). Differential gene expression of 21 of these genes could be validated in a second independent set. Of importance, there was a remarkable concordance of genes identified by comparing expression signatures of PPR and PGR cells at diagnosis and those previously described to be up- or downregulated in leukemic cells persisting under GC treatment. Thus, GC resistance seems at least in part to be an intrinsic feature of leukemic cells. Leukemic cells of patients with PPR are characterized by gene expression pattern which are similar to those of resistant cells persisting under glucocorticoid treatment.
Collapse
Affiliation(s)
- Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 20, 24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Shaut CAE, Keene DR, Sorensen LK, Li DY, Stadler HS. HOXA13 Is essential for placental vascular patterning and labyrinth endothelial specification. PLoS Genet 2008; 4:e1000073. [PMID: 18483557 PMCID: PMC2367452 DOI: 10.1371/journal.pgen.1000073] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 04/11/2008] [Indexed: 12/26/2022] Open
Abstract
In eutherian mammals, embryonic growth and survival is dependent on the formation of the placenta, an organ that facilitates the efficient exchange of oxygen, nutrients, and metabolic waste between the maternal and fetal blood supplies. Key to the placenta's function is the formation of its vascular labyrinth, a series of finely branched vessels whose molecular ontogeny remains largely undefined. In this report, we demonstrate that HOXA13 plays an essential role in labyrinth vessel formation. In the absence of HOXA13 function, placental endothelial cell morphology is altered, causing a loss in vessel wall integrity, edema of the embryonic blood vessels, and mid-gestational lethality. Microarray analysis of wild-type and mutant placentas revealed significant changes in endothelial gene expression profiles. Notably, pro-vascular genes, including Tie2 and Foxf1, exhibited reduced expression in the mutant endothelia, which also exhibited elevated expression of genes normally expressed in lymphatic or sinusoidal endothelia. ChIP analysis of HOXA13–DNA complexes in the placenta confirmed that HOXA13 binds the Tie2 and Foxf1 promoters in vivo. In vitro, HOXA13 binds sequences present in the Tie2 and Foxf1 promoters with high affinity (Kd = 27–42 nM) and HOXA13 can use these bound promoter regions to direct gene expression. Taken together, these findings demonstrate that HOXA13 directly regulates Tie2 and Foxf1 in the placental labyrinth endothelia, providing a functional explanation for the mid-gestational lethality exhibited by Hoxa13 mutant embryos as well as a novel transcriptional program necessary for the specification of the labyrinth vascular endothelia. Defects in placental development are a common cause of mid-gestational lethality. Key to the placenta's function is its vascular labyrinth, a series of finely branched vessels that facilitate the efficient exchange of gases, nutrients, and metabolic waste between the maternal and fetal blood supplies. In this study, we identify a novel role for the transcription factor HOXA13 in formation of the placental vascular labyrinth. In the absence of HOXA13 function, labyrinth vessel branching and endothelial specification is compromised, causing mid-gestational lethality due to placental insufficiency. Analysis of the genes affected by the loss of HOXA13 function revealed significant reductions in the expression of several pro-vascular genes, including Tie2 and Foxf1. Analysis of the Tie2 and Foxf1 promoters confirmed that HOXA13 binds sites present in each promoter with high affinity in the placenta, and in vitro, HOXA13 can use these bound sequences to regulate gene expression. These results suggest that Tie2 and Foxf1 are direct transcriptional targets of HOXA13 in the developing placental labyrinth, providing a novel transcriptional pathway to consider when examining pathologies of the placenta and placental insufficiency, as well as the evolutionary mechanisms required for the emergence of the vascular placenta in eutherian mammals.
Collapse
Affiliation(s)
- Carley A. E. Shaut
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Heart Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Douglas R. Keene
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
| | - Lise K. Sorensen
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - H. Scott Stadler
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Shriners Hospital for Children Research Division, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
41
|
Targeting the GA binding protein beta1L isoform does not perturb lymphocyte development and function. Mol Cell Biol 2008; 28:4300-9. [PMID: 18426908 DOI: 10.1128/mcb.01855-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
GA binding protein (GABP) is a ubiquitously expressed Ets family transcription factor that consists of two subunits, GABPalpha and GABPbeta. GABPalpha binds to DNA, and GABPbeta heterodimerizes with GABPalpha and possesses the ability to transactivate target genes. Our previous studies using GABPalpha-deficient mice revealed that GABPalpha is required for the development of both T and B cells. Two splice variants of GABPbeta are generated from the Gabpb1 locus and differ in their carboxy-terminal lengths and sequences. The longer isoform (GABPbeta1L) can homodimerize and thus form alpha(2)beta(2) tetramers depending on the gene context, whereas the shorter isoform (GABPbeta1S) cannot. In this study, we generated mice that are deficient in GABPbeta1L but that retain the expression of GABPbeta1S. Surprisingly, GABPbeta1L-/- mice had normal T- and B-cell development, and mature T and B cells showed normal responses to various stimuli. In contrast, targeting both GABPbeta1L and GABPbeta1S resulted in early embryonic lethality. Because of its incapability of forming homodimers, GABPbeta1S has been suspected to have a dominant negative role in regulating GABP target genes. Our findings argue against such a possibility and rather suggest that GABPbeta1S has a critical role in maintaining the transcriptional activity of the GABPalpha/beta complex.
Collapse
|
42
|
Sirskyj D, Thèze J, Kumar A, Kryworuchko M. Disruption of the gamma c cytokine network in T cells during HIV infection. Cytokine 2008; 43:1-14. [PMID: 18417356 DOI: 10.1016/j.cyto.2008.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/05/2008] [Accepted: 03/03/2008] [Indexed: 01/03/2023]
Abstract
The common gamma chain (gammac)-sharing cytokines (IL's-2, 4, 7, 9, 15, and 21) play a vital role in the survival, proliferation, differentiation and function of T lymphocytes. As such, disruption of their signaling pathways would be expected to have severe consequences on the integrity of the immune system. Indeed, it appears that the signaling network of these cytokines is both disrupted and exploited by HIV at various stages of infection. IL-2 secretion and signaling downstream of its receptor are impaired in T cells from chronically-infected HIV+ patients. Elevated plasma IL-7 levels and decreased IL-7Ralpha expression in patient T cells results in significantly decreased responsiveness to this critical cytokine. Interestingly, IL-2 and IL-15 are also able to render CD4+ T cells permissive to HIV infection through their influence on the activity of the APOBEC3G deaminase enzyme. Herein, we describe the current state of knowledge on how the gammac cytokine network is affected during HIV infection, with a focus on how this impairs CD4+ and CD8+ T cell function while also benefiting the virus itself. We also address the use of cytokines as adjuncts to highly active antiretroviral therapy to bolster immune reconstitution in infected patients.
Collapse
Affiliation(s)
- Danylo Sirskyj
- Infectious Disease and Vaccine Research Centre, Children's Hospital of Eastern Ontario (CHEO)-Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Danko CG, McIlvain VA, Qin M, Knox BE, Pertsov AM. Bioinformatic identification of novel putative photoreceptor specific cis-elements. BMC Bioinformatics 2007; 8:407. [PMID: 17953763 PMCID: PMC2225425 DOI: 10.1186/1471-2105-8-407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 10/22/2007] [Indexed: 11/10/2022] Open
Abstract
Background Cell specific gene expression is largely regulated by different combinations of transcription factors that bind cis-elements in the upstream promoter sequence. However, experimental detection of cis-elements is difficult, expensive, and time-consuming. This provides a motivation for developing bioinformatic methods to identify cis-elements that could prioritize future experimental studies. Here, we use motif discovery algorithms to predict transcription factor binding sites involved in regulating the differences between murine rod and cone photoreceptor populations. Results To identify highly conserved motifs enriched in promoters that drive expression in either rod or cone photoreceptors, we assembled a set of murine rod-specific, cone-specific, and non-photoreceptor background promoter sequences. These sets were used as input to a newly devised motif discovery algorithm called Iterative Alignment/Modular Motif Selection (IAMMS). Using IAMMS, we predicted 34 motifs that may contribute to rod-specific (19 motifs) or cone-specific (15 motifs) expression patterns. Of these, 16 rod- and 12 cone-specific motifs were found in clusters near the transcription start site. New findings include the observation that cone promoters tend to contain TATA boxes, while rod promoters tend to be TATA-less (exempting Rho and Cnga1). Additionally, we identify putative sites for IL-6 effectors (in rods) and RXR family members (in cones) that can explain experimental data showing changes to cell-fate by activating these signaling pathways during rod/cone development. Two of the predicted motifs (NRE and ROP2) have been confirmed experimentally to be involved in cell-specific expression patterns. We provide a full database of predictions as additional data that may contain further valuable information. IAMMS predictions are compared with existing motif discovery algorithms, DME and BioProspector. We find that over 60% of IAMMS predictions are confirmed by at least one other motif discovery algorithm. Conclusion We predict novel, putative cis-elements enriched in the promoter of rod-specific or cone-specific genes. These are candidate binding sites for transcription factors involved in maintaining functional differences between rod and cone photoreceptor populations.
Collapse
Affiliation(s)
- Charles G Danko
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | |
Collapse
|