1
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2024; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Yu X, Mousley CJ, Bankaitis VA, Iyer P. A budding yeast-centric view of oxysterol binding protein family function. Adv Biol Regul 2024:101061. [PMID: 39613716 DOI: 10.1016/j.jbior.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
The Trans Golgi Network (TGN)/endosomal system is a sorting center for cargo brought via the anterograde secretory pathway and the endocytic pathway that internalizes material from the plasma membrane. As many of the cargo that transit this central trafficking hub are components of key homeostatic signaling pathways, TGN/endosomes define a critical signaling hub for cellular growth control. A particularly interesting yet incompletely understood aspect of regulation of TGN/endosome function is control of this system by two families of lipid exchange/lipid transfer proteins. The phosphatidylinositol transfer proteins promote pro-trafficking phosphoinositide (i.e. phosphatidylinositol-4-phosphate) signaling pathways whereas proteins of the oxysterol binding protein family play reciprocal roles in antagonizing those arms of phosphoinositide signaling. The precise mechanisms for how these lipid binding proteins execute their functions remain to be resolved. Moreover, information regarding the coupling of individual members of the oxysterol binding protein family to specific biological activities is particularly sparse. Herein, we review what is being learned regarding functions of the oxysterol binding protein family in the yeast model system. Focus is primarily directed at a discussion of the Kes1/Osh4 protein for which the most information is available.
Collapse
Affiliation(s)
- Xiaohan Yu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Prasanna Iyer
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
5
|
Chen W, Tang B, Hou R, Sun W, Han C, Guo B, Zhao Y, Li C, Sheng C, Zhao Y, Liu F. The natural polycyclic tetramate macrolactam HSAF inhibit Fusarium graminearum through altering cell membrane integrity by targeting FgORP1. Int J Biol Macromol 2024; 261:129744. [PMID: 38281534 DOI: 10.1016/j.ijbiomac.2024.129744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Fusarium graminearum is a dominant phytopathogenic fungus causing Fusarium head blight (FHB) in cereal crops. Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam (PoTeM) isolated from Lysobacter enzymogenes that exhibits strong antifungal activity against F. graminearum. HSAF significantly reduces the DON production and virulence of F. graminearum. Importantly, HSAF exhibited no cross-resistance to carbendazim, phenamacril, tebuconazole and pydiflumetofen. However, the target protein of HSAF in F. graminearum is unclear. In this study, the oxysterol-binding protein FgORP1 was identified as the potential target of HSAF using surface plasmon resonance (SPR) combined with RNA-sequence (RNA-seq). The RNA-seq results showed cell membrane and ergosterol biosynthesis were significantly impacted by HSAF in F. graminearum. Molecular docking showed that HSAF binds with arginine 1205 and glutamic acid 1212, which are located in the oxysterol-binding domain of FgORP1. The two amino acids in FgORP1 are responsible for HSAF resistance in F. graminearum though site-directed mutagenesis. Furthermore, deletion of FgORP1 led to significantly decreased sensitivity to HSAF. Additionally, FgORP1 regulates the mycelial growth, conidiation, DON production, ergosterol biosynthesis and virulence in F. graminearum. Overall, our findings revealed the mode of action of HSAF against F. graminearum, indicating that HSAF is a promising fungicide for controlling FHB.
Collapse
Affiliation(s)
- Wenchan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Weibo Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Chenyang Han
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Cong Sheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210095, Jiangsu, China; Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
6
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Matsuse K, Hara M, Iwama R, Horiuchi H, Fukuda R. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica. FEMS Yeast Res 2024; 24:foae030. [PMID: 39293814 PMCID: PMC11462088 DOI: 10.1093/femsyr/foae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyses the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.
Collapse
Affiliation(s)
- Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mariho Hara
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Ke X, Pan ZH, Du HF, Shen Y, Shen JD, Liu ZQ, Zheng YG. Secretory production of 7-dehydrocholesterol by engineered Saccharomyces cerevisiae. Biotechnol J 2023; 18:e2300056. [PMID: 37688450 DOI: 10.1002/biot.202300056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND 7-Dehydrocholesterol (7-DHC) can be directly converted to vitamin D3 by UV irradiation and de novo synthesis of 7-DHC in engineered Saccharomyces cerevisiae has been recognized as an attractive substitution to traditional chemical synthesis. Introduction of sterol extracellular transport pathway for the secretory production of 7-DHC is a promising approach to achieve higher titer and simplify the downstream purification processing. METHODS AND RESULTS A series of genes involved in ergosterol pathway were combined reinforced and reengineered in S. cerevisiae. A biphasic fermentation system was introduced and 7-DHC was found to be enriched in oil-phase with an increased titer by 1.5-folds. Quantitative PCR revealed that say1, atf2, pdr5, pry1-3 involved in sterol storage and transport were all significantly induced in sterol overproduced strain. To enhance the secretion capacity, lipid transporters of pathogen-related yeast proteins (Pry), Niemann-Pick disease type C2 (NPC2), ATP-binding cassette (ABC)-family, and their homologues were screened. Both individual and synergetic overexpression of Plant pathogenesis Related protein-1 (Pr-1) and Sterol transport1 (St1) largely increased the de novo biosynthesis and secretory productivity of 7-DHC, and the final titer reached 28.2 mg g-1 with a secretion ratio of 41.4%, which was 26.5-folds higher than the original strain. In addition, the cooperation between Pr-1 and St1 in sterol transport was further confirmed by confocal microscopy, molecular docking, and directed site-mutation. CONCLUSION Selective secretion of different sterol intermediates was characterized in sterol over-produced strain and the extracellular export of 7-DHC developed in present study significantly improved the cell biosynthetic capacity, which offered a novel modification idea for 7-DHC de novo biosynthesis by S. cerevisiae cell factory.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zi-Hao Pan
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong-Fei Du
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yi Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ji-Dong Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023; 14:e0135323. [PMID: 37409809 PMCID: PMC10470819 DOI: 10.1128/mbio.01353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528979. [PMID: 36824733 PMCID: PMC9949117 DOI: 10.1101/2023.02.17.528979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans . We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have thinner and more permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2 Î" cells cannot survive in physiologically-rele-vant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Utilization of n-alkane and roles of lipid transfer proteins in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:97. [PMID: 36781616 PMCID: PMC9925530 DOI: 10.1007/s11274-023-03541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Yarrowia lipolytica, a dimorphic yeast belonging to the Ascomycota, has potent abilities to utilize hydrophobic compounds, such as n-alkanes and fatty acids, as carbon and energy sources. Yarrowia lipolytica can synthesize and accumulate large amounts of lipids, making it a promising host to produce various lipids and convert n-alkanes to useful compounds. For advanced use of Y. lipolytica in these applications, it is necessary to understand the metabolism of these hydrophobic compounds in this yeast and the underlying molecular mechanisms. In this review, current knowledge on the n-alkane metabolism and how this is regulated in Y. lipolytica is summarized. Furthermore, recent studies revealed that lipid transfer proteins are involved in the utilization of n-alkanes and the regulation of cell morphology in response to n-alkanes. This review discusses the roles of membrane lipids in these processes in Y. lipolytica.
Collapse
|
12
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Kadhim I, Begum N, King W, Xu L, Tang F. Up-regulation of Osh6 boosts an anti-aging membrane trafficking pathway toward vacuoles. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:145-157. [PMID: 35974810 PMCID: PMC9344199 DOI: 10.15698/mic2022.08.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Members of the family of oxysterol-binding proteins mediate non-vesicular lipid transport between membranes and contribute to longevity in different manners. We previously found that a 2-fold up-regulation of Osh6, one of seven yeast oxysterol-binding proteins, remedies vacuolar morphology defects in mid-aged cells, partly down-regulates the target of rapamycin complex 1 (TORC1), and increases the replicative lifespan. At the molecular level, Osh6 transports phosphatidylserine (PS) and phosphatidylinositol-4-phosphate (PI4P) between the endoplasmic reticulum (ER) and the plasma membrane (PM). To decipher how an ER-PM working protein controls vacuolar morphology, we tested genetic interactions between OSH6 and DRS2, whose protein flips PS from the lumen to the cytosolic side of the Golgi, the organelle between ER and vacuoles in many pathways. Up-regulated OSH6 complemented vacuolar morphology of drs2Δ and enriched PI4P on the Golgi, indicating that Osh6 also works on the Golgi. This altered PI4P-enrichment led to a delay in the secretion of the proton ATPase Pma1 to the PM and a rerouting of Pma1 to vacuoles in a manner dependent on the trans-Golgi network (TGN) to late endosome (LE) trafficking pathway. Since the TGN-LE pathway controls endosomal and vacuolar TORC1, it may be the anti-aging pathway boosted by up-regulated Osh6.
Collapse
Affiliation(s)
- Ilham Kadhim
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Nazneen Begum
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - William King
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Licheng Xu
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| | - Fusheng Tang
- Department of Biology, University of Arkansas, Little Rock, AR 72204, USA
| |
Collapse
|
14
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
15
|
Zhou C, Li J, Du J, Jiang X, Xu X, Liu Y, He Q, Liang H, Fang P, Zhan H, Zeng H. HMGCS1 drives drug-resistance in acute myeloid leukemia through endoplasmic reticulum-UPR-mitochondria axis. Biomed Pharmacother 2021; 137:111378. [PMID: 33601148 DOI: 10.1016/j.biopha.2021.111378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a key enzyme in the mevalonate pathway of cholesterol synthesis. Dysregulation of HMGCS1 expression is a common occurrence in many solid tumors. It was also found to be overexpressed in newly diagnosed (ND) and relapsed/refractory (RR) acute myeloid leukemia (AML) patients. Previous study proved that HMGCS1 could induce drug-resistance in AML cells. However, the underlying mechanism how HMGCS1 contributed to chemoresistance remains elusive. Here, we confirmed that HMGCS1 inhibitor Hymeglusin enhanced cytarabine/Adriamycin (Ara-c/ADR) chemo-sensitivity in AML cells lines. Moreover, Ara-c-resistant HL-60 cells (HL-60/Ara-c) and ADR-resistant HL-60 cells (HL-60/ADR) were more sensitive to HMGCS1 inhibition than HL-60 cells. In addition, we demonstrated that the transcription factor GATA1 was the upstream regulator of HMGCS1 and could directly bind to the HMGCS1 promoter. After treatment of Tunicamycin (Tm), the number of mitochondria was increased and the damage of endoplasmic reticulum (ER) was reduced in bone marrow cells from AML-RR patients, compared to cells from AML-CR group. HMGCS1 protected mitochondria and ER under ER stress and up-regulated unfold protein response (UPR) downstream molecules in AML cells. In summary, we proved that HMGCS1 could upregulate UPR downstream components, protect mitochondria and ER from damage in AML cells under stress, therefore conferring drug resistance. Therefore, HMGCS1 could serve as a novel target for treatment of patients with intolerant chemotherapy and AML-RR patients.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China; Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jue Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Xinya Jiang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China; Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuejun Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qun He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
16
|
Wang Y, Yuan P, Grabon A, Tripathi A, Lee D, Rodriguez M, Lönnfors M, Eisenberg-Bord M, Wang Z, Man Lam S, Schuldiner M, Bankaitis VA. Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase. J Cell Biol 2021; 219:151686. [PMID: 32303746 PMCID: PMC7199851 DOI: 10.1083/jcb.201907128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX.,Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Peihua Yuan
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Aby Grabon
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Dongju Lee
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Martin Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Max Lönnfors
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | | | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX.,Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX.,Department of Chemistry, Texas A&M University, College Station, TX
| |
Collapse
|
17
|
Transcriptome Analysis Reveals a Promotion of Carotenoid Production by Copper Ions in Recombinant Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9020233. [PMID: 33498600 PMCID: PMC7912134 DOI: 10.3390/microorganisms9020233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
We previously constructed a Saccharomyces cerevisiae carotenoid producer BL03-D-4 which produced much more carotenoid in YPM (modified YPD) media than YPD media. In this study, the impacts of nutritional components on carotenoid accumulation of BL03-D-4 were investigated. When using YPM media, the carotenoid yield was increased 10-fold compared to using the YPD media. To elucidate the hidden mechanism, a transcriptome analysis was performed and showed that 464 genes changed significantly in YPM media. Furthermore, inspired by the differential gene expression analysis which indicated that ADY2, HES1, and CUP1 showed the most remarkable changes, we found that the improvement of carotenoid accumulation in YPM media was mainly due to the copper ions, since supplementation of 0.08 mM CuSO4 in YPD media could increase carotenoid yield 9.2-fold. Reverse engineering of target genes was performed and carotenoid yield could be increased 6.4-fold in YPD media through overexpression of ACE1. The present study revealed for the first time the prominent promotion of carotenoid yield by copper ions in engineered S. cerevisiae and provided a new target ACE1 for genetic engineering of S. cerevisiae for the bioproduction of carotenoids.
Collapse
|
18
|
Zheng Koh DH, Saheki Y. Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042451. [PMID: 37366378 PMCID: PMC10259818 DOI: 10.1177/25152564211042451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sterol contributes to the structural integrity of cellular membranes and plays an important role in the regulation of cell signaling in eukaryotes. It is either produced in the endoplasmic reticulum or taken up from the extracellular environment. In most eukaryotic cells, however, the majority of sterol is enriched in the plasma membrane. Thus, the transport of sterol between the plasma membrane and other organelles, including the endoplasmic reticulum, is crucial for maintaining sterol homeostasis. While vesicular transport that relies on membrane budding and fusion reactions plays an important role in bulk sterol transport, this mode of transport is slow and non-selective. Growing evidence suggests a critical role of nonvesicular transport mediated by evolutionarily conserved families of lipid transfer proteins in more rapid and selective delivery of sterol. Some lipid transfer proteins act primarily at the sites of contacts formed between the endoplasmic reticulum and other organelles or the plasma membrane without membrane fusion. In this review, we describe the similarities and differences of sterol biosynthesis and uptake in mammals and yeast and discuss the role of their lipid transfer proteins in maintaining plasma membrane sterol homeostasis.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Resource Development and
Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
19
|
Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020; 11:genes11070795. [PMID: 32679672 PMCID: PMC7397035 DOI: 10.3390/genes11070795] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ergosterol is an essential component of fungal cell membranes that determines the fluidity, permeability and activity of membrane-associated proteins. Ergosterol biosynthesis is a complex and highly energy-consuming pathway that involves the participation of many enzymes. Deficiencies in sterol biosynthesis cause pleiotropic defects that limit cellular proliferation and adaptation to stress. Thereby, fungal ergosterol levels are tightly controlled by the bioavailability of particular metabolites (e.g., sterols, oxygen and iron) and environmental conditions. The regulation of ergosterol synthesis is achieved by overlapping mechanisms that include transcriptional expression, feedback inhibition of enzymes and changes in their subcellular localization. In the budding yeast Saccharomyces cerevisiae, the sterol regulatory element (SRE)-binding proteins Upc2 and Ecm22, the heme-binding protein Hap1 and the repressor factors Rox1 and Mot3 coordinate ergosterol biosynthesis (ERG) gene expression. Here, we summarize the sterol biosynthesis, transport and detoxification systems of S. cerevisiae, as well as its adaptive response to sterol depletion, low oxygen, hyperosmotic stress and iron deficiency. Because of the large number of ERG genes and the crosstalk between different environmental signals and pathways, many aspects of ergosterol regulation are still unknown. The study of sterol metabolism and its regulation is highly relevant due to its wide applications in antifungal treatments, as well as in food and pharmaceutical industries.
Collapse
|
20
|
ORP5 and ORP8: Sterol Sensors and Phospholipid Transfer Proteins at Membrane Contact Sites? Biomolecules 2020; 10:biom10060928. [PMID: 32570981 PMCID: PMC7356933 DOI: 10.3390/biom10060928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Oxysterol binding related proteins 5 and 8 (ORP5 and ORP8) are two close homologs of the larger oxysterol binding protein (OSBP) family of sterol sensors and lipid transfer proteins (LTP). Early studies indicated these transmembrane proteins, anchored to the endoplasmic reticulum (ER), bound and sensed cholesterol and oxysterols. They were identified as important for diverse cellular functions including sterol homeostasis, vesicular trafficking, proliferation and migration. In addition, they were implicated in lipid-related diseases such as atherosclerosis and diabetes, but also cancer, although their mechanisms of action remained poorly understood. Then, alongside the increasing recognition that membrane contact sites (MCS) serve as hubs for non-vesicular lipid transfer, added to their structural similarity to other LTPs, came discoveries showing that ORP5 and 8 were in fact phospholipid transfer proteins that rather sense and exchange phosphatidylserine (PS) for phosphoinositides, including phosphatidylinositol-4-phosphate (PI(4)P) and potentially phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2). Evidence now points to their action at MCS between the ER and various organelles including the plasma membrane, lysosomes, mitochondria, and lipid droplets. Dissecting exactly how this unexpected phospholipid transfer function connects with sterol regulation in health or disease remains a challenge for future studies.
Collapse
|
21
|
Moosavi B, Liu S, Wang NN, Zhu XL, Yang GF. The anti-fungal β-sitosterol targets the yeast oxysterol-binding protein Osh4. PEST MANAGEMENT SCIENCE 2020; 76:704-711. [PMID: 31347760 DOI: 10.1002/ps.5568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND β-Sitosterol is a plant metabolite with a broad range of anti-fungal activity, however, this compound is not toxic against a few fungal species. The target of β-sitosterol and the nature of its selective toxicity are not yet clear. Using a yeast model system and taking advantage of molecular biology and computational approaches, we identify the target and explain why β-sitosterol is not toxic against some fungal pathogens. RESULTS β-Sitosterol (200 μg mL-1 ) is toxic against yeast cells expressing only Osh4 (an oxysterol-binding protein) and harbouring a upc2-1 mutation (which enables sterol uptake), but not against yeast strains expressing all seven Osh proteins and harbouring a upc2-1 mutation. Furthermore, β-sitosterol is not toxic against yeast strains without the upc2-1 mutation irrespective of the number of Osh proteins being expressed. The deletion of COQ1 (a gene known to be highly induced upon deletion of OSH4) enhances the toxicity of β-sitosterol in yeast cells expressing only Osh4 and harbouring the upc2-1 mutation. Molecular modelling suggests that β-sitosterol binds to Osh4 and the binding mode is similar to the binding of cholesterol to Osh4. CONCLUSION Our results indicate that the concentrations of β-sitosterol, and Osh4, as well as its homologues within cells, are most likely the main determinants of β-sitosterol toxicity. Furthermore, some fungal species do not take up sterols, e.g. Saccharomyces cerevisiae, under aerobic conditions. Therefore, sterol uptake may also contribute to the β-sitosterol anti-fungal effect. These findings enable predicting the toxicity of β-sitosterol against plant fungal pathogens. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Shuting Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Nan-Nan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Chauhan N, Sere YY, Sokol AM, Graumann J, Menon AK. A PhotoClick cholesterol‐based quantitative proteomics screen for cytoplasmic sterol‐binding proteins in
Saccharomyces cerevisiae. Yeast 2020; 37:15-25. [DOI: 10.1002/yea.3448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Neha Chauhan
- Department of Biochemistry Weill Cornell Medical College 1300 York Ave. New York NY 10065 USA
| | - Yves Y. Sere
- Department of Biochemistry Weill Cornell Medical College 1300 York Ave. New York NY 10065 USA
| | - Anna M. Sokol
- Biomolecular Mass Spectrometry Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute Ludwigstr. 43 Bad Nauheim Germany
- Biomolecular Mass Spectrometry German Centre for Cardiovascular Research (DZHK), Rhine‐Main site Bad Nauheim Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute Ludwigstr. 43 Bad Nauheim Germany
- Biomolecular Mass Spectrometry German Centre for Cardiovascular Research (DZHK), Rhine‐Main site Bad Nauheim Germany
| | - Anant K. Menon
- Department of Biochemistry Weill Cornell Medical College 1300 York Ave. New York NY 10065 USA
| |
Collapse
|
23
|
Faletrov YV, Efimova VS, Horetski MS, Tugaeva KV, Frolova NS, Lin Q, Isaeva LV, Rubtsov MA, Sluchanko NN, Novikova LA, Shkumatov VM. New 20-hydroxycholesterol-like compounds with fluorescent NBD or alkyne labels: Synthesis, in silico interactions with proteins and uptake by yeast cells. Chem Phys Lipids 2019; 227:104850. [PMID: 31836520 DOI: 10.1016/j.chemphyslip.2019.104850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023]
Abstract
20-hydroxycholesterol is a signaling oxysterol with immunomodulating functions and, thus, structural analogues with reporter capabilities could be useful for studying and modulating the cellular processes concerned. We have synthesized three new 20-hydroxycholesterol-like pregn-5-en-3β-ol derivatives with fluorescent 7-nitrobenzofurazan (NBD) or Raman-sensitive alkyne labels in their side-chains. In silico computations demonstrated the compounds possess good membrane permeability and can bind within active sites of known 20-hydroxycholesterol targets (e.g. Smoothened and yeast Osh4) and some other sterol-binding proteins (human LXRβ and STARD1; yeast START-kins Lam4S2 and Lam2S2). Having found good predicted membrane permeability and binding to some yeast proteins, we tested the compounds on microorganisms. Fluorescent microscopy indicated the uptake of the steroids by both Saccharomyces cerevisiae and Yarrowia lipolytica, whereas only S. cerevisiae demonstrated conversion of the compounds into 3-O-acetates, likely because 3-O-acetyltransferase Atf2p is present only in its genome. The new compounds provide new options to study the uptake, intracellular distribution and metabolism of sterols in yeast cells as well as might be used as ligands for sterol-binding proteins.
Collapse
Affiliation(s)
- Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Matvey S Horetski
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Pr. 33, Moscow, 119071, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Nina S Frolova
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Quingquing Lin
- Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Pr. 33, Moscow, 119071, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Vladimir M Shkumatov
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Leningradskaya str. 14, Minsk, Belarus.
| |
Collapse
|
24
|
Moosavi B, Gao M, Zhu XL, Yang GF. The anti-cancer compound Schweinfurthin A targets Osh2 and disrupts lipid metabolism in the yeast model. Bioorg Chem 2019; 94:103471. [PMID: 31813476 DOI: 10.1016/j.bioorg.2019.103471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/09/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022]
Abstract
Schweinfurthin A (Sch A) is a natural product with a selective and strong anti-cancer effect. Although it is known to target oxysterol binding proteins, the detailed mode of action is not well understood. Here, we provide strong evidence that yeast cells can be used as a eukaryotic model system to decipher the molecular modes of Sch A. We show that Sch A (100 µM) targets Osh2 (a yeast oxysterol binding protein homolog) genetically and taking advantage of computational chemistry indicate that the tetrahydro-2H-xanthene portion of Sch A forms H-bonds with residues Ser105, Val113, and Lys201, while its isoprenoid side chain is placed in a hydrophobic pocket lined by the side chains of Leu41, Leu45, Leu58, Met56, and Phe174 in Osh2. This model suggests that Sch A occupies the same binding pocket in Osh2 which is occupied by its natural substrate, ergosterol. Osh proteins transport sterol and PI(4)P in a cyclic manner between two membranes. Therefore, we suggest that Sch A interferes with this function of Osh2. In support of this hypothesis, we show that Sch A toxicity rate changes upon manipulating the enzymes that modify the levels of sterol and PI(4)P. This approach also informs how Sch A exerts its toxic effect in yeast cells. These enzymes include Coq1, Sac1, Plc1, Stt4, Pik1, and Mss4. We demonstrate that Coq1 an enzyme required for coenzyme Q synthesis (also involved in sterol metabolism indirectly), Sac1, and Stt4 the enzymes governing PI(4)P level modify Sch A toxicity and finally propose Sch A disrupts sterol/PI(4)P exchange between membranes by occupying the sterol/PI(4)P binding pocket in Osh2.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Mengqi Gao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
25
|
Chiu JE, Thekkiniath J, Mehta S, Müller C, Bracher F, Ben Mamoun C. The yeast pantothenate kinase Cab1 is a master regulator of sterol metabolism and of susceptibility to ergosterol biosynthesis inhibitors. J Biol Chem 2019; 294:14757-14767. [PMID: 31409644 DOI: 10.1074/jbc.ra119.009791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
In fungi, ergosterol is an essential component of the plasma membrane. Its biosynthesis from acetyl-CoA is the primary target of the most commonly used antifungal drugs. Here, we show that the pantothenate kinase Cab1p, which catalyzes the first step in the metabolism of pantothenic acid for CoA biosynthesis in budding yeast (Saccharomyces cerevisiae), significantly regulates the levels of sterol intermediates and the activities of ergosterol biosynthesis-targeting antifungals. Using genetic and pharmacological analyses, we show that altered pantothenate utilization dramatically alters the susceptibility of yeast cells to ergosterol biosynthesis inhibitors. Genome-wide transcription and MS-based analyses revealed that this regulation is mediated by changes both in the expression of ergosterol biosynthesis genes and in the levels of sterol intermediates. Consistent with these findings, drug interaction experiments indicated that inhibition of pantothenic acid utilization synergizes with the activity of the ergosterol molecule-targeting antifungal amphotericin B and antagonizes that of the ergosterol pathway-targeting antifungal drug terbinafine. Our finding that CoA metabolism controls ergosterol biosynthesis and susceptibility to antifungals could set the stage for the development of new strategies to manage fungal infections and to modulate the potency of current drugs against drug-sensitive and -resistant fungal pathogens.
Collapse
Affiliation(s)
- Joy E Chiu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jose Thekkiniath
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sameet Mehta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Christoph Müller
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandstrasse 5-13, 81377 Munich, Germany
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandstrasse 5-13, 81377 Munich, Germany
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
26
|
Ramos-Alonso L, Wittmaack N, Mulet I, Martínez-Garay CA, Fita-Torró J, Lozano MJ, Romero AM, García-Ferris C, Martínez-Pastor MT, Puig S. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 2019; 10:1245-1256. [PMID: 30137082 DOI: 10.1039/c8mt00124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sokolov SS, Trushina NI, Severin FF, Knorre DA. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport. BIOCHEMISTRY (MOSCOW) 2019; 84:346-357. [DOI: 10.1134/s0006297919040023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Heterologous expression and functional characterization of the ligand-binding domain of oxysterol-binding protein from Aspergillus oryzae. Braz J Microbiol 2019; 50:415-424. [PMID: 30848436 DOI: 10.1007/s42770-019-00060-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
Oxysterol-binding proteins (OSBPs) comprise a family of sterol-binding proteins. In this study, we focused on AoOSBP1, one of the five OSBP proteins identified from the industrial fungus Aspergillus oryzae. The temporal expression pattern analysis showed that the expression of AoOSBP1, in both gene and protein levels, was stably expressed throughout the developmental stages, while was upregulated during the accelerated growth stage. The immunofluorescence observation revealed that AoOSBP1 protein was mainly distributed in the conidiophore, indicating its underlying role in spore formation. The ligand-binding domain of AoOSBP1, namely OSBP-related domain (ORD), was heterologously expressed in Escherichia coli and purified. The binding assay carried out using microscale thermophoresis showed that the recombinant AoORD protein exhibited binding affinity for ergosterol, and exhibited much higher affinity to oxysterols (25-hydroxycholesterol and 7-ketocholesterol) and phytosterols (β-sitosterol and stigmasterol). By contrast, MBP tag as the negative control showed no binding affinity for sterols. The present work demonstrates that AoORD domain in AoOSBP1 is capable of binding sterols, plays an underlying role in sterols transportation, and may participate in spore formation.
Collapse
|
29
|
Luo J, Jiang LY, Yang H, Song BL. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci 2019; 44:273-292. [DOI: 10.1016/j.tibs.2018.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
30
|
Qiu S, Zeng B. Advances in understanding of the oxysterol-binding protein homologous in yeast and filamentous fungi. Int Microbiol 2019; 22:169-179. [PMID: 30810998 DOI: 10.1007/s10123-019-00056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/14/2023]
Abstract
Oxysterol-binding protein is an important non-vesicular trafficking protein involved in the transportation of lipids in eukaryotic cells. Oxysterol-binding protein is identified as oxysterol-binding protein-related proteins (ORPs) in mammals and oxysterol-binding protein homologue (Osh) in yeast. Research has described the function and structure of oxysterol-binding protein in mammals and yeast, but little information about the protein's structure and function in filamentous fungi has been reported. This article focuses on recent advances in the research of Osh proteins in yeast and filamentous fungi, such as Aspergillus oryzae, Aspergillus nidulans, and Candida albicans. Furthermore, we point out some problems in the field, summarizing the membrane contact sites (MCS) of Osh proteins in yeast, and consider the future of Osh protein development.
Collapse
Affiliation(s)
- Shangkun Qiu
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
31
|
Sørensen DM, Holen HW, Pedersen JT, Martens HJ, Silvestro D, Stanchev LD, Costa SR, Günther Pomorski T, López-Marqués RL, Palmgren M. The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis. Mol Biol Cell 2019; 30:1069-1084. [PMID: 30785834 PMCID: PMC6724510 DOI: 10.1091/mbc.e18-06-0365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P5A ATPases are expressed in the endoplasmic reticulum (ER) of all eukaryotic cells, and their disruption results in severe ER stress. However, the function of these ubiquitous membrane proteins, which belong to the P-type ATPase superfamily, is unknown. We purified a functional tagged version of the Saccharomyces cerevisiae P5A ATPase Spf1p and observed that the ATP hydrolytic activity of the protein is stimulated by phosphatidylinositol 4-phosphate (PI4P). Furthermore, SPF1 exhibited negative genetic interactions with SAC1, encoding a PI4P phosphatase, and with OSH1 to OSH6, encoding Osh proteins, which, when energized by a PI4P gradient, drive export of sterols and lipids from the ER. Deletion of SPF1 resulted in increased sensitivity to inhibitors of sterol production, a marked change in the ergosterol/lanosterol ratio, accumulation of sterols in the plasma membrane, and cytosolic accumulation of lipid bodies. We propose that Spf1p maintains cellular sterol homeostasis by influencing the PI4P-induced and Osh-mediated export of sterols from the ER.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Henrik Waldal Holen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Helle Juel Martens
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Daniele Silvestro
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Lyubomir Dimitrov Stanchev
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Sara Rute Costa
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
32
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
33
|
Hanada K. Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites. J Lipid Res 2018; 59:1341-1366. [PMID: 29884707 PMCID: PMC6071762 DOI: 10.1194/jlr.r085324] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is the main center for the synthesis of various lipid types in cells, and newly synthesized lipids are delivered from the ER to other organelles. In the past decade, various lipid transfer proteins (LTPs) have been recognized as mediators of lipid transport from the ER to other organelles; inter-organelle transport occurs at membrane contact sites (MCSs) and in a nonvesicular manner. Although the intermembrane transfer reaction catalyzed by LTPs is an equilibrium reaction, various types of newly synthesized lipids are transported unidirectionally in cells. This review provides a brief history of the inter-organelle trafficking of lipids and summarizes the structural and biochemical characteristics of the ceramide transport protein (CERT) as a typical LTP acting at MCSs. In addition, this review compares several LTP-mediated inter-organelle lipid trafficking systems and proposes that LTPs generate unidirectional fluxes of specific lipids between different organelles by indirect coupling with the metabolic reactions that occur in specific organelles. Moreover, the available data also suggest that the major advantage of LTP-mediated lipid transport at MCSs may be the accuracy of delivery. Finally, how cholesterol is enriched in the plasma membrane is discussed from a thermodynamic perspective.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
34
|
Osh6p, a homologue of the oxysterol-binding protein, is involved in production of functional cytochrome P450 belonging to CYP52 family in n-alkane-assimilating yeast Yarrowia lipolytica. Biochem Biophys Res Commun 2018; 499:836-842. [DOI: 10.1016/j.bbrc.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/01/2018] [Indexed: 01/04/2023]
|