1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Durydivka O, Mackie K, Blahos J. SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function. Front Neurosci 2023; 17:1213094. [PMID: 37547151 PMCID: PMC10397514 DOI: 10.3389/fnins.2023.1213094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Raux PL, Drutel G, Revest JM, Vallée M. New perspectives on the role of the neurosteroid pregnenolone as an endogenous regulator of type-1 cannabinoid receptor (CB1R) activity and function. J Neuroendocrinol 2022; 34:e13034. [PMID: 34486765 DOI: 10.1111/jne.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Pregnenolone is a steroid with specific characteristics, being the first steroid to be synthesised from cholesterol at all sites of steroidogenesis, including the brain. For many years, pregnenolone was defined as an inactive precursor of all steroids because no specific target had been discovered. However, over the last decade, it has become a steroid of interest because it has been recognised as being a biomarker for brain-related disorders through the development of metabolomic approaches and advanced analytical methods. In addition, physiological roles for pregnenolone emerged when specific targets were discovered. In this review, we highlight the discovery of the selective interaction of pregnenolone with the type-1 cannabinoid receptor (CB1R). After describing the specific characteristic of CB1Rs, we discuss the newly discovered mechanisms of their regulation by pregnenolone. In particular, we describe the action of pregnenolone as a negative allosteric modulator and a specific signalling inhibitor of the CB1R. These particular characteristics of pregnenolone provide a great strategic opportunity for therapeutic development in CB1-related disorders. Finally, we outline new perspectives using innovative genetic tools for the discovery of original regulatory mechanisms of pregnenolone on CB1-related functions.
Collapse
Affiliation(s)
- Pierre-Louis Raux
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Guillaume Drutel
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Jean-Michel Revest
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", Bordeaux, France
- University of Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Schihada H, Shekhani R, Schulte G. Quantitative assessment of constitutive G protein-coupled receptor activity with BRET-based G protein biosensors. Sci Signal 2021; 14:eabf1653. [PMID: 34516756 DOI: 10.1126/scisignal.abf1653] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hannes Schihada
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17165 Stockholm, Sweden
| | - Rawan Shekhani
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17165 Stockholm, Sweden
| | - Gunnar Schulte
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17165 Stockholm, Sweden
| |
Collapse
|
5
|
Balezina OP, Tarasova EO, Gaydukov AE. Noncanonical Activity of Endocannabinoids and Their Receptors in Central and Peripheral Synapses. BIOCHEMISTRY (MOSCOW) 2021; 86:818-832. [PMID: 34284706 DOI: 10.1134/s0006297921070038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on new aspects of endocannabinoid functions and mechanisms of activity in central and peripheral synapses, different from the general viewpoint that endocannabinoids are retrograde signaling molecules, which inhibit neurotransmitter release by activating specific presynaptic endocannabinoid receptors CB1 and CB2. Biased agonism of the endogenous and synthetic cannabinoids as well as ability of the CB-receptors to couple not only with classical Gi-proteins, but also with Gs- and Gq-proteins and, moreover, with β-arrestins (thereby triggering additional signaling pathways in synapses) are described here in detail. Examples of noncanonical tonic activity of endocannabinoids and their receptors and their role in synaptic function are also presented. The role of endocannabinoids in short-term and long-term potentiation of neurotransmitter release in central synapses and their facilitating effect on quantal size and other parameters of acetylcholine release in mammalian neuromuscular junctions are highlighted in this review. In conclusion, it is stated that the endocannabinoid system has a wider range of various multidirectional modulating effects (both potentiating and inhibiting) on neurotransmitter release than initially recognized. Re-evaluation of the functions of endocannabinoid system with consideration of its noncanonical features will lead to better understanding of its role in the normal and pathological functioning of the nervous system and other systems of the body, which has an enormous practical value.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | |
Collapse
|
6
|
Tsutsumi N, Qu Q, Mavri M, Baggesen MS, Maeda S, Waghray D, Berg C, Kobilka BK, Rosenkilde MM, Skiniotis G, Garcia KC. Structural basis for the constitutive activity and immunomodulatory properties of the Epstein-Barr virus-encoded G protein-coupled receptor BILF1. Immunity 2021; 54:1405-1416.e7. [PMID: 34216564 DOI: 10.1016/j.immuni.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) encodes a G protein-coupled receptor (GPCR) termed BILF1 that is essential for EBV-mediated immunosuppression and oncogenesis. BILF1 couples with inhibitory G protein (Gi), the major intracellular signaling effector for human chemokine receptors, and exhibits constitutive signaling activity; the ligand(s) for BILF1 are unknown. We studied the origins of BILF1's constitutive activity through structure determination of BILF1 bound to the inhibitory G protein (Gi) heterotrimer. The 3.2-Å resolution cryo-electron microscopy structure revealed an extracellular loop within BILF1 that blocked the typical chemokine binding site, suggesting ligand-autonomous receptor activation. Rather, amino acid substitutions within BILF1 transmembrane regions at hallmark ligand-activated class A GPCR "microswitches" stabilized a constitutively active BILF1 conformation for Gi coupling in a ligand-independent fashion. Thus, the constitutive activity of BILF1 promotes immunosuppression and virulence independent of ligand availability, with implications for the function of GPCRs encoded by related viruses and for therapeutic targeting of EBV.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maibritt S Baggesen
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Dvorakova M, Kubik-Zahorodna A, Straiker A, Sedlacek R, Hajkova A, Mackie K, Blahos J. SGIP1 is involved in regulation of emotionality, mood, and nociception and modulates in vivo signalling of cannabinoid CB 1 receptors. Br J Pharmacol 2021; 178:1588-1604. [PMID: 33491188 PMCID: PMC8795748 DOI: 10.1111/bph.15383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/06/2020] [Accepted: 01/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose Src homology 3‐domain growth factor receptor‐bound 2‐like endophilin interacting protein 1 (SGIP1) interacts with cannabinoid CB1 receptors. SGIP1 is abundantly and principally expressed within the nervous system. SGIP1 and CB1 receptors co‐localize in axons and presynaptic boutons. SGIP1 interferes with the internalization of activated CB1 receptors in transfected heterologous cells. Consequently, the transient association of CB1 receptors with β‐arrestin2 is enhanced and prolonged, and CB1 receptor‐mediated ERK1/2 signalling is decreased. Because of these actions, SGIP1 may modulate affect, anxiety, pain processing, and other physiological processes controlled by the endocannabinoid system (ECS). Experimental Approach Using a battery of behavioural tests, we investigated the consequences of SGIP1 deletion in tasks regulated by the ECS in SGIP1 constitutive knockout (SGIP1−/−) mice. Key Results In SGIP1−/− mice, sensorimotor gating, exploratory levels, and working memory are unaltered. SGIP1−/− mice have decreased anxiety‐like behaviours. Fear extinction to tone is facilitated in SGIP1−/− females. Several cannabinoid tetrad behaviours are altered in the absence of SGIP1. SGIP1−/− males exhibit abnormal behaviours on Δ9‐tetrahydrocannabinol withdrawal. SGIP1 deletion also reduces acute nociception, and SGIP1−/− mice are more sensitive to analgesics. Conclusion and Implications SGIP1 was detected as a novel protein associated with CB1 receptors, and profoundly modified CB1 receptor signalling. Genetic deletion of SGIP1 particularly affected behavioural tests of mood‐related assessment and the cannabinoid tetrad. SGIP1−/− mice exhibit decreased nociception and augmented responses to CB1 receptor agonists and morphine. These in vivo findings suggest that SGIP1 is a novel modulator of CB1 receptor‐mediated behaviour.
Collapse
Affiliation(s)
- Michaela Dvorakova
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.,Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Agnieszka Kubik-Zahorodna
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Radislav Sedlacek
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Alena Hajkova
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, Bloomington, Indiana, USA
| | - Jaroslav Blahos
- Department of Molecular Pharmacology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
8
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Zanese M, Tomaselli G, Roullot-Lacarrière V, Moreau M, Bellocchio L, Grel A, Marsicano G, Sans N, Vallée M, Revest JM. Alpha technology: A powerful tool to detect mouse brain intracellular signaling events. J Neurosci Methods 2020; 332:108543. [PMID: 31830543 DOI: 10.1016/j.jneumeth.2019.108543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phosphorylation by protein kinases is a fundamental molecular process involved in the regulation of signaling activities in living organisms. Understanding this complex network of phosphorylation, especially phosphoproteins, is a necessary step for grasping the basis of cellular pathophysiology. Studying brain intracellular signaling is a particularly complex task due to the heterogeneous complex nature of the brain tissue, which consists of many embedded structures. NEW METHOD Overcoming this degree of complexity requires a technology with a high throughput and economical in the amount of biological material used, so that a large number of signaling pathways may be analyzed in a large number of samples. We have turned to Alpha (Amplified Luminescent Proximity Homogeneous Assay) technology. COMPARISON WITH EXISTING METHOD Western blot is certainly the most commonly used method to measure the phosphorylation state of proteins. Even though Western blot is an accurate and reliable method for analyzing modifications of proteins, it is a time-consuming and large amounts of samples are required. Those two parameters are critical when the goal of the research is to comprehend multi-signaling proteic events so as to analyze several targets from small brain areas. RESULT Here we demonstrate that Alpha technology is particularly suitable for studying brain signaling pathways by allowing rapid, sensitive, reproducible and semi-quantitative detection of phosphoproteins from individual mouse brain tissue homogenates and from cell fractionation and synaptosomal preparations of mouse hippocampus. CONCLUSION Alpha technology represents a major experimental step forward in unraveling the brain phosphoprotein-related molecular mechanisms involved in brain-related disorders.
Collapse
Affiliation(s)
- Marion Zanese
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Giovanni Tomaselli
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Valérie Roullot-Lacarrière
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Maïté Moreau
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Luigi Bellocchio
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Agnès Grel
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nathalie Sans
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Jean-Michel Revest
- INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
10
|
Ugur M, Derouiche L, Massotte D. Heteromerization Modulates mu Opioid Receptor Functional Properties in vivo. Front Pharmacol 2018; 9:1240. [PMID: 30483121 PMCID: PMC6244869 DOI: 10.3389/fphar.2018.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/11/2018] [Indexed: 01/28/2023] Open
Abstract
Mu opioid receptors modulate a large number of physiological functions. They are in particular involved in the control of pain perception and reward properties. They are also the primary molecular target of opioid drugs and mediate their beneficial analgesic effects, euphoric properties as well as negative side effects such as tolerance and physical dependence. Importantly, mu opioid receptors can physically associate with another receptor to form a novel entity called heteromer that exhibits specific ligand binding, signaling, and trafficking properties. As reviewed here, in vivo physical proximity has now been evidenced for several receptor pairs, subsequent impact of heteromerization on native mu opioid receptor signaling and trafficking identified and a link to behavioral changes established. Selective targeting of heteromers as a tool to modulate mu opioid receptor activity is therefore attracting growing interest and raises hopes for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Muzeyyen Ugur
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Lyes Derouiche
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Lopez-Gimenez JF, Alvarez-Curto E, Milligan G. M3 muscarinic acetylcholine receptor facilitates the endocytosis of mu opioid receptor mediated by morphine independently of the formation of heteromeric complexes. Cell Signal 2017; 35:208-222. [PMID: 28411124 DOI: 10.1016/j.cellsig.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 11/27/2022]
Abstract
Morphine inefficiency to induce the internalization of mu opioid (MOP) receptors observed in numerous experimental models constitutes a paradigm of G-protein coupled receptor (GPCR) functional selectivity. We recently described that activation of Gαq/11 proteins through 5-HT2A serotonin receptors co-expressed in the same cells facilitates MOP receptor endocytosis promoted by morphine. In order to explore whether a different Gαq/11 coupled GPCR would emulate this effect, a double stable Flp-In T-REx HEK293 cell line permanently expressing MOP-YFP receptors along with FLAG-M3-Cerulean receptors expressed in an inducible manner was generated. Fluorescence microscopy examination of these cells revealed a co-distribution of both receptors mainly compartmentalized in plasma membrane. Concurrent stimulation with carbachol and morphine promoted MOP receptor internalization, desensitization and down-regulation and this facilitation was not dependent on PKC activation. Co-immunoprecipitation experiments demonstrated that FLAG-M3-Cerulean/MOP-YFP receptors interact forming heteromeric complexes in a time depending manner, i.e. the strongest interaction was detected after 96h of FLAG-M3-Cerulean induced expression. Under these experimental conditions, treatment of cells with carbachol plus morphine resulted in the internalization of both receptors within separated endocytic vesicles as visualized by confocal microscopy. This trafficking segregation observed for FLAG-M3-Cerulean and MOP-YFP receptors upon agonist stimulation suggests that this protein-protein interaction presents temporal and dynamic properties. Moreover, MOP-YFP receptor internalization facilitated by FLAG-M3-Cerulean receptors is independent of the constitution of heteromeric complexes.
Collapse
Affiliation(s)
- Juan F Lopez-Gimenez
- Institute of Biomedicine and Biotechnology of Cantabria, (IBBTEC), CSIC, Santander, Spain.
| | - Elisa Alvarez-Curto
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
12
|
Diez-Alarcia R, Ibarra-Lecue I, Lopez-Cardona ÁP, Meana J, Gutierrez-Adán A, Callado LF, Agirregoitia E, Urigüen L. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex. Front Pharmacol 2016; 7:415. [PMID: 27867358 PMCID: PMC5095132 DOI: 10.3389/fphar.2016.00415] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022] Open
Abstract
Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.
Collapse
Affiliation(s)
- Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHULeioa, Spain; Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU Leioa, Spain
| | - Ángela P Lopez-Cardona
- Department of Animal Reproduction, Instituto Nacional de Tecnología Agraria y AlimentariaMadrid, Spain; G.I. Biogénesis, Universidad de AntioquiaAntioquia, Colombia
| | - Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHULeioa, Spain; Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Alfonso Gutierrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Tecnología Agraria y Alimentaria Madrid, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHULeioa, Spain; Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | | | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHULeioa, Spain; Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| |
Collapse
|
13
|
Zou S, Somvanshi RK, Kumar U. Somatostatin receptor 5 is a prominent regulator of signaling pathways in cells with coexpression of Cannabinoid receptors 1. Neuroscience 2016; 340:218-231. [PMID: 27984180 DOI: 10.1016/j.neuroscience.2016.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022]
Abstract
Endocannabinoids and somatostatin (SST) play critical roles in several pathophysiological conditions via binding to different receptor subtypes. Cannabinoid receptor 1 (CB1R) and somatostatin receptors (SSTRs) are expressed in several brain regions and share overlapping functions. Whether these two prominent members of G-protein-coupled receptor (GPCR) family interact with each other and constitute a functional receptor complex is not known. In the present study, we investigated the colocalization of CB1R and SSTR5 in rat brain, and studied receptor internalization, interaction and signal transduction pathways in HEK-293 cells cotransfected with human cannabinoid receptor 1 (hCB1R) and hSSTR5. Our results showed that CB1R and SSTR5 colocalized in rat brain cortex, striatum, and hippocampus. CB1R was expressed in SSTR5 immunoprecipitate prepared from the brain tissue lysate, indicating their association in a system where these receptors are endogenously expressed. In cotransfected HEK-293 cells, SSTR5 and CB1R existed in a constitutive heteromeric complex under basal condition, which was disrupted upon agonist treatments. Furthermore, concurrent receptor activation led to preferential formation of SSTR5 homodimer and dissociation of CB1R homodimer. We also discovered that second messenger cyclic adenosine monophosphate and downstream signaling pathways were modulated in a SSTR5-dominant and concentration-dependent manner in the presence of receptor-specific agonist. In conclusion, with predominant role of SSTR5, the functional consequences of crosstalk between SSTR5 and CB1R resulting in the regulation of receptor trafficking and signal transduction pathways open new therapeutic avenue in cancer biology and excitotoxicity.
Collapse
Affiliation(s)
- Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Hunter MR, Grimsey NL, Glass M. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model. Sci Rep 2016; 6:27316. [PMID: 27273047 PMCID: PMC4895180 DOI: 10.1038/srep27316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/15/2016] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags.
Collapse
Affiliation(s)
- Morag Rose Hunter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Maguire DR, France CP. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl. Eur J Pharmacol 2016; 784:199-206. [PMID: 27184925 DOI: 10.1016/j.ejphar.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.
Collapse
Affiliation(s)
- David R Maguire
- Department of Pharmacology, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA
| | - Charles P France
- Department of Pharmacology, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA; Department of Psychiatry, the University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Ostadhadi S, Haj-Mirzaian A, Nikoui V, Kordjazy N, Dehpour AR. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1receptor inverse agonist AM-251 after physical stress in mice. Clin Exp Pharmacol Physiol 2016; 43:203-12. [DOI: 10.1111/1440-1681.12518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Sattar Ostadhadi
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Nikoui
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
17
|
Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 2015. [PMID: 26218440 DOI: 10.1111/bph.13250] [Citation(s) in RCA: 726] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors. EXPERIMENTAL APPROACH Internalization of CB1 receptors, arrestin2 recruitment, and PLCβ3 and ERK1/2 phosphorylation, were quantified in HEK 293A cells heterologously expressing CB1 receptors and in the STHdh(Q7/Q7) cell model of striatal neurons endogenously expressing CB1 receptors. Cells were treated with 2-arachidonylglycerol or Δ(9)-tetrahydrocannabinol alone and in combination with different concentrations of cannabidiol. KEY RESULTS Cannabidiol reduced the efficacy and potency of 2-arachidonylglycerol and Δ(9)-tetrahydrocannabinol on PLCβ3- and ERK1/2-dependent signalling in cells heterologously (HEK 293A) or endogenously (STHdh(Q7/Q7)) expressing CB1 receptors. By reducing arrestin2 recruitment to CB1 receptors, cannabidiol treatment prevented internalization of these receptors. The allosteric activity of cannabidiol depended upon polar residues being present at positions 98 and 107 in the extracellular amino terminus of the CB1 receptor. CONCLUSIONS AND IMPLICATIONS Cannabidiol behaved as a non-competitive negative allosteric modulator of CB1 receptors. Allosteric modulation, in conjunction with effects not mediated by CB1 receptors, may explain the in vivo effects of cannabidiol. Allosteric modulators of CB1 receptors have the potential to treat CNS and peripheral disorders while avoiding the adverse effects associated with orthosteric agonism or antagonism of these receptors.
Collapse
Affiliation(s)
- R B Laprairie
- Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - A M Bagher
- Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - M E M Kelly
- Departments of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Opthamology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
18
|
Taschler U, Eichmann TO, Radner FPW, Grabner GF, Wolinski H, Storr M, Lass A, Schicho R, Zimmermann R. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity. Br J Pharmacol 2015; 172:4419-29. [PMID: 26075589 PMCID: PMC4556478 DOI: 10.1111/bph.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2 ). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptor (μ receptor) signalling, a parallel pathway regulating gut motility. EXPERIMENTAL APPROACH Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. KEY RESULTS Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. CONCLUSION AND IMPLICATIONS Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases.
Collapse
MESH Headings
- Animals
- Asialoglycoproteins/deficiency
- Cannabinoids/pharmacology
- Colon/drug effects
- Colon/metabolism
- Gastrointestinal Motility/physiology
- Ileum/metabolism
- Lectins, C-Type/deficiency
- Male
- Membrane Proteins/deficiency
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- U Taschler
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - T O Eichmann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - F P W Radner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - G F Grabner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - H Wolinski
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - M Storr
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of MunichMunich, Germany
| | - A Lass
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - R Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of GrazGraz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| |
Collapse
|
19
|
RETRACTED ARTICLE: Functionalized benzyls as selective κ-OR agonists. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:621-8. [DOI: 10.1007/s00210-014-0991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023]
|
21
|
Chu CP, Zhao GY, Jin R, Zhao SN, Sun L, Qiu DL. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo. Eur J Neurosci 2014; 39:1624-31. [PMID: 24666426 DOI: 10.1111/ejn.12559] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/29/2022]
Abstract
Cerebellar parallel fiber-Purkinje cell (PF-PC) long-term synaptic plasticity is important for the formation and stability of cerebellar neuronal circuits, and provides substrates for motor learning and memory. We previously reported both presynaptic long-term potentiation (LTP) and long-term depression (LTD) in cerebellar PF-PC synapses in vitro. However, the expression and mechanisms of cerebellar PF-PC synaptic plasticity in the cerebellar cortex in vivo are poorly understood. In the present study, we studied the properties of 4 Hz stimulation-induced PF-PC presynaptic long-term plasticity using in vivo the whole-cell patch-clamp recording technique and pharmacological methods in urethane-anesthetised mice. Our results demonstrated that 4 Hz PF stimulation induced presynaptic LTD of PF-PC synaptic transmission in the intact cerebellar cortex in living mice. The PF-PC presynaptic LTD was attenuated by either the N-methyl-D-aspartate receptor antagonist, D-aminophosphonovaleric acid, or the group 1 metabotropic glutamate receptor antagonist, JNJ16259685, and was abolished by combined D-aminophosphonovaleric acid and JNJ16259685, but enhanced by inhibition of nitric oxide synthase. Blockade of cannabinoid type 1 receptor activity abolished the PF-PC LTD and revealed a presynaptic PF-PC LTP. These data indicate that both endocannabinoids and nitric oxide synthase are involved in the 4 Hz stimulation-induced PF-PC presynaptic plasticity, but the endocannabinoid-dependent PF-PC presynaptic LTD masked the nitric oxide-mediated PF-PC presynaptic LTP in the cerebellar cortex in urethane-anesthetised mice.
Collapse
Affiliation(s)
- Chun-Ping Chu
- Cellular Function Research Center, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Desroches J, Bouchard JF, Gendron L, Beaulieu P. Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia. Neuroscience 2014; 261:23-42. [DOI: 10.1016/j.neuroscience.2013.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/27/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
23
|
The vital role of constitutive GPCR activity in the mesolimbic dopamine system. Transl Psychiatry 2014; 4:e361. [PMID: 24518399 PMCID: PMC3944632 DOI: 10.1038/tp.2013.130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/13/2013] [Accepted: 12/07/2013] [Indexed: 12/28/2022] Open
Abstract
The midbrain dopamine system has an important role in processing rewards and the stimuli associated with them, and is implicated in various psychiatric disorders. This system is tightly regulated by various G protein-coupled receptors (GPCRs). It is becoming increasingly clear that these receptors are not only activated by (endogenous) agonists but that they also exhibit agonist-independent intrinsic constitutive activity. In this review we highlight the evidence for the physiological role of such constitutive GPCR activity (in particular for cannabinoid 1, serotonin 2C and mu-opioid receptors) in the ventral tegmental area and in its output regions like the nucleus accumbens. We also address the behavioral relevance of constitutive GPCR signaling and discuss the repercussions of its abolition in dopamine-related psychiatric diseases.
Collapse
|
24
|
Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol Psychiatry 2013; 18:1294-301. [PMID: 23070073 DOI: 10.1038/mp.2012.145] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 01/10/2023]
Abstract
Obesity is a global problem with often strong neurobiological underpinnings. The cannabinoid 1 receptor (CB1R) was put forward as a promising drug target for antiobesity medication. However, the first marketed CB1R antagonist/inverse agonist rimonabant was discontinued, as its use was occasionally associated with negative affect and suicidality. In artificial cell systems, CB1Rs can become constitutively active in the absence of ligands. Here, we show that such constitutive CB1R activity also regulates GABAergic and glutamatergic neurotransmission in the ventral tegmental area and basolateral amygdala, regions which regulate motivation and emotions. We show that CB1R inverse agonists like rimonabant suppress the constitutive CB1R activity in such regions, and cause anxiety and reduced motivation for reward. The neutral CB1R antagonist NESS0327 does not suppress constitutive activity and lacks these negative effects. Importantly, however, both rimonabant and NESS0327 equally reduce weight gain and food intake. Together, these findings suggest that neutral CB1R antagonists can treat obesity efficiently and more safely than inverse agonists.
Collapse
|
25
|
Khan SS, Lee FJS. Delineation of Domains Within the Cannabinoid CB1 and Dopamine D2 Receptors That Mediate the Formation of the Heterodimer Complex. J Mol Neurosci 2013; 53:10-21. [DOI: 10.1007/s12031-013-0181-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
|
26
|
Hurd YL, Michaelides M, Miller ML, Jutras-Aswad D. Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 2013; 76 Pt B:416-24. [PMID: 23954491 DOI: 10.1016/j.neuropharm.2013.07.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022]
Abstract
The adolescent brain is a period of dynamic development making it vulnerable to environmental factors such as drug exposure. Of the illicit drugs, cannabis is most used by teenagers since it is perceived by many to be of little harm. This perception has led to a growing number of states approving its legalization and increased accessibility. Most of the debates and ensuing policies regarding cannabis were done without consideration of its impact on one of the most vulnerable population, namely teens, or without consideration of scientific data. We provide an overview of the endocannabinoid system in relation to adolescent cannabis exposure and provide insights regarding factors such as genetics and behavioral traits that confer risk for subsequent addiction. While it is clear that more systematic scientific studies are needed to understand the long-term impact of adolescent cannabis exposure on brain and behavior, the current evidence suggests that it has a far-reaching influence on adult addictive behaviors particularly for certain subsets of vulnerable individuals. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; James J. Peters Veterans Administration, Bronx, NY, USA.
| | | | | | | |
Collapse
|
27
|
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 2013; 84:158-69. [PMID: 23632086 PMCID: PMC3684826 DOI: 10.1124/mol.113.084780] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/30/2013] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, ideas and experimental support for the hypothesis that G protein-coupled receptors may exist as dimeric or oligomeric complexes moved initially from heresy to orthodoxy, to the current situation in which the capacity of such receptors to interact is generally accepted but the prevalence, maintenance, and relevance of such interactions to both pharmacology and function remain unclear. A vast body of data obtained following transfection of cultured cells is still to be translated to native systems and, even where this has been attempted, results often remain controversial and contradictory. This review will consider approaches that are currently being applied and why these might be challenging to interpret, and will suggest means to overcome these limitations.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
28
|
Dubreucq S, Durand A, Matias I, Bénard G, Richard E, Soria-Gomez E, Glangetas C, Groc L, Wadleigh A, Massa F, Bartsch D, Marsicano G, Georges F, Chaouloff F. Ventral tegmental area cannabinoid type-1 receptors control voluntary exercise performance. Biol Psychiatry 2013; 73:895-903. [PMID: 23237313 DOI: 10.1016/j.biopsych.2012.10.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/09/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND We have shown that the endogenous stimulation of cannabinoid type-1 (CB₁) receptors is a prerequisite for voluntary running in mice, but the precise mechanisms through which the endocannabinoid system exerts a tonic control on running performance remain unknown. METHODS We analyzed the respective impacts of constitutive/conditional CB₁ receptor mutations and of CB₁ receptor blockade on wheel-running performance. We then assessed the consequences of ventral tegmental area (VTA) CB₁ receptor blockade on the wheel-running performances of wildtype (gamma-aminobutyric acid [GABA]-CB₁⁺/⁺) and mutant (GABA-CB₁⁻/⁻) mice for CB₁ receptors in brain GABA neurons. Using in vivo electrophysiology, the consequences of wheel running on VTA dopamine (DA) neuronal activity were examined in GABA-CB₁⁺/⁺ and GABA-CB₁⁻/⁻ mice. RESULTS Conditional deletion of CB₁ receptors from brain GABA neurons, but not from several other neuronal populations or from astrocytes, decreased wheel-running performance in mice. The inhibitory consequences of either the systemic or the intra-VTA administration of CB1 receptor antagonists on running behavior were abolished in GABA-CB₁⁻/⁻ mice. The absence of CB1 receptors from GABAergic neurons led to a depression of VTA DA neuronal activity after acute/repeated wheel running. CONCLUSIONS This study provides evidence that CB₁ receptors on VTA GABAergic terminals exert a permissive control on rodent voluntary running performance. Furthermore, it is shown that CB₁ receptors located on GABAergic neurons impede negative consequences of voluntary exercise on VTA DA neuronal activity. These results position the endocannabinoid control of inhibitory transmission as a prerequisite for wheel-running performance in mice.
Collapse
Affiliation(s)
- Sarah Dubreucq
- Institut National de la Santé et de la Recherche Médicale-INSERM, U862, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zádor F, Ötvös F, Benyhe S, Zimmer A, Páldy E. Inhibition of forebrain μ-opioid receptor signaling by low concentrations of rimonabant does not require cannabinoid receptors and directly involves μ-opioid receptors. Neurochem Int 2012; 61:378-88. [DOI: 10.1016/j.neuint.2012.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/12/2012] [Accepted: 05/10/2012] [Indexed: 01/22/2023]
|
30
|
Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 2012; 73:317-32. [PMID: 22284186 DOI: 10.1016/j.neuron.2011.10.038] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
Abstract
We identified subsets of neurons in the brain that coexpress the dopamine receptor subtype-2 (DRD2) and the ghrelin receptor (GHSR1a). Combination of FRET confocal microscopy and Tr-FRET established the presence of GHSR1a:DRD2 heteromers in hypothalamic neurons. To interrogate function, mice were treated with the selective DRD2 agonist cabergoline, which produced anorexia in wild-type and ghrelin⁻/⁻ mice; intriguingly, ghsr⁻/⁻ mice were refractory illustrating dependence on GHSR1a, but not ghrelin. Elucidation of mechanism showed that formation of GHSR1a:DRD2 heteromers allosterically modifies canonical DRD2 dopamine signaling resulting in Gβγ subunit-dependent mobilization of [Ca²⁺](i) independent of GHSR1a basal activity. By targeting the interaction between GHSR1a and DRD2 in wild-type mice with a highly selective GHSR1a antagonist (JMV2959) cabergoline-induced anorexia was blocked. Inhibiting dopamine signaling in subsets of neurons with a GHSR1a antagonist has profound therapeutic implications by providing enhanced selectivity because neurons expressing DRD2 alone would be unaffected.
Collapse
Affiliation(s)
- Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute-Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
31
|
Seely KA, Brents LK, Franks LN, Rajasekaran M, Zimmerman SM, Fantegrossi WE, Prather PL. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies. Neuropharmacology 2012; 63:905-15. [PMID: 22771770 DOI: 10.1016/j.neuropharm.2012.06.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/04/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.
Collapse
Affiliation(s)
- Kathryn A Seely
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Esteban S, García-Sevilla JA. Effects induced by cannabinoids on monoaminergic systems in the brain and their implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:78-87. [PMID: 22133541 DOI: 10.1016/j.pnpbp.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 12/19/2022]
Abstract
The endocannabinoid system and CB(1) receptors participate in the control of emotional behavior and mood through a functional coupling with the classic monoaminergic systems. In general, the acute stimulation of CB(1) receptors increases the activity (spontaneous firing rate) of noradrenergic (NE), serotonergic (5-HT) and dopaminergic (DA) neurons as well as the synthesis and/or release of the corresponding neurotransmitter in specific brain regions. Notably, the antagonist/inverse agonist rimonabant (SR141617A) can decrease the basal activity of NE and 5-HT neurons, suggesting a tonic/constitutive regulation of these neuronal systems by endocannabinoids acting at CB(1) receptors. Monoaminergic systems are modulated via CB(1) receptors by direct or indirect effects depending on the localization of this inhibitory receptor, which can be present on monoaminergic neurons themselves and/or inhibitory (GABAergic) and/or excitatory (glutamatergic) regulatory neurons. The repeated stimulation of CB(1) receptors is not associated with the induction of tolerance (receptor desensitization) on the activity of NE, 5-HT and DA neurons, in contrast to chronic agonist effects on neurotransmitter synthesis and/or release in some brain regions. CB(1) receptor desensitization may alter the direct and/or indirect effects of cannabinoid drugs modulating the functionality of monoaminergic systems. The sustained activation of monoaminergic neurons by cannabinoid drugs can also be related to changes in the function of presynaptic inhibitory α(2)-adrenoceptors or 5-HT(1A) receptors (autoreceptors and heteroreceptors), whose sensitivity is downregulated or upregulated upon chronic CB(1) agonist exposure. The functional interactions between endocannabinoids and monoaminergic systems in the brain indicate a potential role for CB(1) receptor signaling in the neurobiology of various psychiatric disorders, including major depression and schizophrenia as the major syndromes.
Collapse
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofarmacología, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain.
| | | |
Collapse
|
33
|
Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 2012; 62:2184-91. [PMID: 22300836 DOI: 10.1016/j.neuropharm.2012.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/21/2022]
Abstract
Dopamine, serotonin and glutamate play a role in the pathophysiology of schizophrenia. In the brain a functional crosstalk between the serotonin receptor 5-HT(2A) and the metabotropic glutamate receptor mGlu(2) has been demonstrated. Such a crosstalk may be mediated indirectly through neuronal networks or directly by receptor oligomerization. A direct link of the 5-HT(2A)-mGlu(2) heterocomplex formation to receptor function, i.e. to intracellular signaling, has not been fully demonstrated yet. Here we confirm the formation of 5-HT(2A)-mGlu(2) heterocomplexes using quantitative Snap/Clip-tag based HTRF methods. Additionally, mGlu(2) formed complexes with 5-HT(2B) and mGlu(5) but not 5-HT(2C) indicating that complex formation is not specific to the 5-HT(2A)-mGlu(2) pair. We studied the functional consequences of the 5-HT(2A)-mGlu(2) heterocomplex addressing cellular signaling pathways. Co-expression of receptors in HEK-293 cells had no relevant effects on signaling mediated by the individual receptors when mGlu(2) agonists, antagonists and PAMs, or 5-HT(2A) hallucinogenic and non-hallucinogenic agonists and antagonists were used. Hallucinogenic 5-HT(2A) agonists induced signaling through G(q/11), but not G(i) and thus did not lead to modulation of intracellular cAMP levels. In membranes of the medial prefrontal cortex [(3)H]-LY341495 binding competition of mGlu(2/3) agonist LY354740 was not influenced by 2,5-dimethoxy-4-iodoamphetamine (DOI). Taken together, the formation of GPCR heterocomplexes does not necessarily translate into second messenger effects. These results do not put into question the well-documented functional cross-talk of the two receptors in the brain, but do challenge the biological relevance of the 5-HT(2A)-mGlu(2) heterocomplex.
Collapse
|
34
|
Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 2012; 163:1329-43. [PMID: 21545414 DOI: 10.1111/j.1476-5381.2011.01364.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Erdozain AM, Diez-Alarcia R, Meana JJ, Callado LF. The inverse agonist effect of rimonabant on G protein activation is not mediated by the cannabinoid CB1 receptor: evidence from postmortem human brain. Biochem Pharmacol 2011; 83:260-8. [PMID: 22093909 DOI: 10.1016/j.bcp.2011.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/27/2011] [Accepted: 10/27/2011] [Indexed: 01/28/2023]
Abstract
Rimonabant (SR141716) was the first potent and selective cannabinoid CB1 receptor antagonist synthesized. Several data support that rimonabant behaves as an inverse agonist. Moreover, there is evidence suggesting that this inverse agonism may be CB1 receptor-independent. The aim of the present study was to elucidate whether the effect of rimonabant over G protein activation in postmortem human brain is CB1 dependent or independent. [(35)S]GTPγS binding assays and antibody-capture [(35)S]GTPγS scintillation proximity assays (SPA) were performed in human and mice brain. [(3)H]SR141716 binding characteristics were also studied. Rimonabant concentration-dependently decreased basal [(35)S]GTPγS binding to human cortical membranes. This effect did not change in the presence of either the CB1 receptor agonist WIN 55,212-2, the CB1 receptor neutral antagonist O-2050, or the CB1 allosteric modulator Org 27569. [(35)S]GTPγS binding assays performed in CB1 knockout mice brains revealed that rimonabant inhibited the [(35)S]GTPγS binding in the same manner as it did in wild-type mice. The SPA combined with the use of specific antibody-capture of G(α) specific subunits showed that rimonabant produces its inverse agonist effect through G(i3), G(o) and G(z) subtypes. This effect was not inhibited by the CB1 receptor antagonist O-2050. Finally, [(3)H]SR141716 binding assays in human cortical membranes demonstrated that rimonabant recognizes an additional binding site other than the CB1 receptor orthosteric binding site recognized by O-2050. This study provides new data demonstrating that at least the inverse agonist effect observed with >1μM concentrations of rimonabant in [(35)S]GTPγS binding assays is not mediated by the CB1 receptor in human brain.
Collapse
Affiliation(s)
- A M Erdozain
- Department of Pharmacology, University of the Basque Country E-48940 Leioa, Bizkaia, Spain
| | | | | | | |
Collapse
|
36
|
Vischer HF, Watts AO, Nijmeijer S, Leurs R. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand? Br J Pharmacol 2011; 163:246-60. [PMID: 21244374 DOI: 10.1111/j.1476-5381.2011.01229.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Most cells express a panel of different G protein-coupled receptors (GPCRs) allowing them to respond to at least a corresponding variety of extracellular ligands. In order to come to an integrative well-balanced functional response these ligand-receptor pairs can often cross-regulate each other. Although most GPCRs are fully capable to induce intracellular signalling upon agonist binding on their own, many GPCRs, if not all, appear to exist and function in homomeric and/or heteromeric assemblies for at least some time. Such heteromeric organization offers unique allosteric control of receptor pharmacology and function between the protomers and might even unmask 'new' features. However, it is important to realize that some functional consequences that are proposed to originate from heteromeric receptor interactions may also be observed due to intracellular crosstalk between signalling pathways of non-associated GPCRs.
Collapse
Affiliation(s)
- Henry F Vischer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Ward RJ, Pediani JD, Milligan G. Heteromultimerization of cannabinoid CB(1) receptor and orexin OX(1) receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem 2011; 286:37414-28. [PMID: 21908614 PMCID: PMC3199489 DOI: 10.1074/jbc.m111.287649] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced internalization was observed for both inducible and constitutively expressed forms of the cannabinoid CB(1) receptor. These were also internalized by the peptide orexin A, which has no direct affinity for the cannabinoid CB(1) receptor, but only when the orexin OX(1) receptor was co-expressed along with the cannabinoid CB(1) receptor. This effect of orexin A was concentration-dependent and blocked by OX(1) receptor antagonists. Moreover, the ability of orexin A to internalize the CB(1) receptor was also blocked by CB(1) receptor antagonists. Remarkably, orexin A was substantially more potent in producing internalization of the CB(1) receptor than in causing internalization of the bulk OX(1) receptor population, and this was true in cells in which the CB(1) receptor was maintained at a constant level, whereas levels of OX(1) could be varied and vice versa. Both co-immunoprecipitation and cell surface, homogenous time-resolved fluorescence resonance energy transfer based on covalent labeling of N-terminal "SNAP" and "CLIP" tags present in the extracellular N-terminal domain of the receptors confirmed the capacity of these two receptors to heteromultimerize. These studies confirm the capacity of the CB(1) and OX(1) receptors to interact directly and demonstrate that this complex has unique regulatory characteristics. The higher potency of the agonist orexin A to regulate the CB(1)-OX(1) heteromer compared with the OX(1)-OX(1) homomer present in the same cells and the effects of CB(1) receptor antagonists on the function of orexin A suggest an interplay between these two systems that may modulate appetite, feeding, and wakefulness.
Collapse
Affiliation(s)
- Richard J. Ward
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - John D. Pediani
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
38
|
Wiskerke J, Stoop N, Schetters D, Schoffelmeer ANM, Pattij T. Cannabinoid CB1 receptor activation mediates the opposing effects of amphetamine on impulsive action and impulsive choice. PLoS One 2011; 6:e25856. [PMID: 22016780 PMCID: PMC3189229 DOI: 10.1371/journal.pone.0025856] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.
Collapse
Affiliation(s)
- Joost Wiskerke
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicky Stoop
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Seely KA, Prather PL, James LP, Moran JH. Marijuana-based drugs: innovative therapeutics or designer drugs of abuse? Mol Interv 2011; 11:36-51. [PMID: 21441120 DOI: 10.1124/mi.11.1.6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principal psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), activates CB1 cannabinoid receptors (CB1Rs). Unfortunately, pharmacological research into the design of effective THC analogs has been hampered by psychiatric side effects. THC-based drug design of a less academic nature, however, has led to the marketing of "synthetic marijuana," labeled as K2 or "Spice," among other terms, which elicits psychotropic actions via CB1R activation. Because of structural dissimilarity to THC, the active ingredients of K2/Spice preparations are widely unregulated. The K2/Spice "phenomenon" provides a context for considering whether marijuana-based drugs will truly provide innovative therapeutics or merely perpetuate drug abuse.
Collapse
Affiliation(s)
- Kathryn A Seely
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
41
|
Jenkins L, Alvarez-Curto E, Campbell K, de Munnik S, Canals M, Schlyer S, Milligan G. Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα₁₃ and β-arrestin-2. Br J Pharmacol 2011; 162:733-48. [PMID: 20958291 DOI: 10.1111/j.1476-5381.2010.01082.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE GPR35 is a poorly characterized G protein-coupled receptor at which kynurenic acid has been suggested to be the endogenous ligand. We wished to test this and develop assays appropriate for the study of this receptor. EXPERIMENTAL APPROACH Human and rat orthologues of GPR35 were engineered and expressed and assays developed to assess interaction with β-arrestin-2, activation of Gα₁₃ and agonist-induced internalization. KEY RESULTS GPR35-β-arrestin-2 interaction assays confirmed that both the endogenous tryptophan metabolite kynurenic acid and the synthetic ligand zaprinast had agonist action at each orthologue. Zaprinast was substantially more potent than kynurenic acid at each and both agonists displayed substantially greater potency at rat GPR35. Two novel thiazolidinediones also displayed agonism and displayed similar potency at each GPR35 orthologue. The three ligand classes acted orthosterically with respect to each other, suggesting overlapping binding sites and, consistent with this, mutation to alanine of the conserved arginine at position 3.36 or tyrosine 3.32 in transmembrane domain III abolished β-arrestin-2 recruitment in response to each ligand at each orthologue. CONCLUSIONS AND IMPLICATIONS These studies indicate that β-arrestin-2 interaction assays are highly appropriate to explore the pharmacology of GPR35 and that Gα₁₃ activation is an alternative avenue of signal generation from GPR35. Arginine and tyrosine residues in transmembrane domain III are integral to agonist recognition and function of this receptor. The potency of kynurenic acid at human GPR35 is sufficiently low, however, to question whether it is likely to be the true endogenous ligand for this receptor.
Collapse
Affiliation(s)
- Laura Jenkins
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Raffa RB, Ward SJ. CB1-independent mechanisms of Δ9-THCV, AM251 and SR141716 (rimonabant). J Clin Pharm Ther 2011; 37:260-5. [DOI: 10.1111/j.1365-2710.2011.01284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Inducible expression of G protein-coupled receptors in transfected cells. Methods Mol Biol 2011. [PMID: 21607849 DOI: 10.1007/978-1-61779-126-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biochemical or pharmacological studies of G protein-coupled receptors (GPCRs) are widely conducted in transfected mammalian cells. A variety of commercially available systems allow the generation of stable cell-lines in which expression of the recombinant receptor can be induced on addition of a defined chemical to the culture medium, which operates as a control switch for the transcription of the cloned sequence. Such systems offer the possibility to induce graded levels of receptor expression in the experimental model, or to induce an abrupt downregulation of receptor expression during the maintenance of the cell-line. This chapter provides an overview of the different systems available and provides methods for the generation and validation of stably transfected cell-lines expressing the GPCR of choice.
Collapse
|
44
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2011; 62:588-631. [PMID: 21079038 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1220] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 2011; 62:701-25. [PMID: 21079041 DOI: 10.1124/pr.110.002667] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Laboratory,University Avenue, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
46
|
Ward RJ, Pediani JD, Milligan G. Ligand-induced internalization of the orexin OX(1) and cannabinoid CB(1) receptors assessed via N-terminal SNAP and CLIP-tagging. Br J Pharmacol 2011; 162:1439-52. [PMID: 21175569 PMCID: PMC3058174 DOI: 10.1111/j.1476-5381.2010.01156.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/26/2010] [Accepted: 11/22/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Many G protein-coupled receptors internalize following agonist binding. The studies were designed to identify novel means to effectively quantify this process using the orexin OX(1) receptor and the cannabinoid CB(1) receptor as exemplars. EXPERIMENTAL APPROACH The human OX(1) and CB(1) receptors were modified to incorporate both epitope tags and variants (SNAP and CLIP) of the enzyme O(6)-alkylguanine-DNA-alkyltransferase within their extracellular, N-terminal domain. Cells able to regulate expression of differing amounts of these constructs upon addition of an antibiotic were developed and analysed. KEY RESULTS Cell surface forms of each receptor construct were detected by both antibody recognition of the epitope tags and covalent binding of fluorophores to the O(6)-alkylguanine-DNA-alkyltransferase variants. Receptor internalization in response to agonists but not antagonists could be monitored by each approach but sensitivity was up to six- to 10-fold greater than other approaches when employing a novel, time-resolved fluorescence probe for the SNAP tag. Sensitivity was not enhanced, however, for the CLIP tag, possibly due to higher levels of nonspecific binding. CONCLUSIONS AND IMPLICATIONS These studies demonstrate that highly sensitive and quantitative assays that monitor cell surface CB(1) and OX(1) receptors and their internalization by agonists can be developed based on introduction of variants of O(6)-alkylguanine-DNA-alkyltransferase into the N-terminal domain of the receptor. This should be equally suitable for other G protein-coupled receptors.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/chemistry
- Alkyl and Aryl Transferases/metabolism
- Benzoxazoles/metabolism
- Benzoxazoles/pharmacology
- Cell Line
- Cell Membrane/drug effects
- Cloning, Molecular
- Cyclohexanols/metabolism
- Cyclohexanols/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/pharmacology
- Ligands
- Naphthyridines
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Orexin Receptors
- Orexins
- Phenylurea Compounds/metabolism
- Phenylurea Compounds/pharmacology
- Phosphorylation/drug effects
- Piperidines/metabolism
- Piperidines/pharmacology
- Plasmids
- Pyrazoles/metabolism
- Pyrazoles/pharmacology
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Rimonabant
- Thiazoles/metabolism
- Thiazoles/pharmacology
- Urea/analogs & derivatives
- Urea/metabolism
- Urea/pharmacology
Collapse
Affiliation(s)
- Richard J Ward
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
47
|
Hudson BD, Hébert TE, Kelly MEM. Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors. Br J Pharmacol 2010; 160:627-42. [PMID: 20590567 DOI: 10.1111/j.1476-5381.2010.00681.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE The CB(1) cannabinoid receptor and the beta(2)-adrenoceptor are G protein-coupled receptors (GPCRs) co-expressed in many tissues. The present study examined physical and functional interactions between these receptors in a heterologous expression system and in primary human ocular cells. EXPERIMENTAL APPROACH Physical interactions between CB(1) receptors and beta(2)-adrenoceptors were assessed using bioluminescence resonance energy transfer (BRET). Functional interactions between these receptors were evaluated by examining receptor trafficking, as well as extracellular signal-regulated kinase (ERK) and cyclic AMP response element binding protein (CREB) signalling. KEY RESULTS Physical interactions between CB(1) receptors and beta(2)-adrenoceptors were demonstrated using BRET. In human embryonic kidney (HEK) 293H cells, co-expression of beta(2)-adrenoceptors tempered the constitutive activity and increased cell surface expression of CB(1) receptors. Co-expression altered the signalling properties of CB(1 )receptors, resulting in increased Galpha(i)-dependent ERK phosphorylation, but decreased non-Galpha(i)-mediated CREB phosphorylation. The CB(1) receptor inverse agonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) attenuated beta(2)-adrenoceptor-pERK signalling in cells expressing both receptors, while the CB(1) receptor neutral antagonist O-2050 ((6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) did not. The actions of AM251 and O-2050 were further examined in primary human trabecular meshwork (HTM) cells, which are ocular cells endogenously co-expressing CB(1) receptors and beta(2)-adrenoceptors. In HTM cells, as in HEK 293H cells, AM251 but not O-2050, altered the beta(2)-adrenoceptor-pERK response. CONCLUSION AND IMPLICATIONS A complex interaction was demonstrated between CB(1) receptors and beta(2)-adrenoceptors in HEK 293H cells. As similar functional interactions were also observed in HTM cells, such interactions may affect the pharmacology of these receptors in tissues where they are endogenously co-expressed.
Collapse
Affiliation(s)
- Brian D Hudson
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
48
|
Alvaro-Bartolomé M, Esteban S, García-Gutiérrez MS, Manzanares J, Valverde O, García-Sevilla JA. Regulation of Fas receptor/Fas-associated protein with death domain apoptotic complex and associated signalling systems by cannabinoid receptors in the mouse brain. Br J Pharmacol 2010; 160:643-56. [PMID: 20590568 DOI: 10.1111/j.1476-5381.2010.00710.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Natural and synthetic cannabinoids (CBs) induce deleterious or beneficial actions on neuronal survival. The Fas-associated protein with death domain (FADD) promotes apoptosis, and its phosphorylated form (p-FADD) mediates non-apoptotic actions. The regulation of Fas/FADD, mitochondrial apoptotic proteins and other pathways by CB receptors was investigated in the mouse brain. EXPERIMENTAL APPROACH Wild-type, CB(1) and CB(2) receptor knock-out (KO) mice were used to assess differences in receptor genotypes. CD1 mice were used to evaluate the effects of CB drugs on canonical apoptotic pathways and associated signalling systems. Target proteins were quantified by Western blot analysis. KEY RESULTS In brain regions of CB(1) receptor KO mice, Fas/FADD was reduced, but p-Ser191 FADD and the p-FADD/FADD ratio were increased. In CB(2) receptor KO mice, Fas/FADD was increased, but the p-FADD/FADD ratio was not modified. In mutant mice, cleavage of poly(ADP-ribose)-polymerase (PARP) did not indicate alterations in brain cell death. In CD1 mice, acute WIN55212-2 (CB(1) receptor agonist), but not JWH133 (CB(2) receptor agonist), inversely modulated brain FADD and p-FADD. Chronic WIN55212-2 induced FADD down-regulation and p-FADD up-regulation. Acute and chronic WIN55212-2 did not alter mitochondrial proteins or PARP cleavage. Acute, but not chronic, WIN55212-2 stimulated activation of anti-apoptotic (ERK, Akt) and pro-apoptotic (JNK, p38 kinase) pathways. CONCLUSIONS AND IMPLICATIONS CB(1) receptors appear to exert a modest tonic activation of Fas/FADD complexes in brain. However, chronic CB(1) receptor stimulation decreased pro-apoptotic FADD and increased non-apoptotic p-FADD. The multifunctional protein FADD could participate in the mechanisms of neuroprotection induced by CBs.
Collapse
Affiliation(s)
- M Alvaro-Bartolomé
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Nijmeijer S, Leurs R, Smit MJ, Vischer HF. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem 2010; 285:29632-41. [PMID: 20622011 DOI: 10.1074/jbc.m110.115618] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells express distinct G protein-coupled receptor (GPCR) subtypes on their surface, allowing them to react to a corresponding variety of extracellular stimuli. Cross-regulation between different ligand-GPCR pairs is essential to generate appropriate physiological responses. GPCRs can physically affect each other's functioning by forming heteromeric complexes, whereas cross-regulation between activated GPCRs also occurs through integration of shared intracellular signaling networks. Human herpesviruses utilize virally encoded GPCRs to hijack cellular signaling networks for their own benefit. Previously, we demonstrated that the Epstein-Barr virus-encoded GPCR BILF1 forms heterodimeric complexes with human chemokine receptors. Using a combination of bimolecular complementation and bioluminescence resonance energy transfer approaches, we now show the formation of hetero-oligomeric complexes between this viral GPCR and human CXCR4. BILF1 impaired CXCL12 binding to CXCR4 and, consequently, also CXCL12-induced signaling. In contrast, the G protein uncoupled mutant BILF1-K(3.50)A affected CXCL12-induced CXCR4 signaling to a much lesser extent, indicating that BILF1-mediated CXCR4 inhibition is a consequence of its constitutive activity. Co-expression of Gα(i1) with BILF1 and CXCR4 restored CXCL12-induced signaling. Likewise, BILF1 formed heteromers with the human histamine H(4) receptor (H(4)R). BILF1 inhibited histamine-induced Gα(i)-mediated signaling by H(4)R, however, without affecting histamine binding to this receptor. These data indicate that functional cross-regulation of Gα(i)-coupled GPCRs by BILF1 is at the level of G proteins, even though these GPCRs are assembled in hetero-oligomeric complexes.
Collapse
Affiliation(s)
- Saskia Nijmeijer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
50
|
Skelly MJ, Guy EG, Howlett AC, Pratt WE. CB1 receptors modulate the intake of a sweetened-fat diet in response to μ-opioid receptor stimulation of the nucleus accumbens. Pharmacol Biochem Behav 2010; 97:144-51. [PMID: 20562021 DOI: 10.1016/j.pbb.2010.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 05/13/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Previous research has demonstrated that concurrent systemic administration of CB(1) cannabinoid and mu-opioid receptor agonists increases feeding in rats. However, the possible neural loci of this cooperative effect have yet to be identified. These studies tested whether the nucleus accumbens shell may be one site of the interactive effects of opioid and cannabinoid ligands on feeding. Injection of the mu-opioid agonist DAMGO (at 0, 0.025, 0.25, or 2.5 µg/0.5 µl/side) directly into the rat nucleus accumbens shell increased feeding on a sweetened-fat diet, and this effect was blocked by pretreatment with either the mu-opioid antagonist naltrexone (20 µg/0.5 µl/side) or the CB(1) antagonist SR141716 (0.5 µg/0.5 µl/side). Activation of nucleus accumbens shell CB(1) receptors with WIN55212-2 alone (at 0.1 or 0.5 µg/0.5 µl/side) had no apparent effect on food intake. However, local injections of the low dose of DAMGO (.025 µg/0.5 µl/side) in this region along with WIN55212-2 (at 0.25 or 0.50 µg/0.5 µl/side) increased feeding above that induced by DAMGO alone. These data suggest an important modulatory role for cannabinoid receptors in the expression of feeding behaviors in response to mu-opioid receptor activation of the nucleus accumbens shell.
Collapse
Affiliation(s)
- Mary Jane Skelly
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | |
Collapse
|