1
|
Suzuki T, Taketomi Y, Yanagida K, Yoshida-Hashidate T, Nagase T, Murakami M, Shimizu T, Shindou H. Re-evaluation of the canonical PAF pathway in cutaneous anaphylaxis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159563. [PMID: 39332666 DOI: 10.1016/j.bbalip.2024.159563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions via PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive in vivo. Here, we report that rapid and local PAF generation completely depends on lysophospholipid acyltransferase 9 (LPLAT9, also known as LPCAT2) expressed in mast cells in IgE-mediated passive cutaneous anaphylaxis. However, we found that LPLAT9 knockout (KO) mice did not display attenuated vascular leakage. Additionally, decreased vascular leakage was observed in PAFR KO mice, but not in endothelial cell-specific mice in this model. These divergences highlight a yet unsolved complexity of the biological functions of PAF and PAFR in a pathophysiological process.
Collapse
Affiliation(s)
- Tomoyuki Suzuki
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomomi Yoshida-Hashidate
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Tabe S, Hikiji H, Hashidate‐Yoshida T, Shindou H, Shimizu T, Tominaga K. The role of lysophosphatidylcholine acyltransferase 2 in osteoblastic differentiation of C2C12 cells. FEBS Open Bio 2024; 14:1490-1502. [PMID: 39075841 PMCID: PMC11492341 DOI: 10.1002/2211-5463.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024] Open
Abstract
Glycerophospholipids, a primary component of cellular membranes, play important structural and functional roles in cells. In the remodelling pathway (Lands' cycle), the concerted actions of phospholipase As and lysophospholipid acyltransferases (LPLATs) contribute to the incorporation of diverse fatty acids in glycerophospholipids in an asymmetric manner, which differ between cell types. In this study, the role of LPLATs in osteoblastic differentiation of C2C12 cells was investigated. Gene and protein expression levels of lysophosphatidylcholine acyltransferase 2 (LPCAT2), one of the LPLATs, increased during osteoblastic differentiation in C2C12 cells. LPCAT2 knockdown in C2C12 cells downregulated the expression of osteoblastic differentiation markers and the number and size of lipid droplets (LDs) and suppressed the phosphorylation of Smad1/5/9. In addition, LPCAT2 knockdown inhibited Snail1 and the downstream target of Runx2 and vitamin D receptor (VDR). These results suggest that LPCAT2 modulates osteoblastic differentiation in C2C12 cells through the bone morphogenetic protein (BMP)/Smad signalling pathway.
Collapse
Affiliation(s)
- Shirou Tabe
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| | - Hisako Hikiji
- School of Oral Health SciencesKyushu Dental UniversityKitakyushu‐shiJapan
| | - Tomomi Hashidate‐Yoshida
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
| | - Hideo Shindou
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Agency for Medical Research and Development‐Core Research for Evolutional Medical Science and Technology (AMED‐CREST), AMEDChiyoda‐kuJapan
| | - Takao Shimizu
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Department of Lipidomics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| |
Collapse
|
3
|
Huang Y, Wang Y, Zhen Y, Liu W, Wang Y, Wang R, Wang N, Huang S, Yan J, Sun Q. LPCAT1 Facilitates Keratinocyte Hyperproliferation and Skin Inflammation in Psoriasis by Regulating GLUT3. J Invest Dermatol 2024; 144:1479-1490.e14. [PMID: 38246582 DOI: 10.1016/j.jid.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Psoriasis is a chronic and relapsing inflammatory skin disorder characterized by keratinocyte hyperproliferation and immune cell infiltration. LPCAT1 has been identified as a cancer promoter in cutaneous squamous cell carcinoma by us, yet its role in psoriasis remains elusive. In this study, we report that LPCAT1 is highly expressed in psoriatic skin lesions. LPCAT1 promotes keratinocyte hyperproliferation and enhances the secretion of IL-1β, IL-6, CXCL10, CCL20, S100A9, and platelet-activating factor. In psoriasiform keratinocytes, LPCAT1 promotes proliferation and inflammatory mediator production by activating protein kinase B/NF-κB and signal transducer and activator of transcription 3 signaling pathways. Furthermore, LPCAT1 inhibition attenuated epidermal hyperplasia and relieved skin inflammation in imiquimod-treated mice. Importantly, we identify the glucose transporter GLUT3, a recently reported promising target to mitigate T helper 17 cell-mediated inflammatory diseases, as a critical downstream effector of LPCAT1. GLUT3 deficiency impaired the proliferation and inflammation of psoriatic keratinocytes. LPCAT1 regulates GLUT3 in keratinocytes through NF-κB/signal transducer and activator of transcription 3 signaling, enhancing keratinocyte glycolysis and promoting proproliferative and proinflammatory effects. In addition, suppressing GLUT3 in mice alleviated imiquimod-induced dermatitis. Taken together, our study indicates the critical role of the LPCAT1-GLUT3 axis in psoriasis pathogenesis and proposes LPCAT1 or GLUT3 as a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Yingjian Huang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruijie Wang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
Murano H, Inoue S, Hashidate-Yoshida T, Shindou H, Shimizu T, Otaki Y, Minegishi Y, Kitaoka T, Futakuchi M, Igarashi A, Nishiwaki M, Nemoto T, Sato M, Kobayashi M, Sato K, Hanawa T, Miyazaki O, Watanabe M. Lysophospholipid Acyltransferase 9 Promotes Emphysema Formation via Platelet-activating Factor. Am J Respir Cell Mol Biol 2024; 70:482-492. [PMID: 38377392 DOI: 10.1165/rcmb.2023-0253oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024] Open
Abstract
Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hiroaki Murano
- Department of Cardiology, Pulmonology, and Nephrology and
- Department of Lipid Life Science and
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Hideo Shindou
- Department of Lipid Life Science and
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Takao Shimizu
- Department of Lipid Signaling Project, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Takumi Kitaoka
- Department of Pathology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Maki Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology and
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology and
| | | | - Osamu Miyazaki
- Department of Cardiology, Pulmonology, and Nephrology and
| | | |
Collapse
|
5
|
Dalmaso B, Liber AMP, Ventura DF, Jancar S, Del Debbio CB. Platelet-activating factor receptor (PAFR) regulates neuronal maturation and synaptic transmission during postnatal retinal development. Front Cell Neurosci 2024; 18:1343745. [PMID: 38572071 PMCID: PMC10988781 DOI: 10.3389/fncel.2024.1343745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Platelet-activating factor (PAF), PAF receptor (PAFR), and PAF- synthesis/degradation systems are involved in essential CNS processes such as neuroblast proliferation, differentiation, migration, and synaptic modulation. The retina is an important central nervous system (CNS) tissue for visual information processing. During retinal development, the balance between Retinal Progenitor Cell (RPC) proliferation and differentiation is crucial for proper cell determination and retinogenesis. Despite its importance in retinal development, the effects of PAFR deletion on RPC dynamics are still unknown. Methods We compared PAFR knockout mice (PAFR-/-) retinal postnatal development proliferation and differentiation aspects with control animals. Electrophysiological responses were analyzed by electroretinography (ERG). Results and discussion In this study, we demonstrate that PAFR-/- mice increased proliferation during postnatal retinogenesis and altered the expression of specific differentiation markers. The retinas of postnatal PAFR-/- animals decreased neuronal differentiation and synaptic transmission markers, leading to differential responses to light stimuli measured by ERG. Our findings suggest that PAFR signaling plays a critical role in regulating postnatal RPC cell differentiation dynamics during retinal development, cell organization, and neuronal circuitry formation.
Collapse
Affiliation(s)
- Barbara Dalmaso
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| | - Andre Mauricio Passos Liber
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (IP-USP), São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (IP-USP), São Paulo, Brazil
| | - Sonia Jancar
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| |
Collapse
|
6
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Sato T, Umebayashi S, Senoo N, Akahori T, Ichida H, Miyoshi N, Yoshida T, Sugiura Y, Goto-Inoue N, Kawana H, Shindou H, Baba T, Maemoto Y, Kamei Y, Shimizu T, Aoki J, Miura S. LPGAT1/LPLAT7 regulates acyl chain profiles at the sn-1 position of phospholipids in murine skeletal muscles. J Biol Chem 2023:104848. [PMID: 37217003 PMCID: PMC10285227 DOI: 10.1016/j.jbc.2023.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle consists of both fast- and slow-twitch fibers. Phospholipids are important structural components of cellular membranes, and the diversity of their fatty acid composition affects membrane fluidity and permeability. Although some studies have shown that acyl chain species in phospholipids differ among various muscle fiber types, the mechanisms underlying these differences are unclear. To investigate this, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules in the murine extensor digitorum longus (EDL; fast-twitch) and soleus (slow-twitch) muscles. In the EDL muscle, the vast majority (93.6%) of PC molecules was palmitate-containing PC (16:0-PC), whereas in the soleus muscle, in addition to 16:0-PC, 27.9% of PC molecules was stearate-containing PC (18:0-PC). Most palmitate and stearate were bound at the sn-1 position of 16:0- and 18:0-PC, respectively, and 18:0-PC was found in type I and IIa fibers. The amount of 18:0-PE was higher in the soleus than in the EDL muscle. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increased the amount of 18:0-PC in the EDL. Lysophosphatidylglycerol acyltransferase 1 (LPGAT1) was highly expressed in the soleus compared with that in the EDL muscle and was upregulated by PGC-1α. LPGAT1 knockout decreased the incorporation of stearate into PC and PE in vitro and ex vivo and the amount of 18:0-PC and 18:0-PE in murine skeletal muscle with an increase in the level of 16:0-PC and 16:0-PE. Moreover, knocking out LPGAT1 decreased the amount of stearate-containing-phosphatidylserine (18:0-PS), suggesting that LPGAT1 regulated the acyl chain profiles of phospholipids, namely PC, PE, and PS, in the skeletal muscle.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shuhei Umebayashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Akahori
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiyori Ichida
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takuya Yoshida
- Laboratory of Clinical Nutrition, Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Baba
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yuki Maemoto
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Environmental and Life Science, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Institute of Microbial Chemistry, Tokyo, 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
8
|
Antonopoulou S, Demopoulos CA. Protective Effect of Olive Oil Microconstituents in Atherosclerosis: Emphasis on PAF Implicated Atherosclerosis Theory. Biomolecules 2023; 13:700. [PMID: 37189447 PMCID: PMC10135796 DOI: 10.3390/biom13040700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Atherosclerosis is a progressive vascular multifactorial process. The mechanisms underlining the initiating event of atheromatous plaque formation are inflammation and oxidation. Among the modifiable risk factors for cardiovascular diseases, diet and especially the Mediterranean diet (MedDiet), has been widely recognized as one of the healthiest dietary patterns. Olive oil (OO), the main source of the fatty components of the MedDiet is superior to the other "Mono-unsaturated fatty acids containing oils" due to the existence of specific microconstituents. In this review, the effects of OO microconstituents in atherosclerosis, based on data from in vitro and in vivo studies with special attention on their inhibitory activity against PAF (Platelet-Activating Factor) actions, are presented and critically discussed. In conclusion, we propose that the anti-atherogenic effect of OO is attributed to the synergistic action of its microconstituents, mainly polar lipids that act as PAF inhibitors, specific polyphenols and α-tocopherol that also exert anti-PAF activity. This beneficial effect, also mediated through anti-PAF action, can occur from microconstituents extracted from olive pomace, a toxic by-product of the OO production process that constitutes a significant ecological problem. Daily intake of moderate amounts of OO consumed in the context of a balanced diet is significant for healthy adults.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition-Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
9
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
10
|
de Carvalho JCS, da Silva-Neto PV, Toro DM, Fuzo CA, Nardini V, Pimentel VE, Pérez MM, Fraga-Silva TFC, Oliveira CNS, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Santos IKFM, Fernandes APM, Maruyama SR, Russo EMS, Bonato VLD, Cardoso CRB, Dias-Baruffi M, Faccioli LH, Sorgi CA. The Interplay among Glucocorticoid Therapy, Platelet-Activating Factor and Endocannabinoid Release Influences the Inflammatory Response to COVID-19. Viruses 2023; 15:v15020573. [PMID: 36851787 PMCID: PMC9959303 DOI: 10.3390/v15020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
Collapse
Affiliation(s)
- Jonatan C. S. de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Pedro V. da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Diana M. Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vinícius E. Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Malena M. Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Thais F. C. Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Camilla N. S. Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Augusto M. Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Fátima M. Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Marley R. Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Rogerio S. Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - José J. R. da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Fernando C. Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Gilberto G. Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Isabel K. F. M. Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Ana P. M. Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto-EERP, Universidade de São Paulo-USP, Ribeirao Preto 14040-902, SP, Brazil
| | - Sandra R. Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos-UFSCar, Sao Carlos 13565-905, SP, Brazil
| | - Elisa M. S. Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vânia L. D. Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Cristina R. B. Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Carlos A. Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-3315-9176
| | | |
Collapse
|
11
|
Antonopoulou S, Petsini F, Detopoulou M, Theoharides TC, Demopoulos CA. Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? Biofactors 2022; 48:1271-1283. [PMID: 35852257 PMCID: PMC9349578 DOI: 10.1002/biof.1877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Previous publications have reported a potent effect of COVID-19 on platelet function and that the Spike protein enhances washed human platelet aggregation induced by various agonists. This study aims to evaluate whether mRNA vaccination for COVID-19 affects human platelet-rich plasma (hPRP) aggregation response, whether a recombinant Spike protein modulates PAF-induced aggregation in hPRP and in washed rabbit platelets (WRP), and to investigate the effect of recombinant Spike protein on the PAF production in the U-937 cell line. Our results showed that PRP from vaccinated individuals exhibited ex vivo lower EC50 values in response to PAF, ADP, and collagen. Platelet incubation with the Spike protein alone did not induce aggregation either in hPRP or in WRP, but resulted in augmentation of in vitro PAF-induced aggregation in hPRP from non-vaccinated individuals and in WRP. When PRP from vaccinated individuals was incubated with the Spike protein and PAF was subsequently added, elimination of the secondary wave of the biphasic aggregation curve was recorded compared with the aggregation induced by PAF alone. Collagen-induced in vitro aggregation was dose-dependently reduced when platelets were pre-incubated with the Spike protein in all tested aggregation experiments. Stimulation of U-937 by the Spike protein induced an increase in intracellular PAF production accompanied by elevation of the activities of all three PAF biosynthetic enzymes. In conclusion, since the Spike protein appears to modulate PAF production and activity, the use of compounds that act as PAF inhibitors, could be considered at least in mild cases of patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Filio Petsini
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Maria Detopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUnited States
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUnited States
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUnited States
| | | |
Collapse
|
12
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
13
|
Nagata K, Hishikawa D, Sagara H, Saito M, Watanabe S, Shimizu T, Shindou H. Lysophosphatidylcholine acyltransferase 1 controls mitochondrial reactive oxygen species generation and survival of retinal photoreceptor cells. J Biol Chem 2022; 298:101958. [PMID: 35452679 PMCID: PMC9136105 DOI: 10.1016/j.jbc.2022.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022] Open
Abstract
Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration-related retinal diseases.
Collapse
Affiliation(s)
- Katsuyuki Nagata
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masamichi Saito
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
14
|
Sato A, Fukase T, Ebina K. Biotinylated peptides substituted with D‐amino acids with high stability as anti‐anaphylactic agents targeting platelet‐activating factor. J Pept Sci 2022; 28:e3412. [DOI: 10.1002/psc.3412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy Iryo Sosei University Fukushima Japan
- Graduate School of Life Science and Technology, Iryo Sosei University Fukushima Japan
| | | | - Keiichi Ebina
- Faculty of Pharmacy Iryo Sosei University Fukushima Japan
| |
Collapse
|
15
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Hamano F, Matoba K, Hashidate-Yoshida T, Suzuki T, Miura K, Hishikawa D, Harayama T, Yuki K, Kita Y, Noda NN, Shimizu T, Shindou H. Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA. FASEB J 2021; 35:e21501. [PMID: 33956375 DOI: 10.1096/fj.202002591r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/11/2022]
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases: lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.
Collapse
Affiliation(s)
- Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | - Tomoyuki Suzuki
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotake Miura
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Harayama
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Koichi Yuki
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Bellon E, Grupp K, Ghadban T, Tachezy M, Bachmann K, Izbicki JR, Simon R, Sauter G, Hube-Magg C, Melling N. Increased lysophosphatidylcholine acyltransferase 1 expression is unrelated to prognosis of esophageal cancer patients. J Cancer Res Clin Oncol 2021; 147:2879-2884. [PMID: 34148155 PMCID: PMC8397628 DOI: 10.1007/s00432-021-03686-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Introduction Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has repeatedly been suggested to be associated with tumorigenesis. To evaluate the role of LPCAT1 in esophageal cancer, LPCAT1 immunostaining was analyzed on a tissue microarray containing samples from esophageal cancer patients. Results In benign esophageal tissue, LPCAT1 staining was detectable in low intensities. LPCAT1 staining was increased in malignant as compared to benign esophageal tissue and was found in high intensity in 26.4% of 288 interpretable esophageal adenocarcinomas (EACs) and in 23.2% of 211 squamous cell carcinomas (ESCCs). Increased LPCAT1 staining was linked to undifferentiated tumor grading in both subtypes of EACs and ESCCs (p = 0.0273 and p = 0.0085). Conclusion However, LPCAT1 was not associated with prognosis of EAC and ESCC patients (p = 0.6838 and p = 0.4695) and thus cannot be considered a prognostic biomarker in esophageal cancers.
Collapse
Affiliation(s)
- Eugen Bellon
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tarik Ghadban
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Bachmann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Robert Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathaniel Melling
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Gopalam R, Datey A, Bijoor S, Chakravortty D, Tumaney AW. Biochemical Characterization of Acyl-CoA: Lysophosphatidylcholine Acyltransferase (LPCAT) Enzyme from the Seeds of Salvia hispanica. Mol Biotechnol 2021; 63:963-972. [PMID: 34129179 DOI: 10.1007/s12033-021-00354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Salvia hispanica (chia) is the highest reported terrestrial plant source of alpha-linolenic acid (ALA, ~ 65%), an ω-3 polyunsaturated fatty acid with numerous health benefits. The molecular basis of high ALA accumulation in chia is yet to be understood. We have identified lysophosphatidylcholine acyltransferase (LPCAT) gene from the developing seed transcriptome data of chia and carried out its biochemical characterization through heterologous expression in Saccharomyces cerevisiae. Expression profiling showed that the enzyme was active throughout the seed development, indicating a pivotal role in oil biosynthesis. The enzyme could utilize both saturated and unsaturated lysophosphatidylcholine substrates at the same rate, to synthesize phosphatidylcholine (PC). The enzyme also exhibited lysophosphatidic acid acyltransferase (LPAAT) activity, by preferring lysophosphatidic acid substrate. Substrate specificity studies showed that the enzyme preferred both monounsaturated and polyunsaturated fatty acyl CoAs over saturated CoAs. This activity may play a key role in enriching the PC fraction with polyunsaturated fatty acids (PUFAs). PUFAs present on PC can be transferred to oil through the action of other acyltransferases. Our results describe a new LPCAT enzyme that can be used to biotechnologically alter oilseed crops to incorporate more PUFA in its seed oil.
Collapse
Affiliation(s)
- Rahul Gopalam
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Sharath Bijoor
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Ajay W Tumaney
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Detopoulou M, Ntzouvani A, Petsini F, Gavriil L, Fragopoulou E, Antonopoulou S. Consumption of Enriched Yogurt with PAF Inhibitors from Olive Pomace Affects the Major Enzymes of PAF Metabolism: A Randomized, Double Blind, Three Arm Trial. Biomolecules 2021; 11:biom11060801. [PMID: 34071485 PMCID: PMC8227157 DOI: 10.3390/biom11060801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35-65 years) were randomly allocated into three groups by block-randomization. The activities of PAF's biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5'-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways.
Collapse
|
20
|
Dalmaso B, da Silva-Junior IA, Fragel-Madeira L, Jancar S, Del Debbio CB. Platelet activating factor in the eye: Physiological roles, diseases and future perspectives. Prostaglandins Other Lipid Mediat 2021; 153:106522. [PMID: 33358892 DOI: 10.1016/j.prostaglandins.2020.106522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Platelet Activating Factor (PAF) is a known phospholipid mediator of inflammation. Since its first description in 1972, it has emerged as a key regulator of vital cellular signaling functions, as proliferation, cell adhesion, and apoptosis. Evidence suggests that interactions between PAF and its receptor (PAFR) play a critical role in nervous system tissues, including the retina. The retina is a very important constituent of the visual system, along with the cornea, sclera, choroid, iris, and ciliary body, that acts synergistically to provide vision and to maintain optical homeostasis. There is evidence that PAF may regulate a wide range of physiological functions in the visual system tissues, such as eye development, inflammation, epithelial wound healing, and synapsis. Due to their multiple functions, PAF and PAFR also have important pathological and clinical implications in ocular disorders such as Choroidal Neovascularization (CNV), Age Macular Degeneration, (AMD), Diabetic Retinopathy (DR), transplant responses, and pharmacological interactions. Studies with PAFR antagonists have shown promising results such as inhibition of neovascularization and chloroquine-induced retinopathies, as well as reducing inflammation and retinal cell death. Due to the importance of PAFR signaling in the visual system and ophthalmology research, this review aims to provide a general overview of current and future perspectives about PAF in eye biology.
Collapse
Affiliation(s)
- Barbara Dalmaso
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Sonia Jancar
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Chen J, Mishra R, Yu Y, McDonald JG, Eckert KM, Gao L, Mendelson CR. Decreased 11β-hydroxysteroid dehydrogenase 1 in lungs of steroid receptor coactivator (Src)-1/-2 double-deficient fetal mice is caused by impaired glucocorticoid and cytokine signaling. FASEB J 2020; 34:16243-16261. [PMID: 33070362 DOI: 10.1096/fj.202001809r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11β-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpβ mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11β-hsd1, C/ebpα and C/ebpβ in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11β-HSD1. Expression of IL-1β and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11β-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ritu Mishra
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yaqin Yu
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, P.R. China.,School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Carole R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K. Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci 2020; 26:e3274. [PMID: 32633098 DOI: 10.1002/psc.3274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfation of estrogens, which are known to prevent the pathogenesis of atherosclerosis. Recently, we found that peptides with a YKDG sequence specifically bind to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis. Here, we investigated the interaction between human SULT1E1 (hSULT1E1), which has a YKEG sequence (residues 61-64) unlike other human SULTs, and Ox-LDL. Results from polyacrylamide gel electrophoresis and western blotting demonstrated that hSULT1E1 specifically binds to Ox-LDL and its major lipid component (lysophosphatidylcholine; LPC), and platelet-activating factor (PAF), which bears a marked resemblance to LPC in terms of structure and activity. Moreover, an N-terminally fluorescein isothiocyanate (FITC)-labeled decapeptide (MIYKEGDVEK; FITC-hSULT1E1-P10) corresponding to residues 59-68 of hSULT1E1 specifically binds to Ox-LDL, LPC, and PAF. Unveiling the specific interaction between hSULT1E1 and Ox-LDL, LPC, and PAF provides important information regarding the mechanisms underlying various diseases caused by Ox-LDL, LPC, and PAF, such as atherosclerosis. In addition, FITC-hSULT1E1-P10 could be used as an efficient fluorescent probe for the detection of Ox-LDL, LPC, and PAF, which could facilitate the mechanistic study, identification, diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Miyuki Yamazaki
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Hinako Watanabe
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Eiko Sakurai
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| |
Collapse
|
23
|
Lysophosphatidylcholine acyltransferase 2 (LPCAT2) co-localises with TLR4 and regulates macrophage inflammatory gene expression in response to LPS. Sci Rep 2020; 10:10355. [PMID: 32587324 PMCID: PMC7316826 DOI: 10.1038/s41598-020-67000-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
Despite extensive investigations, an effective treatment for sepsis remains elusive and a better understanding of the inflammatory response to infection is required to identify potential new targets for therapy. In this study we have used RNAi technology to show, for the first time, that the inducible lysophosphatidylcholine acyltransferase 2 (LPCAT2) plays a key role in macrophage inflammatory gene expression in response to stimulation with bacterial ligands. Using siRNA- or shRNA-mediated knockdown, we demonstrate that, in contrast to the constitutive LPCAT1, LPCAT2 is required for macrophage cytokine gene expression and release in response to TLR4 and TLR2 ligand stimulation but not for TLR-independent stimuli. In addition, cells transfected to overexpress LPCAT2 exhibited increased expression of inflammatory genes in response to LPS and other bacterial ligands. Furthermore, we have used immunoprecipitation and Western blotting to show that in response to LPS, LPCAT2, but not LPCAT1, rapidly associates with TLR4 and translocates to membrane lipid raft domains. Our data thus suggest a novel mechanism for the regulation of inflammatory gene expression in response to bacterial stimuli and highlight LPCAT2 as a potential therapeutic target for development of anti-inflammatory and anti-sepsis therapies.
Collapse
|
24
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
25
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
26
|
Lebok P, von Hassel A, Meiners J, Hube-Magg C, Simon R, Höflmayer D, Hinsch A, Dum D, Fraune C, Göbel C, Möller K, Sauter G, Jacobsen F, Büscheck F, Prien K, Krech T, Krech RH, von der Assen A, Wölber L, Witzel I, Schmalfeldt B, Geist S, Paluchoswski P, Wilke C, Heilenkötter U, Terracciano L, Müller V, Wilczak W, Burandt EC. Up-regulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) is linked to poor prognosis in breast cancer. Aging (Albany NY) 2019; 11:7796-7804. [PMID: 31533087 PMCID: PMC6781992 DOI: 10.18632/aging.102287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated with various cancer types. Here we analyzed by immunohistochemistry its expression in 2,197 breast cancers. LPCAT1 staining was found in 97.8% of 1,774 interpretable tumors, including 48.1% with weak, 28.7% with moderate, and 14.4% with strong expression. The frequency of LPCAT1 positivity depended on the histological tumor type. Moderate or strong LPCAT1 positivity was more common in cancers of no special type (NST) (46.2%) than in lobular carcinomas (25.9%; p<0.0001). Strong LPCAT1 was associated with BRE grade, tumor cell proliferation and overall survival in all cancers and in the subgroup of NST cancers (p<0.0001, each). In the subset of NST cancers the prognostic effect of LPCAT1 expression was independent of pT, and BRE grade (p<0.0001 each). A comparison with molecular features showed that LPCAT1 was strongly associated with estrogen receptor negativity (p<0.0001), progesterone receptor negativity (p<0,0001), amplification of HER2 (p<0.0001) and MYC (p=0.0066), as well as deletions of PTEN (p<0.0001) and CDKNA2 (p=0.0151). It is concluded that LPCAT1 overexpression is linked to adverse tumor features and poor prognosis in breast cancer. These data also highlight the important role of lipid metabolism in breast cancer biology.
Collapse
Affiliation(s)
- Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Aurelia von Hassel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - David Dum
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Kristina Prien
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.,Department of Pathology, Clinical Center Osnabrück, Osnabrück D-49076, Germany
| | - Rainer Horst Krech
- Department of Pathology, Clinical Center Osnabrück, Osnabrück D-49076, Germany
| | - Albert von der Assen
- Breast cancer center, Niels-Stensen Clinic, Franziskus-Hospital Harderberg, Georgsmarienhütte D-49124, Germany
| | - Linn Wölber
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Isabell Witzel
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Stefan Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg D-25421, Germany
| | - Peter Paluchoswski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg D-25421, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn D-25337, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Regio Clinic and Senior Citizen Center Itzehoe, Itzehoe D-25524, Germany
| | - Luigi Terracciano
- Cantonal Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Volkmar Müller
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Waldemar Wilczak
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Eike Christian Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| |
Collapse
|
27
|
Xu WH, Xu Y, Wang J, Wan FN, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL, Ye DW. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY) 2019; 11:6999-7020. [PMID: 31493764 PMCID: PMC6756904 DOI: 10.18632/aging.102233] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Growing evidence has highlighted the immune response as an important feature of carcinogenesis and therapeutic efficacy in clear cell renal cell carcinoma (ccRCC). This study categorized ccRCC cases into high and low score groups based on their immune/stromal scores generated by the ESTIMATE algorithm, and identified an association between these scores and prognosis. Differentially expressed tumor environment (TME)-related genes extracted from common upregulated components in immune and stromal scores were described using functional annotations and protein–protein interaction (PPI) networks. Most PPIs were selected for further prognostic investigation. Many additional previously neglected signatures, including AGPAT9, AQP7, HMGCS2, KLF15, MLXIPL, PPARGC1A, exhibited significant prognostic potential. In addition, multivariate Cox analysis indicated that MIXIPL and PPARGC1A were the most significant prognostic signatures, and were closely related to immune infiltration in TCGA cohort. External prognostic validation of MIXIPL and PPARGC1A was undertaken in 380 ccRCC cases from a real-world cohort. These findings indicate the relevance of monitoring and manipulation of the microenvironment for ccRCC prognosis and precision immunotherapy.
Collapse
Affiliation(s)
- Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yue Xu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 215000, P.R. China
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
28
|
Kita Y, Shindou H, Shimizu T. Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:838-845. [DOI: 10.1016/j.bbalip.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023]
|
29
|
Consumption of plant extract supplement reduces platelet activating factor-induced platelet aggregation and increases platelet activating factor catabolism: a randomised, double-blind and placebo-controlled trial. Br J Nutr 2019; 121:982-991. [PMID: 30940217 DOI: 10.1017/s0007114519000308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-activating factor (PAF) is a potent mediator of inflammation that plays a crucial role in atherosclerosis. The purpose of this study was to evaluate the effect of a dietary supplement containing mainly plant extracts on PAF actions and metabolism in healthy volunteers. A double-blind, placebo-controlled, 8 weeks' duration study was performed. Healthy volunteers were randomly allocated into the supplement or the placebo group and fifty-eight of them completed the study. The supplement contained plant extracts (Aloe gel, grape juice, Polygonum cuspidatum) and vitamins. The activities of PAF metabolic enzymes: the two isoforms of acetyl-CoA:lyso-PAF acetyltransferase, cytidine 5'-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-cholinephosphotransferase) and platelet-activating factor-acetylhydrolase (PAF-AH) in leucocytes and lipoprotein associated phospholipase-A2 in plasma were measured along with several markers of endothelial function. Platelet aggregation against PAF, ADP and thrombin receptor activating peptide was measured in human platelet-rich plasma by light transmission aggregometry. No difference was observed on soluble vascular cell adhesion molecule-1, sP-selectin and IL-6 levels at the beginning or during the study period between the two groups. Concerning PAF metabolism enzymes' activity, no difference was observed at baseline between the groups. PAF-AH activity was only increased in the supplement group at 4 and 8 weeks compared with baseline levels. In addition, supplement consumption led to lower platelet sensitivity against PAF and ADP compared with baseline levels. However, a trial effect was only observed when platelets were stimulated by PAF. In conclusion, supplementation with plant extracts and vitamins ameliorates platelet aggregation primarily against PAF and secondarily against ADP and affects PAF catabolism by enhancing PAF-acetylhydrolase activity in healthy subjects.
Collapse
|
30
|
Jiang H, Li Z, Huan C, Jiang XC. Macrophage Lysophosphatidylcholine Acyltransferase 3 Deficiency-Mediated Inflammation Is Not Sufficient to Induce Atherosclerosis in a Mouse Model. Front Cardiovasc Med 2019; 5:192. [PMID: 30705887 PMCID: PMC6344406 DOI: 10.3389/fcvm.2018.00192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Mammalian cell membrane phosphatidylcholines (PCs), the major phospholipids, exhibit diversity which is controlled by Lands' cycle or PC remodeling pathway. Lysophosphatidylcholine acyltransferase (LPCAT) is one of the major players in the pathway and plays an important role in maintaining cell membrane structure and function. LPCAT3 is highly expressed in macrophages, however, its role in mediating inflammation is still not understood, since contradictory results were reported previously. The order of LPCAT mRNA levels in mouse macrophages is as follows: LPCAT3 > LPCAT1 > LPCAT2 >> LPCAT4. In order to investigate the role of LPCAT3 in macrophages, we prepared myeloid cell-specific Lpcat3 knockout (KO) mice and found that the deficiency significantly reduced certain polyunsaturated phosphatidylcholines, such as 16:0/20:4, 18:1/18:2, 18:0/20:4, and 18:1/20:4 in macrophage plasma membrane. Lpcat3 deficiency significantly increased toll like receptor 4 protein and phosphorylated c-Src in membrane lipid rafts, and increased LPS-induced IL-6 and TNFα releasing through activation of MAP kinases and NFκB. Moreover, the ablation of LPCAT3 in macrophages significantly increase of M1 macrophages. However, macrophage deletion of Lpcat3 in (LDL receptor) Ldlr KO mice, both male and female, on a Western type diet, did not have a significant impact on atherogenesis. In conclusion, LPCAT3 is one of LPCATs in macrophages, involved in PC remodeling. LPCAT3 deficiency has no effect on cholesterol efflux. However, the deficiency promotes macrophage inflammatory response, but such an effect has a marginal influence on the development of atherosclerosis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - Zhiqiang Li
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - Chongmin Huan
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Surgery, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| |
Collapse
|
31
|
Lordan R, Tsoupras A, Zabetakis I. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. Adv Nutr 2019; 10:148-164. [PMID: 30721934 PMCID: PMC6370273 DOI: 10.1093/advances/nmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The role of unresolved inflammation in cancer progression and metastasis is well established. Platelet-activating factor (PAF) is a key proinflammatory mediator in the initiation and progression of cancer. Evidence suggests that PAF is integral to suppression of the immune system and promotion of metastasis and tumor growth by altering local angiogenic and cytokine networks. Interactions between PAF and its receptor may have a role in various digestive, skin, and hormone-dependent cancers. Diet plays a critical role in the prevention of cancer and its treatment. Research indicates that the Mediterranean diet may reduce the incidence of several cancers in which dietary PAF inhibitors have a role. Dietary PAF inhibitors such as polar lipids have demonstrated inhibitory effects against the physiological actions of PAF in cancer and other chronic inflammatory conditions in vitro and in vivo. In addition, experimental models of radiotherapy and chemotherapy demonstrate that inhibition of PAF as adjuvant therapy may lead to more favorable outcomes. Although promising, there is limited evidence on the potential benefits of dietary PAF inhibitors on cancer prevention or treatment. Therefore, further extensive research is required to assess the effects of various dietary factors and PAF inhibitors and to elucidate the mechanisms in prevention of cancer progression and metastasis at a molecular level.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
32
|
Abstract
Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| |
Collapse
|
33
|
Mediterranean diet and platelet-activating factor; a systematic review. Clin Biochem 2018; 60:1-10. [PMID: 30142319 DOI: 10.1016/j.clinbiochem.2018.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Platelet-activating factor (PAF) is a glycerylether lipid and one of the most potent endogenous mediators of inflammation. Through its binding to a well-characterized receptor it initiates a plethora of cellular pro-inflammatory actions participating by this way to the pathology of most chronic diseases, including cardiovascular and renal diseases, CNS decline and cancer. Among the variety of prudent dietary patterns, Mediterranean Diet (MD) is the dietary pattern with the strongest evidence for its ability to prevent the same chronic diseases. In addition, micronutrients and extracts from several components and characteristic food of the MD can favorably modulate PAF's actions and metabolism either directly or indirectly. However, the role of this traditional diet on PAF metabolism and actions has rarely been studied before. This systematic review summarizes, presents and discusses the outcomes of epidemiologic and intervention studies in humans, investigating the relationships between PAF status and MD. Seventeen full-text articles trying to interlink the components of MD and PAF are found and presented. The results are inconsistent due to the variability of the measured indices and methodology followed. However, preliminary results indicate that the characteristic "healthy" components of the MD, especially, cereals, legumes, vegetables, fish and wine can favorably modulate the pro-inflammatory actions of PAF and regulate its metabolism. Larger, well-controlled studies are necessary to elucidate whether the attenuation of PAF actions can mediate the preventive properties of MD against chronic diseases.
Collapse
|
34
|
Abstract
Neutrophils are the primary cells recruited to inflamed sites during an innate immune response to tissue damage and/or infection. They are finely sensitive to inciting stimuli to reach in great numbers and within minutes areas of inflammation and tissue insult. For this effective response, they can detect extracellular chemical gradients and move towards higher concentrations, the so-called chemotaxis process or guided cell migration. This directed neutrophil recruitment is orchestrated by chemoattractants, a chemically diverse group of molecular guidance cues (e.g., lipids, N-formylated peptides, complement, anaphylotoxins and chemokines). Neutrophils respond to these guidance signals in a hierarchical manner and, based on this concept, they can be further subdivided into two groups: "end target" and "intermediary" chemoattractants, the signals of the former dominant over the latter. Neutrophil chemoattractants exert their effects through interaction with heptahelical G protein-coupled receptors (GPCRs) expressed on cell surfaces and the chemotactic response is mainly regulated by the Rho family of GTPases. Additionally, neutrophil behavior might differ and be affected in different complex scenarios such as disease conditions and type of vascular bed in specific organs. Finally, there are different mechanisms to disrupt neutrophil chemotaxis either associated to the resolution of inflammation or to bacterial escape and systemic infection. Therefore, in the present review, we will discuss the different molecular players involved in neutrophil chemotaxis, paying special attention to the different chemoattractants described and the way that they interact intra- and extravascularly for neutrophils to properly reach the target tissue.
Collapse
Affiliation(s)
- Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Maria-Jesús Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain. .,Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
35
|
Garrido D, Chanteloup NK, Trotereau A, Lion A, Bailleul G, Esnault E, Trapp S, Quéré P, Schouler C, Guabiraba R. Characterization of the Phospholipid Platelet-Activating Factor As a Mediator of Inflammation in Chickens. Front Vet Sci 2017; 4:226. [PMID: 29326957 PMCID: PMC5741692 DOI: 10.3389/fvets.2017.00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Lipid mediators are known to play important roles in the onset and resolution phases of the inflammatory response in mammals. The phospholipid platelet-activating factor (PAF) is a pro-inflammatory lipid mediator which participates in vascular- and innate immunity-associated processes by increasing vascular permeability, by facilitating leukocyte adhesion to the endothelium, and by contributing to phagocyte activation. PAF exerts its function upon binding to its specific receptor, PAF receptor (PAFR), which is abundantly expressed in leukocytes and endothelial cells (ECs). In chickens, lipid mediators and their functions are still poorly characterized, and the role of PAF as an inflammatory mediator has not yet been investigated. In the present study we demonstrate that primary chicken macrophages express PAFR and lysophosphatidylcholine acyltransferase 2 (LPCAT2), the latter being essential to PAF biosynthesis during inflammation. Also, exogenous PAF treatment induces intracellular calcium increase, reactive oxygen species release, and increased phagocytosis by primary chicken macrophages in a PAFR-dependent manner. We also show that PAF contributes to the Escherichia coli lipopolysaccharide (LPS)-induced pro-inflammatory response and boosts the macrophage response to E. coli LPS via phosphatidylinositol 3-kinase/Akt- and calmodulin kinase II-mediated intracellular signaling pathways. Exogenous PAF treatment also increases avian pathogenic E. coli intracellular killing by chicken macrophages, and PAFR and LPCAT2 are upregulated in chicken lungs and liver during experimental pulmonary colibacillosis. Finally, exogenous PAF treatment increases cell permeability and upregulates the expression of genes coding for proteins involved in leukocyte adhesion to the endothelium in primary chicken endothelial cells (chAEC). In addition to these vascular phenomena, PAF boosts the chAEC inflammatory response to bacteria-associated molecular patterns in a PAFR-dependent manner. In conclusion, we identified PAF as an inflammation amplifier in chicken macrophages and ECs, which suggests that PAF could play important roles in the endothelium-innate immunity interface in birds during major bacterial infectious diseases such as colibacillosis.
Collapse
Affiliation(s)
- Damien Garrido
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | | | - Adrien Lion
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Evelyne Esnault
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Sascha Trapp
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Pascale Quéré
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | | |
Collapse
|
36
|
Agarwal AK, Tunison K, Dalal JS, Nagamma SS, Hamra FK, Sankella S, Shao X, Auchus RJ, Garg A. Metabolic, Reproductive, and Neurologic Abnormalities in Agpat1-Null Mice. Endocrinology 2017; 158:3954-3973. [PMID: 28973305 PMCID: PMC5695831 DOI: 10.1210/en.2017-00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Defects in the biosynthesis of phospholipids and neutral lipids are associated with cell membrane dysfunction, disrupted energy metabolism, and diseases including lipodystrophy. In these pathways, the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) enzymes transfer a fatty acid to the sn-2 carbon of sn-1-acylglycerol-3-phosphate (lysophosphatidic acid) to form sn-1, 2-acylglycerol-3-phosphate [phosphatidic acid (PA)]. PA is a precursor for key phospholipids and diacylglycerol. AGPAT1 and AGPAT2 are highly homologous isoenzymes that are both expressed in adipocytes. Genetic defects in AGPAT2 cause congenital generalized lipodystrophy, indicating that AGPAT1 cannot compensate for loss of AGPAT2 in adipocytes. To further explore the physiology of AGPAT1, we characterized a loss-of-function mouse model (Agpat1-/-). The majority of Agpat1-/- mice died before weaning and had low body weight and low plasma glucose levels, independent of plasma insulin and glucagon levels, with reduced percentage of body fat but not generalized lipodystrophy. These mice also had decreased hepatic messenger RNA expression of Igf-1 and Foxo1, suggesting a decrease in gluconeogenesis. In male mice, sperm development was impaired, with a late meiotic arrest near the onset of round spermatid production, and gonadotropins were elevated. Female mice showed oligoanovulation yet retained responsiveness to gonadotropins. Agpat1-/- mice also demonstrated abnormal hippocampal neuron development and developed audiogenic seizures. In summary, Agpat1-/- mice developed widespread disturbances of metabolism, sperm development, and neurologic function resulting from disrupted phospholipid homeostasis. AGPAT1 appears to serve important functions in the physiology of multiple organ systems. The Agpat1-deficient mouse provides an important model in which to study the contribution of phospholipid and triacylglycerol synthesis to physiology and diseases.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Katie Tunison
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jasbir S. Dalal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sneha S. Nagamma
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - F. Kent Hamra
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Shireesha Sankella
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Xinli Shao
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Richard J. Auchus
- Department of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
37
|
Sankella S, Garg A, Agarwal AK. Activation of Sphingolipid Pathway in the Livers of Lipodystrophic Agpat2-/- Mice. J Endocr Soc 2017; 1:980-993. [PMID: 29264548 PMCID: PMC5686665 DOI: 10.1210/js.2017-00157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022] Open
Abstract
A several fold increase in triacylglycerol is observed in the livers of lipodystrophic Agpat2−/− mice. We have previously reported an unexpected increase in the phosphatidic acid (PA) levels in the livers of these mice and that a few specific molecular species of PA were able to transcriptionally upregulate hepatic gluconeogenesis. In the current study, we measured the metabolites and expression of associated enzymes of the sphingolipid synthesis pathway. The entire sphingolipid pathway was activated both at the gene expression and the metabolite level. The levels of some ceramides were increased by as much as ~eightfold in the livers of Agpat2−/− mice. Furthermore, several molecular species of ceramides were increased in the plasma of Agpat2−/− mice, specifically ceramide C16:0, which was threefold elevated in the plasma of both the sexes. However, the ceramides failed to increase glucose production in mouse primary hepatocytes obtained from wild-type and Agpat2−/− mice, further establishing the specificity of PA in the induction of hepatic gluconeogenesis. This study shows elevated levels of sphingolipids in the steatotic livers of Agpat2−/− mice and increased expression of associated enzymes for the sphingolipid pathway. Therefore, this study and those in the literature suggest that ceramide C16:0 could be used as a biomarker for insulin resistance/type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shireesha Sankella
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
38
|
Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Koizumi T, Inagaki Y, Oka S, Tanikawa T, Sugiura T. Coenzyme-A-Independent Transacylation System; Possible Involvement of Phospholipase A2 in Transacylation. BIOLOGY 2017; 6:biology6020023. [PMID: 28358327 PMCID: PMC5485470 DOI: 10.3390/biology6020023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
The coenzyme A (CoA)-independent transacylation system catalyzes fatty acid transfer from phospholipids to lysophospholipids in the absence of cofactors such as CoA. It prefers to use C20 and C22 polyunsaturated fatty acids such as arachidonic acid, which are esterified in the glycerophospholipid at the sn-2 position. This system can also acylate alkyl ether-linked lysophospholipids, is involved in the enrichment of arachidonic acid in alkyl ether-linked glycerophospholipids, and is critical for the metabolism of eicosanoids and platelet-activating factor. Despite their importance, the enzymes responsible for these reactions have yet to be identified. In this review, we describe the features of the Ca2+-independent, membrane-bound CoA-independent transacylation system and its selectivity for arachidonic acid. We also speculate on the involvement of phospholipase A2 in the CoA-independent transacylation reaction.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yasuhiro Hayashi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Naoki Matsumoto
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yoko Nemoto-Sasaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takanori Koizumi
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Yusuke Inagaki
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Saori Oka
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takashi Tanikawa
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| | - Takayuki Sugiura
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, Tokyo 173-8605, Japan.
| |
Collapse
|
39
|
Shindou H, Shiraishi S, Tokuoka SM, Takahashi Y, Harayama T, Abe T, Bando K, Miyano K, Kita Y, Uezono Y, Shimizu T. Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop. FASEB J 2017; 31:2973-2980. [PMID: 28341636 PMCID: PMC5471516 DOI: 10.1096/fj.201601183r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
Neuropathic pain resulting from peripheral neuronal damage is largely resistant to treatment with currently available analgesic drugs. Recently, ATP, lysophosphatidic acid, and platelet-activating factor (PAF) have been reported to play important inductive roles in neuropathic pain. In the present study, we found that pain-like behaviors resulting from partial sciatic nerve ligation (PSL) were largely attenuated by deficiency of lysophosphatidylcholine acyltransferase (LPCAT)2, which is one of the PAF biosynthetic enzymes. By contrast, deficiency of the other PAF biosynthetic enzyme, LPCAT1, did not ameliorate neuropathic pain. With regard to the mechanism of the observed effects, LPCAT2 was detected in wild-type spinal cord microglia, and the absence of LPCAT2 expression precluded spinal PAF expression in LPCAT2-knockout mice. Furthermore, ATP-stimulated PAF biosynthesis in macrophages was decreased by pretreatment with the PAF receptor antagonist ABT-491, indicating the existence of a positive feedback loop of PAF biosynthesis, which we designated the PAF-pain loop. In conclusion, LPCAT2 is a novel therapeutic target for newly categorized analgesic drugs; in addition, our data call for the re-evaluation of the clinical utility of PAF receptor antagonists.-Shindou, H., Shiraishi, S., Tokuoka, S. M., Takahashi Y., Harayama, T., Abe, T., Bando, K., Miyano, K., Kita, Y., Uezono, Y., Shimizu, T. Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop.
Collapse
Affiliation(s)
- Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan; .,Agency for Research and Medical Development (AMED), Tokyo Japan.,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiji Shiraishi
- Agency for Research and Medical Development (AMED), Tokyo Japan.,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Yoshikazu Takahashi
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeshi Harayama
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan; and
| | - Kana Bando
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan; and.,Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; and
| | - Kanako Miyano
- Agency for Research and Medical Development (AMED), Tokyo Japan.,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and.,Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Uezono
- Agency for Research and Medical Development (AMED), Tokyo Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Zhang QY, Niu LX, Yu R, Zhang XX, Bai ZZ, Duan K, Gao QH, Zhang YL. Cloning, Characterization, and Expression Analysis of a Gene Encoding a Putative Lysophosphatidic Acid Acyltransferase from Seeds of Paeonia rockii. Appl Biochem Biotechnol 2016; 182:721-741. [PMID: 27987185 DOI: 10.1007/s12010-016-2357-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Tree peony (Paeonia section Moutan DC.) is an excellent woody oil crop, and the cloning and functional analysis of genes related to fatty acid (FA) metabolism from this organism has not been reported. Lysophosphatidic acid acyltransferase (LPAAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. This project reports a putative lysophosphatidic acid acyltransferase gene PrLPAAT1 isolated from Paeonia rockii. Our data indicated that PrLPAAT1 has 1047 nucleotides and encodes a putative 38.8 kDa protein with 348 amino acid residues. Bioinformatic analysis demonstrated that PrLPAAT1 contains two transmembrane domains (TMDs). Subcellular localization analysis confirmed that PrLPAAT1 is a plasma membrane protein. Phylogenetic analysis revealed that PrLPAAT1 shared 74.3 and 65.5% amino acid sequence identities with the LPAAT1 sequences from columbine and grape, respectively. PrLPAAT1 belongs to AGPAT family, and may have acyltransferase activity. PrLPAAT1 was ubiquitously expressed in diverse tissues, and PrLPAAT1 expression was higher in the flower and developing seed. PrLPAAT1 is probably an important component in the FA accumulation process, especially during the early stages of seed development. PrLPAAT1 overexpression using a seed-specific promoter increased total FA content and the main FA accumulation in Arabidopsis transgenic plants.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Xiao Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhang-Zhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403, China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403, China
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
41
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
42
|
Liu Y, Shields LBE, Gao Z, Wang Y, Zhang YP, Chu T, Zhu Q, Shields CB, Cai J. Current Understanding of Platelet-Activating Factor Signaling in Central Nervous System Diseases. Mol Neurobiol 2016; 54:5563-5572. [PMID: 27613281 DOI: 10.1007/s12035-016-0062-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Platelet-activating factor (PAF) is a bioactive lipid mediator which serves as a reciprocal messenger between the immune and nervous systems. PAF, a pluripotent inflammatory mediator, is extensively expressed in many cells and tissues and has either beneficial or detrimental effects on the progress of inflammation-related neuropathology. Its wide distribution and various biological functions initiate a cascade of physiological or pathophysiological responses during development or diseases. Current evidence indicates that excess PAF accumulation in CNS diseases exacerbates the inflammatory response and pathological consequences, while application of PAF inhibitors or PAFR antagonists by blocking this signaling pathway significantly reduces inflammation, protects cells, and improves the recovery of neural functions. In this review, we integrate the current findings of PAF signaling in CNS diseases and elucidate topics less appreciated but important on the role of PAF signaling in neurological diseases. We propose that the precise use of PAF inhibitors or PAFR antagonists that target the specific neural cells during the appropriate temporal window may constitute a potential therapy for CNS diseases.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Zhongwen Gao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Yuanyi Wang
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Tianci Chu
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | | | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Donald Baxter Building, Suite 321B, Louisville, KY, 40202, USA.
| |
Collapse
|
43
|
Fan SH, Wang YY, Wu ZY, Zhang ZF, Lu J, Li MQ, Shan Q, Wu DM, Sun CH, Hu B, Zheng YL. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget 2016; 6:18406-17. [PMID: 26110566 PMCID: PMC4621899 DOI: 10.18632/oncotarget.4074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Zhi-yong Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chun-hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
44
|
Zhang D, Jasieniecka-Gazarkiewicz K, Wan X, Luo L, Zhang Y, Banas A, Jiang M, Gong Y. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana. PLoS One 2015; 10:e0144653. [PMID: 26684752 PMCID: PMC4684200 DOI: 10.1371/journal.pone.0144653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid acyltransferases from N. benthamiana.
Collapse
Affiliation(s)
- Donghui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | | | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yinbo Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Antoni Banas
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80–822, Gdansk, Poland
| | - Mulan Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
45
|
Kim HJ, Silva JE, Iskandarov U, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1021-33. [PMID: 26505880 DOI: 10.1111/tpj.13063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 05/04/2023]
Abstract
Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jillian E Silva
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Umidjon Iskandarov
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mariette Andersson
- Department of Plant Breeding Swedish, University of Agricultural Sciences, Alnarp, Sweden
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Keithanne Mockaitis
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
46
|
Sato A, Yokoyama I, Ebina K. Biotinylated heptapeptides substituted with a D-amino acid as platelet-activating factor inhibitors. Eur J Pharmacol 2015; 764:202-207. [PMID: 26142829 DOI: 10.1016/j.ejphar.2015.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Platelet-activating factor (PAF), a potent lipid mediator, is implicated in many inflammatory diseases, and therefore may serve as a direct target for anti-inflammatory drugs. We previously reported that synthetic biotinylated peptides having a Tyr-Lys-Asp-Gly sequence markedly inhibit PAF-induced inflammation by direct binding, and that two synthetic fluorescence-labelled heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp and D-Lys-Trp-Tyr-Lys-Asp-Gly-Asp) with high stability in plasma specifically bind to PAF-like lipids (oxidized- and lyso-phosphatidylchoine). In this study, synthetic heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp) coupled to a biotin molecule through the N-terminal amino group and ε-amino group of N-terminus Lys, (Btn)KP6 and K(Btn)P6, respectively, and their biotinylated peptides substituted with D-Lys at the N-terminus, (Btn)dKP6 and dK(Btn)P6, respectively, were investigated for their effects on PAF-induced inflammation. In the experiments using a rat model of hind paw oedema, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 significantly inhibited PAF-induced paw oedema, with the highest inhibitory effect exhibited by dK(Btn)P6. The inhibitory effect of D-Tyr-D-Lys-D-Asp-Gly tetrapeptide on PAF-induced paw oedema was much lower than that of Tyr-Lys-Asp-Gly tetrapeptide. In the experiments using tryptophan fluorescence spectroscopy, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 bound to PAF dose-dependently, with dK(Btn)P6 showing the strongest binding affinity, indicating that its affinity appears to be closely correlated with its inhibitory effect on PAF-induced inflammation. These results suggest that direct binding of (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 to PAF can lead to marked inhibition of PAF-induced inflammation, and these agents, particularly dK(Btn)P6, may be useful as anti-inflammatory drugs targeting PAF with high stability in plasma.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan.
| | - Izumi Yokoyama
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| |
Collapse
|
47
|
Vlachogianni IC, Fragopoulou E, Stamatakis GM, Kostakis IK, Antonopoulou S. Platelet Activating Factor (PAF) biosynthesis is inhibited by phenolic compounds in U-937 cells under inflammatory conditions. Prostaglandins Other Lipid Mediat 2015; 121:176-83. [PMID: 26358846 DOI: 10.1016/j.prostaglandins.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/24/2022]
Abstract
Interleukin 1 beta (IL-1β) induced platelet activating factor (PAF) synthesis in U-937 cells through stimulation of acetyl-CoA:lysoPAF-acetyltransferase (lyso PAF-AT) at 3 h and DTT-independentCDP-choline-1-alkyl-2-acetyl-sn-glycerol cholinophosphotransferase (PAF-CPT) at 0.5 h. The aim of this study was to investigate the effect of tyrosol (T), resveratrol (R) and their acetylated derivatives(AcDs) which exhibit enhanced bioavailability, on PAF synthesis in U-937 after IL-1β stimulation. The specific activity of PAF enzymes and intracellular levels were measured in cell homogenates. T and R concentration capable of inducing 50% inhibition in IL-1β effect on lyso PAF-AT was 48 μΜ ± 11 and 157 μΜ ± 77, for PAF-CPT 246 μΜ ± 61 and 294 μΜ ± 102, respectively. The same order of concentration was also observed on inhibiting PAF levels produced by IL-1β. T was more potent inhibitor than R (p<0.05). AcDs of T retain parent compound inhibitory activity, while in the case of R only two AcDs retain the activity. The observed inhibitory effect by T,R and their AcDs, may partly explain their already reported beneficial role.
Collapse
Affiliation(s)
- Ioanna C Vlachogianni
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece
| | - Elizabeth Fragopoulou
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece
| | | | - Ioannis K Kostakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutritional Science and Dietetics, Harokopio University, Athens, Greece.
| |
Collapse
|
48
|
Wu J, Wang HT, Huang XF, Lei XL, Lu QK, Jin ZB. Molecular screening of the LPCAT1 gene in patients with retinitis pigmentosa without defined mutations in known retinitis pigmentosa genes. Mol Med Rep 2015; 12:5983-8. [PMID: 26260533 DOI: 10.3892/mmr.2015.4204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 06/23/2015] [Indexed: 11/06/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy, which affects the photoreceptors in the retina. Lysophosphatidylcholine acyltransferase (LPCAT) is a critical phospholipid biosynthesis enzyme, which promotes the conversion of lysophosphatidylcholine into phosphatidylcholine in the remodeling pathway of PC biosynthesis. A previous study reported a homozygous insertion in the LPCAT1 gene in mice exhibiting retinal degeneration (rd11). However, whether genetic mutations in LPCAT1 predispose individuals to RP remains to be elucidated. Therefore, the aim of the present study was to investigate whether LPCAT1 mutations exist in patients with RP. A total of 50 unrelated patients diagnosed with either a sporadic or recessive inheritance pattern of RP were recruited in the present study. All of the patients were comprehensively screened for genes associated with the predisposition of RP, and no pathogenic mutations were identified. Reverse transcription-polymerase chain reaction and Sanger sequencing were performed to investigate the coding regions and exon‑intron boundaries of the LPCAT1 gene in the recruited patients. In total, three genetic variations in the coding regions, which lead to amino acid changes, were identified. Although two of these mutations were predicted to be pathogenic, co‑segregation analysis in the pedigrees excluded these as disease‑causing mutations. In addition, the LPCAT1 gene was screen in a panel of RP patients who exhibited no identifiable mutations in any of the known RP‑associated genes. No disease‑causing mutations in the LPCAT1 gene were identified, indicating that LPCAT1 either does not confer a genetic predisposition to RP, or that the incidence of mutations in LPCAT1 is particularly rare in patients with RP.
Collapse
Affiliation(s)
- Juan Wu
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong-Ting Wang
- Department of Ophthalmology, Yinzhou People's Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiu-Feng Huang
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xin-Lan Lei
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qin-Kang Lu
- Department of Ophthalmology, Yinzhou People's Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
49
|
Gao L, Rabbitt EH, Condon JC, Renthal NE, Johnston JM, Mitsche MA, Chambon P, Xu J, O'Malley BW, Mendelson CR. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition. J Clin Invest 2015; 125:2808-24. [PMID: 26098214 DOI: 10.1172/jci78544] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.
Collapse
|
50
|
Shida-Sakazume T, Endo-Sakamoto Y, Unozawa M, Fukumoto C, Shimada K, Kasamatsu A, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor. PLoS One 2015; 10:e0120143. [PMID: 25803864 PMCID: PMC4372572 DOI: 10.1371/journal.pone.0120143] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Background The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma (OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in OSCCs. Methods We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. Immunohistochemistry was performed to identify correlations between LPCAT1 expression levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the association between LPCAT1 expression and the platelet-activating factor (PAF) concentration and PAF-receptor (PAFR) expression. Results LPCAT1 mRNA and protein were up-regulated significantly (p<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. Immunohistochemistry showed significantly (p<0.05) elevated LPCAT1 expression in primary OSCCs compared with normal counterparts and a strong correlation between LPCAT1-positive OSCCs and tumoral size and regional lymph node metastasis. In LPCAT1 knockdown cells, cellular proliferation and invasiveness decreased significantly (p<0.05); cellular migration was inhibited compared with control cells. Down-regulation of LPCAT1 resulted in a decreased intercellular PAF concentration and PAFR expression. Conclusion LPCAT1 was overexpressed in OSCCs and correlated with cellular invasiveness and migration. LPCAT1 may contribute to tumoral growth and metastasis in oral cancer.
Collapse
Affiliation(s)
- Tomomi Shida-Sakazume
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Motoharu Unozawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chonji Fukumoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ken Shimada
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College, Saitama, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- * E-mail:
| |
Collapse
|