1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Sigler AL, Thompson SB, Ellwood-Digel L, Kandasamy A, Michaels MJ, Thumkeo D, Narumiya S, Del Alamo JC, Jacobelli J. FMNL1 and mDia1 promote efficient T cell migration through complex environments via distinct mechanisms. Front Immunol 2024; 15:1467415. [PMID: 39430739 PMCID: PMC11486666 DOI: 10.3389/fimmu.2024.1467415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.
Collapse
Affiliation(s)
- Ashton L. Sigler
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Scott B. Thompson
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Logan Ellwood-Digel
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mary J. Michaels
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juan C. Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Jordan Jacobelli
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Azizoglu ZB, Babayeva R, Haskologlu ZS, Acar MB, Ayaz-Guner S, Okus FZ, Alsavaf MB, Can S, Basaran KE, Canatan MF, Ozcan A, Erkmen H, Leblebici CB, Yilmaz E, Karakukcu M, Kose M, Canoz O, Özen A, Karakoc-Aydiner E, Ceylaner S, Gümüş G, Per H, Gumus H, Canatan H, Ozcan S, Dogu F, Ikinciogullari A, Unal E, Baris S, Eken A. DIAPH1-Deficiency is Associated with Major T, NK and ILC Defects in Humans. J Clin Immunol 2024; 44:175. [PMID: 39120629 PMCID: PMC11315734 DOI: 10.1007/s10875-024-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.
Collapse
Affiliation(s)
- Zehra Busra Azizoglu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Royala Babayeva
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatma Zehra Okus
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | | | - Salim Can
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Kemal Erdem Basaran
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | | - Alper Ozcan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Hasret Erkmen
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Can Berk Leblebici
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ebru Yilmaz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Mehmet Kose
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Ahmet Özen
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Elif Karakoc-Aydiner
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Serdar Ceylaner
- Intergen, Genetic, Rare and Undiagnosed Diseases, Diagnosis and Research Center, Ankara, Türkiye
| | - Gülsüm Gümüş
- Division of Pediatric Radiology, Department of Radiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Servet Ozcan
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, 38039, Türkiye
| | - Figen Dogu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye.
- Medical Point Hospital, Pediatric Hematology Oncology and BMT Unit, Gaziantep, Türkiye.
| | - Safa Baris
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye.
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye.
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye.
| |
Collapse
|
4
|
Li Z, Su M, Xie X, Wang P, Bi H, Li E, Ren K, Dong L, Lv Z, Ma X, Liu Y, Zhao B, Peng Y, Liu J, Liu L, Yang J, Ji P, Mei Y. mDia formins form hetero-oligomers and cooperatively maintain murine hematopoiesis. PLoS Genet 2023; 19:e1011084. [PMID: 38157491 PMCID: PMC10756686 DOI: 10.1371/journal.pgen.1011084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xinshu Xie
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lili Dong
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yijie Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Lu Liu
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| |
Collapse
|
5
|
Theophall GG, Ramirez LMS, Premo A, Reverdatto S, Manigrasso MB, Yepuri G, Burz DS, Ramasamy R, Schmidt AM, Shekhtman A. Disruption of the productive encounter complex results in dysregulation of DIAPH1 activity. J Biol Chem 2023; 299:105342. [PMID: 37832872 PMCID: PMC10656230 DOI: 10.1016/j.jbc.2023.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.
Collapse
Affiliation(s)
- Gregory G Theophall
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Lisa M S Ramirez
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Aaron Premo
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Michaele B Manigrasso
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA
| | - Ravichandran Ramasamy
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Ann Marie Schmidt
- Department of Medicine, Diabetes Research Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, USA.
| |
Collapse
|
6
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
7
|
Zhang B, Hu Q, Li Y, Xu C, Xie X, Liu P, Xu M, Gong S, Wu H. Diaphanous-related formin subfamily: Novel prognostic biomarkers and tumor microenvironment regulators for pancreatic adenocarcinoma. Front Mol Biosci 2022; 9:910950. [PMID: 36589226 PMCID: PMC9797685 DOI: 10.3389/fmolb.2022.910950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The diaphanous-related formin subfamily includes diaphanous homolog 1 (DIAPH1), DIAPH2, and DIAPH3. DIAPHs play a role in the regulation of actin nucleation and polymerization and in microtubule stability. DIAPH3 also regulates the assembly and bipolarity of mitotic spindles. Accumulating evidence has shown that DIAPHs are anomalously regulated during malignancy. In this study, we reviewed The Cancer Genome Atlas database and found that DIAPHs are abundantly expressed in pancreatic adenocarcinoma (PAAD). Furthermore, we analyzed the gene alteration profiles, protein expression, prognosis, and immune reactivity of DIAPHs in PAAD using data from several well-established databases. In addition, we conducted gene set enrichment analysis to investigate the potential mechanisms underlying the roles of DIAPHs in the carcinogenesis of PAAD. Finally, we performed the experimental validation of DIAPHs expression in several pancreatic cancer cell lines and tissues of patients. This study demonstrated significant correlations between DIAPHs expression and clinical prognosis, oncogenic signature gene sets, T helper 2 cell infiltration, plasmacytoid dendritic cell infiltration, myeloid-derived suppressor cell infiltration, ImmunoScore, and immune checkpoints in PAAD. These data may provide important information regarding the role and mechanisms of DIAPHs in tumorigenesis and PAAD immunotherapy.
Collapse
Affiliation(s)
- Bixi Zhang
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Qing Hu
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Yanchun Li
- Department of Pathology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoran Xie
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Liu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Meihua Xu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hao Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China,Center for Precision Medicine, University of Missouri School of Medicine, Columbia, MO, United States,*Correspondence: Hao Wu,
| |
Collapse
|
8
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
9
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
10
|
Waldman MM, Rahkola JT, Sigler AL, Chung JW, Willett BAS, Kedl RM, Friedman RS, Jacobelli J. Ena/VASP Protein-Mediated Actin Polymerization Contributes to Naïve CD8 + T Cell Activation and Expansion by Promoting T Cell-APC Interactions In Vivo. Front Immunol 2022; 13:856977. [PMID: 35757762 PMCID: PMC9222560 DOI: 10.3389/fimmu.2022.856977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Naïve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types, but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell–APC interactions, T cell activation, and T cell expansion in vivo. Our results showed that naïve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect, we analyzed T cell–APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient naïve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell–APC synapse, and that these conjugates were less stable than their WT counterparts. Finally, we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell–APC synapse. Thus, we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell–APC interactions, which promotes the initiation of stable T cell conjugates during APC scanning. Therefore, Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo.
Collapse
Affiliation(s)
- Monique M Waldman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeremy T Rahkola
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashton L Sigler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
11
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
12
|
LPA suppresses T cell function by altering the cytoskeleton and disrupting immune synapse formation. Proc Natl Acad Sci U S A 2022; 119:e2118816119. [PMID: 35394866 PMCID: PMC9169816 DOI: 10.1073/pnas.2118816119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)–induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.
Collapse
|
13
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ghosh A, Coffin M, West R, Fowler VM. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton. FASEB J 2022; 36:e22220. [PMID: 35195928 DOI: 10.1096/fj.202101011r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization. Tmods can also nucleate F-actin assembly, independent of Tpms. Tmod1 is present in the red blood cell (RBC) membrane skeleton, and deletion of Tmod1 in mice leads to a mild compensated anemia due to mis-regulated F-actin lengths and membrane instability. Tmod3 is not present in RBCs, and global deletion of Tmod3 leads to embryonic lethality in mice with impaired ED. To further decipher Tmod3's function during ED, we generated a Tmod3 knockout in a mouse erythroleukemia cell line (Mel ds19). Tmod3 knockout cells appeared normal prior to ED, but showed defects during progression of ED, characterized by a marked failure to reduce cell and nuclear size, reduced viability, and increased apoptosis. Tmod3 does not assemble with Tmod1 and Tpms into the Triton X-100 insoluble membrane skeleton during ED, and loss of Tmod3 had no effect on α1,β1-spectrin and protein 4.1R assembly into the membrane skeleton. However, F-actin, Tmod1 and Tpms failed to assemble into the membrane skeleton during ED in absence of Tmod3. We propose that Tmod3 nucleation of F-actin assembly promotes incorporation of Tmod1 and Tpms into membrane skeleton F-actin, and that this is integral to morphological maturation and cell survival during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Arit Ghosh
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Megan Coffin
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Richard West
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
15
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
16
|
Lakha R, Montero AM, Jabeen T, Costeas CC, Ma J, Vizcarra CL. Variable Autoinhibition among Deafness-Associated Variants of Diaphanous 1 (DIAPH1). Biochemistry 2021; 60:2320-2329. [PMID: 34279089 DOI: 10.1021/acs.biochem.1c00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the earliest mapped human deafness genes, DIAPH1, encodes the formin DIAPH1. To date, at least three distinct mutations in the C-terminal domains and two additional mutations in the N-terminal region are associated with autosomal dominant hearing loss. The underlying molecular mechanisms are not known, and the role of formins in the inner ear is not well understood. In this study, we use biochemical assays to test the hypotheses that autoinhibition and/or actin assembly activities are disrupted by DFNA1 mutations. Our results indicate that C-terminal mutant forms of DIAPH1 are functional in vitro and promote actin filament assembly. Similarly, N-terminal mutants are well-folded and have quaternary structures and thermal stabilities similar to those of the wild-type (WT) protein. The strength of the autoinhibitory interactions varies widely among mutants, with the ttaa, A265S, and I530S mutations having an affinity similar to that of WT and the 1213x and Δag mutations completely abolishing autoinhibition. These data indicate that, in some cases, hearing loss may be linked to weakened inhibition of actin assembly.
Collapse
Affiliation(s)
- Rabina Lakha
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Angela M Montero
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Tayyaba Jabeen
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Christina C Costeas
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Jia Ma
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
17
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
18
|
Kaustio M, Nayebzadeh N, Hinttala R, Tapiainen T, Åström P, Mamia K, Pernaa N, Lehtonen J, Glumoff V, Rahikkala E, Honkila M, Olsén P, Hassinen A, Polso M, Al Sukaiti N, Al Shekaili J, Al Kindi M, Al Hashmi N, Almusa H, Bulanova D, Haapaniemi E, Chen P, Suo-Palosaari M, Vieira P, Tuominen H, Kokkonen H, Al Macki N, Al Habsi H, Löppönen T, Rantala H, Pietiäinen V, Zhang SY, Renko M, Hautala T, Al Farsi T, Uusimaa J, Saarela J. Loss of DIAPH1 causes SCBMS, combined immunodeficiency, and mitochondrial dysfunction. J Allergy Clin Immunol 2021; 148:599-611. [PMID: 33662367 DOI: 10.1016/j.jaci.2020.12.656] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Naemeh Nayebzadeh
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Reetta Hinttala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| | - Terhi Tapiainen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Biocenter Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Katariina Mamia
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Nora Pernaa
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Johanna Lehtonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Folkhälsan Research Center, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Minna Honkila
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Päivi Olsén
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minttu Polso
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Al Shekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nadia Al Hashmi
- Department of Clinical and Biochemical Genetics, The Royal Hospital, Muscat, Oman
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Daria Bulanova
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hospital, Oslo, Norway; Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pu Chen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Suo-Palosaari
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Vieira
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Hannu Tuominen
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Hannaleena Kokkonen
- Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Northern Finland Laboratory Centre, Oulu University Hospital, Oulu, Finland
| | - Nabil Al Macki
- Department of Pediatric Neurology, The Royal Hospital, Muscat, Oman
| | - Huda Al Habsi
- Department of General Pediatrics, The Royal Hospital, Muscat, Oman
| | - Tuija Löppönen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Paris Descartes University, Imagine Institute, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| | - Marjo Renko
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
19
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
20
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Zuidscherwoude M, Haining EJ, Simms VA, Watson S, Grygielska B, Hardy AT, Bacon A, Watson SP, Thomas SG. Loss of mDia1 and Fhod1 impacts platelet formation but not platelet function. Platelets 2020; 32:1051-1062. [PMID: 32981398 PMCID: PMC8635707 DOI: 10.1080/09537104.2020.1822522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A. Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex T. Hardy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Genome Editing Facility, Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
22
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
23
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
24
|
Diaphanous-related formin mDia2 regulates beta2 integrins to control hematopoietic stem and progenitor cell engraftment. Nat Commun 2020; 11:3172. [PMID: 32576838 PMCID: PMC7311390 DOI: 10.1038/s41467-020-16911-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bone marrow engraftment of the hematopoietic stem and progenitor cells (HSPCs) involves homing to the vasculatures and lodgment to their niches. How HSPCs transmigrate from the vasculature to the niches is unclear. Here, we show that loss of diaphanous-related formin mDia2 leads to impaired engraftment of long-term hematopoietic stem cells and loss of competitive HSPC repopulation. These defects are likely due to the compromised trans-endothelial migration of HSPCs since their homing to the bone marrow vasculatures remained intact. Mechanistically, loss of mDia2 disrupts HSPC polarization and induced cytoplasmic accumulation of MAL, which deregulates the activity of serum response factor (SRF). We further reveal that beta2 integrins are transcriptional targets of SRF. Knockout of beta2 integrins in HSPCs phenocopies mDia2 deficient mice. Overexpression of SRF or beta2 integrins rescues HSPC engraftment defects associated with mDia2 deficiency. Our findings show that mDia2-SRF-beta2 integrin signaling is critical for HSPC lodgment to the niches. Bone marrow engraftment of haematopoietic stem and progenitor cells (HSPCs) requires homing and lodgement to the niche. Here, the authors show that mDia2 is required for HSPC polarization, nuclear MAL, and SRF-induced beta2 integrin expression during transendothelial migration of HSPCs required for engraftment.
Collapse
|
25
|
Thompson SB, Sandor AM, Lui V, Chung JW, Waldman MM, Long RA, Estin ML, Matsuda JL, Friedman RS, Jacobelli J. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 2020; 9:58046. [PMID: 32510333 PMCID: PMC7308091 DOI: 10.7554/elife.58046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023] Open
Abstract
Lymphocyte migration is essential for the function of the adaptive immune system, and regulation of T cell entry into tissues is an effective therapy in autoimmune diseases. Little is known about the specific role of cytoskeletal effectors that mediate mechanical forces and morphological changes essential for migration in complex environments. We developed a new Formin-like-1 (FMNL1) knock-out mouse model and determined that the cytoskeletal effector FMNL1 is selectively required for effector T cell trafficking to inflamed tissues, without affecting naïve T cell entry into secondary lymphoid organs. Here, we identify a FMNL1-dependent mechanism of actin polymerization at the back of the cell that enables migration of the rigid lymphocyte nucleus through restrictive barriers. Furthermore, FMNL1-deficiency impairs the ability of self-reactive effector T cells to induce autoimmune disease. Overall, our data suggest that FMNL1 may be a potential therapeutic target to specifically modulate T cell trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Adam M Sandor
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Victor Lui
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Monique M Waldman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Miriam L Estin
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
26
|
Targeting the mDia Formin-Assembled Cytoskeleton Is an Effective Anti-Invasion Strategy in Adult High-Grade Glioma Patient-Derived Neurospheres. Cancers (Basel) 2019; 11:cancers11030392. [PMID: 30897774 PMCID: PMC6468841 DOI: 10.3390/cancers11030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
High-grade glioma (HGG, WHO Grade III–IV) accounts for the majority of adult primary malignant brain tumors. Failure of current therapies to target invasive glioma cells partly explains the minimal survival advantages: invasive tumors lack easily-defined surgical margins, and are inherently more chemo- and radioresistant. Much work centers upon Rho GTPase-mediated glioma invasion, yet downstream Rho effector roles are poorly understood and represent potential therapeutic targets. The roles for the mammalian Diaphanous (mDia)-related formin family of Rho effectors have emerged in invasive/metastatic disease. mDias assemble linear F-actin to promote protrusive cytoskeletal structures underlying tumor cell invasion. Small molecule mDia intramimic (IMM) agonists induced mDia functional activities including F-actin polymerization. mDia agonism inhibited polarized migration in Glioblastoma (WHO Grade IV) cells in three-dimensional (3D) in vitro and rat brain slice models. Here, we evaluate whether clinically-relevant high-grade glioma patient-derived neuro-sphere invasion is sensitive to formin agonism. Surgical HGG samples were dissociated, briefly grown as monolayers, and spontaneously formed non-adherent neuro-spheres. IMM treatment dramatically inhibited HGG patient neuro-sphere invasion, both at neuro-sphere embedding and mid-invasion assay, inducing an amoeboid morphology in neuro-sphere edge cells, while inhibiting actin- and tubulin-enriched tumor microtube formation. Thus, mDia agonism effectively disrupts multiple aspects of patient-derived HGG neuro-sphere invasion.
Collapse
|
27
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
29
|
Thompson SB, Wigton EJ, Krovi SH, Chung JW, Long RA, Jacobelli J. The Formin mDia1 Regulates Acute Lymphoblastic Leukemia Engraftment, Migration, and Progression in vivo. Front Oncol 2018; 8:389. [PMID: 30294591 PMCID: PMC6158313 DOI: 10.3389/fonc.2018.00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Leukemias typically arise in the bone marrow and then spread to the blood and into other tissues. To disseminate into tissues, leukemia cells migrate into the blood stream and then exit the circulation by migrating across vascular endothelial barriers. Formin proteins regulate cytoskeletal remodeling and cell migration of normal and malignant cells. The Formin mDia1 is highly expressed in transformed lymphocytes and regulates lymphocyte migration. However, the role of mDia1 in regulating leukemia progression in vivo is unknown. Here, we investigated how mDia1 mediates the ability of leukemia cells to migrate and disseminate in vivo. For these studies, we used a mouse model of Bcr-Abl pre-B cell acute lymphoblastic leukemia. Our data showed that mDia1-deficient leukemia cells have reduced chemotaxis and ability to complete transendothelial migration in vitro. In vivo, mDia1 deficiency reduced the ability of leukemia cells to engraft in recipient mice. Furthermore, leukemia dissemination to various tissues and leukemia progression were inhibited by mDia1 depletion. Finally, mDia1 depletion in leukemia cells resulted in prolonged survival of recipient mice in a leukemia transfer model. Overall, our data show that the Formin mDia1 mediates leukemia cell migration, and drives leukemia engraftment and progression in vivo, suggesting that targeting mDia1 could provide a new method for treatment of leukemia.
Collapse
Affiliation(s)
- Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sai Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
30
|
Zuidscherwoude M, Green HLH, Thomas SG. Formin proteins in megakaryocytes and platelets: regulation of actin and microtubule dynamics. Platelets 2018; 30:23-30. [PMID: 29913076 PMCID: PMC6406210 DOI: 10.1080/09537104.2018.1481937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The platelet and megakaryocyte cytoskeletons are essential for formation and function of these cells. A dynamic, properly organised tubulin and actin cytoskeleton is critical for the development of the megakaryocyte and the extension of proplatelets. Tubulin in particular plays a pivotal role in the extension of these proplatelets and the release of platelets from them. Tubulin is further required for the maintenance of platelet size, and actin is the driving force for shape change, spreading and platelet contraction during platelet activation. Whilst several key proteins which regulate these cytoskeletons have been described in detail, the formin family of proteins has received less attention. Formins are intriguing as, although they were initially believed to simply be a nucleator of actin polymerisation, increasing evidence shows they are important regulators of the crosstalk between the actin and microtubule cytoskeletons. In this review, we will introduce the formin proteins and consider the recent evidence that they play an important role in platelets and megakaryocytes in mediating both the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| | - Hannah L H Green
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Steven G Thomas
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham and University of Nottingham , Midlands , UK
| |
Collapse
|
31
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
32
|
Moreau HD, Piel M, Voituriez R, Lennon-Duménil AM. Integrating Physical and Molecular Insights on Immune Cell Migration. Trends Immunol 2018; 39:632-643. [PMID: 29779848 DOI: 10.1016/j.it.2018.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.
Collapse
Affiliation(s)
- Hélène D Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin, UM 8237 CNRS/UPMC, 4 place Jussieu, 75005 Paris, France
| | | |
Collapse
|
33
|
LeCorgne H, Tudosie AM, Lavik K, Su R, Becker KN, Moore S, Walia Y, Wisner A, Koehler D, Alberts AS, Williams FE, Eisenmann KM. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish. Front Pharmacol 2018; 9:340. [PMID: 29692731 PMCID: PMC5902741 DOI: 10.3389/fphar.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.
Collapse
Affiliation(s)
- Hunter LeCorgne
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Andrew M Tudosie
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kari Lavik
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn N Becker
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Sara Moore
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Yashna Walia
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Daniel Koehler
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| |
Collapse
|
34
|
Dvorak KM, Pettee KM, Rubinic-Minotti K, Su R, Nestor-Kalinoski A, Eisenmann KM. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2). PLoS One 2018; 13:e0195278. [PMID: 29596520 PMCID: PMC5875872 DOI: 10.1371/journal.pone.0195278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.
Collapse
Affiliation(s)
- Kaitlyn M. Dvorak
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Krista M. Pettee
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kaitlin Rubinic-Minotti
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Andrea Nestor-Kalinoski
- Department of Surgery, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kathryn M. Eisenmann
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
van der Kammen R, Song JY, de Rink I, Janssen H, Madonna S, Scarponi C, Albanesi C, Brugman W, Innocenti M. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Development 2017; 144:4588-4603. [PMID: 29113991 DOI: 10.1242/dev.156323] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional Arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hans Janssen
- Division of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
36
|
Lang MJ, Mori M, Ruer-Laventie J, Pieters J. A Coronin 1–Dependent Decision Switch in Juvenile Mice Determines the Population of the Peripheral Naive T Cell Compartment. THE JOURNAL OF IMMUNOLOGY 2017; 199:2421-2431. [DOI: 10.4049/jimmunol.1700438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
37
|
Mashud R, Nomachi A, Hayakawa A, Kubouchi K, Danno S, Hirata T, Matsuo K, Nakayama T, Satoh R, Sugiura R, Abe M, Sakimura K, Wakana S, Ohsaki H, Kamoshida S, Mukai H. Impaired lymphocyte trafficking in mice deficient in the kinase activity of PKN1. Sci Rep 2017; 7:7663. [PMID: 28794483 PMCID: PMC5550459 DOI: 10.1038/s41598-017-07936-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Knock-in mice lacking PKN1 kinase activity were generated by introducing a T778A point mutation in the catalytic domain. PKN1[T778A] mutant mice developed to adulthood without apparent external abnormalities, but exhibited lower T and B lymphocyte counts in the peripheral blood than those of wild-type (WT) mice. T and B cell development proceeded in an apparently normal fashion in bone marrow and thymus of PKN1[T778A] mice, however, the number of T and B cell counts were significantly higher in the lymph nodes and spleen of mutant mice in those of WT mice. After transfusion into WT recipients, EGFP-labelled PKN1[T778A] donor lymphocytes were significantly less abundant in the peripheral circulation and more abundant in the spleen and lymph nodes of recipient mice compared with EGFP-labelled WT donor lymphocytes, likely reflecting lymphocyte sequestration in the spleen and lymph nodes in a cell-autonomous fashion. PKN1[T778A] lymphocytes showed significantly lower chemotaxis towards chemokines and sphingosine 1-phosphate (S1P) than WT cells in vitro. The biggest migration defect was observed in response to S1P, which is essential for lymphocyte egress from secondary lymphoid organs. These results reveal a novel role of PKN1 in lymphocyte migration and localization.
Collapse
Affiliation(s)
- Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Akira Nomachi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihide Hayakawa
- Graduate School of Science and Technology, Kobe University, Kobe, 657-8501, Japan
| | - Koji Kubouchi
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Seta-Tsukinowa-cho Otsu, Shiga, 520-2192, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Shigeharu Wakana
- Japan Mouse Clinic, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba-shi, Ibaraki, 305-0074, Japan
| | - Hiroyuki Ohsaki
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan
| | - Hideyuki Mukai
- Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan.
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
38
|
|
39
|
Dynamic microtubules regulate cellular contractility during T-cell activation. Proc Natl Acad Sci U S A 2017; 114:E4175-E4183. [PMID: 28490501 DOI: 10.1073/pnas.1614291114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell receptor (TCR) triggering and subsequent T-cell activation are essential for the adaptive immune response. Recently, multiple lines of evidence have shown that force transduction across the TCR complex is involved during TCR triggering, and that the T cell might use its force-generation machinery to probe the mechanical properties of the opposing antigen-presenting cell, giving rise to different signaling and physiological responses. Mechanistically, actin polymerization and turnover have been shown to be essential for force generation by T cells, but how these actin dynamics are regulated spatiotemporally remains poorly understood. Here, we report that traction forces generated by T cells are regulated by dynamic microtubules (MTs) at the interface. These MTs suppress Rho activation, nonmuscle myosin II bipolar filament assembly, and actin retrograde flow at the T-cell-substrate interface. Our results suggest a novel role of the MT cytoskeleton in regulating force generation during T-cell activation.
Collapse
|
40
|
Miller MR, Miller EW, Blystone SD. Non-canonical activity of the podosomal formin FMNL1γ supports immune cell migration. J Cell Sci 2017; 130:1730-1739. [PMID: 28348104 DOI: 10.1242/jcs.195099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Having previously located the formin FMNL1 in macrophage podosomes, we developed an in vivo model to assess the role of FMNL1 in the migration activities of primary macrophages. Deletion of FMNL1 in mice was genetically lethal; however, targeted deletion in macrophages was achieved by employing macrophage-specific Cre. Unchallenged FMNL1-deficient mice exhibited an unexpected reduction in tissue-resident macrophages despite normal blood monocyte numbers. Upon immune stimulus, the absence of FMNL1 resulted in reduced macrophage recruitment in vivo, decreased migration in two-dimensional in vitro culture and a decrease in the number of macrophages exhibiting podosomes. Of the three described isoforms of FMNL1 - α, β and γ - only FMNL1γ rescued macrophage migration when expressed exogenously in depleted macrophages. Surprisingly, mutation of residues in the FH2 domain of FMNL1γ that disrupt barbed-end actin binding did not limit rescue of macrophage migration and podosome numbers. These observations suggest that FMNL1 contributes to macrophage migration activity by stabilizing the lifespan of podosomes without interaction of fast-growing actin termini.
Collapse
Affiliation(s)
- Matthew R Miller
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | - Eric W Miller
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | - Scott D Blystone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
41
|
Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration. Proc Natl Acad Sci U S A 2017; 114:E2901-E2910. [PMID: 28320969 DOI: 10.1073/pnas.1701886114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) and Ena-VASP-like (EVL) are cytoskeletal effector proteins implicated in regulating cell morphology, adhesion, and migration in various cell types. However, the role of these proteins in T-cell motility, adhesion, and in vivo trafficking remains poorly understood. This study identifies a specific role for EVL and VASP in T-cell diapedesis and trafficking. We demonstrate that EVL and VASP are selectively required for activated T-cell trafficking but are not required for normal T-cell development or for naïve T-cell trafficking to lymph nodes and spleen. Using a model of multiple sclerosis, we show an impairment in trafficking of EVL/VASP-deficient activated T cells to the inflamed central nervous system of mice with experimental autoimmune encephalomyelitis. Additionally, we found a defect in trafficking of EVL/VASP double-knockout (dKO) T cells to the inflamed skin and secondary lymphoid organs. Deletion of EVL and VASP resulted in the impairment in α4 integrin (CD49d) expression and function. Unexpectedly, EVL/VASP dKO T cells did not exhibit alterations in shear-resistant adhesion to, or in crawling on, primary endothelial cells under physiologic shear forces. Instead, deletion of EVL and VASP impaired T-cell diapedesis. Furthermore, T-cell diapedesis became equivalent between control and EVL/VASP dKO T cells upon α4 integrin blockade. Overall, EVL and VASP selectively mediate activated T-cell trafficking by promoting the diapedesis step of transendothelial migration in a α4 integrin-dependent manner.
Collapse
|
42
|
Cheng L, Xu J, Qian YY, Pan HY, Yang H, Shao MY, Cheng R, Hu T. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells. Int Endod J 2015; 50:15-23. [PMID: 26609804 DOI: 10.1111/iej.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
AIM To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). METHODOLOGY Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. RESULTS LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. CONCLUSIONS mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs.
Collapse
Affiliation(s)
- L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - J Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - Y Y Qian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - H Y Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - H Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - M Y Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - R Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - T Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| |
Collapse
|
43
|
Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat Cell Biol 2015; 18:43-53. [PMID: 26641718 DOI: 10.1038/ncb3284] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA-mDia1-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42-Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4-MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDia1-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function.
Collapse
|
44
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
45
|
Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2374-83. [PMID: 26381868 DOI: 10.1161/atvbaha.115.305879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We and others have previously shown that RhoA-dependent stimulation of myocardin-related transcription factor nuclear localization promotes smooth muscle cell (SMC) marker gene expression. The goal of this study was to provide direct in vivo evidence that actin polymerization by the diaphanous-related formins contributes to the regulation of SMC differentiation and phenotype. APPROACH AND RESULTS Conditional Cre-based genetic approaches were used to overexpress a well-characterized dominant-negative variant of mDia1 (DNmDia) in SMC. DNmDia expression in SM22-expressing cells resulted in embryonic and perinatal lethality in ≈20% of mice because of defects in myocardial development and SMC investment of peripheral vessels. Although most DNmDia(+)/SM22Cre(+) mice exhibited no overt phenotype, the re-expression of SMC differentiation marker gene expression that occurs after carotid artery ligation was delayed, and this effect was accompanied by a significant decrease in myocardin-related transcription factor-A nuclear localization. Interestingly, neointima growth was inhibited by expression of DNmDia in SMC and this was likely because of a defect in directional SMC migration and not to defects in SMC proliferation or survival. Finally, by using the tamoxifen-inducible SM MHC-CreER(T2) line, we showed that SMC-specific induction of DNmDia in adult mice decreased SMC marker gene expression. CONCLUSIONS Our demonstration that diaphanous-related formin signaling plays a role in heart and vascular development and the maintenance of SMC phenotype provides important new evidence that Rho/actin/myocardin-related transcription factor signaling plays a critical role in cardiovascular function.
Collapse
Affiliation(s)
- Laura Weise-Cross
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
46
|
Arden JD, Lavik KI, Rubinic KA, Chiaia N, Khuder SA, Howard MJ, Nestor-Kalinoski AL, Alberts AS, Eisenmann KM. Small-molecule agonists of mammalian Diaphanous-related (mDia) formins reveal an effective glioblastoma anti-invasion strategy. Mol Biol Cell 2015; 26:3704-18. [PMID: 26354425 PMCID: PMC4626057 DOI: 10.1091/mbc.e14-11-1502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
Formin agonists impede the most dangerous aspect of glioblastoma—tumor spread into surrounding healthy tissue. Formin activation impairs a novel aspect of the transformed cell and informs the development of antitumor strategies for a cancer needing a more effective therapy. The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component—tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.
Collapse
Affiliation(s)
- Jessica D Arden
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Kari I Lavik
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Kaitlin A Rubinic
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Nicolas Chiaia
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Sadik A Khuder
- Departments of Medicine and Public Health and Homeland Security, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Marthe J Howard
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, OH 43614
| | | | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Kathryn M Eisenmann
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614 )
| |
Collapse
|
47
|
Expression of multiple formins in adult tissues and during developmental stages of mouse brain. Gene Expr Patterns 2015; 19:52-9. [DOI: 10.1016/j.gep.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023]
|
48
|
Li N, Mruk DD, Tang EI, Wong CK, Lee WM, Silvestrini B, Cheng CY. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis. SPERMATOGENESIS 2015; 5:e1066476. [PMID: 26413414 DOI: 10.1080/21565562.2015.1066476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Chris Kc Wong
- Department of Biology; Hong Kong Baptist University ; Hong Kong, China
| | - Will M Lee
- School of Biological Sciences; University of Hong Kong ; Hong Kong, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
49
|
The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. J Neuroimmunol 2015; 282:25-32. [PMID: 25903725 DOI: 10.1016/j.jneuroim.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Myo9b regulates leukocyte migration by controlling RhoA signaling. Here we assessed its role in active experimental autoimmune encephalomyelitis (EAE). Myo9b(-/-) mice show a delay in the onset of EAE symptoms. The delay in disease onset was accompanied by reduced numbers of Th1 and Th17 cells in the CNS. Myo9b(-/-) mice showed no recovery from disease symptoms and exhibited elevated numbers of both Th17 cells and CD11b+ macrophages. Bone marrow chimeric mice demonstrated that the absence of a leukocyte source of Myo9b was responsible for the delayed leukocyte infiltration into the CNS, delayed EAE onset and lack of recovery.
Collapse
|
50
|
Kuokkanen E, Šuštar V, Mattila PK. Molecular control of B cell activation and immunological synapse formation. Traffic 2015; 16:311-26. [PMID: 25639463 DOI: 10.1111/tra.12257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 02/01/2023]
Abstract
B cells form an essential part of the adaptive immune system by producing specific antibodies that can neutralize toxins and target infected or malignant cells for destruction. During B cell activation, a fundamental role is played by a specialized intercellular structure called the immunological synapse (IS). The IS serves as a platform for B cell recognition of foreign, often pathogenic, antigens on the surface of antigen-presenting cells (APC). This recognition is elicited by highly specific B cell receptors (BCR) that subsequently trigger carefully orchestrated intracellular signaling cascades that lead to cell activation. Furthermore, antigen internalization, essential for full B cell activation and differentiation into antibody producing effector cells or memory cells, occurs in the IS. Recent developments especially in various imaging-based methods have considerably advanced our understanding of the molecular control of B cell activation. Interestingly, the cellular cytoskeleton is emerging as a key player at several stages of B cell activation, including the initiation of receptor signaling. Here, we discuss the functions and molecular mechanisms of the IS and highlight the multifaceted role of the actin cytoskeleton in several aspects of B cell activation.
Collapse
Affiliation(s)
- Elina Kuokkanen
- Unit of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | |
Collapse
|