1
|
Simm C, Lee TH, Weerasinghe H, Walsh D, Nakou IT, Shankar M, Tse WC, Zhang Y, Inman R, Mulder RJ, Harrison F, Aguilar MI, Challis GL, Traven A. Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements. mBio 2024:e0261124. [PMID: 39422464 DOI: 10.1128/mbio.02611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Amphotericin B (AmpB) is an effective but toxic antifungal drug. Thus, improving its activity/toxicity relationship is of interest. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity. To explain the mechanism of synergy, we show that gladiolin interacts with membranes via a previously unreported binding mode for polyketides. Moreover, gladiolin modulates lipid binding by AmpB and, in combination, causes faster and more pronounced lipid rearrangements relative to AmpB alone which include membrane thinning consistent with ergosterol extraction, areas of thickening, pore formation, and increased membrane destruction. These biophysical data provide evidence of a functional interaction between gladiolin and AmpB at the membrane interface. The data further indicate that the two proposed AmpB mechanisms (ergosterol sequestration and pore formation) act in conjunction to disrupt membranes, and that gladiolin synergizes by enhancing both mechanisms. Collectively, our findings shed light on AmpB's mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB's activity/toxicity relationship. IMPORTANCE Amphotericin B (AmpB) is one of the oldest antifungal drugs in clinical use. It is an effective therapeutic, but it comes with toxicity issues due to the similarities between its fungal target (the membrane lipid ergosterol) and its mammalian counterpart (cholesterol). One strategy to improve its activity/toxicity relationship is by combinatorial therapy with potentiators, which would enable a lower therapeutic dose of AmpB. Here, we report on the discovery of the antibiotic gladiolin as a potentiator of AmpB against several priority human fungal pathogens and fungal biofilms, with no increased toxicity against mammalian cells. We show that gladiolin potentiates AmpB by increasing and accelerating membrane damage. Our findings also provide insights into the on-going debate about the mechanism of action of AmpB by indicating that both proposed mechanisms, extraction of ergosterol from membranes and pore formation, are potentiated by gladiolin.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ioanna T Nakou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Madhu Shankar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Wai Chung Tse
- School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Rebecca Inman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Roger J Mulder
- CSIRO Manufacturing, Research Way, Clayton, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory L Challis
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Szomek M, Akkerman V, Lauritsen L, Walther HL, Juhl AD, Thaysen K, Egebjerg JM, Covey DF, Lehmann M, Wessig P, Foster AJ, Poolman B, Werner S, Schneider G, Müller P, Wüstner D. Ergosterol promotes aggregation of natamycin in the yeast plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184350. [PMID: 38806103 DOI: 10.1016/j.bbamem.2024.184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, USA
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Alexander J Foster
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
3
|
Sagarika P, Dobriyal N, Deepsika P, Vairagkar A, Das A, Sahi C. Specificity of Membrane-Associated J-Domain Protein, Caj1, in Amphotericin B Tolerance in Budding Yeast. Mol Microbiol 2024. [PMID: 39289920 DOI: 10.1111/mmi.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Hsp70:J-domain protein (JDP) machineries play pivotal roles in maintaining cellular proteostasis and governing various aspects of fungal physiology. While Hsp70 is known for its involvement in conferring tolerance to diverse antifungal drugs, the specific contribution of JDPs remains unclear. In this study, we examined the sensitivity of cytosolic JDP deletion strains of budding yeast to amphotericin B (AmB), a polyene antifungal agent widely utilized in fungal disease treatment due to its ability to disrupt the fungal plasma membrane (PM). Deleting Caj1, a PM-associated class II JDP, heightened susceptibility to AmB, and the protection conferred by Caj1 against AmB necessitated both its N-terminal J-domain and C-terminal lipid binding domain. Moreover, Caj1 deficiency compromised PM integrity as evidenced by increased phosphate efflux and exacerbated AmB sensitivity, particularly at elevated temperatures. Notably, phytosphingosine (PHS) addition as well as overexpression of PMP3, a positive PM integrity regulator, significantly rescued AmB sensitivity of caj1Δ cells. Our results align with the notion that Caj1 associates with the PM and cooperates with Hsp70 to regulate PM proteostasis, thereby influencing PM integrity in budding yeast. Loss of Caj1 function at the PM compromises PM protein quality control, thereby rendering yeast cells more susceptible to AmB.
Collapse
Affiliation(s)
| | | | | | - Avanti Vairagkar
- Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, IISER, Bhopal, India
| |
Collapse
|
4
|
Ono J, Kuzmin A, Miller L, Otto SP. The limit to evolutionary rescue depends on ploidy in yeast exposed to nystatin. Can J Microbiol 2024; 70:394-404. [PMID: 38875715 DOI: 10.1139/cjm-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Ecology and Evolution & Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Anastasia Kuzmin
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lesley Miller
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Tulloch LB, Tinti M, Wall RJ, Weidt SK, Corpas- Lopez V, Dey G, Smith TK, Fairlamb AH, Barrett MP, Wyllie S. Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1. PLoS Pathog 2024; 20:e1012382. [PMID: 38991025 PMCID: PMC11265716 DOI: 10.1371/journal.ppat.1012382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Victoriano Corpas- Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gourav Dey
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
6
|
Omelchuk O, Tevyashova A, Efimova S, Grammatikova N, Bychkova E, Zatonsky G, Dezhenkova L, Savin N, Solovieva S, Ostroumova O, Shchekotikhin A. A Study on the Effect of Quaternization of Polyene Antibiotics' Structures on Their Activity, Toxicity, and Impact on Membrane Models. Antibiotics (Basel) 2024; 13:608. [PMID: 39061290 PMCID: PMC11274224 DOI: 10.3390/antibiotics13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects. Recently, there has been a renewed interest in the development of new antifungal drugs based on polyenes, particularly due to the emergence of highly dangerous pathogenic strains of fungi, such as Candida auris, and the increased incidence of mucormycosis. Considerable understanding has been established regarding the structure-biological activity relationships of polyene antifungals. Yet, no previous studies have examined the effect of introducing quaternized fragments into their molecular structure. In this study, we present a series of amides of amphotericin B, nystatin, and natamycin bearing a quaternized group in the side chain, and discuss their biological properties: antifungal activity, cytotoxicity, and effects on lipid bilayers that mimic fungal and mammalian cell membranes. Our research findings suggest that the nature of the introduced quaternized residue plays a more significant role than merely the introduction of a constant positive charge. Among the tested polyenes, derivatives 4b, 5b, and 6b, which contain a fragment of N-methyl-4-(aminomethyl)pyridinium in their structure, are particularly noteworthy due to their biological activity.
Collapse
Affiliation(s)
- Olga Omelchuk
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Anna Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Svetlana Efimova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Natalia Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Elena Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - George Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Lyubov Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 4 p.1 Leninsky Pr., Moscow 119049, Russia
| | - Svetlana Solovieva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Olga Ostroumova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Andrey Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| |
Collapse
|
7
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
8
|
Talarico L, Clemente I, Gennari A, Gabbricci G, Pepi S, Leone G, Bonechi C, Rossi C, Mattioli SL, Detta N, Magnani A. Physiochemical Characterization of Lipidic Nanoformulations Encapsulating the Antifungal Drug Natamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:726. [PMID: 38668220 PMCID: PMC11053702 DOI: 10.3390/nano14080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Natamycin is a tetraene polyene that exploits its antifungal properties by irreversibly binding components of fungal cell walls, blocking the growth of infections. However, topical ocular treatments with natamycin require frequent application due to the low ability of this molecule to permeate the ocular membrane. This limitation has limited the use of natamycin as an antimycotic drug, despite it being one of the most powerful known antimycotic agents. In this work, different lipidic nanoformulations consisting of transethosomes or lipid nanoparticles containing natamycin are proposed as carriers for optical topical administration. Size, stability and zeta potential were characterized via dynamic light scattering, the supramolecular structure was investigated via small- and wide-angle X-ray scattering and 1H-NMR, and the encapsulation efficiencies of the four proposed formulations were determined via HPLC-DAD.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ilaria Clemente
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Alessandro Gennari
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
| | - Giulia Gabbricci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Pepi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Bonechi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Simone Luca Mattioli
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Nicola Detta
- Dompé Farmaceutici S.p.A, Via Campo di Pile SNC, 67100 L’Aquila, Italy; (S.L.M.); (N.D.)
| | - Agnese Magnani
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (I.C.); (A.G.); (G.G.); (S.P.); (G.L.); (C.B.); (C.R.)
- National Interuniversity Consortium of Material Science and Technology (INSTM), Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Center for Colloids and Surface Science (CSGI), Siena Research Group, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Cao Y, Zhang X, Song X, Li W, Ren Z, Feng J, Ma Z, Liu X, Wang Y. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2024; 80:1981-1990. [PMID: 38087429 DOI: 10.1002/ps.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Sclerotinia stem rot caused by Sclerotinia sclerotiorum seriously endangers oilseed rape production worldwide, and the occurrence of fungicide-resistant mutants of S. sclerotiorum leads to control decline. Thus, it is critical to explore new green substitutes with different action mechanisms and high antifungal activity. Herein, the activity and the action mechanism of natamycin against S. sclerotiorum were evaluated. RESULTS Natamycin showed potent inhibition on the mycelial growth of S. sclerotiorum, and half-maximal effective concentration (EC50 ) values against 103 S. sclerotiorum strains ranged from 0.53 to 4.04 μg/mL (mean 1.44 μg/mL). Natamycin also exhibited high efficacy against both carbendazim- and dimethachlone-resistant strains of S. sclerotiorum on detached oilseed rape leaves. No cross-resistance was detected between natamycin and carbendazim. Natamycin markedly disrupted hyphal form, sclerotia formation, integrity of the cell membrane, and reduced the content of oxalic acid and ergosterol, whereas it increased the reactive oxygen species (ROS) and malondialdehyde content. Interestingly, exogenous addition of ergosterol could reduce the inhibition of natamycin against S. sclerotiorum. Importantly, natamycin significantly inhibited expression of the Cyp51 gene, which is contrary to results for the triazole fungicide flusilazole, indicating a different action mechanism from triazole fungicides. CONCLUSION Natamycin is a promising effective candidate for the resistance management of S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenkui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zheng Ren
- College of Language and Culture, Northwest A&F University, Xianyang, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| |
Collapse
|
10
|
Wang X, Xu Y, Martin NI, Breukink E. The enigmatic mode of action of the lantibiotic epilancin 15X. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184282. [PMID: 38218577 DOI: 10.1016/j.bbamem.2024.184282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Epilancin 15X is a lantibiotic that has an antimicrobial activity in the nanomolar concentration range towards Staphylococcus simulans. Such low MICs usually imply that these peptides employ a mechanism of action (MoA) involving high affinity targets. Here we studied this MoA by using epilancin 15X's ability to dissipate the membrane potential of intact S. simulans cells. These membrane depolarization assays showed that treatment of the bacteria by antibiotics known to affect the bacterial cell wall synthesis pathway decreased the membrane depolarization effects of epilancin 15X. Disruption of the Lipid II cycle in intact bacteria using several methods led to a decrease in the activity of epilancin 15X. Antagonism-based experiments on 96-well plate and agar diffusion plate pointed towards a possible interaction between epilancin 15X and Lipid II and this was confirmed by Circular Dichroism (CD) based experiments. However, this interaction did not lead to a detectable effect on either carboxyfluorescein (CF) leakage or proton permeability. All experiments point to the involvement of a phosphodiester-containing target within a polyisoprene-based biosynthesis pathway, yet the exact identity of the target remains obscure so far.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Yang Xu
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, Netherlands; Zhejiang Provincial Key Laboratory of Food Microbiotechnology Research of China, the Zhejiang Gongshang University of China, Hangzhou, China.
| |
Collapse
|
11
|
Cao Y, Song X, Xu G, Zhang X, Yan H, Feng J, Ma Z, Liu X, Wang Y. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17713-17722. [PMID: 37943656 DOI: 10.1021/acs.jafc.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this investigation, the antifungal activity, its influence on the quality of apples, and the molecular mechanism of natamycin against Colletotrichum fructicola were systematically explored. Our findings indicated that natamycin showed significant inhibition against C. fructicola. Moreover, it efficaciously maintained the apple quality by modulating the physicochemical index. Research on the antifungal mechanism showed that natamycin altered the mycelial microstructure, disrupted the plasma membrane integrality, and decreased the ergosterol content of C. fructicola. Interestingly, the exogenous addition of ergosterol weakened the antifungal activity of natamycin. Importantly, natamycin markedly inhibited the expression of Cyp51A and Cyp51B genes in C. fructicola, which was contrary to the results obtained after treatment with triazole fungicide flusilazole. All these results exhibited sufficient proof that natamycin had enormous potential to be conducive as a promising biopreservative against C. fructicola on apples, and these findings will advance our knowledge on the mechanism of natamycin against pathogenic fungi.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Guanyou Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - He Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| |
Collapse
|
12
|
Akkerman V, Scheidt HA, Reinholdt P, Bashawat M, Szomek M, Lehmann M, Wessig P, Covey DF, Kongsted J, Müller P, Wüstner D. Natamycin interferes with ergosterol-dependent lipid phases in model membranes. BBA ADVANCES 2023; 4:100102. [PMID: 37691996 PMCID: PMC10482743 DOI: 10.1016/j.bbadva.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin.
Collapse
Affiliation(s)
- Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Mohammad Bashawat
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, Missouri, USA
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115, Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230, Odense M, Denmark
| |
Collapse
|
13
|
Gelain J, Lykins S, Rosa PF, Soares AT, Dowling M, Schnabel G, May De Mio LL. Identification and Fungicide Sensitivity of Colletotrichum spp. from Apple Flowers and Fruitlets in Brazil. PLANT DISEASE 2023; 107:1183-1191. [PMID: 36256738 DOI: 10.1094/pdis-01-22-0243-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glomerella leaf spot (GLS) and bitter rot (BR), caused by Colletotrichum spp., are major diseases on apple in southern Brazil. Among integrated pest management tools for disease management in commercial orchards, fungicides remain an important component. This study aimed to identify Colletotrichum spp. from cultivar Eva in Paraná state orchards; evaluate their in vitro sensitivity to cyprodinil, tebuconazole, iprodione, and fluazinam; and determine the baseline in vitro sensitivity of these isolates to benzovindiflupyr and natamycin. Most isolates belonged to Colletotrichum melonis and C. nymphaeae of the C. acutatum species complex. The two species varied in sensitivity to fluazinam and tebuconazole, but no variability was found for any other fungicide. The lowest 50% effective concentration (EC50) values of Colletotrichum spp. were observed for cyprodinil (mean EC50 < 0.02) and benzovindiflupyr (mean EC50 < 0.05); EC50 values were intermediate for fluazinam (mean EC50 < 0.33) and tebuconazole (mean EC50 < 0.14), and they were highest for natamycin (mean EC50 < 5.56) and iprodione (mean EC50 > 12). Cyprodinil and fluazinam are registered for use in Brazil for apple disease management but not specifically for GLS and BR. Tebuconazole is one of the few products registered for Colletotrichum spp. control in apples. In conclusion, flowers and fruitlets can serve as sources of inoculum for GLS and BR disease; C. acutatum was the predominant species complex in these tissues; cyprodinil and fluazinam applications may suppress GLS and BR; and benzovindiflupyr and natamycin warrant further investigation for GLS and BR disease control of apple due to comparably high in vitro sensitivity.
Collapse
Affiliation(s)
- Jhulia Gelain
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Sydney Lykins
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Pâmela Franciella Rosa
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Alex Teixeira Soares
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Madeline Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Louise Larissa May De Mio
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| |
Collapse
|
14
|
Ribeiro E, Araújo D, Pereira M, Lopes B, Sousa P, Sousa AC, Coelho A, Rêma A, Alvites R, Faria F, Oliveira C, Porto B, Maurício AC, Amorim I, Vale N. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines 2023; 11:799. [PMID: 36979779 PMCID: PMC10044866 DOI: 10.3390/biomedicines11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) ranked as the fifth most incident cancer in 2020 and the third leading cause of cancer mortality. Surgical prevention and radio/chemotherapy are the main approaches used in GC treatment, and there is an urgent need to explore and discover innovative and effective drugs to better treat this disease. A new strategy arises with the use of repurposed drugs. Drug repurposing coupled with drug combination schemes has been gaining interest in the scientific community. The main objective of this project was to evaluate the therapeutic effects of alternative drugs in GC. For that, three GC cell lines (AGS, MKN28, and MKN45) were used and characterized. Cell viability assays were performed with the reference drug 5-fluororacil (5-FU) and three repurposed drugs: natamycin, nitazoxanide, and benztropine. Nitazoxanide displayed the best results, being active in all GC cells. Further, 5-FU and nitazoxanide in combination were tested in MKN28 GC cells, and the results obtained showed that nitazoxanide alone was the most promising drug for GC therapy. This work demonstrated that the repurposing of drugs as single agents has the ability to decrease GC cell viability in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
15
|
Won T, Mohid SA, Choi J, Kim M, Krishnamoorthy J, Biswas I, Bhunia A, Lee D. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Biophys Chem 2023; 296:106981. [PMID: 36871366 DOI: 10.1016/j.bpc.2023.106981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.
Collapse
Affiliation(s)
- TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India
| | - JiHye Choi
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - MinSoo Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India.
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
16
|
Vanzolini T, Di Mambro T, Magnani M, Menotta M. AFM evaluation of a humanized recombinant antibody affecting C. auris cell wall and stability. RSC Adv 2023; 13:6130-6142. [PMID: 36814881 PMCID: PMC9940460 DOI: 10.1039/d2ra07217c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Fungal infections are increasingly impacting on the health of the population and particularly on subjects with a compromised immune system. The resistance phenomenon and the rise of new species carrying sometimes intrinsic and multi-drug resistance to the most commonly used antifungal drugs are greatly concerning healthcare organizations. As a result of this situation, there is growing interest in the development of therapeutic agents against pathogenic fungi. In particular, the Candida genus is responsible for severe life-threatening infections and among its species, C. auris is considered an urgent threat by the Center for Disease Control and Prevention, and is one of the three leading causes of morbidity and mortality worldwide. H5K1 is a humanized monoclonal antibody (hmAb) that selectively binds to β-1,3-glucans, vital components of the fungal cell wall. It has been previously demonstrated that it is active against Candida species, especially against C. auris, reaching its greatest potential when combined with commercially available antifungal drugs. Here we used atomic force microscopy (AFM) to assess the effects of H5K1, alone and in combination with fluconazole, caspofungin and amphotericin B, on C. auris cells. Through an extensive exploration we found that H5K1 has a significant role in the perturbation and remodeling of the fungal cell wall that is reflected in the loss of whole cell integrity. Moreover, it contributes substantially to the alterations in terms of chemical composition, stiffness and roughness induced specifically by caspofungin and amphotericin B. In addition to this, we demonstrated that AFM is a valuable technique to evaluate drug-microorganism interaction.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Via Saffi 2 61029 Urbino Italy
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Via Saffi 2 61029 Urbino Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Via Saffi 2 61029 Urbino Italy
| |
Collapse
|
17
|
Tevyashova AN, Efimova SS, Alexandrov AI, Ghazy ESMO, Bychkova EN, Solovieva SE, Zatonsky GB, Grammatikova NE, Dezhenkova LG, Pereverzeva ER, Isakova EB, Ostroumova OS, Omelchuk OA, Muravieva VV, Krotova MM, Priputnevich TV, Shchekotikhin AE. Semisynthetic Amides of Polyene Antibiotic Natamycin. ACS Infect Dis 2023; 9:42-55. [PMID: 36563312 DOI: 10.1021/acsinfecdis.2c00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized. Antifungal activities of natamycin derivatives were investigated against Candida spp., including a panel of Candida auris clinical isolates and filamentous fungi. Toxicity for mammalian cells was assayed by monitoring antiproliferative activity against human postnatal fibroblasts (HPF) and human embryonic kidney cells (HEK293). By comparing leakage of contents from ergosterol versus cholesterol containing vesicles, a ratio that characterizes the efficacy and safety of natamycin and its derivatives was determined (EI, efficiency index). Ability of all tested semisynthetic natamycines to prevent proliferation of the yeast Candida spp. cells was comparable or even slightly higher to those of parent antibiotic. Interestingly, amide 8 was more potent than natamycin (1) against all tested C. auris strains (MIC values 2 μg/mL vs 8 μg/mL, respectively). Among 7 derivatives, amide 10 with long lipophilic side chains showed the highest EI and strong antifungal activity in vitro but was more toxic against HPF. In vivo experiments with amide 8 showed in vivo efficacy on a mouse candidemia model with a larger LD50/ED50 ratio in comparison to amphotericin B.
Collapse
Affiliation(s)
- Anna N Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | - Svetlana S Efimova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg194064, Russia
| | - Alexander I Alexandrov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, 33 Leninsky Avenue, Bld. 2, Moscow119071, Russia
| | - Eslam S M O Ghazy
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry, 33 Leninsky Avenue, Bld. 2, Moscow119071, Russia.,Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, Moscow117198, Russia.,Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta31111, Egypt
| | - Elena N Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | | | - Georgy B Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | | | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | | | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg194064, Russia
| | - Olga A Omelchuk
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow119021, Russia
| | - Vera V Muravieva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparin Street, Moscow117997, Russia
| | - Marina M Krotova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparin Street, Moscow117997, Russia
| | - Tatiana V Priputnevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparin Street, Moscow117997, Russia
| | | |
Collapse
|
18
|
Guo TR, Zeng Q, Yang G, Ye SS, Chen ZY, Xie SY, Wang H, Mo YW. Isolation, identification, biological characteristics, and antifungal efficacy of sodium bicarbonate combined with natamycin on Aspergillus niger from Shengzhou nane ( Prunus salicina var. taoxingli) fruit. Front Microbiol 2023; 13:1075033. [PMID: 36713153 PMCID: PMC9879613 DOI: 10.3389/fmicb.2022.1075033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The fungi causing fruit rot were isolated from symptomatic Shengzhou nane (Prunus salicina var. taoxingli) fruit and were identified as Aspergillus niger by biological characteristics and molecular analysis of the internal transcribed spacer region (rDNA-ITS) and translation elongation factor-1α (TEF-1α) sequences. Optimal growth conditions for A. niger were 30°C, pH 5.0-6.0, and fructose and peptone as carbon and nitrogen sources. The effects of sodium bicarbonate (SBC), natamycin (NT), and combined treatments on A. niger inhibition were investigated. Treatment with 4.0 g/L sodium bicarbonate (SBC) + 5.0 mg/L natamycin (NT) inhibited mycelial growth and spore germination as completely as 12.0 mg/L SBC or 25.0 mg/L NT. SBC and NT treatments disrupted the structural integrity of cell and mitochondria membranes and decreased enzyme activities involved in the tricarboxylic acid (TCA) cycle, mitochondrial membrane potential (MMP), ATP production in mitochondria, and ergosterol content in the plasma membrane, thus leading to the inhibition of A. niger growth. Moreover, experimental results in vivo showed that the rot lesion diameter and decay rate of Shengzhou nane fruit treated with SBC and NT were significantly reduced compared with the control. The results suggest that the combination treatment of SBC and NT could be an alternative to synthetic fungicides for controlling postharvest Shengzhou nane decay caused by A. niger.
Collapse
|
19
|
Semisynthetic Amides of Amphotericin B and Nystatin A 1: A Comparative Study of In Vitro Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes. Antibiotics (Basel) 2023; 12:antibiotics12010151. [PMID: 36671352 PMCID: PMC9854944 DOI: 10.3390/antibiotics12010151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties. We present the synthesis of new amphotericin and nystatin amides and a comparative study of the effects of identical modifications of AmB and Nys on the relationship between their structure and properties. Generally, increases in the activity/toxicity ratio were in good agreement with increasing ratios of selective permeabilization of ergosterol- vs. cholesterol-containing membranes. We also show that the introduced modifications had an effect on the sensitivity of mutant yeast strains with alterations in ergosterol biosynthesis to the studied polyenes, suggesting a varying affinity towards intermediate ergosterol precursors. Three new water-soluble nystatin derivatives showed a prominent improvement in safety and were selected as promising candidates for drug development.
Collapse
|
20
|
Şanlı S, Kılıçarslan S, Şanlı N. Evaluation of natamycin in commercial dairy products by a green capillary zone electrophoresis method and confirmation with a Liquid Chromatography-Mass Spectrometry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Coleman D, Martínez-López B, Knych H, Yun S, Kenelty K, Tomasi V, Soto E. In vitro susceptibility testing for the emerging pathogenic mould Veronaea botryosa and pharmacokinetic parameters of natamycin in white sturgeon (Acipenser transmontanus). JOURNAL OF FISH DISEASES 2022; 45:1623-1633. [PMID: 35857853 DOI: 10.1111/jfd.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Systemic phaeohyphomycosis caused by the dematiaceous mould Veronaea botryosa is an important emergent disease affecting captive sturgeons (Acipenser spp.). The disease, colloquially known as "fluid belly," causes morbidity and mortality in adult animals resulting in significant economic losses to the aquaculture industry. Advancements in therapeutic and prophylactic protocols have been partially hampered by the lack of basic protocols to grow and manipulate the fungus in the laboratory. In this study, microbroth kinetic protocols were established to analyse V. botryosa growth in seven nutrient media at different temperatures. Generated area under the curve (AUC) indicates that potato flake dextrose broth (PFD-B) and Sabouraud dextrose broth (SD-B) incubated at 25°C provided the greatest growth. The generated protocol was then used to test the susceptibility of V. botryosa isolates to natamycin, a macrolide polyene antifungal agent used as a food preservative. SD-B and RPMI with l-glutamine (+RPMI-B) containing different concentrations of natamycin were inoculated with V. botryosa conidia and the generated growth curves were compared using cubic smoothing spline model. The non-inhibitory concentration and minimal inhibitory concentration (MIC; decrease of AUC by 90% compared with control) were determined to be <1 μg/mL and 16 μg/mL of natamycin in SD-B media. To gain an understanding of the tissue distribution of natamycin in white sturgeon, pharmacokinetics was tested. Based on pharmacokinetic parameters determined in this study and targeting a blood concentration >16 μg/mL for 24 h, an intravenous dose >1 g/kg would be needed, making the use of this drug unrealistic. The information presented in this study can be used to investigate susceptibility of pathogenic fungus to antimicrobials and disinfectants as well as support future therapeutic protocols against emerging fungal diseases like fluid belly.
Collapse
Affiliation(s)
- Denver Coleman
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Beatriz Martínez-López
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Heather Knych
- School of Veterinary Medicine, K.L. Maddy Equine Analytical Pharmacology Laboratory, University of California, Davis, California, USA
| | - Susan Yun
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kirsten Kenelty
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Valentina Tomasi
- Veterinary Public Health and Food Hygiene, University of Perugia, Perugia, Italy
| | - Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
22
|
Szomek M, Reinholdt P, Walther HL, Scheidt HA, Müller P, Obermaier S, Poolman B, Kongsted J, Wüstner D. Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184012. [PMID: 35914570 DOI: 10.1016/j.bbamem.2022.184012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany
| | - Sebastian Obermaier
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
23
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
25
|
Karthick Raja Namasivayam S, Manohar M, Aravind Kumar J, Samrat K, Kande A, Arvind Bharani RS, Jayaprakash C, Lokesh S. Green chemistry principles for the synthesis of anti fungal active gum acacia-gold nanocomposite - natamycin (GA-AuNC-NT) against food spoilage fungal strain Aspergillus ochraceopealiformis and its marked Congo red dye adsorption efficacy. ENVIRONMENTAL RESEARCH 2022; 212:113386. [PMID: 35569536 DOI: 10.1016/j.envres.2022.113386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - Mohith Manohar
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | - J Aravind Kumar
- Department of Biomass & Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | - Akhil Kande
- Centre for Bioresource Research.& Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 119, Tamil Nadu, India
| | | | - C Jayaprakash
- Food Microbiology Division, Defence Food Research Laboratory (DFRL), Mysuru (Mysore), 570011, Karnataka, India
| | - S Lokesh
- Department of Energy & Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
26
|
Chen S, Jiang W, Sun Z. Mechanism of fungal inhibition activity of Nα-lauroyl-L-arginine ethyl ester (LAE) and potential in control of Penicillium expansum on postharvest citrus 'Benimadonna' (Citrus reticulata × Citrus sinensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4668-4676. [PMID: 35174504 DOI: 10.1002/jsfa.11827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Citrus 'Benimadonna' (Citrus reticulata × Citrus sinensis) is a high-value perishable fruit; thus there is an urgent need for a preservation technology with high effectiveness and low safety risk from industries. Nα-Lauroyl-l-arginine ethyl ester hydrochloride (LAE) was applied to enhance preservability by compounding with natamycin, and a possible fungal inhibition mechanism based on the hypothesis of an impact on the cell membrane by surfactant was investigated. RESULTS In vitro testing showed that the minimum inhibitory concentration of LAE against Penicillium expansum (PE), isolated as the predominant spoilage-inducing fungus, was 32 mg L-1 and it was partially synergistic with natamycin. Subsequent in vivo testing proved the inhibition capacity. During 90 days' refrigerated preservation, spoilage rate was significantly decreased by preharvest spraying versus control without extra taste loss, and LAE showed an alleviating benefit on total pectin loss. Subsequently, electron microscopic imaging and intracellular protein levels of PE exposed to LAE indicated that LAE stress led to increased permeability and decreased cell integrity. Moreover, peroxidase, superoxide dismutase and catalase revealed that LAE enhanced oxidative stress, while pectinase was antagonized. CONCLUSION The present investigation first introduced LAE as a candidate active ingredient for citrus preservative. A theoretical basis was provided for the development of preservation technology for high-value perishable fruit. According to the authors' knowledge this study is the first report on the inhibition mechanism of LAE in terms of oxidative stress. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanqiao Chen
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Wei Jiang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Zhidong Sun
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| |
Collapse
|
27
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
28
|
Fernández G, Sbres M, Lado J, Pérez-Faggiani E. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract. Int J Food Microbiol 2022; 368:109605. [DOI: 10.1016/j.ijfoodmicro.2022.109605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
29
|
Ahirwar LK, Sheba E, Jakati S, Jayasudha R, Padakandla SR, Bagga B, Sharma S. Elucidating the clinical, microbiological and molecular diagnostic aspects of Macrophomina phaseolina keratitis. Med Mycol 2022; 60:myac024. [PMID: 35472145 DOI: 10.1093/mmy/myac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
This study reports the clinico-microbiological features of Macrophomina phaseolina keratitis. Clinically diagnosed as microbial keratitis, six patients underwent microbiological evaluation. Fungal culture isolates from cornea were subjected to DNA sequencing of the ITS region, phylogenetic analysis and reconfirmation by polymerase chain reaction (PCR). Minimum inhibitory concentrations (MICs) of six antifungal drugs were determined by microbroth dilution method against the six isolates. All patients were treated with antifungals. Failed medical therapy necessitated therapeutic penetrating keratoplasty (TPK). Corneal buttons were processed for histopathology. In all patients, the corneal scraping showed septate hyaline fungal filaments. The BLAST analysis for ITS sequences of all six fungal isolates suggested M. phaseolina, however, when limited to sequences from type material, they matched M. pseudophaseolina. Phylogenetic analysis could not differentiate between these two species and clustered in a single clade. PCR assay of specific gene sequence [MpCal (calmodulin)] reconfirmed all isolates as M. phaseolina. The MICs of voriconazole and posaconazole were lowest (0.03 to 2 and 0.1 to 2µg/mL respectively) and all isolates were susceptible to natamycin. Except for case 1, which healed with a scar on treatment, all other cases worsened, despite medical treatment, necessitating TPK. Histopathology of 3 out of 4 buttons showed the presence of fungal filaments. While direct microscopic examination of corneal scrapings is helpful in diagnosis, identification of M. phaseolina in culture is challenging. Although MICs of commonly used antifungals are low response to medical therapy is not encouraging; patients may require TPK for resolution of infection in M. phaseolina keratitis.
Collapse
Affiliation(s)
- Lalit Kishore Ahirwar
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Esther Sheba
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Rajagopalaboopathi Jayasudha
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Shalem Raj Padakandla
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Bhupesh Bagga
- The Cornea Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, L. V. Prasad Marg, Banjara Hills, Hyderabad-500034, India
| |
Collapse
|
30
|
Eldin AM, Al-Sharnouby SFS, ElGabry KIM, Ramadan AI. Aspergillus terreus, Penicillium sp. and Bacillus sp. isolated from mangrove soil having laccase and peroxidase role in depolymerization of polyethylene bags. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
32
|
Prajna NV, Lalitha P, Krishnan T, Rajaraman R, Radnakrishnan N, Srinivasan M, Devi L, Das M, Liu Z, Zegans ME, Acharya NR, Porco TC, Lietman TM, Rose-Nussbaumer J. Patterns of Antifungal Resistance in Adult Patients With Fungal Keratitis in South India: A Post Hoc Analysis of 3 Randomized Clinical Trials. JAMA Ophthalmol 2022; 140:179-184. [PMID: 35024776 PMCID: PMC8759027 DOI: 10.1001/jamaophthalmol.2021.5765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
IMPORTANCE Antifungal resistance has been shown to impact treatment success, but research analyzing antifungal resistance is scarce. OBJECTIVE To evaluate changes in antifungal resistance over time. DESIGN, SETTING, AND PARTICIPANTS Ad hoc analysis of 3 randomized clinical trials including consecutive patients 18 years and older presenting with smear-positive fungal ulcers to Aravind Eye Hospitals in Madurai, Coimbatore, Pondicherry, and Tirunelveli in South India who participated in 1 of 3 clinical trials: the Mycotic Ulcer Treatment Trials (MUTT) I (2010 to 2011) or II (2010 to 2015) or the Cross-Linking Assisted Infection Reduction (CLAIR) trial (2016 to 2018). This post hoc analysis was designed in March 2021 and data were analyzed in May and November 2021. INTERVENTIONS Minimum inhibitory concentration (MIC) of natamycin and voriconazole was determined from corneal cultures obtained using standardized methods outlined in the Clinical and Laboratory Standards Institute. MAIN OUTCOMES AND MEASURES The primary outcome of this post hoc analysis was MIC of natamycin and voriconazole. RESULTS A total of 890 fungal isolates were obtained from 651 patients (mean [SD] age, 49.6 [13.0]; 191 [43.3%] female) from 2010 to 2018. MICs were available for 522 samples in 446 patients. Fungal isolates overall demonstrated a 1.02-fold increase per year in voriconazole resistance as measured by MICs (95% CI, 1.00-1.04; P = .06). In subgroup analyses, Fusarium species demonstrated a 1.04-fold increase in voriconazole resistance per year (95% CI, 1.00-1.06; P = .01). Fungal isolates showed a 1.06-fold increase in natamycin resistance per year overall (95% CI, 1.03-1.09; P < .001). Fusarium species had a 1.06-fold increase in natamycin resistance (95% CI, 1.05-1.08; P < .001), Aspergillus had a 1.09-fold increase in resistance (95% CI, 1.05-1.15; P < .001), and other filamentous fungi had a 1.07-fold increase in resistance to natamycin per year (95% CI, 1.04-1.10; P < .001). CONCLUSIONS AND RELEVANCE This post hoc analysis suggests that susceptibility to both natamycin and voriconazole may be decreasing over the last decade in South India. While a trend of increasing resistance could impact treatment of mycoses in general and infectious fungal keratitis in particular, further study is needed to confirm these findings and determine their generalizability to other regions of the world. TRIAL REGISTRATION ClinicalTrials.gov Identifiers: NCT00996736 and NCT02570321.
Collapse
Affiliation(s)
- N. Venkatesh Prajna
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Prajna Lalitha
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Tiruvengada Krishnan
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Revathi Rajaraman
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Naveen Radnakrishnan
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Muthiah Srinivasan
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Lumbini Devi
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Manoranjan Das
- Aravind Eye Care System, Madurai, Pondicherry, Tirunelveli, and Coimbatore, India
| | - Zijun Liu
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco
| | | | - Nisha R. Acharya
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco,Department of Ophthalmology, University of California, San Francisco, San Francisco
| | - Travis C. Porco
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco,Department of Ophthalmology, University of California, San Francisco, San Francisco,UCSF Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco,Department of Ophthalmology, University of California, San Francisco, San Francisco,UCSF Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Jennifer Rose-Nussbaumer
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco,Department of Ophthalmology, University of California, San Francisco, San Francisco,Byers Eye Institute, Stanford University, Palo Alto, California
| |
Collapse
|
33
|
Schrecker J, Seitz B, Berger T, Daas L, Behrens-Baumann W, Auw-Hädrich C, Schütt S, Kerl S, Rentner-Andres S, Hof H. Malignant Keratitis Caused by a Highly-Resistant Strain of Fusarium Tonkinense from the Fusarium Solani Complex. J Fungi (Basel) 2021; 7:jof7121093. [PMID: 34947075 PMCID: PMC8707679 DOI: 10.3390/jof7121093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022] Open
Abstract
Fusarium spp. are moulds ubiquitously distributed in nature and only occasionally pathogenic for humans. Species of the Fusarium solani complex are the predominant keratitis-inducing pathogens, because they are endowed with proper virulence factors. These fungi can adhere to the cornea creating a biofilm and, with the help of enzymes and cytotoxins, penetrate the cornea. Whereas an intact cornea is hardly able to be invaded by Fusarium spp. in spite of appropriate virulence factors, these opportunistic fungi may profit from predisposing conditions, for example mechanical injuries. This can lead to a progressive course of corneal infection and may finally affect the whole eye up to the need for enucleation. Here, we present and discuss the clinical, microbiological and histopathological aspects of a particular case due to Fusarium tonkinense of the Fusarium solani complex with severe consequences in a patient without any obvious predisposing factors. A broad portfolio of antifungal agents was applied, both topically and systemically as well as two penetrating keratoplasties were performed. The exact determination of the etiologic agent of the fungal infection proved likewise to be very challenging.
Collapse
Affiliation(s)
- Jens Schrecker
- Department of Ophthalmology, Rudolf Virchow Klinikum Glauchau, Virchowstraße 18, D-08371 Glauchau, Germany;
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Kirrbergstr. 100, D-66424 Homburg, Germany; (B.S.); (T.B.); (L.D.)
| | - Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, Kirrbergstr. 100, D-66424 Homburg, Germany; (B.S.); (T.B.); (L.D.)
| | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center, Kirrbergstr. 100, D-66424 Homburg, Germany; (B.S.); (T.B.); (L.D.)
| | - Wolfgang Behrens-Baumann
- Emeritus, Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Eckenbornweg 5j, D-37075 Göttingen, Germany;
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Kilianstr. 5, D-79106 Freiburg im Breisgau, Germany;
| | - Sabine Schütt
- MVZ Labor Limbach and Colleagues, Im Breitspiel 16, D-69126 Heidelberg, Germany; (S.S.); (S.K.)
| | - Sabine Kerl
- MVZ Labor Limbach and Colleagues, Im Breitspiel 16, D-69126 Heidelberg, Germany; (S.S.); (S.K.)
| | - Sascha Rentner-Andres
- Limbach Analytics GmbH, Arotop Laboratories, Dekan-Laiststr. 9, D-55129 Mainz, Germany;
| | - Herbert Hof
- MVZ Labor Limbach and Colleagues, Im Breitspiel 16, D-69126 Heidelberg, Germany; (S.S.); (S.K.)
- Correspondence: ; Tel.: +49-6221-34-32-342
| |
Collapse
|
34
|
Meena M, Prajapati P, Ravichandran C, Sehrawat R. Natamycin: a natural preservative for food applications-a review. Food Sci Biotechnol 2021; 30:1481-1496. [PMID: 34868698 DOI: 10.1007/s10068-021-00981-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Natamycin is a natural antimicrobial peptide produced by the strains of Streptomyces natalensis. It effectively acts as an antifungal preservative on various food products like yogurt, khoa, sausages, juices, wines, etc. Additionally, it has been used as a bio preservative and is listed as generally recognized as a safe ingredient for various food applications. In this review, natamycin properties, production methods, toxicity, and application as a natural preservative in different foods are emphasized. This review also focuses on optimal condition and process control required in natamycin production. The mode of action and inhibitory effect of natamycin on yeast and molds inhibition and its formulation and dosage to preserve various food products, coating, and hurdle applications are summarized. Understanding the scientific factors in natamycin's production process, its toxicity, and its efficiency as a preservative will open its practical application in various food products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00981-1.
Collapse
Affiliation(s)
- Mahima Meena
- Institute of Home Economics, University of Delhi, New Delhi, India
| | | | - Chandrakala Ravichandran
- Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, 641114 India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
35
|
Chang P, Tai B, Zheng M, Yang Q, Xing F. Inhibition of Aspergillus flavus growth and aflatoxin B1 production by natamycin. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aspergillus flavus causes huge crop losses, reduces crop quality and has adverse effects on human and animal health. A large amount of food contaminated with aflatoxin can greatly increase the risk of liver cancer. Therefore, prevention and control of aflatoxin production have aroused attention of research in various countries. Natamycin extracted from Streptomyces spp. has been widely used in production practice due to its good specificity and safety. Here, we found that natamycin could significantly inhibit fungal growth, conidia germination, ergosterol and AFB1 production by A. flavus in a dose-dependent manner. Scanning electron microscope analysis indicated that the number of conidia was decreased, the outer wall of conidia was destroyed, and the mycelia were shrivelled and tangled by natamycin. RNA-Seq data indicated that natamycin inhibited fungal growth and conidia development of A. flavus by significantly down-regulating some genes involved in ergosterol biosynthesis, such as Erg13, HMG1 and HMG2. It inhibited conidia germination by significantly down-regulating some genes related to conidia development, such as FluG and VosA. After natamycin exposure, the decreased ratio of aflS/aflR caused by the down-regulation of all the structural genes, which subsequently resulted in the suppression of AFB1 production. In conclusion, this study served to reveal the inhibitory mechanisms of natamycin on fungal growth and AFB1 biosynthesis in A. flavus and to provide solid evidence for its application in controlling AFB1 contamination.
Collapse
Affiliation(s)
- P. Chang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - B. Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China P.R
| | - M. Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - Q. Yang
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
| | - F. Xing
- College of Food Science and Engineering, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China P.R
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China P.R
| |
Collapse
|
36
|
Szaliński M, Zgryźniak A, Rubisz I, Gajdzis M, Kaczmarek R, Przeździecka-Dołyk J. Fusarium Keratitis-Review of Current Treatment Possibilities. J Clin Med 2021; 10:jcm10235468. [PMID: 34884170 PMCID: PMC8658515 DOI: 10.3390/jcm10235468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
In many parts of the world, fungi are the predominant cause of infectious keratitis; among which, Fusarium is the most commonly isolated pathogen. The clinical management of this ophthalmic emergency is challenging. Due to the retardation of the first symptoms from an injury and the inability to differentiate fungal from bacterial infections based on clinical symptoms and difficult microbial diagnostics, proper treatment, in many cases, is postponed. Moreover, therapeutical options of Fusarium keratitis remain limited. This paper summarizes the available treatment modalities of Fusarium keratitis, including antifungals and their routes of administration, antiseptics, and surgical interventions.
Collapse
Affiliation(s)
- Marek Szaliński
- Department of Ophthalmology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; (M.S.); (M.G.); (R.K.); (J.P.-D.)
- Clinic of Ophthalmology, University Teaching Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Aleksandra Zgryźniak
- Clinic of Ophthalmology, University Teaching Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
- Correspondence:
| | - Izabela Rubisz
- Okulus Ophthalmology Clinic, ul. Śródmiejska 34, 62-800 Kalisz, Poland;
| | - Małgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; (M.S.); (M.G.); (R.K.); (J.P.-D.)
| | - Radosław Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; (M.S.); (M.G.); (R.K.); (J.P.-D.)
- Clinic of Ophthalmology, University Teaching Hospital, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Joanna Przeździecka-Dołyk
- Department of Ophthalmology, Wroclaw Medical University, ul. Borowska 213, 50-556 Wrocław, Poland; (M.S.); (M.G.); (R.K.); (J.P.-D.)
- Department of Optics and Photonics, Wroclaw University of Science and Technology, Wyb. Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
37
|
Abstract
Microorganisms cooperate with each other to protect themselves from environmental stressors. An extreme case of such cooperation is regulated cell death for the benefit of other cells. Dying cells can provide surviving cells with nutrients or induce their stress response by transmitting an alarm signal; however, the role of dead cells in microbial communities is unclear. Here, we searched for types of stressors the protection from which can be achieved by death of a subpopulation of cells. Thus, we compared the survival of Saccharomyces cerevisiae cells upon exposure to various stressors in the presence of additionally supplemented living versus dead cells. We found that dead cells contribute to yeast community resistance against macrolide antifungals (e.g., amphotericin B [AmB] and filipin) to a greater extent than living cells. Dead yeast cells absorbed more macrolide filipin than control cells because they exposed intracellular sterol-rich membranes. We also showed that, upon the addition of lethal concentrations of AmB, supplementation with AmB-sensitive cells but not with AmB-resistant cells enabled the survival of wild-type cells. Together, our data suggest that cell-to-cell heterogeneity in sensitivity to AmB can be an adaptive mechanism helping yeast communities to resist macrolides, which are naturally occurring antifungal agents. IMPORTANCE Eukaryotic microorganisms harbor elements of programmed cell death (PCD) mechanisms that are homologous to the PCD of multicellular metazoa. However, it is still debated whether microbial PCD has an adaptive role or whether the processes of cell death are an aimless operation in self-regulating molecular mechanisms. Here, we demonstrated that dying yeast cells provide an instant benefit for their community by absorbing macrolides, which are bacterium-derived antifungals. Our results illustrate the principle that the death of a microorganism can contribute to the survival of its kin and suggest that early plasma membrane permeabilization improves community-level protection. The latter makes a striking contrast to the manifestations of apoptosis in higher eukaryotes, the process by which plasma membranes maintain integrity.
Collapse
|
38
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Chen D, Förster H, Nguyen K, Adaskaveg JE. Organic Acid Sanitizers for Natamycin and Other Fungicides in Recirculating Application Systems for Citrus Postharvest Decay Management. PLANT DISEASE 2021; 105:2907-2913. [PMID: 33822660 DOI: 10.1094/pdis-01-21-0227-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natamycin is a new postharvest biofungicide for citrus and some other fruit crops in the United States that can be effectively used in recycling drench or flooder treatments. These applications necessitate sanitation of the fungicide solution to ensure that it remains free from contamination by bacteria that are potentially human pathogens. During in vitro experiments, heated (48°C) citric acid (1,100 or 2,200 μg/ml) amended with sodium dodecylbenzenesulfonate (SDBS) (60 or 120 μg/ml, respectively) significantly reduced the viability of a nonpathogenic strain of Escherichia coli in natamycin solutions by >5 log10 compared with the control. During laboratory studies with Penicillium digitatum-inoculated lemon fruit, 1,000 μg/ml of natamycin mixed with 1,000 μg/ml of lactic acid or citric acid and with or without SDBS (55 μg/ml) effectively and significantly reduced green mold. Natamycin mixed with lactic acid at ≥2,000 μg/ml, however, caused fruit injury, resulting in browning and rind pitting. Natamycin was incompatible with peroxyacetic acid, resulting in reduced efficacy against green mold. Sodium hypochlorite mixed with natamycin lost its toxicity to E. coli; however, the performance of natamycin was not affected. With heated (average 49°C) drench treatments on an experimental packing line, natamycin (1,000 μg/ml), fludioxonil (300 μg/ml), or azoxystrobin (300 μg/ml) mixed with citric acid (1,000 μg/ml) and SDBS (55 μg/ml) were effective against green mold without fruit injury. At a pH between 3.6 and 3.8, citric acid-SDBS significantly reduced the viability of E. coli by approximately 4 log10 in mixtures with fludioxonil or azoxystrobin, but not with natamycin. However, natamycin at 1,000 μg/ml mixed with 2,000 μg/ml of citric acid and SDBS (55 μg/ml) significantly reduced E. coli counts by >4 log10 within 4 min when the pH was maintained between 3.0 and 3.3, and the efficacy of the fungicide was retained. The use of citric acid with a surfactant can be a viable alternative sanitation method for natamycin in citrus packinghouses utilizing heated recirculating fungicide systems.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Helga Förster
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Kevin Nguyen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - James E Adaskaveg
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| |
Collapse
|
40
|
Luciano CG, Tessaro L, Lourenço RV, Bittante AMQB, Fernandes AM, Sobral PJA. Bi‐layer gelatin active films with “Pitanga” leaf hydroethanolic extract and/or natamycin in the second layer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carla G. Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Rodrigo V. Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Ana Mônica Q. B. Bittante
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Andrezza M. Fernandes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| | - Paulo J. A. Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
- Food Research Center (FoRC) University of São Paulo São Paulo Brazil
| |
Collapse
|
41
|
An Y, Jiang J, Zhou L, Shi J, Jin P, Li L, Peng L, He S, Zhang W, Huang C, Zou B, Xie N. Peroxiredoxin 1 is essential for natamycin-triggered apoptosis and protective autophagy in hepatocellular carcinoma. Cancer Lett 2021; 521:210-223. [PMID: 34428517 DOI: 10.1016/j.canlet.2021.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide and lacks effective treatment. Herein, we found that the antifungal Natamycin (NAT) exhibits antitumor activity by inducing apoptosis both in vitro and in vivo. Mechanistically, NAT downregulates the expression of Peroxiredoxin 1 (PRDX1) by promoting ubiquitination-mediated degradation, thereby leading to increased reactive oxygen species (ROS) accumulation and subsequent apoptosis. Exogenous overexpression of PRDX1 or N-acetyl-l-cysteine (NAC) pretreatment abrogates NAT-induced cytotoxicity in PLC/PRF/5 and Huh7 cells, suggesting the vital role of ROS in the antitumor properties of NAT. Of note, downregulation of PRDX1 decreases the phosphorylation of AKT, thereby inducing cytoprotective autophagy and combinational use of NAT and chloroquine (CQ) achieves better anti-tumor efficacy. Moreover, NAT acts synergistically with sorafenib (SOR) in HCC suppression. Collectively, our study provides an important molecular basis for NAT-induced cell death and suggests that the antifungal NAT holds the potential to be repurposed as an anticancer drug for HCC treatment.
Collapse
Affiliation(s)
- Yao An
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Zhou
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jinyu Shi
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ping Jin
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liyuan Peng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyu He
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenhui Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
42
|
Staniszewska M, Kuryk Ł, Gryciuk A, Kawalec J, Rogalska M, Baran J, Łukowska-Chojnacka E, Kowalkowska A. In Vitro Anti- Candida Activity and Action Mode of Benzoxazole Derivatives. Molecules 2021; 26:5008. [PMID: 34443595 PMCID: PMC8398596 DOI: 10.3390/molecules26165008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022] Open
Abstract
A newly synthetized series of N-phenacyl derivatives of 2-mercaptobenzoxazole, including analogues of 5-bromo- and 5,7-dibromobenzoxazole, were screened against Candida strains and the action mechanism was evaluated. 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanone (5d), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichloro-phenyl)ethanone (5i), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,4,6-trichlorophenyl)ethanone (5k) and 2-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]-1-phenylethanone (6a) showed anti-C. albicans SC5314 activity, where 5d displayed MICT = 16 µg/mL (%R = 100) and a weak anti-proliferative activity against the clinical strains: C. albicans resistant to azoles (Itr and Flu) and C. glabrata. Derivatives 5k and 6a displayed MICP = 16 µg/mL and %R = 64.2 ± 10.6, %R = 88.0 ± 9.7, respectively, against the C. albicans isolate. Derivative 5i was the most active against C. glabrata (%R = 53.0 ± 3.5 at 16 µg/mL). Benzoxazoles displayed no MIC against C. glabrata. Benzoxazoles showed a pleiotropic action mode: (1) the total sterols content was perturbed; (2) 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(3,4-dichlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichlorophenyl)ethanol (8h-i) at the lowest fungistatic conc. inhibited the efflux of the Rho123 tracker during the membrane transport process; (3) mitochondrial respiration was affected/inhibited by the benzoxazoles: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-chlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanol 8c-d and 8i. Benzoxazoles showed comparable activity to commercially available azoles due to (1) the interaction with exogenous ergosterol, (2) endogenous ergosterol synthesis blocking as well as (3) membrane permeabilizing properties typical of AmB. Benzoxazoles display a broad spectrum of anti-Candida activity and action mode towards the membrane without cross-resistance with AmB; furthermore, they are safe to mammals.
Collapse
Affiliation(s)
- Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Łukasz Kuryk
- Department of Virology, National Institute of Public Health-NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland
| | - Aleksander Gryciuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Joanna Kawalec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Marta Rogalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| |
Collapse
|
43
|
Chen D, Fӧrster H, Adaskaveg JE. Baseline Sensitivities of Major Citrus, Pome, and Stone Fruits Postharvest Pathogens to Natamycin and Estimation of the Resistance Potential in Penicillium digitatum. PLANT DISEASE 2021; 105:2114-2121. [PMID: 33306429 DOI: 10.1094/pdis-07-20-1421-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natamycin is a biofungicide that was registered in the United States in 2016 and approved in California in 2017 for postharvest use on citrus and stone fruits. It has been used as a food preservative for many decades, with no resistance ever observed to date. The objective of this study was to determine baseline sensitivities for mycelial growth of 43 to 72 isolates of seven postharvest pathogens to natamycin and the resistance potential of Penicillium digitatum. Mean effective concentrations to inhibit mycelial growth by 50% (EC50 values), as determined by the spiral gradient method, were 0.90 μg/ml for Alternaria alternata, 0.76 μg/ml for Botrytis cinerea, 3.20 μg/ml for Geotrichum citri-aurantii, 0.17 μg/ml for Monilinia fructicola, 1.54 μg/ml for P. digitatum, 1.14 μg/ml for P. expansum, and 0.48 μg/ml for Rhizopus stolonifer. Distributions of EC50 values for each pathogen were unimodal and mostly normal with no outliers detected. Natamycin was also inhibitory to spore germination with values for five of the species similar to those for mycelial growth. Microscopically, natamycin generally arrested spores at the pregermination swelling stage. Mass platings of a conidial mixture of 10 isolates of P. digitatum were inoculated on agar media with 2.5-log radial concentration gradients of natamycin or fludioxonil, and a conidial mixture of 10 isolates of G. citri-aurantii were plated on media amended with natamycin or propiconazole. No resistant isolates were observed for both species to natamycin or for G. citri-aurantii to propiconazole, whereas a resistance frequency of 4.5 × 10-6 to 3.1 × 10-6 was calculated for P. digitatum to fludioxonil. The wide spectrum of activity against different fungal pathogens and a low resistance potential support the registration of natamycin as a postharvest treatment and its integration into an integrated pest management program with other practices including sanitation and rotation of other fungicides with different modes of action.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Helga Fӧrster
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - James E Adaskaveg
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| |
Collapse
|
44
|
Development of a natamycin-based non-migratory antimicrobial active packaging for extending shelf-life of yogurt drink (Doogh). Food Chem 2021; 366:130606. [PMID: 34311233 DOI: 10.1016/j.foodchem.2021.130606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023]
Abstract
A natamycin-based non-migratory antimicrobial packaging for extending shelf-life of yogurt drink (Doogh) was developed. Firstly, the surface of low-density polyethylene film (LDPE) was modified with acrylic acid at different times of UV exposure (0-10 min) to produce carboxylic functional groups. Then, natamycin was applied to the UV-treated films to bind covalently with the pendent functional groups. The maximum grafting efficiency (81.96%) was obtained for the 6 min treated film. Moreover, surface properties of films were evaluated by Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Antifungal activity of different treatments of natamycin grafted film was evaluated against two common spoilage yeasts of Doogh including Rhodotorula mucilaginosa and Candida parapsilosis. Results showed that 6 min treated film provides maximum anti-yeast activity and can be applied to control fungal growth in Doogh. Natamycin-grafted film postponed the yeast spoilage in Doogh and prolonged its shelf-life to 23 days.
Collapse
|
45
|
Walther G, Zimmermann A, Theuersbacher J, Kaerger K, von Lilienfeld-Toal M, Roth M, Kampik D, Geerling G, Kurzai O. Eye Infections Caused by Filamentous Fungi: Spectrum and Antifungal Susceptibility of the Prevailing Agents in Germany. J Fungi (Basel) 2021; 7:511. [PMID: 34206899 PMCID: PMC8307352 DOI: 10.3390/jof7070511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.
Collapse
Affiliation(s)
- Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Anna Zimmermann
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| | - Johanna Theuersbacher
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Kerstin Kaerger
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Marie von Lilienfeld-Toal
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Department of Haematology and Medical Oncology, University Hospital Jena, 07747 Jena, Germany
| | - Mathias Roth
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Gerd Geerling
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| |
Collapse
|
46
|
Guo X, Zhang J, Li X, Xiao E, Lange JD, Rienstra CM, Burke MD, Mitchell DA. Sterol Sponge Mechanism Is Conserved for Glycosylated Polyene Macrolides. ACS CENTRAL SCIENCE 2021; 7:781-791. [PMID: 34079896 PMCID: PMC8161476 DOI: 10.1021/acscentsci.1c00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 05/07/2023]
Abstract
Amphotericin-like glycosylated polyene macrolides (GPMs) are a clinically and industrially important family of natural products, but the mechanisms by which they exert their extraordinary biological activities have remained unclear for more than half a century. Amphotericin B exerts fungicidal action primarily via self-assembly into an extramembranous sponge that rapidly extracts ergosterol from fungal membranes, but it has remained unclear whether this mechanism is applicable to other GPMs. Using a highly conserved polyene-hemiketal region of GPMs that we hypothesized to represent a conserved ergosterol-binding domain, we bioinformatically mapped the entirety of the GPM sequence-function space and expanded the number of GPM biosynthetic gene clusters (BGCs) by 10-fold. We further leveraged bioinformatic predictions and tetrazine-based reactivity screening targeting the electron-rich polyene region of GPMs to discover a first-in-class methyltetraene- and diepoxide-containing GPM, kineosporicin, and to assign BGCs to many new producers of previously reported members. Leveraging a range of structurally diverse known and newly discovered GPMs, we found that the sterol sponge mechanism of fungicidal action is conserved.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiabao Zhang
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Xinyi Li
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Emily Xiao
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin D. Lange
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department
of Biochemistry and National Magnetic Resonance Facility at Madison, DeLuca Biochemistry Laboratories, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin D. Burke
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Roger Adams Laboratory, University
of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Avenue, Urbana, Illinois 61801, United States
- Department
of Microbiology, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
47
|
Abstract
Polyene antibiotics are macrolide antifungal compounds obtained by fermentation of producer Streptomyces strains. Here we describe commonly used methods for polyene production, detection, and their subsequent extraction and purification. While bioassays are used to detect these compounds based on their biological activity, quantification by spectrophotometry or high-performance liquid chromatography (HPLC ) relies on their physiochemical properties and is more reliable.
Collapse
|
48
|
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel) 2021; 13:347. [PMID: 34065929 PMCID: PMC8150546 DOI: 10.3390/toxins13050347] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets.
Collapse
Affiliation(s)
| | | | | | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (K.D.L.); (K.E.K.); (H.M.)
| |
Collapse
|
49
|
Chen D, Förster H, Adaskaveg JE. Natamycin, a Biofungicide for Managing Major Postharvest Fruit Decays of Citrus. PLANT DISEASE 2021; 105:1408-1414. [PMID: 33320038 DOI: 10.1094/pdis-08-20-1650-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antifungal polyene macrolide natamycin was evaluated as a postharvest biopesticide for citrus fruit. Aqueous spray applications with 1,000 µg/ml were moderately to highly effective against green mold incidence after inoculation but did not reduce sporulation of Penicillium digitatum on infected fruit. Treatments with natamycin were significantly more effective against green mold on grapefruit and lemon than on orange and mandarin, with 92.9, 88.5, 57.5, and 60.9% reductions in decay, respectively, as compared with the control. The biofungicide was compatible with a storage fruit coating but was less effective when applied in a packing coating. However, when either fruit coating was applied following an aqueous natamycin treatment (i.e., staged applications), the incidence of decay was reduced to ≤10.7% as compared with the untreated control (with 81.9%). The incidence of sour rot of lemon and mandarin was also significantly reduced from the untreated control by natamycin (1,000 µg/ml) but propiconazole (540 µg/ml) and propiconazole + natamycin (540 + 500 µg/ml) mixtures generally were significantly more effective than natamycin alone when using a severe inoculation procedure. Experimental and commercial packingline studies demonstrated that natamycin-fludioxonil or natamycin-propiconazole mixtures applied in a storage fruit coating or as an aqueous flooder treatment were highly effective and typically resulted in a >85.0% reduction of green mold and sour rot. Resistance to natamycin has never been documented in filamentous fungi. Thus, the use of natamycin, in contrast to other registered postharvest fungicides for citrus, can be an antiresistance strategy and an effective treatment in mixtures with other fungicides for the management of major postharvest decays of citrus.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Helga Förster
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - James E Adaskaveg
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| |
Collapse
|
50
|
Wang J, Zhu H. Influence of amphotericin B on the thermodynamic properties and surface morphology of saturated phospholipid monolayer with different polar head at the air-water interface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|