1
|
Palanisamy S, Singh A, Zhang B, Kim JT, Benjakul S. Effects of polyphenols in combination with L-cysteine/L-ascorbic acid: Myoglobin redox state, color and quality of refrigerated longtail tuna (Thunnus tonggol) slices. Food Chem 2025; 465:141983. [PMID: 39541674 DOI: 10.1016/j.foodchem.2024.141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Effects of phenolic compounds in conjunction with L-cysteine/l-ascorbic acid on the redox state of myoglobin (Mb) and their efficacy to maintain the color and quality of refrigerated longtail tuna (Thunnus tonggol) slices were investigated. Purified metmyoglobin (metMb) and oxymyoglobin (oxyMb) samples were added with epigallocatechin-3-gallate (EGCG) or quercetin individually or in combination with L-cysteine (CT) or L-ascorbic acid (AA) at 4 °C. EGCG in combination with AA (EGCG+AA) and AA alone significantly reduced metMb and increased oxyMb levels (p < 0.05). Furthermore, the slices of tuna were treated with EGCG+AA (200 and 200 mg/kg, respectively) exhibited superior color retention (high a* value and a*/b*) and reduced lipid and protein oxidation more potentially, compared to other treated slices. AA alone was less effective in preserving color and quality of slices. Therefore, EGCG+AA effectively maintained the color and quality of tuna slices stored at 4 °C.
Collapse
Affiliation(s)
- Suguna Palanisamy
- The International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Avtar Singh
- The International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Aboalroub AA, Al Azzam KM. Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities. Protein J 2024; 43:639-655. [PMID: 39068633 DOI: 10.1007/s10930-024-10223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.
Collapse
Affiliation(s)
- Adam A Aboalroub
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Khaldun M Al Azzam
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
3
|
Carugo O. Location of S-nitrosylated cysteines in protein three-dimensional structures. Proteins 2024; 92:464-473. [PMID: 37941304 DOI: 10.1002/prot.26629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Although S-nitrosylation of cysteines is a common protein posttranslational modification, little is known about its three-dimensional structural features. This paper describes a systematic survey of the data available in the Protein Data Bank. Several interesting observations could be made. (1) As a result of radiation damage, S-nitrosylated cysteines (Snc) are frequently reduced, at least partially. (2) S-nitrosylation may be a protection against irreversible thiol oxidation; because the NO group of Snc is relatively accessible to the solvent, it may act as a cork to protect the sulfur atoms of cysteines from oxidation by molecular oxygen to sulfenic, sulfinic, and sulfonic acid; moreover, Snc are frequently found at the start or end of helices and strands and this might shield secondary structural elements from unfolding.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy
- Department of Structural and Computational Biology, Max Perutz Labs University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Álvarez-Armenta A, Huerta-Ocampo JA, López-Zavala AA, Pacheco-Aguilar R, Sotelo-Mundo RR, Corona-Martínez DO, Ramírez-Suárez JC. Review of the Greening Reaction by Thermal Treatment: New Insights Exploring the Structural Implications of Myoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17485-17493. [PMID: 37943570 DOI: 10.1021/acs.jafc.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.
Collapse
Affiliation(s)
- Andrés Álvarez-Armenta
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Jose A Huerta-Ocampo
- Laboratorio de Bioquímica de Proteínas y Glicanos, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Alonso A López-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Pacheco-Aguilar
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| | - David O Corona-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Juan Carlos Ramírez-Suárez
- Laboratorio de Bioquímica y Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
5
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
6
|
Chakraborty S, Mukherjee P, Sengupta R. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide 2022; 127:26-43. [PMID: 35850377 DOI: 10.1016/j.niox.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quaternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in designing new drugs and therapies.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Prerona Mukherjee
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
7
|
Giordano D, Verde C, Corti P. Nitric Oxide Production and Regulation in the Teleost Cardiovascular System. Antioxidants (Basel) 2022; 11:957. [PMID: 35624821 PMCID: PMC9137985 DOI: 10.3390/antiox11050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Nitric Oxide (NO) is a free radical with numerous critical signaling roles in vertebrate physiology. Similar to mammals, in the teleost system the generation of sufficient amounts of NO is critical for the physiological function of the cardiovascular system. At the same time, NO amounts are strictly controlled and kept within basal levels to protect cells from NO toxicity. Changes in oxygen tension highly influence NO bioavailability and can modulate the mechanisms involved in maintaining the NO balance. While NO production and signaling appears to have general similarities with mammalian systems, the wide range of environmental adaptations made by fish, particularly with regards to differing oxygen availabilities in aquatic habitats, creates a foundation for a variety of in vivo models characterized by different implications of NO production and signaling. In this review, we present the biology of NO in the teleost cardiovascular system and summarize the mechanisms of NO production and signaling with a special emphasis on the role of globin proteins in NO metabolism.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Hasan MM, Ushio H, Ochiai Y. Expression and characterization of rainbow trout Oncorhynchus mykiss recombinant myoglobin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1477-1488. [PMID: 34327612 DOI: 10.1007/s10695-021-00991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recombinant expression system was established for rainbow trout myoglobin (Mb) considering its unique primary structure of having one unusual deletion and two cysteine residues in contrast to the other fish Mbs. The obtained recombinant Mb without His-tag showed non-cooperative thermal denaturation profile. The presence of free cysteine residue(s) in rainbow trout Mb was demonstrated by reacting with a sulfhydryl agent, 4, 4´-dithiodipyridine, which ultimately resulted in the oxidation of Mb with characteristic changes in visible absorption spectra. Besides, the recombinant Mb displayed steady peroxidase reactivity indicating in vivo roles of Mb as a reactive oxygen species scavenger. The findings of the present study indicate that the solitary rainbow trout Mb, which ultimately manifest typical secondary structure pattern and corroborate characteristic functionality, can be over expressed in recombinant system devoid of fusion tag.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agriculture, Tohoku University, Aramaki, Aoba, Sendai, 980-8572, Japan
| |
Collapse
|
9
|
Hasan MM, Arafah P, Ozawa H, Ushio H, Ochiai Y. Thermal denaturation and autoxidation profiles of carangid fish myoglobins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:487-498. [PMID: 33515395 DOI: 10.1007/s10695-021-00928-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Although myoglobin (Mb) has been considered to be one of the well-characterized proteins, screening of post-genomic era databases revealed the lack of adequate information on teleost Mbs. The present study was aimed to investigate stability and functional features of Mbs from three teleosts of the same family. To unfold how primary structure influences the stability and function of proteins, Mbs were purified from the dark muscles of three carangids, namely, yellowtail, greater amberjack, and silver trevally. Thermostabilities measured by circular dichroism (CD) spectrometry revealed species-specific thermal denaturation pattern, i.e., silver trevally > yellowtail > greater amberjack Mbs. On the other hand, autoxidation rate constants of the ferrous forms of those three carangid Mbs showed positive correlation between the ferrous state of the heme iron and rising temperature. The order of autoxidation rate was in the order of greater amberjack > yellowtail > silver trevally Mbs. The finding of the present study denotes that the thermal stability is not necessarily correlated with the functional stability of carangid Mbs even though their primary structures shared high homology (84-94%).
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Purnama Arafah
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hideo Ozawa
- Faculty of Applied Bioscience, Kanagawa Institute of Technology, Shimo-Ogino, Atsugi, Kanagawa, 243-0292, Japan
| | - Hideki Ushio
- Graduate School of Agricultural and Life Sciences, The Univerisity of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Ochiai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
10
|
Turan HT, Meuwly M. Spectroscopy, Dynamics, and Hydration of S-Nitrosylated Myoglobin. J Phys Chem B 2021; 125:4262-4273. [PMID: 33724027 DOI: 10.1021/acs.jpcb.0c10353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-Nitrosylation, the covalent addition of NO to the thiol side chain of cysteine, is an important post-transitional modification that can alter the function of various proteins. The structural dynamics and vibrational spectroscopy of S-nitrosylation in the condensed phase are investigated for the methyl-capped cysteine model system and for myoglobin. Using conventional point charge and physically more realistic multipolar force fields for the -SNO group, it is found that the SN- and NO-stretch and the SNO-bend vibrations can be located and distinguished from the other protein modes for simulations of MbSNO at 50 K. The finding of stable cis- and trans-MbSNO agrees with experimental findings on other proteins as is the observation of buried -SNO. For MbSNO the observed relocation of the EF loop in the simulations by ∼3 Å is consistent with the available X-ray structure, and the conformations adopted by the -SNO label are in good overall agreement with the X-ray structure. Despite the larger size of the -SNO group compared with -SH, MbSNO recruits more water molecules in the first two hydration shells due to stronger electrostatic interactions. Similarly, when comparing the hydration between the A- and H-helices, they differ by up to 30% between WT and MbSNO. This suggests that local hydration can also be significantly modulated through nitrosylation.
Collapse
Affiliation(s)
- Haydar Taylan Turan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| |
Collapse
|
11
|
Liu J, Zhu XY, Deng LB, Liu HF, Li J, Zhou XR, Wang HZ, Hua W. Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:385-397. [PMID: 33045083 DOI: 10.1093/jxb/eraa456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule regulating several plant developmental and stress responses. Here, we report that NO plays an important role in seed oil content and fatty acid composition. RNAi silencing of Arabidopsis S-nitrosoglutathione reductase 1 (GSNOR1) led to reduced seed oil content. In contrast, nitrate reductase double mutant nia1nia2 had increased seed oil content, compared with wild-type plants. Moreover, the concentrations of palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3) were higher, whereas those of stearic acid (C18:0), oleic acid (C18:1), and arachidonic acid (C20:1) were lower, in seeds of GSNOR1 RNAi lines. Similar results were obtained with rapeseed embryos cultured in vitro with the NO donor sodium nitroprusside (SNP), and the NO inhibitor NG-Nitro-L-arginine Methyl Ester (L-NAME). Compared with non-treated embryos, the oil content decreased in SNP-treated embryos, and increased in L-NAME-treated embryos. Relative concentrations of C16:0, C18:2 and C18:3 were higher, whereas C18:1 concentration decreased in rapeseed embryos treated with SNP. Proteomics and transcriptome analysis revealed that three S-nitrosated proteins and some key genes involved in oil synthesis, were differentially regulated in SNP-treated embryos. Therefore, regulating NO content could be a novel approach to increasing seed oil content in cultivated oil crops.
Collapse
Affiliation(s)
- Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xiao-Yi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Lin-Bin Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Xue-Rong Zhou
- Agriculture and Food Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Han-Zhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P.R. China
| |
Collapse
|
12
|
Zhou S, Wang L. Unraveling the structural and chemical features of biological short hydrogen bonds. Chem Sci 2019; 10:7734-7745. [PMID: 31588321 PMCID: PMC6764281 DOI: 10.1039/c9sc01496a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Short hydrogen bonds are ubiquitous in biological macromolecules and exhibit distinctive proton potential energy surfaces and proton sharing properties.
The three-dimensional architecture of biomolecules often creates specialized structural elements, notably short hydrogen bonds that have donor–acceptor separations below 2.7 Å. In this work, we statistically analyze 1663 high-resolution biomolecular structures from the Protein Data Bank and demonstrate that short hydrogen bonds are prevalent in proteins, protein–ligand complexes and nucleic acids. From these biological macromolecules, we characterize the preferred location, connectivity and amino acid composition in short hydrogen bonds and hydrogen bond networks, and assess their possible functional importance. Using electronic structure calculations, we further uncover how the interplay of the structural and chemical features determines the proton potential energy surfaces and proton sharing conditions in biological short hydrogen bonds.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| | - Lu Wang
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| |
Collapse
|
13
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wang B, Shi Y, Tejero J, Powell SM, Thomas LM, Gladwin MT, Shiva S, Zhang Y, Richter-Addo GB. Nitrosyl Myoglobins and Their Nitrite Precursors: Crystal Structural and Quantum Mechanics and Molecular Mechanics Theoretical Investigations of Preferred Fe -NO Ligand Orientations in Myoglobin Distal Pockets. Biochemistry 2018; 57:4788-4802. [PMID: 29999305 PMCID: PMC6474360 DOI: 10.1021/acs.biochem.8b00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The globular dioxygen binding heme protein myoglobin (Mb) is present in several species. Its interactions with the simple nitrogen oxides, namely, nitric oxide (NO) and nitrite, have been known for decades, but the physiological relevance has only recently become more fully appreciated. We previously reported the O-nitrito mode of binding of nitrite to ferric horse heart wild-type (wt) MbIII and human hemoglobin. We have expanded on this work and report the interactions of nitrite with wt sperm whale (sw) MbIII and its H64A, H64Q, and V68A/I107Y mutants whose dissociation constants increase in the following order: H64Q < wt < V68A/I107Y < H64A. We also report their X-ray crystal structures that reveal the O-nitrito mode of binding of nitrite to these derivatives. The MbII-mediated reductions of nitrite to NO and structural data for the wt and mutant MbII-NOs are described. We show that their FeNO orientations vary with distal pocket identity, with the FeNO moieties pointing toward the hydrophobic interiors when the His64 residue is present but toward the hydrophilic exterior when this His64 residue is absent in this set of mutants. This correlates with the nature of H-bonding to the bound NO ligand (nitrosyl O vs N atom). Quantum mechanics and hybrid quantum mechanics and molecular mechanics calculations help elucidate the origin of the experimentally preferred NO orientations. In a few cases, the calculations reproduce the experimentally observed orientations only when the whole protein is taken into consideration.
Collapse
Affiliation(s)
- Bing Wang
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Samantha M. Powell
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Mark T. Gladwin
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3550 Terrace
Street, Pittsburgh, PA 15261
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA
15213
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology, and Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
15
|
Qi D, Chao Y, Zhao Y, Xia M, Wu R. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:557-571. [PMID: 29230594 DOI: 10.1007/s10695-017-0453-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (< 8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Yongli Zhao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Mingzhe Xia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Rongrong Wu
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| |
Collapse
|
16
|
Kinjo AR. Cooperative "folding transition" in the sequence space facilitates function-driven evolution of protein families. J Theor Biol 2018; 443:18-27. [PMID: 29355538 DOI: 10.1016/j.jtbi.2018.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
In the protein sequence space, natural proteins form clusters of families which are characterized by their unique native folds whereas the great majority of random polypeptides are neither clustered nor foldable to unique structures. Since a given polypeptide can be either foldable or unfoldable, a kind of "folding transition" is expected at the boundary of a protein family in the sequence space. By Monte Carlo simulations of a statistical mechanical model of protein sequence alignment that coherently incorporates both short-range and long-range interactions as well as variable-length insertions to reproduce the statistics of the multiple sequence alignment of a given protein family, we demonstrate the existence of such transition between natural-like sequences and random sequences in the sequence subspaces for 15 domain families of various folds. The transition was found to be highly cooperative and two-state-like. Furthermore, enforcing or suppressing consensus residues on a few of the well-conserved sites enhanced or diminished, respectively, the natural-like pattern formation over the entire sequence. In most families, the key sites included ligand binding sites. These results suggest some selective pressure on the key residues, such as ligand binding activity, may cooperatively facilitate the emergence of a protein family during evolution. From a more practical aspect, the present results highlight an essential role of long-range effects in precisely defining protein families, which are absent in conventional sequence models.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Ibáñez-Vea M, Huang H, Martínez de Morentin X, Pérez E, Gato M, Zuazo M, Arasanz H, Fernández-Irigoyen J, Santamaría E, Fernandez-Hinojal G, Larsen MR, Escors D, Kochan G. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO 2 Chromatography. J Proteome Res 2018; 17:1172-1182. [PMID: 29338241 DOI: 10.1021/acs.jproteome.7b00812] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile. To overcome this drawback, most methods induce S-nitrosylation chemically in proteins using nitrosylating compounds before analysis, with the risk of introducing nonphysiological S-nitrosylation. Here we present a novel method to efficiently identify endogenous S-nitrosopeptides in the macrophage total proteome. Our approach is based on the labeling of S-nitrosopeptides reduced by ascorbate with a cysteine specific phosphonate adaptable tag (CysPAT), followed by titanium dioxide (TiO2) chromatography enrichment prior to nLC-MS/MS analysis. To test our procedure, we performed a large-scale analysis of this low-abundant modification in a murine macrophage cell line. We identified 569 endogeneous S-nitrosylated proteins compared with 795 following exogenous chemically induced S-nitrosylation. Importantly, we discovered 579 novel S-nitrosylation sites. The large number of identified endogenous S-nitrosylated peptides allowed the definition of two S-nitrosylation consensus sites, highlighting protein translation and redox processes as key S-nitrosylation targets in macrophages.
Collapse
Affiliation(s)
- María Ibáñez-Vea
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campusvej 55, DK 5230 Odense M, Denmark
| | - Xabier Martínez de Morentin
- Bioinformatics Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Estela Pérez
- Proteored - ISCIII, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Gato
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Miren Zuazo
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Joaquin Fernández-Irigoyen
- Proteored - ISCIII, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Proteored - ISCIII, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Gonzalo Fernandez-Hinojal
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campusvej 55, DK 5230 Odense M, Denmark
| | - David Escors
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain.,Division of Infection and Immunity, Rayne Institute, University College London , 5 University Street, WC1E 6JF London, United Kingdom
| | - Grazyna Kochan
- Immunomodulation Group, Navarrabiomed Biomedical Research Center, Navarra Institute for Health Research (IdiSNA) , Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
18
|
Zaucha J, Heddle JG. Resurrecting the Dead (Molecules). Comput Struct Biotechnol J 2017; 15:351-358. [PMID: 28652896 PMCID: PMC5472138 DOI: 10.1016/j.csbj.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Biological molecules, like organisms themselves, are subject to genetic drift and may even become "extinct". Molecules that are no longer extant in living systems are of high interest for several reasons including insight into how existing life forms evolved and the possibility that they may have new and useful properties no longer available in currently functioning molecules. Predicting the sequence/structure of such molecules and synthesizing them so that their properties can be tested is the basis of "molecular resurrection" and may lead not only to a deeper understanding of evolution, but also to the production of artificial proteins with novel properties and even to insight into how life itself began.
Collapse
Affiliation(s)
- Jan Zaucha
- Departament of Computer Science, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Jonathan G. Heddle
- Bionanoscience and Biochemistry Laboratory, Jagiellonian University, Malopolska Centre of Biotechnology, Gronstajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
19
|
Eichmann C, Tzitzilonis C, Nakamura T, Kwiatkowski W, Maslennikov I, Choe S, Lipton SA, Riek R. S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein. J Mol Biol 2016; 428:3737-51. [PMID: 27473602 PMCID: PMC5260856 DOI: 10.1016/j.jmb.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023]
Abstract
S-Nitrosylation is well established as an important post-translational regulator in protein function and signaling. However, relatively little is known about its structural and dynamical consequences. We have investigated the effects of S-nitrosylation on the rhodanese domain of the Escherichia coli integral membrane protein YgaP by NMR, X-ray crystallography, and mass spectrometry. The results show that the active cysteine in the rhodanese domain of YgaP is subjected to two competing modifications: S-nitrosylation and S-sulfhydration, which are naturally occurring in vivo. It has been observed that in addition to inhibition of the sulfur transfer activity, S-nitrosylation of the active site residue Cys63 causes an increase in slow motion and a displacement of helix 5 due to a weakening of the interaction between the active site and the helix dipole. These findings provide an example of how nitrosative stress can exert action at the atomic level.
Collapse
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Christos Tzitzilonis
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA
| | - Witek Kwiatkowski
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Senyon Choe
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stuart A. Lipton
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA,Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland,Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Tian S, Liu J, Cowley RE, Hosseinzadeh P, Marshall NM, Yu Y, Robinson H, Nilges MJ, Blackburn NJ, Solomon EI, Lu Y. Reversible S-nitrosylation in an engineered azurin. Nat Chem 2016; 8:670-7. [PMID: 27325093 PMCID: PMC4918514 DOI: 10.1038/nchem.2489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper-thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)-S(Cys)NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo3 oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.
Collapse
Affiliation(s)
- Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Jing Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ryan E. Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Nicholas M. Marshall
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Howard Robinson
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Mark J. Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health & Sciences University, Portland, Oregon 97239, USA
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
|
22
|
Yi J, Coppens P, Powell DR, Richter-Addo GB. Linkage Isomerization in Nitrosothiols (RSNOs): The X-ray Crystal Structure of an S-nitrosocysteine and DFT Analysis of its Metastable MS1 and MS2 Isomers. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1095185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jun Yi
- Department of Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Philip Coppens
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, USA
| | - Douglas R. Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | |
Collapse
|
23
|
Huwald D, Schrapers P, Kositzki R, Haumann M, Hemschemeier A. Characterization of unusual truncated hemoglobins of Chlamydomonas reinhardtii suggests specialized functions. PLANTA 2015; 242:167-85. [PMID: 25893868 DOI: 10.1007/s00425-015-2294-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 05/04/2023]
Abstract
Annotated hemoglobin genes in Chlamydomonas reinhardtii form functional globins, despite unusual architectures. Spectral characteristics show subtle biochemical differences. Multiple globins might help the alga to cope with its versatile environment. The unicellular green alga C. reinhardtii is a photosynthetic, often soil-dwelling organism, subjected to a changeable environment in nature. The alga contains 12 genes encoding so-called truncated hemoglobins that feature a two-on-two helical fold instead of the three-on-three helix arrangement of the long-studied vertebrate globins or plant symbiotic and non-symbiotic hemoglobins. In plants, non-symbiotic hemoglobins often play a role in acclimation to stress, and we could show recently that one of the C. reinhardtii globin genes is vital for anoxic growth. Here, three further globin encoding transcripts (Cre16.g661000.t1.1, Cre16.g661300.t2.1 and Cre16.g662750.t1.2) were heterologously expressed along with the recently studied THB1. UV-Vis and X-ray absorption spectroscopy analyses show that the sequences indeed encode functional hemoglobins, despite their uncommon primary sequences, which include long C-termini without any predictable function, or a split heme-binding domain. The proteins show some variations regarding the coordination of the heme iron or the interaction with diatomic ligands, indicating different functionalities. The respective transcripts are not responsive to the nitrogen source, in contrast to results reported for THB1, but they accumulate in darkness. This work advances experimental data on the very large globin family in general, and, more specifically, on hemoglobins in photosynthetic organisms.
Collapse
Affiliation(s)
- Dennis Huwald
- Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, ND2/134, 44801, Bochum, Germany
| | | | | | | | | |
Collapse
|
24
|
Helbo S, Gow AJ, Jamil A, Howes BD, Smulevich G, Fago A. Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. PLoS One 2014; 9:e97012. [PMID: 24879536 PMCID: PMC4039430 DOI: 10.1371/journal.pone.0097012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Amna Jamil
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barry D. Howes
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Giulietta Smulevich
- Department of Chemistry “Ugo Schiff”, University of Firenze, Sesto Fiorentino (FI), Italy
| | - Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
25
|
Jennaro TS, Beaty MR, Kurt-Yilmaz N, Luskin BL, Cavagnero S. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation. Proteins 2014; 82:2318-31. [DOI: 10.1002/prot.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Theodore S. Jennaro
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Matthew R. Beaty
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Neşe Kurt-Yilmaz
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Benjamin L. Luskin
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Silvia Cavagnero
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
26
|
Balchin D, Stoychev SH, Dirr HW. S-Nitrosation destabilizes glutathione transferase P1-1. Biochemistry 2013; 52:9394-402. [PMID: 24266513 DOI: 10.1021/bi401414c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.
Collapse
Affiliation(s)
- David Balchin
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | | | | |
Collapse
|
27
|
Evangelista AM, Kohr MJ, Murphy E. S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications. Antioxid Redox Signal 2013; 19:1209-19. [PMID: 23157187 PMCID: PMC3785808 DOI: 10.1089/ars.2012.5056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE S-nitrosylation (SNO) has been identified throughout the body as an important signaling modification both in physiology and a variety of diseases. SNO is a multifaceted post-translational modification, in that it can either act as a signaling molecule itself or as an intermediate to other modifications. RECENT ADVANCES AND CRITICAL ISSUES Through extensive SNO research, we have made progress toward understanding the importance of single cysteine-SNO sites; however, we are just beginning to explore the importance of specific SNO within the context of other SNO sites and post-translational modifications. Additionally, compartmentalization and SNO occupancy may play an important role in the consequences of the SNO modification. FUTURE DIRECTIONS In this review, we will consider the context of SNO signaling and discuss how the transient nature of SNO, its role as an oxidative intermediate, and the pattern of SNO, should be considered when determining the impact of SNO signaling.
Collapse
Affiliation(s)
- Alicia M Evangelista
- 1 Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
28
|
Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide. Proc Natl Acad Sci U S A 2013; 110:10854-9. [PMID: 23754374 DOI: 10.1073/pnas.1302592110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hemoglobins are recognized today as a diverse family of proteins present in all kingdoms of life and performing multiple reactions beyond O2 chemistry. The physiological roles of most hemoglobins remain elusive. Here, we show that a 2-on-2 ("truncated") hemoglobin, termed THB8, is required for hypoxic growth and the expression of anaerobic genes in Chlamydomonas reinhardtii. THB8 is 1 of 12 2-on-2 hemoglobins in this species. It belongs to a subclass within the 2-on-2 hemoglobin class I family whose members feature a remarkable variety of domain arrangements and lengths. Posttranscriptional silencing of the THB8 gene results in the mis-regulation of several genes and a growth defect under hypoxic conditions. The latter is intensified in the presence of an NO scavenger, which also impairs growth of wild-type cells. As recombinant THB8 furthermore reacts with NO, the results of this study indicate that THB8 is part of an NO-dependent signaling pathway.
Collapse
|
29
|
Kumar V, Martin F, Hahn MG, Schaefer M, Stamler JS, Stasch JP, van den Akker F. Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous nostoc H-NOX domain complexes. Biochemistry 2013; 52:3601-8. [PMID: 23614626 DOI: 10.1021/bi301657w] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soluble guanylyl cyclase (sGC) is an important receptor for nitric oxide (NO). Nitric oxide activates sGC several hundred fold to generate cGMP from GTP. Because of sGC's salutary roles in cardiovascular physiology, it has received substantial attention as a drug target. The heme domain of sGC is key to its regulation as it not only contains the NO activation site but also harbors sites for NO-independent sGC activators as well an S-nitrosylation site (β1 C122) involved in desensitization. Here we report the crystal structure of the activator BAY 60-2770 bound to the Nostoc H-NOX domain that is homologous to sGC. The structure reveals that BAY 60-2770 has displaced the heme and acts as a heme mimetic via carboxylate-mediated interactions with the conserved YxSxR motif as well as hydrophobic interactions. Comparisons with the previously determined BAY 58-2667 bound structure reveal that BAY 60-2770 is more ordered in its hydrophobic tail region. sGC activity assays demonstrate that BAY 60-2770 has about 10% higher fold maximal stimulation compared to BAY 58-2667. S-Nitrosylation of the BAY 60-2770 substituted Nostoc H-NOX domain causes subtle changes in the vicinity of the S-nitrosylated C122 residue. These shifts could impact the adjacent YxSxR motif and αF helix and as such potentially inhibit either heme incorporation or NO-activation of sGC and thus provide a structural basis for desensitization.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Helbo S, Weber RE, Fago A. Expression patterns and adaptive functional diversity of vertebrate myoglobins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1832-9. [PMID: 23388387 DOI: 10.1016/j.bbapap.2013.01.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a new round of research on one of the most studied proteins - myoglobin (Mb), the oxygen (O2) carrier of skeletal and heart muscle. Two major discoveries have stimulated research in this field: 1) that Mb has additional protecting functions, such as the regulation of in vivo levels of the signaling molecule nitric oxide (NO) by scavenging and generating NO during normoxia and hypoxia, respectively; and 2) that Mb in vertebrates (particularly fish) is expressed as tissue-specific isoforms in other tissues than heart and skeletal muscle, such as vessel endothelium, liver and brain, as found in cyprinid fish. Furthermore, Mb has also been found to protect against oxidative stress after hypoxia and reoxygenation and to undergo allosteric, O2-linked S-nitrosation, as in rainbow trout. Overall, the emerging evidence, particularly from fish species, indicates that Mb fulfills a broader array of physiological functions in a wider range of different tissues than hitherto appreciated. This new knowledge helps to better understand how variations in Mb structure and function may correlate with differences in animals' lifestyles and hypoxia-tolerance. This review integrates old and new results on Mb expression patterns and functional properties amongst vertebrates and discusses how these may relate to adaptive variations in different species. This article is part of a special issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Denmark.
| | | | | |
Collapse
|
31
|
Talipov MR, Timerghazin QK. Protein Control of S-Nitrosothiol Reactivity: Interplay of Antagonistic Resonance Structures. J Phys Chem B 2013; 117:1827-37. [DOI: 10.1021/jp310664z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marat R. Talipov
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| | - Qadir K. Timerghazin
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| |
Collapse
|
32
|
Matiollo C, Ecco G, Menegatti ACO, Razzera G, Vernal J, Terenzi H. S-nitrosylation of Mycobacterium tuberculosis tyrosine phosphatase A (PtpA) induces its structural instability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:191-6. [PMID: 23102706 DOI: 10.1016/j.bbapap.2012.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 02/06/2023]
Abstract
S-nitrosylation is associated with signal transduction and microbicidal activity of nitric oxide (NO). We have recently described the S-nitrosylation of Mycobacterium tuberculosis protein tyrosine phosphatase A, PtpA, an enzyme that plays an important role in mycobacteria survival inside macrophages. This post-translational modification decreases the activity of the enzyme upon modification of a single Cys residue, C53. The aim of the present work was the investigation of the effect of S-nitrosylation in PtpA kinetic parameters, thermal stability and structure. It was observed that the K(M) of nitrosylated PtpA was similar to its unmodified form, but the V(max) was significantly reduced. In contrast, treatment of PtpA C53A with GSNO, did not alter either K(M) or V(max). These results confirmed that PtpA S-nitrosylation occurs specifically in the non-catalytic C53 and that this modification does not affect substrate affinity. Using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy techniques it was shown that PtpA S-nitrosylation decreased protein thermal stability and promoted a local effect in the surroundings of the C53 residue, which interfered in both protein stability and function.
Collapse
Affiliation(s)
- Camila Matiollo
- Centro de Biologia Molecular Estrutural-INBEB, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Hasan MM, Watabe S, Ochiai Y. Structural characterization of carangid fish myoglobins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1311-1322. [PMID: 22361749 DOI: 10.1007/s10695-012-9619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
The primary structures of myoglobin (Mb) from the following five carangid species were determined: yellowtail Seriola quinqueradiata, greater amberjack Seriola dumerili, yellowtail kingfish Seriola lalandi, Japanese horse mackerel Trachurus japonicus, and silver trevally Pseudocaranx dentex. The sequences were of varying composition both in the coding and in the noncoding regions, but all contained the open reading frame of 444 nucleotides encoding 147 amino acids. Amino acid sequence identities of carangid Mbs were in the range of 81-99%. The similarity of the heme pocket and associated heme-binding residues of carangid Mbs were evidence of the conservative nature of Mbs. Similar to the other teleost Mbs, carangid Mbs did not contain a D helix and had mostly conserved A and E helices as well as E-F and G-H inter-helical segments. Hydropathy profiles of carangid Mbs showed species-specific variations where silver trevally Mb exhibited generally higher hydrophobicity. Phylogenetic analysis based on the primary structures was in agreement with conventional morphological taxonomy, establishing close proximity of carangid Mbs with those of cichlid and scombroid, the other members of the Perciformes order.
Collapse
Affiliation(s)
- Muhammad Mehedi Hasan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
34
|
Lenarčič Živković M, Zaręba-Kozioł M, Zhukova L, Poznański J, Zhukov I, Wysłouch-Cieszyńska A. Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J Biol Chem 2012; 287:40457-70. [PMID: 22989881 DOI: 10.1074/jbc.m112.418392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND S100A1 protein is a proposed target of molecule-guided therapy for heart failure. RESULTS S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation. CONCLUSION Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties. SIGNIFICANCE Post-translational S-nitrosylation may provide functional diversity and specificity to S100A1 and other S100 protein family members. S100A1 is a member of the Ca(2+)-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys(85) S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca(2+)-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys(85) thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca(2+) signal transmitter sensitive to NO/redox equilibrium within cells.
Collapse
|
35
|
Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—A theoretical study of S-nitrosylation. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4712-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Helbo S, Dewilde S, Williams DR, Berghmans H, Berenbrink M, Cossins AR, Fago A. Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am J Physiol Regul Integr Comp Physiol 2011; 302:R693-701. [PMID: 22170621 DOI: 10.1152/ajpregu.00501.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of a recent whole genome duplication, the hypoxia-tolerant common carp and goldfish are the only vertebrates known to possess two myoglobin (Mb) paralogs. One of these, Mb1, occurs in oxidative muscle but also in several other tissues, including capillary endothelial cells, whereas the other, Mb2, is a unique isoform specific to brain neurons. To help understand the functional roles of these diverged isoforms in the tolerance to severe hypoxia in the carp, we have compared their O(2) equilibria, carbon monoxide (CO) and O(2) binding kinetics, thiol S-nitrosation, nitrite reductase activities, and peroxidase activities. Mb1 has O(2) affinity and nitrite reductase activity comparable to most vertebrate muscle Mbs, consistent with established roles for Mbs in O(2) storage/delivery and in maintaining nitric oxide (NO) homeostasis during hypoxia. Both Mb1 and Mb2 can be S-nitrosated to similar extent, but without oxygenation-linked allosteric control. When compared with Mb1, Mb2 displays faster O(2) and CO kinetics, a lower O(2) affinity, and is slower at converting nitrite into NO. Mb2 is therefore unlikely to be primarily involved in either O(2) supply to mitochondria or the generation of NO from nitrite during hypoxia. However, Mb2 proved to be significantly faster at eliminating H(2)O(2,) a major in vivo reactive oxygen species (ROS), suggesting that this diverged Mb isoform may have a specific protective role against H(2)O(2) in the carp brain. This property might be of particular significance during reoxygenation following extended periods of hypoxia, when production of H(2)O(2) and other ROS is highest.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Bioscience, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Fritz BG, Hu X, Brailey JL, Berry RE, Walker FA, Montfort WR. Oxidation and loss of heme in soluble guanylyl cyclase from Manduca sexta. Biochemistry 2011; 50:5813-5. [PMID: 21639146 DOI: 10.1021/bi200794c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation and loss of heme in soluble guanylyl/guanylate cyclase (sGC), the nitric oxide receptor, is thought to be a major contributor to cardiovascular disease and is the target of compounds BAY 58-2667 and HMR1766. Using spectroelectrochemical titration, we found a truncated sGC to be highly stable in the ferrous state (234 mV) and to bind ferrous heme tightly even in the presence of NO, despite the NO-induced release of the proximal histidine. In contrast, oxidized sGC readily loses ferric heme to myoglobin (0.47 ± 0.02 h(-1)). Peroxynitrite, the presumed cellular oxidant, readily oxidizes sGC in 5 mM glutathione.
Collapse
Affiliation(s)
- Bradley G Fritz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
38
|
Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J Mol Biol 2011; 410:268-79. [PMID: 21601578 DOI: 10.1016/j.jmb.2011.04.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 12/19/2022]
Abstract
The hypoxic response in animals is mediated via the transcription factor hypoxia-inducible factor (HIF). An oxygen-sensing component of the HIF system is provided by Fe(II) and 2-oxoglutarate-dependent oxygenases that catalyse the posttranslational hydroxylation of the HIF-α subunit. It is proposed that the activity of the HIF hydroxylases can be regulated by their reaction with nitric oxide. We describe biochemical and biophysical studies on the reaction of prolyl hydroxylase domain-containing enzyme (PHD) isoform 2 (EGLN1) with nitric oxide and a nitric oxide transfer reagent. The combined results reveal the potential for the catalytic domain of PHD2 to react with nitric oxide both at its Fe(II) and at cysteine residues. Although the biological significance is unclear, the results suggest that the reaction of PHD2 with nitric oxide has the potential to be complex and are consistent with proposals based on cellular studies that nitric oxide may regulate the hypoxic response by direct reaction with the HIF hydroxylases.
Collapse
|
39
|
Purwar N, McGarry JM, Kostera J, Pacheco AA, Schmidt M. Interaction of nitric oxide with catalase: structural and kinetic analysis. Biochemistry 2011; 50:4491-503. [PMID: 21524057 PMCID: PMC3140772 DOI: 10.1021/bi200130r] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N′-bis(carboxymethyl)-N,N′-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s–1. Implications for catalase function are discussed.
Collapse
Affiliation(s)
- Namrta Purwar
- Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211, USA
| | | | | | | | | |
Collapse
|
40
|
Wouters MA, Iismaa S, Fan SW, Haworth NL. Thiol-based redox signalling: rust never sleeps. Int J Biochem Cell Biol 2011; 43:1079-85. [PMID: 21513814 DOI: 10.1016/j.biocel.2011.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/30/2022]
Abstract
Cysteine residues in proteins are covalently modified under conditions of oxidative and nitrosative stress by oxidation, nitrosation, glutathionylation and disulfide formation. Modifications induce conformational changes in substrate proteins, effecting signal cascades that evoke a biological response. A growing number of structures with modified cysteines are allowing a piecemeal understanding of the mechanistic aspects of these signalling pathways to emerge. Conformational changes upon conjugation of nitric oxide and glutathione are generally small and often accompanied by a local increase in protein disorder. Burial of nitric oxide is also apparent, which may increase the timeframe of signalling. Conformational changes upon disulfide formation/reduction range from the small to the spectacular. They include order/disorder transitions; oxidation of disulfides following expulsion of metals such as Zn; major reorganisation or "morphing" of portions of the polypeptide backbone; and changes in quaternary structure including domain swapping.
Collapse
|
41
|
Foster MW. Methodologies for the characterization, identification and quantification of S-nitrosylated proteins. Biochim Biophys Acta Gen Subj 2011; 1820:675-83. [PMID: 21440604 DOI: 10.1016/j.bbagen.2011.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/06/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Protein S-nitrosylation plays a central role in signal transduction by nitric oxide (NO), and aberrant S-nitrosylation of specific proteins is increasingly implicated in disease. SCOPE OF REVIEW Here, methodologies for the characterization, identification and quantification of SNO-proteins are reviewed, focusing on techniques suitable for the structural characterization and absolute quantification of isolated SNO-proteins, the identification and relative quantification of SNO-proteins from complex mixtures as well as the mass spectrometry-based identification and relative quantification of sites of S-nitrosylation (SNO-sites) in proteins. MAJOR CONCLUSIONS Structural characterization of SNO-proteins by X-ray crystallography is increasingly being utilized to understand both the relationships between protein structure and Cys thiol reactivity as well as the consequences of S-nitrosylation on protein structure and function. New methods for the proteomic identification and quantification of SNO-proteins and SNO-sites have greatly impacted the ability to study protein S-nitrosylation in complex biological systems. GENERAL SIGNIFICANCE The ability to identify and quantify SNO-proteins has long been rate-determining for scientific advances in the field of protein S-nitrosylation. Therefore, it is critical that investigators in the field have a good understand the utility and limitations of modern analytical techniques for SNO-protein analysis. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Mynott AV, Harrop SJ, Brown LJ, Breit SN, Kobe B, Curmi PMG. Crystal structure of importin-α bound to a peptide bearing the nuclear localisation signal from chloride intracellular channel protein 4. FEBS J 2011; 278:1662-75. [DOI: 10.1111/j.1742-4658.2011.08086.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Helbo S, Fago A. Allosteric modulation by S-nitrosation in the low-O₂ affinity myoglobin from rainbow trout. Am J Physiol Regul Integr Comp Physiol 2010; 300:R101-8. [PMID: 20962203 DOI: 10.1152/ajpregu.00374.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoglobin (Mb) serves in the facilitated diffusion and storage of O₂ in heart and skeletal muscle, where it also regulates O₂ consumption via nitric oxide (NO) scavenging or generation. S-nitrosation at reactive cysteines may generate S-nitroso Mb (Mb-SNO) and contribute further to NO homeostasis. In being a monomer, Mb is commonly believed to lack allosteric control of heme reactivity. Here, we test whether in rainbow trout, a fast swimmer living in well-aerated water, the Mb-O₂ affinity is regulated by ionic cofactors and S-nitrosation. O₂ equilibria showed the lowest O₂ affinity ever reported among vertebrate Mbs (P₅₀ = 4.92 ± 0.29 mmHg, 25°C), a small overall heat of oxygenation (ΔH = -12.03 kcal/mol O₂), and no effect of chloride, pH, or lactate. Although the reaction with 4,4'-dithiodipyridine (4-PDS) showed 1.3-1.9 accessible thiols per heme, the reaction of Mb with S-nitroso cysteine (Cys-NO) and S-nitrosoglutathione (GSNO) to generate Mb-SNO yielded ∼0.3-0.6 and ∼0.1 SNO/heme, respectively, suggesting S-nitrosation at only one cysteine (likely Cys¹⁰). At ∼60% S-nitrosation, trout Mb-SNO showed a higher O₂ affinity (P₅₀ = 2.23 ± 0.19 mmHg, 20°C) than unmodified Mb (3.36 ± 0.11 mmHg, 20°C). Total SNO levels measured by chemiluminescence in trout myocardial preparations decreased after hypoxia, but not significantly, indicating that transnitrosation reactions between thiols may occur in vivo. Our data reveal a novel, S-nitrosation-dependent allosteric mechanism in this low-affinity Mb that may contribute to targeted O₂-linked SNO release in the hypoxic fish heart and be of importance in preserving cardiac function during intense exercise.
Collapse
Affiliation(s)
- Signe Helbo
- Department of Biological Sciences, Aarhus University, Denmark
| | | |
Collapse
|
44
|
Han SH. An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.10.2903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Rosenfeld RJ, Bonaventura J, Szymczyna BR, MacCoss MJ, Arvai AS, Yates JR, Tainer JA, Getzoff ED. Nitric-oxide synthase forms N-NO-pterin and S-NO-cys: implications for activity, allostery, and regulation. J Biol Chem 2010; 285:31581-9. [PMID: 20659888 DOI: 10.1074/jbc.m109.072496] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography. We detected auto-S-nitrosylation during enzymatic turnover by using chemiluminescence. Selective S-nitrosylation of the ZnS(4) site, which bridges the dimer interface, promoted a dimer-destabilizing order-to-disorder transition. The nitrosated iNOS crystal structure revealed an unexpected N-NO modification on the pterin cofactor. Furthermore, the structurally defined N-NO moiety is solvent-exposed and available to transfer NO to a partner. We investigated glutathione (GSH) as a potential transnitrosation partner because the intracellular GSH concentration is high and NOS can form S-nitrosoglutathione. Our computational results predicted a GSH binding site adjacent to the N-NO-pterin. Moreover, we detected GSH binding to iNOS with saturation transfer difference NMR spectroscopy. Collectively, these observations resolve previous paradoxes regarding this uncommon pterin cofactor in NOS and suggest means for regulating iNOS activity via N-NO-pterin and S-NO-Cys modifications. The iNOS self-nitrosation characterized here appears appropriate to help control NO production in response to cellular conditions.
Collapse
Affiliation(s)
- Robin J Rosenfeld
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Malik M, Shukla A, Amin P, Niedelman W, Lee J, Jividen K, Phang JM, Ding J, Suh KS, Curmi PMG, Yuspa SH. S-nitrosylation regulates nuclear translocation of chloride intracellular channel protein CLIC4. J Biol Chem 2010; 285:23818-28. [PMID: 20504765 DOI: 10.1074/jbc.m109.091611] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca(2+)-induced differentiation, stress-induced apoptosis, and modulating TGF-beta signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be elucidated. The structure of CLIC4 is dependent on the redox environment, in vitro, and translocation may depend on reactive oxygen and nitrogen species in the cell. Here we show that NO directly induces nuclear translocation of CLIC4 that is independent of the NO-cGMP pathway. Indeed, CLIC4 is directly modified by NO through S-nitrosylation of a cysteine residue, as measured by the biotin switch assay. NO enhances association of CLIC4 with the nuclear import proteins importin alpha and Ran. This is likely a result of the conformational change induced by S-nitrosylated CLIC4 that leads to unfolding of the protein, as exhibited by CD spectra analysis and trypsinolysis of the modified protein. Cysteine mutants of CLIC4 exhibit altered nitrosylation, nuclear residence, and stability, compared with the wild type protein likely as a consequence of altered tertiary structure. Moreover, tumor necrosis factor alpha-induced nuclear translocation of CLIC4 is dependent on nitric-oxide synthase activity. Inhibition of nitric-oxide synthase activity inhibits tumor necrosis factor alpha-induced nitrosylation and association with importin alpha and Ran and ablates CLIC4 nuclear translocation. These results suggest that S-nitrosylation governs CLIC4 structure, its association with protein partners, and thus its intracellular distribution.
Collapse
Affiliation(s)
- Mariam Malik
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nitric oxide stimulates myoglobin gene and protein expression in vascular smooth muscle. Biochem J 2009; 423:169-77. [PMID: 19650765 DOI: 10.1042/bj20090716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mb (myoglobin) is a haemoprotein present in cardiac, skeletal and smooth muscle and is primarily responsible for the storage and 'facilitated transfer' of molecular oxygen from the cell membrane to mitochondria. Also, Mb plays a role in regulating *NO (nitric oxide) homoeostasis through (i) binding *NO (Mb-NO complex); (ii) oxidation of *NO to nitrate; and (iii) formation of vasoactive S-nitroso-Mb [Rayner, B.S., Wu, B.-J., Raftery, M., Stocker, R. and Witting, P.K. (2005) J. Biol. Chem. 280, 9985-9993]. Pathological *NO concentrations affect mitochondrial function and decrease cell viability through inducing apoptosis. Treatment of cultured rat VSMCs (vascular smooth muscle cells) with cumulative doses (0.1, 1 or 10 microM) of *NO from the donors diethylamineNONOate or spermineNONOate (N-[2-aminoethyl]-N-[2-hydroxy-3-nitrosohydrazine]-1,2-ethelenediamine) yielded a time-dependent increase in Mb gene expression. Concomitant transcriptional activation increased the concentration of Mb within cultured rat or primary human VSMCs as judged by Western blot analysis and indirect immunofluorescence microscopy. Cell viability did not decrease in these cells at the *NO doses tested. Importantly, sub-culturing isolated rat aortic segments for 7 days in the presence of L-arginine at 37 degrees C stimulated *NO production with a parallel increase in Mb in the underlying VSMCs. Overall, exposure of VSMCs (either in cell culture or intact vessels) to pathological *NO promotes an up-regulation of the Mb gene and protein, suggesting a feedback relationship between *NO and Mb that regulates the concentration of the potent cell signalling molecule in the vessel wall, similar to the role haemoglobin plays in the vessel lumen.
Collapse
|
48
|
Structural and autooxidation profiles of myoglobins from three species and one hybrid of tilapia (Cichlidae, Perciformes). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:274-81. [PMID: 19602446 DOI: 10.1016/j.cbpb.2009.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
Abstract
cDNAs encoding myoglobin were cloned from the slow skeletal muscles of three representative species of tilapia, namely, Nile tilapia Oreochromis niloticus, blue tilapia O. aureus, Mozambique tilapia O. mossambicus and one hybrid O. niloticus female symbol x O. aureus male symbol, and the primary structures were deduced. All cDNAs contained an open reading frame of 444 base pairs, encoding 147 amino acids. The amino acid sequences of Mb were completely conserved among these species, though species variations in the nucleotide sequences were recognized both in coding and non-coding regions. The amino acid sequence identity was around 70-80% compared to other teleostean Mbs. In comparison of each alpha-helical segment (A through H) and the intersegment regions to the counterparts of tuna myoglobin, the alpha-helical segments C and F as well as the intersegment regions F-G and G-H were identical. The identities of alpha-helical segments B and H and the intersegment region F-G were relatively low. Differences were also recognized in the hydropathy plot and the tertiary structures obtained by homology modeling. The autooxidation rates at 25 degrees C of myoglobin fraction from the slow skeletal muscle were essentially the same among the above tilapia species, as expected from the conserved amino acid sequences.
Collapse
|
49
|
Malito E, Ralat LA, Manolopoulou M, Tsay JL, Wadlington NL, Tang WJ. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 2009; 47:12822-34. [PMID: 18986166 DOI: 10.1021/bi801192h] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.
Collapse
Affiliation(s)
- Enrico Malito
- Ben-May Department for Cancer Research, Biological Science Collegiate Division, and Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ochiai Y, Ueki N, Watabe S. Effects of point mutations on the structural stability of tuna myoglobins. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:223-8. [PMID: 19285151 DOI: 10.1016/j.cbpb.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/27/2022]
Abstract
Structural stabilities of myoglobin (Mb) from several tuna fish species significantly differ from each other, although the amino acid sequence identities are very high (>95%), suggesting that limited number of substitutions greatly affect the stability of Mb. To address this hypothesis, attempts were made to elaborate recombinant tuna Mbs with point mutations on the different residues among fish Mbs. The expression plasmid constructs were based on bigeye tuna Mb cDNA sequence, and the recombinant proteins were expressed as GST-fusion proteins in Escherichia coli. After removal of the GST segment and affinity purification, the stability of five Mb mutants, namely, A49G, T91K, K92Q, V108A, and H112Q, together with the wild type (WT) were measured, taking temperature dependency of alpha-helical content and denaturant (urea and guanidine-HCl) concentration dependency of Soret band absorbance as parameters. As a result, the mutant H112Q showed much higher stability than WT, while the structures of K92Q, T91K and A49G mutants were destabilized. No essential change in helical content was observed for V108A, but the mutant was found to be destabilized easier by the denaturants. These findings suggested that the highly conserved residues among tuna species are responsible for their stability of Mbs, but a few non-conserved residues dramatically give rise to the differences in stability of Mbs among species.
Collapse
Affiliation(s)
- Yoshihiro Ochiai
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|