1
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2024:10.1007/s11010-024-05050-9. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
3
|
Li K, Chatterjee A, Qian C, Lagree K, Wang Y, Becker CA, Freeman MR, Murali R, Yang W, Underhill DM. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 2024; 630:736-743. [PMID: 38839956 DOI: 10.1038/s41586-024-07499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.
Collapse
Affiliation(s)
- Kai Li
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katherine Lagree
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Courtney A Becker
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Department of Biomedical Sciences, Division Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David M Underhill
- Department of Biomedical Sciences, Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
XU L, YANG G, SONG B, CHEN D, YUNUS A, CHEN J, YANG X, TIAN Z. Ribosomal protein L8 regulates the expression and splicing pattern of genes associated with cancer-related pathways. Turk J Biol 2023; 47:313-324. [PMID: 38155938 PMCID: PMC10752374 DOI: 10.55730/1300-0152.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/31/2023] [Accepted: 07/25/2023] [Indexed: 12/30/2023] Open
Abstract
Background/aim Ribosomal proteins have been shown to perform unique extraribosomal functions in cell apoptosis and other biological processes. Ribosomal protein L8 (RPL8) not only has important nonribosomal regulatory functions but also participates in the oncogenesis and development of tumors. However, the specific biological functions and pathways involved in this process are still unknown. Materials and methods RPL8 was overexpressed (RPL8-OE) in HeLa cells. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs) by RPL8-OE, both of which were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay. Results RPL8-OE inhibited cell proliferation and promoted cell apoptosis. RPL8 regulated the differential expression of many oncogenic genes and the occurrence of RASEs. Many DEGs and RASE genes (RASGs) were enriched in tumorigenesis and tumor progression-related pathways, including angiogenesis, inflammation, and regulation of cell proliferation. RPL8 could regulate the RASGs enriched in the negative regulation of apoptosis, consistent with its proapoptosis function. Furthermore, RPL8 may influence cancer-related DEGs by modulating the alternative splicing of transcription factors. Conclusion RPL8 might affect the phenotypes of cancer cells by altering the transcriptome profiles, including gene expression and splicing, which provides novel insights into the biological functions of RPL8 in tumor development.
Collapse
Affiliation(s)
- Leilei XU
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Gui YANG
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Bin SONG
- ABLife BioBigData Institute, Wuhan, Hubei,
P.R. China
| | - Dong CHEN
- ABLife BioBigData Institute, Wuhan, Hubei,
P.R. China
| | - Akbar YUNUS
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Jiangtao CHEN
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Xiaogang YANG
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| | - Zheng TIAN
- Department of Bone Tumor, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang,
P.R. China
| |
Collapse
|
5
|
Haralambieva IH, Quach HQ, Ovsyannikova IG, Goergen KM, Grill DE, Poland GA, Kennedy RB. T Cell Transcriptional Signatures of Influenza A/H3N2 Antibody Response to High Dose Influenza and Adjuvanted Influenza Vaccine in Older Adults. Viruses 2022; 14:2763. [PMID: 36560767 PMCID: PMC9786771 DOI: 10.3390/v14122763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Older adults experience declining influenza vaccine-induced immunity and are at higher risk of influenza and its complications. For this reason, high dose (e.g., Fluzone) and adjuvanted (e.g., Fluad) vaccines are preferentially recommended for people age 65 years and older. However, T cell transcriptional activity shaping the humoral immune responses to Fluzone and Fluad vaccines in older adults is still poorly understood. We designed a study of 234 older adults (≥65 years old) who were randomly allocated to receive Fluzone or Fluad vaccine and provided blood samples at baseline and at Day 28 after immunization. We measured the humoral immune responses (hemagglutination inhibition/HAI antibody titer) to influenza A/H3N2 and performed mRNA-Seq transcriptional profiling in purified CD4+ T cells, in order to identify T cell signatures that might explain differences in humoral immune response by vaccine type. Given the large differences in formulation (higher antigen dose vs adjuvant), our hypothesis was that each vaccine elicited a distinct transcriptomic response after vaccination. Thus, the main focus of our study was to identify the differential gene expression influencing the antibody titer in the two vaccine groups. Our analyses identified three differentially expressed, functionally linked genes/proteins in CD4+ T cells: the calcium/calmodulin dependent serine/threonine kinase IV (CaMKIV); its regulator the TMEM38B/transmembrane protein 38B, involved in maintenance of intracellular Ca2+ release; and the transcriptional coactivator CBP/CREB binding protein, as regulators of transcriptional activity/function in CD4+ T cells that impact differences in immune response by vaccine type. Significantly enriched T cell-specific pathways/biological processes were also identified that point to the importance of genes/proteins involved in Th1/Th2 cell differentiation, IL-17 signaling, calcium signaling, Notch signaling, MAPK signaling, and regulation of TRP cation Ca2+ channels in humoral immunity after influenza vaccination. In summary, we identified the genes/proteins and pathways essential for cell activation and function in CD4+ T cells that are associated with differences in influenza vaccine-induced humoral immunity by vaccine type. These findings provide an additional mechanistic perspective for achieving protective immunity in older adults.
Collapse
Affiliation(s)
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Krista M. Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E. Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Du Y, Hao H, Ma H, Liu H. Macrophage migration inhibitory factor in acute kidneyinjury. Front Physiol 2022; 13:945827. [PMID: 36117692 PMCID: PMC9478040 DOI: 10.3389/fphys.2022.945827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with multiple etiologies and pathogenesis, which lacks early biomarkers and targeted therapy. Recently, macrophage migration inhibitory factor (MIF) family protein have received increasing attention owing to its pleiotropic protein molecule character in acute kidney injury, where it performed a dual role in the pathological process. macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 are released into the peripheral circulation when Acute kidney injury occurs and interact with various cellular pathways. On the one hand, macrophage migration inhibitory factor exerts a protective effect in anti-oxidation and macrophage migration inhibitory factor-2 promotes cell proliferation and ameliorates renal fibrosis. On the other hand, macrophage migration inhibitory factor aggravates renal injury as an upstream inflammation factor. Herein, we provide an overview on the biological role and possible mechanisms of macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 in the process of Acute kidney injury and the clinical application prospects of macrophage migration inhibitory factor family proteins as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Hao Hao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| |
Collapse
|
7
|
Balkenhol J, Bencurova E, Gupta SK, Schmidt H, Heinekamp T, Brakhage A, Pottikkadavath A, Dandekar T. Prediction and validation of host-pathogen interactions by a versatile inference approach using Aspergillus fumigatus as a case study. Comput Struct Biotechnol J 2022; 20:4225-4237. [PMID: 36051885 PMCID: PMC9399266 DOI: 10.1016/j.csbj.2022.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/03/2022] Open
Abstract
Biological networks are characterized by diverse interactions and dynamics in time and space. Many regulatory modules operate in parallel and are interconnected with each other. Some pathways are functionally known and annotated accordingly, e.g., endocytosis, migration, or cytoskeletal rearrangement. However, many interactions are not so well characterized. For reconstructing the biological complexity in cellular networks, we combine here existing experimentally confirmed and analyzed interactions with a protein-interaction inference framework using as basis experimentally confirmed interactions from other organisms. Prediction scoring includes sequence similarity, evolutionary conservation of interactions, the coexistence of interactions in the same pathway, orthology as well as structure similarity to rank and compare inferred interactions. We exemplify our inference method by studying host-pathogen interactions during infection of Mus musculus (phagolysosomes in alveolar macrophages) with Aspergillus fumigatus (conidia, airborne, asexual spores). Three of nine predicted critical host-pathogen interactions could even be confirmed by direct experiments. Moreover, we suggest drugs that manipulate the host-pathogen interaction.
Collapse
Affiliation(s)
| | - Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Shishir K Gupta
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Hella Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Axel Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Aparna Pottikkadavath
- Department of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
9
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
10
|
Somasekharan SP, Gleave M. SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets. FEBS Lett 2021; 595:2872-2896. [PMID: 34780058 PMCID: PMC8652540 DOI: 10.1002/1873-3468.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The current work investigated SARS‐CoV‐2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC‐based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress‐stimulated NCAP to undergo liquid–liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS‐CoV‐2 NCAP.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Liu S, Yu T, Zhang Y, Pan C, Cai L, Yang M. Integrated analysis of mRNA and long non-coding RNA expression profiles reveals the potential roles of lncRNA-mRNA network in carp macrophage immune regulation. In Vitro Cell Dev Biol Anim 2021; 57:835-847. [PMID: 34554377 DOI: 10.1007/s11626-021-00610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a hot topic in research as mounting evidence has indicated their transcriptional or post-transcriptional regulatory potential in multiple biological processes. Previous studies have revealed the involvement of lncRNAs in the immunoregulation of mammalian macrophages by changing mRNA expression; however, studies on the lncRNAs in fish macrophages and their potential roles in the immune system remain unknown. Primary macrophages were isolated from the head kidney (HK) of red common carp (Cyprinus carpio) and high-throughput lncRNA-mRNA sequencing was performed using the Illumina HiSeq platform. The results revealed that the most highly expressed mRNAs in primary HK macrophages were mainly involved in immune-related signal pathways. Furthermore, the most enriched immune-related GO term and KEGG pathway of the mRNAs were "immune system development" and "chemokine signaling pathway," respectively. A total of 20,333 lncRNAs, composed of 10,512 known and 9821 novel lncRNAs, were identified, and functional enrichment analysis of the lncRNA-mRNA network indicated that the expressed lncRNAs in primary HK macrophages could be associated with the regulation of multiple immune-related signaling pathways. In addition, the expressions of several selected lncRNAs and their related mRNAs were determined in carp macrophages following a 6-h exposure to lipopolysaccharide (LPS) and Poly(I: C), the results of which confirmed the co-expression regulation of lncRNAs and target mRNAs in the immune response of carp macrophages. These results suggest the correlative of the lncRNA-mRNA network in fish macrophage immune response, which may further affect the cross-talk of various signaling pathways by interaction with other network genes. Here, we provided fundamental data about the transcriptome profiles of primary HK macrophages from red common carp by analysis of the lncRNA-mRNA network, and ultimately suggest the potential roles of lncRNA-mRNA networks in immune regulation in teleost fish.
Collapse
Affiliation(s)
- Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuanyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
12
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
13
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Chen L, Li Z, Zeng T, Zhang YH, Feng K, Huang T, Cai YD. Identifying COVID-19-Specific Transcriptomic Biomarkers with Machine Learning Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9939134. [PMID: 34307679 PMCID: PMC8272456 DOI: 10.1155/2021/9939134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
COVID-19, a severe respiratory disease caused by a new type of coronavirus SARS-CoV-2, has been spreading all over the world. Patients infected with SARS-CoV-2 may have no pathogenic symptoms, i.e., presymptomatic patients and asymptomatic patients. Both patients could further spread the virus to other susceptible people, thereby making the control of COVID-19 difficult. The two major challenges for COVID-19 diagnosis at present are as follows: (1) patients could share similar symptoms with other respiratory infections, and (2) patients may not have any symptoms but could still spread the virus. Therefore, new biomarkers at different omics levels are required for the large-scale screening and diagnosis of COVID-19. Although some initial analyses could identify a group of candidate gene biomarkers for COVID-19, the previous work still could not identify biomarkers capable for clinical use in COVID-19, which requires disease-specific diagnosis compared with other multiple infectious diseases. As an extension of the previous study, optimized machine learning models were applied in the present study to identify some specific qualitative host biomarkers associated with COVID-19 infection on the basis of a publicly released transcriptomic dataset, which included healthy controls and patients with bacterial infection, influenza, COVID-19, and other kinds of coronavirus. This dataset was first analysed by Boruta, Max-Relevance and Min-Redundancy feature selection methods one by one, resulting in a feature list. This list was fed into the incremental feature selection method, incorporating one of the classification algorithms to extract essential biomarkers and build efficient classifiers and classification rules. The capacity of these findings to distinguish COVID-19 with other similar respiratory infectious diseases at the transcriptomic level was also validated, which may improve the efficacy and accuracy of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, shanghai 201306, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, shanghai 200031, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, shanghai 200444, China
| |
Collapse
|
15
|
Szczęśniak P, Henke T, Fröhlich S, Plessmann U, Urlaub H, Leng L, Bucala R, Grosse R, Meinhardt A, Klug J. Extracellular MIF, but not its homologue D-DT, promotes fibroblast motility independently of its receptor complex CD74/CD44. J Cell Sci 2021; 134:jcs.217356. [PMID: 33328325 DOI: 10.1242/jcs.217356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT) are widely expressed pro-inflammatory cytokines with chemokine-like functions that coordinate a wide spectrum of biological activities, such as migration. Here, we biotin-tagged intracellular MIF/D-DT in vivo to identify important cytosolic interactors and found a plethora of actin cytoskeleton-associated proteins. Although the receptor complex between CD74 and CD44 (CD74/CD44) is essential for signalling transduction in fibroblasts via extracellular MIF/D-DT, our interactome data suggested direct effects. We, thus, investigated whether MIF/D-DT can modulate cell migration independently of CD74/CD44. To distinguish between receptor- and non-receptor-mediated motility, we used fibroblasts that are either deficient or that express CD74/CD44 proteins, and treated them with recombinant MIF/D-DT. Interestingly, only MIF could stimulate chemokinesis in the presence or absence of CD74/CD44. The pro-migratory effects of MIF depended on lipid raft/caveolae-mediated but not clathrin-mediated endocytosis, on its tautomerase activity and, probably, on its thiol protein oxidoreductase activity. As MIF treatment restrained actin polymerisation in vitro, our findings establish a new intracellular role for MIF/D-DT in driving cell motility through modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Paweł Szczęśniak
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Tamara Henke
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Uwe Plessmann
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany.,Institute for Clinical Chemistry, Research Group 'Bioanalytics', University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Medical Faculty, Albertstraße 25, 79104 Freiburg, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, Gießen 35392, Germany
| |
Collapse
|
16
|
Oh HY, Go HJ, Park NG. Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:480-490. [PMID: 32711152 DOI: 10.1016/j.fsi.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic freshwater fish like catfish, Silurus asotus, lives in microbe-rich environments, which enable this fish to develop necessary defense mechanisms. Antimicrobial peptides, along with other innate immune factors, are regarded as an important group in this defense. An antimicrobial peptide, which was isolated from the skin of S. asotus, was identified as a C-terminal fragment of 60S ribosomal protein L27 from S. asotus. The peptide was, then, designated Silurus asotus 60S ribosomal protein L27-derived antimicrobial peptide, SaRpAMP. Primary structure analyses and cDNA cloning revealed that SaRpAMP was 4185.36 Da and composed of 33 amino acids (AAs). Its precursor had a total of 136 AAs containing a pro-sequence of 103 AAs encoded by the nucleotide sequence of 512 bp that comprises a 5' untranslated region (UTR) of 32 bp, an open reading frame (ORF) of 411 bp, and a 3' UTR of 69 bp. Secondary structure analyses showed that SaRpAMP had two α-helices with turns and coils and an amphiphilic structure, a finding consistent with the 3D model of the peptide. SaRpAMP exhibited potent antibacterial activity comparable to piscidin 1, a powerful positive control. Its antimicrobial activity against fungus C. albicans was relatively weak. The antimicrobial activity of SaRpAMP was not diminished by heat treatment and changes in pH but was abolished by proteolytic enzyme digestion. Membrane permeability assays suggested that SaRpAMP interacts with both the outer and inner bacterial membranes. This was consistent with the results of lipid titration and quenching of Trp fluorescence that demonstrated SaRpAMP's interaction with acidic liposomes. Collectively, these findings suggest that the identified peptide, SaRpAMP, was the first antimicrobial peptide reported to be derived from the C-terminal region of 60S ribosomal protein L27. The findings also suggest that the action mechanism of SaRpAMP involved the interaction of the peptide with the bacterial membranes.
Collapse
Affiliation(s)
- Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea.
| |
Collapse
|
17
|
Farr L, Ghosh S, Moonah S. Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Front Immunol 2020; 11:1273. [PMID: 32655566 PMCID: PMC7325688 DOI: 10.3389/fimmu.2020.01273] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Wound healing after an injury is essential for life. An in-depth understanding of the healing process is necessary to ultimately improve the currently limited treatment options for patients suffering as a result of damage to various organs and tissues. Injuries, even the most minor, trigger an inflammatory response that protects the host and activates repair pathways. In recent years, substantial progress has been made in delineating the mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair and regeneration. This mini review focuses on emerging literature on the role of the cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor CD74, in protecting against injury and promoting healing in different parts of the body.
Collapse
Affiliation(s)
- Laura Farr
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Swagata Ghosh
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shannon Moonah
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Velásquez E, Martins-de-Souza D, Velásquez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J Proteome Res 2019; 18:4240-4253. [PMID: 31581776 DOI: 10.1021/acs.jproteome.9b00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology , University of Campinas (UNICAMP) , Campinas 13083-970 , Brazil.,Experimental Medicine Research Cluster (EMRC) University of Campinas , Campinas 13083-887 , SP , Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) , Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) , São Paulo , Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| |
Collapse
|
19
|
Sproles AE, Oakley CA, Matthews JL, Peng L, Owen JG, Grossman AR, Weis VM, Davy SK. Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont. THE ISME JOURNAL 2019; 13:2334-2345. [PMID: 31118473 PMCID: PMC6775970 DOI: 10.1038/s41396-019-0437-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography-mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine-homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
20
|
Macrophage migration inhibitory factor regulates TLR4 expression and modulates TCR/CD3-mediated activation in CD4+ T lymphocytes. Sci Rep 2019; 9:9380. [PMID: 31253838 PMCID: PMC6599059 DOI: 10.1038/s41598-019-45260-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is involved in CD4+ T lymphocyte-mediated pathologies. Here, we demonstrate that CD4+ T lymphocytes express functional TLR4 that contributes to their activation, proliferation and cytokine secretion. In addition, we demonstrate that TLR4-induced responses are mediated by macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. We also demonstrate that MIF regulates suboptimal TCR/CD3-mediated activation of T lymphocytes. On one hand, MIF prevents excessive TCR/CD3-mediated activation of CD4+ T lymphocytes under suboptimal stimulation conditions and, on the other hand, MIF enables activated CD4+ T lymphocytes to sense their microenvironment and adapt their effector response through TLR4. Therefore, MIF appears to be a major regulator of the activation of CD4+ T lymphocytes and the intensity of their effector response. TLR4-mediated activation is thus an important process for T cell-mediated immunity.
Collapse
|
21
|
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New Tricks for an Old Cytokine. Trends Immunol 2019; 40:447-462. [DOI: 10.1016/j.it.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
|
22
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Shahi P, Moreau F, Chadee K. Entamoeba histolytica Cyclooxygenase-Like Protein Regulates Cysteine Protease Expression and Virulence. Front Cell Infect Microbiol 2019; 8:447. [PMID: 30687644 PMCID: PMC6333869 DOI: 10.3389/fcimb.2018.00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
The intestinal protozoan parasite Entamoeba histolytica (Eh) causes amebiasis associated with severe diarrhea and/or liver abscess. Eh pathogenesis is multifactorial requiring both parasite virulent molecules and host-induced innate immune responses. Eh-induced host pro-inflammatory responses plays a critical role in disease pathogenesis by causing damage to tissues allowing parasites access to systemic sites. Eh cyclooxygenase (EhCox) derived prostaglandin E2 stimulates the chemokine IL-8 from mucosal epithelial cells that recruits neutrophils to the site of infection to exacerbate disease. At present, it is not known how EhCox is regulated or whether it affects the expression of other proteins in Eh. In this study, we found that gene silencing of EhCox (EhCoxgs) markedly increased endogenous cysteine protease (CP) protein expression and virulence without altering CP gene transcripts. Live virulent Eh pretreated with arachidonic acid substrate to enhance PGE2 production or aspirin to inhibit EhCox enzyme activity or addition of exogenous PGE2 to Eh had no effect on EhCP activity. Increased CP enzyme activity in EhCoxgs was stable and significantly enhanced erythrophagocytosis, cytopathic effects on colonic epithelial cells and elicited pro-inflammatory cytokines in mice colonic loops. Acute infection with EhCoxgs in colonic loops increased inflammation associated with high levels of myeloperoxidase activity. This study has identified EhCox protein as one of the important endogenous regulators of cysteine protease activity. Alterations of CP activity in response to Cox gene silencing may be a negative feedback mechanism in Eh to limit proteolytic activity during colonization that can inadvertently trigger inflammation in the gut.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Li J, Tang Y, Tang PMK, Lv J, Huang XR, Carlsson-Skwirut C, Da Costa L, Aspesi A, Fröhlich S, Szczęśniak P, Lacher P, Klug J, Meinhardt A, Fingerle-Rowson G, Gong R, Zheng Z, Xu A, Lan HY. Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Mol Ther 2018; 26:2523-2532. [PMID: 30077612 DOI: 10.1016/j.ymthe.2018.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is elevated in patients with acute kidney injury (AKI) and is suggested as a potential predictor for renal replacement therapy in AKI. In this study, we found that MIF also plays a pathogenic role and is a therapeutic target for AKI. In a cisplatin-induced AKI mouse model, elevated plasma MIF correlated with increased serum creatinine and the severity of renal inflammation and tubular necrosis, whereas deletion of MIF protected the kidney from cisplatin-induced AKI by largely improving renal functional and histological injury, and suppressing renal inflammation including upregulation of cytokines such as interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), MCP-1, IL-8, and infiltration of macrophages, neutrophils, and T cells. We next developed a novel therapeutic strategy for AKI by blocking the endogenous MIF with an MIF inhibitor, ribosomal protein S19 (RPS19). Similar to the MIF-knockout mice, treatment with RPS19, but not the mutant RPS19, suppressed cisplatin-induced AKI. Mechanistically, we found that both genetic knockout and pharmacological inhibition of MIF protected against AKI by inactivating the CD74-nuclear factor κB (NF-κB) signaling. In conclusion, MIF is pathogenic in cisplatin-induced AKI. Targeting MIF with an MIF inhibitor RPS19 could be a promising therapeutic potential for AKI.
Collapse
Affiliation(s)
- Jinhong Li
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ying Tang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick M K Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Christine Carlsson-Skwirut
- Department of Woman and Child Health, Paediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U1149, CRI, Faculté de Médecine Bichat-Claude Bernard, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy; Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti," University of Turin, Turin, Italy
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Pawel Szczęśniak
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Philipp Lacher
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne and Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Rujun Gong
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Zhihua Zheng
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Anping Xu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Interaction between parasite-encoded JAB1/CSN5 and macrophage migration inhibitory factor proteins attenuates its proinflammatory function. Sci Rep 2018; 8:10241. [PMID: 29980718 PMCID: PMC6035221 DOI: 10.1038/s41598-018-28625-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
Multiple protozoans produce homologs of the cytokine MIF which play a role in immune evasion, invasion and pathogenesis. However, how parasite-encoded MIF activity is controlled remains poorly understood. Cytokine activity can be inhibited by intracellular binding partners that are released in the extracellular space during cell death. We investigated the presence of an endogenous parasite protein that was capable of interacting and interfering with MIF activity. A screen for protein-protein interaction was performed using immunoaffinity purification of amebic cell lysate with specific anti-Entamoeba histolytica MIF (EhMIF) antibody followed by mass spectrometry analysis, which revealed an E. histolytica-produced JAB1 protein (EhJAB1) as a potential binding partner. JAB1 was found to be highly conserved in protozoans. Direct interaction between the EhMIF and EhJAB1 was confirmed by several independent approaches with GST pull-down, co-immunoprecipitation, and Biolayer interferometry (BLI) assays. Furthermore, the C-terminal region outside the functional JAMM deneddylase motif was required for EhMIF binding, which was consistent with the top in silico predictions. In addition, EhJAB1 binding blocked EhMIF-induced IL-8 production by human epithelial cells. We report the initial characterization of a parasite-encoded JAB1 and uncover a new binding partner for a protozoan-produced MIF protein, acting as a possible negative regulator of EhMIF.
Collapse
|
26
|
Hollmann T, Kim TK, Tirloni L, Radulović ŽM, Pinto AFM, Diedrich JK, Yates JR, da Silva Vaz I, Mulenga A. Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 2017; 48:211-224. [PMID: 29258831 DOI: 10.1016/j.ijpara.2017.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/08/2023]
Abstract
The adaptation of hard ticks to feed for long periods is facilitated by the cement cone, which securely anchors the tick mouthparts onto host skin and protects the tick from being groomed off by the host. Thus, preventing tick cement deposition is an attractive target for the development of innovative tick control. We used LC-MS/MS sequencing to identify 160 Amblyomma americanum tick cement proteins that include glycine-rich proteins (GRP, 19%), protease inhibitors (12%), proteins of unknown function (11%), mucin (4%), detoxification, storage, and lipocalin at 1% each, and housekeeping proteins (50%). Spatiotemporal transcription analysis showing mRNA expression in multiple tick organs and transcript abundance increasing with feeding suggest that selected GRPs (n = 13) regulate multiple tick feeding functions, being classified as constitutively expressed (CE), feeding induced (FI), and up-regulated with feeding (UR). We show that transcription of CE GRPs is likely under the control of tick appetence associated factors in that mRNA abundance increased several thousand fold in 1 week old adult ticks, the time period that coincides with tick attainment of appetence. Given the high number of targets, we synthesized and injected unfed ticks with combinatorial (co) double stranded (ds)RNA and disrupted GRP mRNA in clusters according to similar transcription patterns: CE (n = 3), FI, (n = 4), and UR (n = 6) to streamline the work. Our data suggest that CE and FI GRPs are important for maintenance of the tick feeding site in that reddening and subsequent bleeding were observed around the mouthparts of CE and FI GRP co-dsRNA injected ticks during feeding. Furthermore, although not significantly different, indices for blood meal size and fecundity were apparently reduced in FI and UR ticks. We discuss our data with reference to A. americanum tick feeding physiology.
Collapse
Affiliation(s)
- Taylor Hollmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Antônio F M Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA; Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA; Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
27
|
Gao Y, Hou R, Liu F, Liu H, Fei Q, Han Y, Cai R, Peng C, Qi Y. Obacunone causes sustained expression of MKP-1 thus inactivating p38 MAPK to suppress pro-inflammatory mediators through intracellular MIF. J Cell Biochem 2017; 119:837-849. [PMID: 28657665 DOI: 10.1002/jcb.26248] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Obacunone (OBA) is a highly oxygenated triterpenoid with various pharmacological activities. In this study, we explored its anti-inflammatory effect and underlying mechanisms in LPS-activated macrophages. Our data showed that OBA potently decreased pro-inflammatory mediators (eg, NO, IL-6, IL-1β, and MCP-1) at the transcriptional and translational levels without cytotoxicity. A mechanism study showed that OBA significantly suppressed p38-mediated AP-1 signaling by stabilizing the mRNA of mitogen-activated protein kinase phosphatase 1 (MKP-1), thus prolonging the expression time of the MKP-1 protein. Next, we used computational target-fishing technology to predict the possible target of OBA. Only one potential target, macrophage migration inhibitory factor (MIF), was presented. Experimentally, the interaction between OBA and MIF was also confirmed. By using an anti-mouse MIF antibody, extracellular MIF (exMIF) was neutralized. Our results showed that autocrine MIF had slight influence on the pro-inflammatory mediator production. Correspondingly, the anti-inflammatory activity of OBA was also not affected. Accordingly, we knocked down the MIF gene in RAW 264.7 cells and obtained stable MIF deficient cells MIF(-), in which the effects of OBA on p38 phosphorylation, AP-1 activation, and pro-inflammatory mediator production in response to LPS nearly disappeared. In contrast to MIF(+) cells, the MKP-1 protein expression time of the MIF(-) cells was markedly prolonged. We conclude that OBA exerts its anti-inflammatory effect by targeting intracellular MIF (inMIF) inhibition to regulate the MKP-1/p38/AP-1 pathway. Our findings also provide a chain of evidence that the inhibition of inMIF, rather than exMIF, may become a novel target for inflammation.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China.,Chegndu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Rui Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Fen Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Qiaoling Fei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Cheng Peng
- Chegndu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
28
|
Wei J, Fan S, Liu B, Zhang B, Su J, Yu D. Transcriptome analysis of the immune reaction of the pearl oyster Pinctada fucata to xenograft from Pinctada maxima. FISH & SHELLFISH IMMUNOLOGY 2017; 67:331-345. [PMID: 28606863 DOI: 10.1016/j.fsi.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The pearl oyster Pinctada maxima exhibits great difficulty to culture pearls through nuclear insertion with an allograft, but it is easy for P. fucata to culture pearls after allografting. If P. fucata could be used as a surrogate mother to culture P. maxima pearls, it would benefit the pearl culture industry of P. maxima. However, this is blocked by the immune rejection of P. fucata against P. maxima mantle grafts. In this study, the immune responses of P. fucata hemocyte to allograft and xenograft were investigated after transplantation by transcriptome analysis. In total, 107.93 Gb clean reads were produced and assembled using the reference genome of P. fucata. Gene Ontology Term enrichment and KEGG enrichment analyses indicated that apoptosis, hippo signaling pathway, oxidation-reduction, MAPK signaling pathway, ribosome, protein processing in endoplasmic reticulum, purine metabolism, NF-kappa B signaling pathway, oxidative phosphorylation, Ras signaling pathway, and ubiquitin mediated proteolysis were involved in response to transplantation. Many genes related to oxidation-reduction reactions, the MAPK signaling pathway, and apoptosis were identified by comparison of the allograft group and the xenograft group at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h post-transplantation. Among them, the expression levels of NADH dehydrogenase, succinate dehydrogenase and other dehydrogenases were increased significantly in the xenograft groups compared with allograft groups at 0 h post transplantation, indicating that a respiratory burst of neutrophils occurred immediately after xenograft transplantation. Additionally, HSP70 was highly expressed from 0 h to 96 h in the xenograft groups, indicating an oyster immune response to the xenograft. The genes enriched in the ribosome and hippo-signaling pathways were also identified, and expression patterns of these DEGs were different as compared between transplantation and control groups. Finally, altered expression levels of 10 randomly selected immune-related DEGs were confirmed by quantitative real-time PCR. These results indicated that oxidation-reduction is likely the key factor responsible for immune rejection to transplantation. The findings should provide some new insight into the molecular mechanism of immune rejection of the host against xenograft, and thus benefit to development of immunosuppressive reagents to facilitate effective xenograft pearling.
Collapse
Affiliation(s)
- Jinfen Wei
- Qinzhou University, Qinzhou 535011, Guangxi, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiaqi Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Dahui Yu
- Qinzhou University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
29
|
Khoyetsyan A, Kacimi R, Tsakanova G, Boyajyan A, Arakelyan A, Yenari MA. Activated complement protein C5a does not affect brain-derived endothelial cell viability and zonula occludens-1 levels following oxygen-glucose deprivation. Brain Circ 2017; 3:14-20. [PMID: 30276299 PMCID: PMC6126234 DOI: 10.4103/2394-8108.203258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE: Ischemic brain injury induces both functional and structural disarray affecting the blood–brain barrier (BBB) which in return aggravates stroke outcomes. Complement system and its bioactive proteins are important molecular responders to ischemia. C5a protein along with its receptor C5a receptor 1 is a key component of this system with potent pro-inflammatory and chemoattractant properties. The purpose of this study is to investigate the role of C5a protein and its receptor which are believed to participate in the inflammatory response that follows ischemic insult. MATERIALS AND METHODS: To mimic an ischemic in vivo event in which C5a may contact brain endothelial cells after injury, we studied oxygen-glucose deprivation (OGD) followed by reperfusion in brain microvascular endothelial cells (b.End. 3) by only added C5a at the time of reperfusion. Cell death and viability were estimated by trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. Tight junction protein zonula occluden (ZO-1) levels were analyzed by Western blot analysis, and nitric oxide (NO) was assessed using the Griess reagent. RESULTS: Brain-derived endothelial cell was susceptible to OGD-induced injury in a duration-dependent manner as was the presence of ZO-1 protein. However, the addition of C5a protein had no notable effects even when used at high concentrations up to 100 nM. While OGD led to reduction in ZO-1 protein levels, no change was seen following the addition of C5a. Finally, OGD led unexpectedly to small decreases in NO generation, but this was again unaltered by C5a. CONCLUSIONS: Our study suggests that complement system protein C5a may not have a direct role in the disruption of BBB, following brain ischemia. This is in contrary with previous literature that suggests a possible role of this protein in the inflammatory response to ischemia.
Collapse
Affiliation(s)
- Aren Khoyetsyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Rachid Kacimi
- Department of Neurology, University of California, USA.,The San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gohar Tsakanova
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Anna Boyajyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Arsen Arakelyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Midori A Yenari
- Department of Neurology, University of California, USA.,The San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
30
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
31
|
High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A 2016; 113:E997-1005. [PMID: 26858459 DOI: 10.1073/pnas.1514018113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Collapse
|
32
|
Panstruga R, Baumgarten K, Bernhagen J. Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evol Biol 2015; 15:64. [PMID: 25888527 PMCID: PMC4407349 DOI: 10.1186/s12862-015-0337-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The human (Homo sapiens) chemokine-like protein macrophage migration inhibitory factor (HsMIF) is a pivotal mediator of inflammatory, infectious and immune diseases including septic shock, colitis, malaria, rheumatoid arthritis, and atherosclerosis, as well as tumorigenesis. HsMIF has been found to exhibit several sequential and three-dimensional sequence motifs that in addition to its receptor binding sites include catalytic sites for oxidoreductase and tautomerase activity, which provide this 12.5 kDa protein with a remarkable functional complexity. A human MIF paralog, D-dopachrome tautomerase (HsDDT), has been identified, but its physiological relevance is incompletely understood. MIF/DDT-like proteins have been described in animals, protists and bacteria. Although based on sequence data banks the presence of MIF/DDT-like proteins has also been recognized in the model plant species Arabidopsis thaliana, details on these plant proteins have not been reported. Results To broaden the understanding of the biological role of these proteins across kingdoms we performed a comprehensive in silico analysis of plant MIF/DDT-like (MDL) genes/proteins. We found that the A. thaliana genome harbors three MDL genes, of which two are chiefly constitutively expressed in aerial plant organs, while the third gene shows stress-inducible transcript accumulation. The product of the latter gene likely localizes to peroxisomes. Structure prediction suggests that all three Arabidopsis proteins resemble the secondary and tertiary structure of human MIF. MIF-like proteins are found in all species across the plant kingdom, with an increasing family complexity towards evolutionarily advanced plant taxa. Plant MDL proteins are predicted to lack oxidoreductase activity, but possibly share tautomerase activity with human MIF/DDT. Conclusions Peroxisome localization seems to be a specific feature of a subset of MIF/DDT orthologs found in dicotyledonous plant species, which together with its stress-inducible gene expression might point to convergent evolution in higher plants and vertebrates towards neofunctionalization of MIF/MDL proteins in stress response pathways including innate immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0337-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Kira Baumgarten
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Jürgen Bernhagen
- RWTH Aachen University, Institute of Biochemistry and Molecular Cell Biology, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
33
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
35
|
Hu P, He X, Zhu C, Guan W, Ma Y. Cloning and characterization of a ribosomal protein L23a gene from Small Tail Han sheep by screening of a cDNA expression library. Meta Gene 2014; 2:479-88. [PMID: 25606432 PMCID: PMC4287807 DOI: 10.1016/j.mgene.2014.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/05/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
As an indispensable component of the eukaryotic ribosome, ribosomal protein L23a plays an important role in protein synthesis, folding and sorting. In this study, the cDNA fragment of ribosomal protein L23a with 471 bp in size was screened from the Small Tail Han sheep ear marginal tissue cDNA expression library, it has 157 amino acids and a molecular weight of 17.69 kDa. The nucleotide sequence of L23a shares a high homology with those of human, mouse, cattle and pig of 91.51%, 88.32%, 96.18% and 93.84%, respectively. L23a is highly basic, containing a combined 45 Arg, Lys, and His residues and only 14 Asp and Glu residues. The expression pattern and intra-cellular distribution of recombinant L23a proteins in Ujumqin sheep fibroblast cells were analyzed after transfected with the plasmid pEGFP-N3-RPL23A, there were green fluorescence signals both in the cytoplasm and nucleolus of transfected cells after 24 h, the number of positive cells was increased with time, and they reached the peak level after 48 h of transfection. The transfection efficiency was 22.8%. Expression patterns of recombinant L23a gene in Escherichia coli were different with induction temperature, inductor concentration and induction time, when the IPTG concentration was 0.1 mmol/L and induction temperature was 37°, L23a protein expression was increased with induction time.
Collapse
Key Words
- Arg, arginine
- Asp, aspartic acid
- EGFP, enhanced green fluorescence protein
- Expression pattern
- Glu, glutamic acid
- His, histidine
- IPTG, isopropyl-β-D-thiogalactopyranoside
- Lys, lysine
- NADH, nicerinamide adenine dinucleotide
- RPL23A, ribosomal protein L23a
- Ribosomal protein L23a
- Small Tail Han sheep
- TSK, tsukushin
- cDNA expression library
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Xiaohong He
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Chao Zhu
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Weijun Guan
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Science (IAS), Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
36
|
Acquadro E, Caron I, Tortarolo M, Bucci EM, Bendotti C, Corpillo D. Human SOD1-G93A specific distribution evidenced in murine brain of a transgenic model for amyotrophic lateral sclerosis by MALDI imaging mass spectrometry. J Proteome Res 2014; 13:1800-9. [PMID: 24579824 DOI: 10.1021/pr400942n] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease caused by the degeneration of motor neurons. The transgenic mouse model carrying the human SOD1G93A mutant gene (hSOD1G93A mouse) represents one of the most reliable and widely used model of this pathology. In the present work, the innovative technique of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was applied in the study of pathological alterations at the level of small brain regions such as facial and trigeminal nuclei, which in rodents are extremely small and would be difficult to analyze with classical proteomics approaches. Comparing slices from three mice groups (transgenic hSOD1G93A, transgenic hSOD1WT, and nontransgenic, Ntg), this technique allowed us to evidence the accumulation of hSOD1G93A in the facial and trigeminal nuclei, where it generates aggregates. This phenomenon is likely to be correlated to the degeneration observed in these regions. Moreover, a statistical analysis allowed us to highlight other proteins as differentially expressed among the three mice groups analyzed. Some of them were identified by reverse-phase HPLC fractionation of extracted proteins and mass spectrometric analysis before and after trypsin digestion. In particular, the 40S ribosomal protein S19 (RPS19) was upregulated in the parenkyma and reactive glial cells in facial nuclei of hSOD1G93A mice when compared to transgenic hSOD1WT and nontransgenic ones.
Collapse
Affiliation(s)
- Elena Acquadro
- ABLE Bioscences, BioIndustry Park Silvano Fumero S.p.A., Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Buchko GW, Abendroth J, Robinson H, Zhang Y, Hewitt SN, Edwards TE, Van Voorhis WC, Myler PJ. Crystal structure of a macrophage migration inhibitory factor from Giardia lamblia. ACTA ACUST UNITED AC 2013; 14:47-57. [PMID: 23709284 DOI: 10.1007/s10969-013-9155-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with two anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two "gate-keeper" residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y --> R) and 100 (V --> D) and for Gl-MIF it is at position 100 (V --> R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clin Sci (Lond) 2013; 124:627-37. [PMID: 23252627 DOI: 10.1042/cs20120526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RPS19 (ribosomal protein S19), a component of the 40S small ribosomal subunit, has recently been identified to bind the pro-inflammatory cytokine macrophage MIF (migration inhibitory factor). In vitro experiments identify RPS19 as the first endogenous MIF inhibitor by blocking the binding of MIF to its receptor CD74 and MIF functions on monocyte adherence to endothelial cells. In the present study, we sought to establish whether recombinant RPS19 can exert anti-inflammatory effects in a mouse model of anti-GBM (glomerular basement membrane) GN (glomerulonephritis) in which MIF is known to play an important role. Accelerated anti-GBM GN was induced in C57BL/6J mice by immunization with sheep IgG followed 5 days later by administration of sheep anti-mouse GBM serum. Groups of eight mice were treated once daily by intraperitoneal injection with 6 mg of RPS19/kg of body weight or an irrelevant control protein (human secretoglobin 2A1), or received no treatment, from day 0 until being killed on day 10. Mice that received control or no treatment developed severe crescentic anti-GBM disease on day 10 with increased serum creatinine, declined creatinine clearance and increased proteinuria. These changes were associated with up-regulation of MIF and its receptor CD74 activation of ERK (extracellular-signal-regulated kinase) and NF-κB (nuclear factor κB) signalling, prominent macrophage and T-cell infiltration, as well as up-regulation of Th1 [T-bet and IFNγ (interferon γ)] and Th17 [STAT3 (signal transducer and activator of transcription 3) and IL (interleukin)-17A] as well as IL-1β and TNFα (tumour necrosis factor α). In contrast, RPS19 treatment largely prevented the development of glomerular crescents and glomerular necrosis, and prevented renal dysfunction and proteinuria (all P<0.001). Of note, RPS19 blocked up-regulation of MIF and CD74 and inactivated ERK and NF-κB signalling, thereby inhibiting macrophage and T-cell infiltration, Th1 and Th17 responses and up-regulation of pro-inflammatory cytokines (all P<0.01). These results demonstrate that RPS19 is a potent anti-inflammatory agent, which appears to work primarily by inhibiting MIF signalling.
Collapse
|
39
|
Knight JRP, Willis AE, Milner J. Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Res 2013; 41:4185-97. [PMID: 23462953 PMCID: PMC3627601 DOI: 10.1093/nar/gkt129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD(+)-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.
Collapse
Affiliation(s)
- John R P Knight
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | | |
Collapse
|
40
|
Nishiura H. The alternative C5a receptor function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:111-21. [PMID: 23402022 DOI: 10.1007/978-1-4614-4118-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When acute inflammatory states are induced by treatment with chemical mediators in C5-deficient mice, neutrophil influxes are commonly decreased. Therefore, the neutrophil C5a receptor (C5aR) is believed to be a member of the pro-inflammatory receptors. However, C5aR deficiency endows mouse neutrophils with increased sensitivity to Pseudomonas aeruginosa. We have demonstrated that C5aR accepts not only C5a but also ribosomal protein S19 (RP S19) oligomers. RP S19 oligomers released from apoptotic cells promote apoptosis or induce dual agonistic and antagonistic effects on the chemotaxis of macrophages and neutrophils in an autocrine or paracrine manner, respectively. We assumed that the function of C5aR in apoptotic cells is almost the same as that in neutrophils infiltrating acute inflammatory lesions. Therefore, we believe that RP S19 oligomers can explain the opposite response of neutrophils in C5aR-deficient mice. In the present study, we found that antihuman RP S19 rabbit IgG cross-reacted with mouse RP S19 monomers and oligomers in plasma and serum, respectively, whereas anti-human C5a rabbit IgG only cross-reacted with mouse RP S19 oligomers in serum. To examine a role of RP S19 oligomers in vivo, we injected carrageenan (50 microg/100 microL) into the thoracic cavities of mice in the simultaneous presence of rabbit IgG and antihuman C5a rabbit IgG (100 microg/100 microL). Before 4 h and after 24 h, we did not observe any inflammatory cues in pleural exudates and lung substances from control mice. However, infiltrating neutrophils were detected in pleural exudates and lung tissues at 4 h after the addition of anti-human RP S19 rabbit IgG. Moreover, anti-human C5a rabbit IgG retards the initiation phase of carrageenan-induced mouse plurality. Many of the neutrophils infiltrating the thoracic cavities of the mice remained annexin V-negative. Neutrophil infiltration into pneumonic lesions became more severe, as alveolar septal destruction and haemorrhage concomitant with increased numbers of neutrophils in the pleural exudates were observed. These in vivo data demonstrate that the neutrophil C5aR acts as a dual pro-inflammatory and pro-apoptosis receptor during the initiation and the resolution phases of acute inflammation, respectively.
Collapse
Affiliation(s)
- Hiroshi Nishiura
- Department of Molecular Pathology, Kumamoto University Graduate School, Honjyo 1-1-1, Kumamoto 860-8556, Japan.
| |
Collapse
|
41
|
Roger T, Delaloye J, Chanson AL, Giddey M, Le Roy D, Calandra T. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis 2012; 207:331-9. [PMID: 23125447 DOI: 10.1093/infdis/jis673] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Smolock EM, Korshunov VA, Glazko G, Qiu X, Gerloff J, Berk BC. Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation 2012; 126:2418-27. [PMID: 23065385 DOI: 10.1161/circulationaha.112.125971] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Carotid intima-media thickening is associated with increased cardiovascular risk in humans. We discovered that intima formation and cell proliferation in response to carotid injury is greater in SJL/J (SJL) in comparison with C3HeB/FeJ (C3H/F) mice. The purpose of this study was to identify candidate genes contributing to intima formation. METHODS AND RESULTS We performed microarray and bioinformatic analyses of carotid arteries from C3H/F and SJL mice. Kyoto Encyclopedia of Genes and Genomes analysis showed that the ribosome pathway was significantly up-regulated in C3H/F in comparison with SJL mice. Expression of a ribosomal protein, RpL17, was >40-fold higher in C3H/F carotids in comparison with SJL. Aortic vascular smooth muscle cells from C3H/F grew slower in comparison to SJL. To determine the role of RpL17 in vascular smooth muscle cell growth regulation, we analyzed the relationship between RpL17 expression and cell cycle progression. Cultured vascular smooth muscle cells from mice, rats, and humans showed that RpL17 expression inversely correlated with growth as shown by decreased cells in S phase and increased cells in G(0)/G(1). To prove that RpL17 acted as a growth inhibitor in vivo, we used pluronic gel delivery of RpL17 small interfering RNA to C3H/F carotid arteries. This resulted in an 8-fold increase in the number of proliferating cells. Furthermore, following partial carotid ligation in SJL mice, RpL17 expression in the intima and media decreased, but the number of proliferating cells increased. CONCLUSIONS RpL17 acts as a vascular smooth muscle cell growth inhibitor (akin to a tumor suppressor) and represents a potential therapeutic target to limit carotid intima-media thickening.
Collapse
Affiliation(s)
- Elaine M Smolock
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Vauléon E, Tony A, Hamlat A, Etcheverry A, Chiforeanu DC, Menei P, Mosser J, Quillien V, Aubry M. Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genomics 2012; 5:41. [PMID: 22980038 PMCID: PMC3507656 DOI: 10.1186/1755-8794-5-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. Several recent transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM pathology, overall survival (OS) or response to treatment. Methods In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis that grouped 791 immune-associated genes (IA genes) in large clusters using a combined dataset of 161 GBM specimens from published databases. We next studied IA genes associated with patient survival using 3 different statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation therapy. Results The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p < 0.001). Patients with significantly different OS could even be identified among those with known good prognosis (methylated MGMT promoter-bearing tumor) using Agilent (OS 25 versus 8.1 months; p < 0.01) and RT-PCR (OS 21.8 versus 13.9 months; p < 0.05) technologies. Interestingly, the 6-IA gene risk could also distinguish proneural GBM subtypes. Conclusions This study demonstrates the immune signatures found in previous GBM genomic analyses and suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.
Collapse
Affiliation(s)
- Elodie Vauléon
- Department of Medical Oncology, Eugène Marquis Cancer Institute, rue de la bataille Flandres Dunkerque, Rennes 35042, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gersting SW, Lotz-Havla AS, Muntau AC. Bioluminescence resonance energy transfer: an emerging tool for the detection of protein-protein interaction in living cells. Methods Mol Biol 2012; 815:253-263. [PMID: 22130997 DOI: 10.1007/978-1-61779-424-7_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the field of proteomics, numerous advanced technologies have evolved that aim to provide the molecular data necessary for an in-depth understanding of biological processes. Protein-protein interactions (PPI) are at the heart of cellular function and a milestone yet to be achieved is the mapping of a complete human interactome. Bioluminescence resonance energy transfer (BRET) has become a popular technique to investigate PPI. As BRET enables the detection of PPI in living cells, problems associated with in vitro biochemical assays can be circumvented, thus making BRET a powerful tool for monitoring interactions of virtually all kinds of protein species.
Collapse
Affiliation(s)
- Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Münich 80337, Germany.
| | | | | |
Collapse
|
45
|
Renner P, Roger T, Bochud PY, Sprong T, Sweep FCGJ, Bochud M, Faust SN, Haralambous E, Betts H, Chanson AL, Reymond MK, Mermel E, Erard V, van Deuren M, Read RC, Levin M, Calandra T. A functional microsatellite of the macrophage migration inhibitory factor gene associated with meningococcal disease. FASEB J 2011; 26:907-16. [PMID: 21990375 DOI: 10.1096/fj.11-195065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an abundantly expressed proinflammatory cytokine playing a critical role in innate immunity and sepsis and other inflammatory diseases. We examined whether functional MIF gene polymorphisms (-794 CATT(5-8) microsatellite and -173 G/C SNP) were associated with the occurrence and outcome of meningococcal disease in children. The CATT(5) allele was associated with the probability of death predicted by the Pediatric Index of Mortality 2 (P=0.001), which increased in correlation with the CATT(5) copy number (P=0.04). The CATT(5) allele, but not the -173 G/C alleles, was also associated with the actual mortality from meningoccal sepsis [OR 2.72 (1.2-6.4), P=0.02]. A family-based association test (i.e., transmission disequilibrium test) performed in 240 trios with 1 afflicted offspring indicated that CATT(5) was a protective allele (P=0.02) for the occurrence of meningococcal disease. At baseline and after stimulation with Neisseria meningitidis in THP-1 monocytic cells or in a whole-blood assay, CATT(5) was found to be a low-expression MIF allele (P=0.005 and P=0.04 for transcriptional activity; P=0.09 and P=0.09 for MIF production). Taken together, these data suggest that polymorphisms of the MIF gene affecting MIF expression are associated with the occurrence, severity, and outcome of meningococcal disease in children.
Collapse
Affiliation(s)
- Pascal Renner
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Embree M, Ono M, Kilts T, Walker D, Langguth J, Mao J, Bi Y, Barth JL, Young M. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J Dent Res 2011; 90:1331-8. [PMID: 21917603 DOI: 10.1177/0022034511421930] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease that affects both cartilage and subchondral bone. We used microarray to identify changes in gene expression levels in the TMJ during early stages of the disease, using an established TMJ OA genetic mouse model deficient in 2 extracellular matrix proteins, biglycan and fibromodulin (bgn(-/0)fmod(-/-)). Differential gene expression analysis was performed with RNA extracted from 3-week-old WT and bgn(-/0)fmod(-/-) TMJs with an intact cartilage/subchondral bone interface. In total, 22 genes were differentially expressed in bgn(-/0)fmod(-/-) TMJs, including 5 genes involved in osteoclast activity/differentiation. The number of TRAP-positive cells were three-fold higher in bgn(-/0)fmod(-/-) TMJs than in WT. Quantitative RT-PCR showed up-regulation of RANKL and OPG, with a 128% increase in RANKL/OPG ratio in bgn(-/0)fmod(-/-) TMJs. Histology and immunohistochemistry revealed tissue disorganization and reduced type I collagen in bgn(-/0)fmod(-/-) TMJ subchondral bone. Early changes in gene expression and tissue defects in young bgn(-/0)fmod(-/-) TMJ subchondral bone are likely attributed to increased osteoclast activity. Analysis of these data shows that biglycan and fibromodulin are critical for TMJ subchondral bone integrity and reveal a potential role for TMJ subchondral bone turnover during the initial early stages of TMJ OA disease in this model.
Collapse
Affiliation(s)
- M Embree
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that has been implicated as playing a causative role in many disease states, including sepsis, pneumonia, diabetes, rheumatoid arthritis, inflammatory bowel disease, psoriasis and cancer. To inhibit the enzymatic and biologic activities of MIF, we and others have developed small-molecule MIF inhibitors. Most MIF inhibitors bind within the hydrophobic pocket that contains highly conserved amino acids known to be essential for MIF's proinflammatory activity. The best characterized of these small-molecule MIF inhibitors, (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) has been validated in scores of laboratories worldwide. Like neutralizing anti-MIF antibodies, ISO-1 significantly improves survival and reduces disease progression and/or severity in multiple murine models where MIF is implicated. This MIF inhibitor, its derivatives and other MIF-targeted compounds show great promise for future testing in disease states where increased MIF activity has been discovered.
Collapse
|
48
|
Nishiura H, Tanase S, Tsujita K, Sugiyama S, Ogawa H, Nakagaki T, Semba U, Yamamoto T. Maintenance of ribosomal protein S19 in plasma by complex formation with prothrombin. Eur J Haematol 2011; 86:436-41. [DOI: 10.1111/j.1600-0609.2011.01585.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Ota Y, Chen J, Shin M, Nishiura H, Tokita K, Shinohara M, Yamamoto T. Role of ribosomal protein S19-like plasma protein in blood coagulum resorption. Exp Mol Pathol 2011; 90:19-28. [DOI: 10.1016/j.yexmp.2010.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/27/2022]
|
50
|
Dobson SE, Augustijn KD, Brannigan JA, Schnick C, Janse CJ, Dodson EJ, Waters AP, Wilkinson AJ. The crystal structures of macrophage migration inhibitory factor from Plasmodium falciparum and Plasmodium berghei. Protein Sci 2010; 18:2578-91. [PMID: 19827093 PMCID: PMC2798171 DOI: 10.1002/pro.263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malaria, caused by Plasmodium falciparum and related parasites, is responsible for millions of deaths each year, mainly from complications arising from the blood stages of its life cycle. Macrophage migration inhibitory factor (MIF), a protein expressed by the parasite during these stages, has been characterized in mammals as a cytokine involved in a broad spectrum of immune responses. It also possesses two catalytic activities, a tautomerase and an oxidoreductase, though the physiological significance of neither reaction is known. Here, we have determined the crystal structure of MIF from two malaria parasites, Plasmodium falciparum and Plasmodium berghei at 2.2 Å and 1.8 Å, respectively. The structures have an α/β fold and each reveals a trimer, in agreement with the results of analytical ultracentrifugation. We observed open and closed active sites, these being distinguished by movements of proline-1, the catalytic base in the tautomerase reaction. These states correlate with the covalent modification of cysteine 2 to form a mercaptoethanol adduct, an observation confirmed by mass spectrometry. The Plasmodium MIFs have a different pattern of conserved cysteine residues to the mammalian MIFs and the side chain of Cys58, which is implicated in the oxidoreductase activity, is buried. This observation and the evident redox reactivity of Cys2 suggest quite different oxidoreductase characteristics. Finally, we show in pull-down assays that Plasmodium MIF binds to the cell surface receptor CD74, a known mammalian MIF receptor implying that parasite MIF has the ability to interfere with, or modulate, host MIF activity through a competitive binding mechanism.
Collapse
Affiliation(s)
- Sarah E Dobson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|