1
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Hengst JA, Ruiz-Velasco VJ, Raup-Konsavage WM, Vrana KE, Yun JK. Cannabinoid-Induced Immunogenic Cell Death of Colorectal Cancer Cells Through De Novo Synthesis of Ceramide Is Partially Mediated by CB2 Receptor. Cancers (Basel) 2024; 16:3973. [PMID: 39682160 DOI: 10.3390/cancers16233973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Our recent studies have identified a link between sphingolipid metabolites and the induction of a specialized form of regulated cell death termed immunogenic cell death (ICD). We have recently demonstrated that the synthetic cannabinoid (±) 5-epi CP 55,940 (5-epi) stimulates the accumulation of ceramide (Cer), and that inhibition of sphingosine kinase 1 (SphK1) enhances Cer accumulation and ICD-induction in human colorectal cancer (CRC) cell lines. Methods: We employed flow-cytometric, western blot analyses, pharmacological inhibitors of the sphingolipid metabolic pathway and small molecule agonists and antagonists of the CB receptors to further analyze the mechanism by which 5-epi induces Cer accumulation. Results: Herein, and report that 5-epi induces de novo synthesis of Cer primarily through engagement of the cannabinoid receptor 2 (CB2) and depletion of intracellular calcium levels. Moreover, we report that 5-epi stimulates Cer synthesis through dysregulation of the endogenous inhibitor of the de novo Cer pathway, ORMDL3. We also observed a remarkable and specific accumulation of one Cer species, C20:4 Cer, generated predominantly by ceramide synthase 4, as a key factor required for 5-epi-induced ICD. Conclusions: Together, these data indicate that engagement of CB2, by 5-epi, alters regulation of the de novo ceramide synthesis pathway to generate Cer species that mediate ICD.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pediatrics, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Victor J Ruiz-Velasco
- Department of Anesthesiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Körner C, Schäfer JH, Esch BM, Parey K, Walter S, Teis D, Januliene D, Schmidt O, Moeller A, Fröhlich F. The structure of the Orm2-containing serine palmitoyltransferase complex reveals distinct inhibitory potentials of yeast Orm proteins. Cell Rep 2024; 43:114627. [PMID: 39167489 DOI: 10.1016/j.celrep.2024.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Carolin Körner
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Jan-Hannes Schäfer
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Bianca M Esch
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Kristian Parey
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dovile Januliene
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany.
| |
Collapse
|
5
|
Dingjan T, Futerman AH. Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum. Front Cell Dev Biol 2024; 12:1457209. [PMID: 39170919 PMCID: PMC11335536 DOI: 10.3389/fcell.2024.1457209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
6
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
7
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Brown RDR, Mahawar U, Wattenberg BW, Spiegel S. ORMDL mislocalization by impaired autophagy in Niemann-Pick type C disease leads to increased de novo sphingolipid biosynthesis. J Lipid Res 2024; 65:100556. [PMID: 38719150 PMCID: PMC11170278 DOI: 10.1016/j.jlr.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
9
|
Demkova L, Bugajev V, Adamcova MK, Kuchar L, Grusanovic S, Alberich-Jorda M, Draber P, Halova I. Simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupts immune cell homeostasis. Front Immunol 2024; 15:1376629. [PMID: 38715613 PMCID: PMC11074395 DOI: 10.3389/fimmu.2024.1376629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.
Collapse
Affiliation(s)
- Livia Demkova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava K. Adamcova
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Srdjan Grusanovic
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Naruse H, Ishiura H, Esaki K, Mitsui J, Satake W, Greimel P, Shingai N, Machino Y, Kokubo Y, Hamaguchi H, Oda T, Ikkaku T, Yokota I, Takahashi Y, Suzuki Y, Matsukawa T, Goto J, Koh K, Takiyama Y, Morishita S, Yoshikawa T, Tsuji S, Toda T. SPTLC2 variants are associated with early-onset ALS and FTD due to aberrant sphingolipid synthesis. Ann Clin Transl Neurol 2024; 11:946-957. [PMID: 38316966 PMCID: PMC11021611 DOI: 10.1002/acn3.52013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a devastating, incurable neurodegenerative disease. A subset of ALS patients manifests with early-onset and complex clinical phenotypes. We aimed to elucidate the genetic basis of these cases to enhance our understanding of disease etiology and facilitate the development of targeted therapies. METHODS Our research commenced with an in-depth genetic and biochemical investigation of two specific families, each with a member diagnosed with early-onset ALS (onset age of <40 years). This involved whole-exome sequencing, trio analysis, protein structure analysis, and sphingolipid measurements. Subsequently, we expanded our analysis to 62 probands with early-onset ALS and further included 440 patients with adult-onset ALS and 1163 healthy controls to assess the prevalence of identified genetic variants. RESULTS We identified heterozygous variants in the serine palmitoyltransferase long chain base subunit 2 (SPTLC2) gene in patients with early-onset ALS. These variants, located in a region closely adjacent to ORMDL3, bear similarities to SPTLC1 variants previously implicated in early-onset ALS. Patients with ALS carrying these SPTLC2 variants displayed elevated plasma ceramide levels, indicative of increased serine palmitoyltransferase (SPT) activity leading to sphingolipid overproduction. INTERPRETATION Our study revealed novel SPTLC2 variants in patients with early-onset ALS exhibiting frontotemporal dementia. The combination of genetic evidence and the observed elevation in plasma ceramide levels establishes a crucial link between dysregulated sphingolipid metabolism and ALS pathogenesis. These findings expand our understanding of ALS's genetic diversity and highlight the distinct roles of gene defects within SPT subunits in its development.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kayoko Esaki
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life SciencesSojo UniversityKumamotoJapan
| | - Jun Mitsui
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Precision Medicine Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Wataru Satake
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Peter Greimel
- Laboratory for Cell Function Dynamics, RIKEN Centre for Brain SciencesWakoSaitamaJapan
| | - Nanoka Shingai
- Division of Applied Life Science, Graduate School of EngineeringSojo UniversityKumamotoJapan
| | - Yuka Machino
- Department of NeurologyNational Hospital Organization Mie National HospitalTsuMieJapan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Center, Graduate School of Regional Innovation StudiesMie UniversityTsuMieJapan
| | | | - Tetsuya Oda
- Department of NeurologyKita‐Harima Medical CenterOnoHyogoJapan
| | - Tomoko Ikkaku
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyHyogo Prefectural Rehabilitation Central HospitalKobeHyogoJapan
| | - Ichiro Yokota
- Division of NeurologyKobe University Graduate School of MedicineKobeHyogoJapan
- Department of NeurologyNational Hospital Organization Hyogo‐Chuo National HospitalSandaHyogoJapan
| | - Yuji Takahashi
- Department of NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Jun Goto
- Department of NeurologyInternational University of Health and Welfare Ichikawa HospitalChibaJapan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyYumura Onsen HospitalYamanashiJapan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical SciencesUniversity of YamanashiYamanashiJapan
- Department of NeurologyFuefuki Central HospitalYamanashiJapan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain ScienceWakoSaitamaJapan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Institute of Medical GenomicsInternational University of Health and WelfareChibaJapan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
11
|
Jojić K, Gherlone F, Cseresnyés Z, Bissell AU, Hoefgen S, Hoffmann S, Huang Y, Janevska S, Figge MT, Valiante V. The spatial organization of sphingofungin biosynthesis in Aspergillus fumigatus and its cross-interaction with sphingolipid metabolism. mBio 2024; 15:e0019524. [PMID: 38380921 PMCID: PMC10936153 DOI: 10.1128/mbio.00195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Sphingofungins are sphinganine analog mycotoxins acting as inhibitors of serine palmitoyl transferases, enzymes responsible for the first step in the sphingolipid biosynthesis. Eukaryotic cells are highly organized with various structures and organelles to facilitate cellular processes and chemical reactions, including the ones occurring as part of the secondary metabolism. We studied how sphingofungin biosynthesis is compartmentalized in the human-pathogenic fungus Aspergillus fumigatus, and we observed that it takes place in the endoplasmic reticulum (ER), ER-derived vesicles, and the cytosol. This implies that sphingofungin and sphingolipid biosynthesis colocalize to some extent. Automated analysis of confocal microscopy images confirmed the colocalization of the fluorescent proteins. Moreover, we demonstrated that the cluster-associated aminotransferase (SphA) and 3-ketoreductase (SphF) play a bifunctional role, supporting sphingolipid biosynthesis, and thereby antagonizing the toxic effects caused by sphingofungin production.IMPORTANCEA balanced sphingolipid homeostasis is critical for the proper functioning of eukaryotic cells. To this end, sphingolipid inhibitors have therapeutic potential against diseases related to the deregulation of sphingolipid balance. In addition, some of them have significant antifungal activity, suggesting that sphingolipid inhibitors-producing fungi have evolved mechanisms to escape self-poisoning. Here, we propose a novel self-defense mechanism, with cluster-associated genes coding for enzymes that play a dual role, being involved in both sphingofungin and sphingolipid production.
Collapse
Affiliation(s)
- Katarina Jojić
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Fabio Gherlone
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Alexander U. Bissell
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Stefan Hoffmann
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Ying Huang
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Marc Thilo Figge
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
12
|
Syeda SB, Lone MA, Mohassel P, Donkervoort S, Munot P, França MC, Galarza-Brito JE, Eckenweiler M, Asamoah A, Gable K, Majumdar A, Schumann A, Gupta SD, Lakhotia A, Shieh PB, Foley AR, Jackson KE, Chao KR, Winder TL, Catapano F, Feng L, Kirschner J, Muntoni F, Dunn TM, Hornemann T, Bönnemann CG. Recurrent de novo SPTLC2 variant causes childhood-onset amyotrophic lateral sclerosis (ALS) by excess sphingolipid synthesis. J Neurol Neurosurg Psychiatry 2024; 95:103-113. [PMID: 38041679 PMCID: PMC10850718 DOI: 10.1136/jnnp-2023-332132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.
Collapse
Affiliation(s)
- Safoora B Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Museer A Lone
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pinki Munot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Marcondes C França
- Department of Neurology, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Alexander Asamoah
- Norton Children's Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, Maryland, USA
| | - Anirban Majumdar
- Department of Paediatric Neurology, Bristol Children's Hospital, Bristol, UK
| | - Anke Schumann
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, Medical Centre, University of Freiburg, Baden-Württemberg, Germany
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, Maryland, USA
| | - Arpita Lakhotia
- Norton Children's Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
- University of Louisville, Louisville, Kentucky, USA
| | - Perry B Shieh
- Department of Neurology and Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kelly E Jackson
- Norton Children's Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Francesco Catapano
- Dubowitz Neuromuscular Centre, CL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, CL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Francesco Muntoni
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Dubowitz Neuromuscular Centre, CL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
14
|
Mohassel P, Abdullah M, Eichler FS, Dunn TM. Serine Palmitoyltransferase (SPT)-related Neurodegenerative and Neurodevelopmental Disorders. J Neuromuscul Dis 2024; 11:735-747. [PMID: 38788085 PMCID: PMC11307022 DOI: 10.3233/jnd-240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.
Collapse
Affiliation(s)
- Payam Mohassel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meher Abdullah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian S. Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
15
|
Kleuser B, Schumacher F, Gulbins E. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism. Handb Exp Pharmacol 2024; 284:289-312. [PMID: 37922034 DOI: 10.1007/164_2023_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
16
|
Mughram MHA, Kellogg GE, Wattenberg BW. Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi. Adv Biol Regul 2024; 91:101010. [PMID: 38135565 PMCID: PMC10922298 DOI: 10.1016/j.jbior.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
Collapse
Affiliation(s)
- Mohammed H Al Mughram
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
17
|
Kim Y, Mavodza G, Senkal CE, Burd CG. Cholesterol-dependent homeostatic regulation of very long chain sphingolipid synthesis. J Cell Biol 2023; 222:e202308055. [PMID: 37787764 PMCID: PMC10547602 DOI: 10.1083/jcb.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
18
|
Esch BM, Walter S, Schmidt O, Fröhlich F. Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER. J Cell Sci 2023; 136:jcs261353. [PMID: 37982431 DOI: 10.1242/jcs.261353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.
Collapse
Affiliation(s)
- Bianca M Esch
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Fröhlich
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
19
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Schäfer JH, Körner C, Esch BM, Limar S, Parey K, Walter S, Januliene D, Moeller A, Fröhlich F. Structure of the ceramide-bound SPOTS complex. Nat Commun 2023; 14:6196. [PMID: 37794019 PMCID: PMC10550967 DOI: 10.1038/s41467-023-41747-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Sphingolipids are structural membrane components that also function in cellular stress responses. The serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in sphingolipid biogenesis. Its activity is tightly regulated through multiple binding partners, including Tsc3, Orm proteins, ceramides, and the phosphatidylinositol-4-phosphate (PI4P) phosphatase Sac1. The structural organization and regulatory mechanisms of this complex are not yet understood. Here, we report the high-resolution cryo-EM structures of the yeast SPT in complex with Tsc3 and Orm1 (SPOT) as dimers and monomers and a monomeric complex further carrying Sac1 (SPOTS). In all complexes, the tight interaction of the downstream metabolite ceramide and Orm1 reveals the ceramide-dependent inhibition. Additionally, observation of ceramide and ergosterol binding suggests a co-regulation of sphingolipid biogenesis and sterol metabolism within the SPOTS complex.
Collapse
Affiliation(s)
- Jan-Hannes Schäfer
- Osnabrück University Department of Biology/Chemistry Structural Biology section, 49076, Osnabrück, Germany
| | - Carolin Körner
- Osnabrück University Department of Biology/Chemistry Bioanalytical Chemistry section, 49076, Osnabrück, Germany
| | - Bianca M Esch
- Osnabrück University Department of Biology/Chemistry Bioanalytical Chemistry section, 49076, Osnabrück, Germany
| | - Sergej Limar
- Osnabrück University Department of Biology/Chemistry Bioanalytical Chemistry section, 49076, Osnabrück, Germany
| | - Kristian Parey
- Osnabrück University Department of Biology/Chemistry Structural Biology section, 49076, Osnabrück, Germany
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), 49076, Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), 49076, Osnabrück, Germany
| | - Dovile Januliene
- Osnabrück University Department of Biology/Chemistry Structural Biology section, 49076, Osnabrück, Germany.
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), 49076, Osnabrück, Germany.
| | - Arne Moeller
- Osnabrück University Department of Biology/Chemistry Structural Biology section, 49076, Osnabrück, Germany.
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), 49076, Osnabrück, Germany.
| | - Florian Fröhlich
- Osnabrück University Department of Biology/Chemistry Bioanalytical Chemistry section, 49076, Osnabrück, Germany.
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), 49076, Osnabrück, Germany.
| |
Collapse
|
21
|
Mathivanan A, Nachiappan V. Deletion of ORM2 Causes Oleic Acid-Induced Growth Defects in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2023; 195:5916-5932. [PMID: 36719521 DOI: 10.1007/s12010-023-04359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
The endoplasmic reticulum (ER) resident proteins of the Orm family (Orm1p and Orm2p) play an essential regulatory role in sphingolipid metabolism and proteostasis of Saccharomyces cerevisiae. Sphingolipid metabolism and its relationship with yeast ORM1 and ORM2 have been studied widely, but its position in phospholipids and neutral lipids requires further studies. We found that the deletion of ORM2 reduced phospholipid levels, but orm1Δ had shown no significant alteration of phospholipids. On the contrary, neutral lipid levels and lipid droplet (LD) numbers were increased in both orm1∆ and orm2∆ cells. Unlike orm1Δ, free fatty acid (FFA) levels were steeply accumulated in orm2∆ cells, and deletion of ORM2 made the cells more sensitive towards oleic acid toxicity. Misregulation of fatty acids has been implicated in the causation of several lipid metabolic disorders. It is imminent to comprehend the control mechanisms of free fatty acid homeostasis and its pathophysiology. Our study has provided experimental evidence of ORM2 role in the lipid and fatty acid metabolism of yeast.
Collapse
Affiliation(s)
- Arul Mathivanan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, 620 024, Tamil Nadu, India.
| |
Collapse
|
22
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
23
|
Xie T, Liu P, Wu X, Dong F, Zhang Z, Yue J, Mahawar U, Farooq F, Vohra H, Fang Q, Liu W, Wattenberg BW, Gong X. Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis. Nat Commun 2023; 14:3475. [PMID: 37308477 DOI: 10.1038/s41467-023-39274-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The ORM/ORMDL family proteins function as regulatory subunits of the serine palmitoyltransferase (SPT) complex, which is the initiating and rate-limiting enzyme in sphingolipid biosynthesis. This complex is tightly regulated by cellular sphingolipid levels, but the sphingolipid sensing mechanism is unknown. Here we show that purified human SPT-ORMDL complexes are inhibited by the central sphingolipid metabolite ceramide. We have solved the cryo-EM structure of the SPT-ORMDL3 complex in a ceramide-bound state. Structure-guided mutational analyses reveal the essential function of this ceramide binding site for the suppression of SPT activity. Structural studies indicate that ceramide can induce and lock the N-terminus of ORMDL3 into an inhibitory conformation. Furthermore, we demonstrate that childhood amyotrophic lateral sclerosis (ALS) variants in the SPTLC1 subunit cause impaired ceramide sensing in the SPT-ORMDL3 mutants. Our work elucidates the molecular basis of ceramide sensing by the SPT-ORMDL complex for establishing sphingolipid homeostasis and indicates an important role of impaired ceramide sensing in disease development.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jian Yue
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Faheem Farooq
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hisham Vohra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Qi Fang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
24
|
Nagree MS, Rybova J, Kleynerman A, Ahrenhoerster CJ, Saville JT, Xu T, Bachochin M, McKillop WM, Lawlor MW, Pshezhetsky AV, Isaeva O, Budde MD, Fuller M, Medin JA. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun Biol 2023; 6:560. [PMID: 37231125 DOI: 10.1038/s42003-023-04932-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
| | - TianMeng Xu
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, H3T 1C5, Canada
| | | | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew D Budde
- Clement J. Zablocki Veteran's Affairs Medical Center, Milwaukee, WI, 53295, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, ON, Canada.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
25
|
Gehin C, Lone MA, Lee W, Capolupo L, Ho S, Adeyemi AM, Gerkes EH, Stegmann AP, López-Martín E, Bermejo-Sánchez E, Martínez-Delgado B, Zweier C, Kraus C, Popp B, Strehlow V, Gräfe D, Knerr I, Jones ER, Zamuner S, Abriata LA, Kunnathully V, Moeller BE, Vocat A, Rommelaere S, Bocquete JP, Ruchti E, Limoni G, Van Campenhoudt M, Bourgeat S, Henklein P, Gilissen C, van Bon BW, Pfundt R, Willemsen MH, Schieving JH, Leonardi E, Soli F, Murgia A, Guo H, Zhang Q, Xia K, Fagerberg CR, Beier CP, Larsen MJ, Valenzuela I, Fernández-Álvarez P, Xiong S, Śmigiel R, López-González V, Armengol L, Morleo M, Selicorni A, Torella A, Blyth M, Cooper NS, Wilson V, Oegema R, Herenger Y, Garde A, Bruel AL, Tran Mau-Them F, Maddocks AB, Bain JM, Bhat MA, Costain G, Kannu P, Marwaha A, Champaigne NL, Friez MJ, Richardson EB, Gowda VK, Srinivasan VM, Gupta Y, Lim TY, Sanna-Cherchi S, Lemaitre B, Yamaji T, Hanada K, Burke JE, Jakšić AM, McCabe BD, De Los Rios P, Hornemann T, D’Angelo G, Gennarino VA. CERT1 mutations perturb human development by disrupting sphingolipid homeostasis. J Clin Invest 2023; 133:e165019. [PMID: 36976648 PMCID: PMC10178846 DOI: 10.1172/jci165019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.
Collapse
Affiliation(s)
- Charlotte Gehin
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Winston Lee
- Department of Genetics and Development and
- Department Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Laura Capolupo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvia Ho
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adekemi M. Adeyemi
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Erica H. Gerkes
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Alexander P.A. Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Estrella López-Martín
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University Hospital Leipzig, Leipzig, Leipzig, Germany
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland (CHI) at Temple Street, Dublin, Ireland
- UCD School of Medicine, Dublin, Ireland
| | - Eppie R. Jones
- Genuity Science, Cherrywood Business Park, Dublin, Ireland
| | - Stefano Zamuner
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luciano A. Abriata
- Laboratory for Biomolecular Modeling and Protein Purification and Structure Facility, EPFL and Swiss Institute of Bioinformatics, Lausanne Switzerland
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Brandon E. Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Vocat
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Evelyne Ruchti
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Samuel Bourgeat
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Gilissen
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Bregje W. van Bon
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
| | - Rolph Pfundt
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | | | - Jolanda H. Schieving
- Radboud University Medical Center, Department of Pediatric Neurology, Amalia Children’s Hospital and Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Fiorenza Soli
- Medical Genetics Department, APSS Trento, Trento, Italy
| | - Alessandra Murgia
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Christina R. Fagerberg
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christoph P. Beier
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J. Larsen
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, University Hospital Vall d′Hebron, Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Shiyi Xiong
- Fetal Medicine Unit and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Medical University, Wroclaw, Poland
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER-ISCIII, Murcia, Spain
| | - Lluís Armengol
- Quantitative Genomic Medicine Laboratories, S.L., CSO & CEO, Esplugues del Llobregat, Barcelona, Catalunya, Spain
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Angelo Selicorni
- Department of Pediatrics, ASST Lariana Sant’ Anna Hospital, San Fermo Della Battaglia, Como, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, United Kingdom
| | - Nicola S. Cooper
- W Midlands Clinical Genetics Service, Birmingham Women’s Hospital, Edgbaston Birmingham, United Kingdom
| | - Valerie Wilson
- Northern Regional Genetics Laboratory, Newcastle upon Tyne, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yvan Herenger
- Genetica AG, Humangenetisches Labor und Beratungsstelle, Zürich, Switzerland
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d’Enfants, CHU Dijon, Dijon, France
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, INSERM – Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Alexis B.R. Maddocks
- Department of Radiology at Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer M. Bain
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| | - Musadiq A. Bhat
- Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Kannu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Neena L. Champaigne
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Michael J. Friez
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Ellen B. Richardson
- Greenwood Genetic Center and the Medical University of South Carolina, Greenwood, South Carolina, USA
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana Marjia Jakšić
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Brian D. McCabe
- Brain Mind Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics, School of Basic Sciences, École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Global Health Institute, School of Life Sciences and
| | - Vincenzo A. Gennarino
- Department of Genetics and Development and
- Department of Pediatrics
- Department of Neurology
- Columbia Stem Cell Initiative, and
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
26
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
28
|
Srivastava S, Shaked HM, Gable K, Gupta SD, Pan X, Somashekarappa N, Han G, Mohassel P, Gotkine M, Doney E, Goldenberg P, Tan QKG, Gong Y, Kleinstiver B, Wishart B, Cope H, Pires CB, Stutzman H, Spillmann RC, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM, Dai H, Dhar SU, Emrick LT, Goldman AM, Hanchard NA, Jamal F, Karaviti L, Lalani SR, Lee BH, Lewis RA, Marom R, Moretti PM, Murdock DR, Nicholas SK, Orengo JP, Posey JE, Potocki L, Rosenfeld JA, Samson SL, Scott DA, Tran AA, Vogel TP, Wangler MF, Yamamoto S, Eng CM, Liu P, Ward PA, Behrens E, Deardorff M, Falk M, Hassey K, Sullivan K, Vanderver A, Goldstein DB, Cope H, McConkie-Rosell A, Schoch K, Shashi V, Smith EC, Spillmann RC, Sullivan JA, Tan QKG, Walley NM, Agrawal PB, Beggs AH, Berry GT, Briere LC, Cobban LA, Coggins M, Cooper CM, Fieg EL, High F, Holm IA, Korrick S, Krier JB, Lincoln SA, Loscalzo J, Maas RL, MacRae CA, Pallais JC, Rao DA, Rodan LH, Silverman EK, Stoler JM, Sweetser DA, Walker M, Walsh CA, Esteves C, Kelley EG, Kohane IS, LeBlanc K, McCray AT, Nagy A, Dasari S, Lanpher BC, Lanza IR, Morava E, Oglesbee D, Bademci G, Barbouth D, Bivona S, Carrasquillo O, Chang TCP, Forghani I, Grajewski A, Isasi R, Lam B, Levitt R, Liu XZ, McCauley J, Sacco R, Saporta M, Schaechter J, Tekin M, Telischi F, Thorson W, Zuchner S, Colley HA, Dayal JG, Eckstein DJ, Findley LC, Krasnewich DM, Mamounas LA, Manolio TA, Mulvihill JJ, LaMoure GL, Goldrich MP, Urv TK, Doss AL, Acosta MT, Bonnenmann C, D’Souza P, Draper DD, Ferreira C, Godfrey RA, Groden CA, Macnamara EF, Maduro VV, Markello TC, Nath A, Novacic D, Pusey BN, Toro C, Wahl CE, Baker E, Burke EA, Adams DR, Gahl WA, Malicdan MCV, Tifft CJ, Wolfe LA, Yang J, Power B, Gochuico B, Huryn L, Latham L, Davis J, Mosbrook-Davis D, Rossignol F, Solomon B, MacDowall J, Thurm A, Zein W, Yousef M, Adam M, Amendola L, Bamshad M, Beck A, Bennett J, Berg-Rood B, Blue E, Boyd B, Byers P, Chanprasert S, Cunningham M, Dipple K, Doherty D, Earl D, Glass I, Golden-Grant K, Hahn S, Hing A, Hisama FM, Horike-Pyne M, Jarvik GP, Jarvik J, Jayadev S, Lam C, Maravilla K, Mefford H, Merritt JL, Mirzaa G, Nickerson D, Raskind W, Rosenwasser N, Scott CR, Sun A, Sybert V, Wallace S, Wener M, Wenger T, Ashley EA, Bejerano G, Bernstein JA, Bonner D, Coakley TR, Fernandez L, Fisher PG, Fresard L, Hom J, Huang Y, Kohler JN, Kravets E, Majcherska MM, Martin BA, Marwaha S, McCormack CE, Raja AN, Reuter CM, Ruzhnikov M, Sampson JB, Smith KS, Sutton S, Tabor HK, Tucker BM, Wheeler MT, Zastrow DB, Zhao C, Byrd WE, Crouse AB, Might M, Nakano-Okuno M, Whitlock J, Brown G, Butte MJ, Dell’Angelica EC, Dorrani N, Douine ED, Fogel BL, Gutierrez I, Huang A, Krakow D, Lee H, Loo SK, Mak BC, Martin MG, Martínez-Agosto JA, McGee E, Nelson SF, Nieves-Rodriguez S, Palmer CGS, Papp JC, Parker NH, Renteria G, Signer RH, Sinsheimer JS, Wan J, Wang LK, Perry KW, Woods JD, Alvey J, Andrews A, Bale J, Bohnsack J, Botto L, Carey J, Pace L, Longo N, Marth G, Moretti P, Quinlan A, Velinder M, Viskochi D, Bayrak-Toydemir P, Mao R, Westerfield M, Bican A, Brokamp E, Duncan L, Hamid R, Kennedy J, Kozuira M, Newman JH, PhillipsIII JA, Rives L, Robertson AK, Solem E, Cogan JD, Cole FS, Hayes N, Kiley D, Sisco K, Wambach J, Wegner D, Baldridge D, Pak S, Schedl T, Shin J, Solnica-Krezel L, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 2023; 146:1420-1435. [PMID: 36718090 PMCID: PMC10319774 DOI: 10.1093/brain/awac460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, BostonChildren's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Marc Gotkine
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Paula Goldenberg
- Department of Pediatrics, Section on Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Queenie K G Tan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Wishart
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claudia Brito Pires
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital , Memphis, TN 38105 , USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030 , USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital , Houston, TX 77030 , USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus , Jerusalem 91240 , Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences , Bethesda, MD 20814 , USA
| | | |
Collapse
|
29
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
30
|
van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther 2023; 244:108381. [PMID: 36907249 DOI: 10.1016/j.pharmthera.2023.108381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Lipids are essential structural and functional components of the central nervous system (CNS). Sphingolipids are ubiquitous membrane components which were discovered in the brain in the late 19th century. In mammals, the brain contains the highest concentration of sphingolipids in the body. Sphingosine 1-phosphate (S1P) derived from membrane sphingolipids evokes multiple cellular responses which, depending on its concentration and localization, make S1P a double-edged sword in the brain. In the present review we highlight the role of S1P in brain development and focus on the often contrasting findings regarding its contributions to the initiation, progression and potential recovery of different brain pathologies, including neurodegeneration, multiple sclerosis (MS), brain cancers, and psychiatric illnesses. A detailed understanding of the critical implications of S1P in brain health and disease may open the door for new therapeutic options. Thus, targeting S1P-metabolizing enzymes and/or signaling pathways might help overcome, or at least ameliorate, several brain illnesses.
Collapse
|
31
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
32
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
33
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
34
|
Sasset L, Chowdhury KH, Manzo OL, Rubinelli L, Konrad C, Maschek JA, Manfredi G, Holland WL, Di Lorenzo A. Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL. EMBO Rep 2023; 24:e54689. [PMID: 36408842 PMCID: PMC9827560 DOI: 10.15252/embr.202254689] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Kamrul H Chowdhury
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Onorina L Manzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
| | - Luisa Rubinelli
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - Csaba Konrad
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - J Alan Maschek
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| | - William L Holland
- Department of Nutrition and Integrative PhysiologyUniversity of Utah College of HealthSalt Lake CityUTUSA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory MedicineCardiovascular Research Institute, Weill Cornell MedicineNew YorkNYUSA
- Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
35
|
Clausmeyer L, Fröhlich F. Mechanisms of Nonvesicular Ceramide Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231208250. [PMID: 37859671 PMCID: PMC10583516 DOI: 10.1177/25152564231208250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Ceramides, as key components of cellular membranes, play essential roles in various cellular processes, including apoptosis, cell proliferation, and cell signaling. Ceramides are the precursors of all complex sphingolipids in eukaryotic cells. They are synthesized in the endoplasmic reticulum and are further processed at the Golgi apparatus. Therefore, ceramides have to be transported between these two organelles. In mammalian cells, the ceramide transfer protein forms a contact site between the ER and the trans-Golgi region and transports ceramide utilizing its steroidogenic acute regulatory protein-related lipid transfer domain. In yeast, multiple mechanisms of nonvesicular ceramide transport have been described. This involves the nuclear-vacuolar junction protein Nvj2, the yeast tricalbin proteins, and the lipocalin-like protein Svf1. This review aims to provide a comprehensive overview of nonvesicular ceramide transport mechanisms and their relevance in cellular physiology. We will highlight the physiological and pathological consequences of perturbations in nonvesicular ceramide transport and discuss future challenges in identifying and analyzing ceramide transfer proteins.
Collapse
Affiliation(s)
- Lena Clausmeyer
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
36
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
37
|
Lone MA, Aaltonen MJ, Zidell A, Pedro HF, Morales Saute JA, Mathew S, Mohassel P, Bönnemann CG, Shoubridge EA, Hornemann T. SPTLC1 variants associated with ALS produce distinct sphingolipid signatures through impaired interaction with ORMDL proteins. J Clin Invest 2022; 132:e161908. [PMID: 35900868 PMCID: PMC9479574 DOI: 10.1172/jci161908] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons. Mutations in the SPTLC1 subunit of serine palmitoyltransferase (SPT), which catalyzes the first step in the de novo synthesis of sphingolipids (SLs), cause childhood-onset ALS. SPTLC1-ALS variants map to a transmembrane domain that interacts with ORMDL proteins, negative regulators of SPT activity. We show that ORMDL binding to the holoenzyme complex is impaired in cells expressing pathogenic SPTLC1-ALS alleles, resulting in increased SL synthesis and a distinct lipid signature. C-terminal SPTLC1 variants cause peripheral hereditary sensory and autonomic neuropathy type 1 (HSAN1) due to the synthesis of 1-deoxysphingolipids (1-deoxySLs) that form when SPT metabolizes L-alanine instead of L-serine. Limiting L-serine availability in SPTLC1-ALS-expressing cells increased 1-deoxySL and shifted the SL profile from an ALS to an HSAN1-like signature. This effect was corroborated in an SPTLC1-ALS pedigree in which the index patient uniquely presented with an HSAN1 phenotype, increased 1-deoxySL levels, and an L-serine deficiency. These data demonstrate how pathogenic variants in different domains of SPTLC1 give rise to distinct clinical presentations that are nonetheless modifiable by substrate availability.
Collapse
Affiliation(s)
- Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mari J. Aaltonen
- Montreal Neurological Institute and
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Aliza Zidell
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Helio F. Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, New Jersey, USA
| | - Jonas A. Morales Saute
- Medical Genetics Division and Neurology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, and Internal Medicine Department, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Shalett Mathew
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Eric A. Shoubridge
- Montreal Neurological Institute and
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Nicholson RJ, Norris MK, Poss AM, Holland WL, Summers SA. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annu Rev Nutr 2022; 42:115-144. [PMID: 35584813 PMCID: PMC9399075 DOI: 10.1146/annurev-nutr-062220-112920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Annelise M. Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
39
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
40
|
Groux R, Fouillen L, Mongrand S, Reymond P. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2535-2553. [PMID: 35608326 PMCID: PMC9342989 DOI: 10.1093/plphys/kiac242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
Collapse
Affiliation(s)
- Raphaël Groux
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogénèse Membranaire, CNRS, UMR 5200, University of Bordeaux, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
41
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
42
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
43
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
44
|
Ouro A, Correa-Paz C, Maqueda E, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Posado-Fernández A, Candamo-Lourido M, Alonso-Alonso ML, Hervella P, Iglesias-Rey R, Castillo J, Campos F, Sobrino T. Involvement of Ceramide Metabolism in Cerebral Ischemia. Front Mol Biosci 2022; 9:864618. [PMID: 35531465 PMCID: PMC9067562 DOI: 10.3389/fmolb.2022.864618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in worldwide. Although reperfusion therapies have shown efficacy in a limited number of patients with acute ischemic stroke, neuroprotective drugs and recovery strategies have been widely assessed, but none of them have been successful in clinical practice. Therefore, the search for new therapeutic approaches is still necessary. Sphingolipids consist of a family of lipidic molecules with both structural and cell signaling functions. Regulation of sphingolipid metabolism is crucial for cell fate and homeostasis in the body. Different works have emphasized the implication of its metabolism in different pathologies, such as diabetes, cancer, neurodegeneration, or atherosclerosis. Other studies have shown its implication in the risk of suffering a stroke and its progression. This review will highlight the implications of sphingolipid metabolism enzymes in acute ischemic stroke.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elena Maqueda
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Adrián Posado-Fernández
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Candamo-Lourido
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
45
|
Körner C, Fröhlich F. Compartmentation and functions of sphingolipids. Curr Opin Cell Biol 2022; 74:104-111. [DOI: 10.1016/j.ceb.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023]
|
46
|
Shu H, Peng Y, Hang W, Li N, Zhou N, Wang DW. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging Dis 2022; 13:232-245. [PMID: 35111371 PMCID: PMC8782558 DOI: 10.14336/ad.2021.0710] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Ceramide is a core molecule of sphingolipid metabolism that causes selective insulin resistance and dyslipidemia. Research on its involvement in cardiovascular diseases has grown rapidly. In resting cells, ceramide levels are extremely low, while they rapidly accumulate upon encountering external stimuli. Recently, the regulation of ceramide levels under pathological conditions, including myocardial infarction, hypertension, and atherosclerosis, has drawn great attention. Increased ceramide levels are strongly associated with adverse cardiovascular risks and events while inhibiting the synthesis of ceramide or accelerating its degradation improves a variety of cardiovascular diseases. In this article, we summarize the role of ceramide in cardiovascular disease, investigate the possible application of ceramide as a new diagnostic biomarker and a therapeutic target for cardiovascular disorders, and highlight the remaining problems.
Collapse
Affiliation(s)
- Hongyang Shu
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- 3Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Na Li
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- 1Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,2Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
47
|
Worgall TS. Sphingolipids and Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:145-155. [DOI: 10.1007/978-981-19-0394-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Wasserman E, Gomi R, Sharma A, Hong S, Bareja R, Gu J, Balaji U, Veerappan A, Kim BI, Wu W, Heras A, Perez-Zoghbi J, Sung B, Gueye-Ndiaye S, Worgall TS, Worgall S. Human Rhinovirus Infection of the Respiratory Tract Affects Sphingolipid Synthesis. Am J Respir Cell Mol Biol 2021; 66:302-311. [PMID: 34851798 DOI: 10.1165/rcmb.2021-0443oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The 17q21 asthma susceptibility locus includes asthma risk alleles associated with decreased sphingolipid synthesis, likely resulting from increased expression of ORMDL3. ORMDL3 inhibits serine-palmitoyl transferase (SPT), the rate limiting enzyme of de novo sphingolipid synthesis. There is evidence that decreased sphingolipid synthesis is critical to asthma pathogenesis. Children with asthma and 17q21 asthma risk alleles display decreased sphingolipid synthesis in blood cells. Reduced SPT activity results in airway hyperreactivity, a hallmark feature of asthma. 17q21 asthma risk alleles are also linked to childhood infections with human rhinovirus (RV). This study evaluates the interaction of RV with the de novo sphingolipid synthesis pathway, and the alterative effects of concurrent SPT inhibition in SPT-deficient mice and human airway epithelial cells. In mice, RV infection shifted lung sphingolipid synthesis gene expression to a pattern that resembles genetic SPT deficiency, including decreased expression of Sptssa, a small SPT subunit. This pattern was pronounced in lung EpCAM+ epithelial cells and reproduced in human bronchial epithelial cells. RV did not affect Sptssa expression in lung CD45+ immune cells. RV increased sphingolipids unique to the de novo synthesis pathway in mouse lung and human airway epithelial cells. Interestingly, these de novo sphingolipid species were reduced in the blood of RV infected, wild-type mice. RV exacerbated SPT-deficiency-associated airway hyperreactivity. Airway inflammation was similar in RV-infected wild-type and SPT deficient mice. This study reveals the effects of RV infection on the de novo sphingolipid synthesis pathway, elucidating a potential mechanistic link between 17q21 asthma risk alleles and rhinoviral infection.
Collapse
Affiliation(s)
- Emily Wasserman
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Rika Gomi
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Anurag Sharma
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Seunghee Hong
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Rohan Bareja
- Weill Cornell Medical College, 12295, Precision Medicine, New York, New York, United States
| | - Jinghua Gu
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Uthra Balaji
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Arul Veerappan
- New York University, 5894, Medicine, New York, New York, United States
| | - Benjamin I Kim
- Columbia University, 5798, Pathology, New York, New York, United States
| | - Wenzhu Wu
- Weill Cornell Medical College, 12295, New York, New York, United States
| | - Andrea Heras
- Weill Cornell Medical College, 12295, Pediatrics , New York, New York, United States
| | - Jose Perez-Zoghbi
- Columbia University, 5798, Department of Anesthesiology , New York, New York, United States
| | - Biin Sung
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Seyni Gueye-Ndiaye
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Tilla S Worgall
- Columbia University Irving Medical Center, 21611, Dept. of Pathology, New York, New York, United States
| | - Stefan Worgall
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States;
| |
Collapse
|
49
|
Deng Y, You L, Lu Y, Han S, Wang J, Vicas N, Chen C, Ye J. Identification of TRAMs as sphingolipid-binding proteins using a photoactivatable and clickable short-chain ceramide analog. J Biol Chem 2021; 297:101415. [PMID: 34793833 PMCID: PMC8665359 DOI: 10.1016/j.jbc.2021.101415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ceramide is a lipid molecule that regulates diverse physiological and pathological reactions in part through inverting the topology of certain transmembrane proteins. This topological inversion is achieved through regulated alternative translocation (RAT), which reverses the direction by which membrane proteins are translocated across the endoplasmic reticulum during translation. However, owing to technical challenges in studying protein-ceramide interaction, it remains unclear how ceramide levels are sensed in cells to trigger RAT. Here, we report the synthesis of pac-C7-Cer, a photoactivatable and clickable short-chain ceramide analog that can be used as a probe to study protein-ceramide interactions. We demonstrate that translocating chain-associated membrane protein 2 (TRAM2), a protein known to control RAT of transmembrane 4 L6 subfamily member 20, and TRAM1, a homolog of TRAM2, interacted with molecules derived from pac-C7-Cer. This interaction was competed by naturally existing long-chain ceramide molecules. We showed that binding of ceramide and its analogs to TRAM2 correlated with their ability to induce RAT of transmembrane 4 L6 subfamily member 20. In addition to probing ceramide-TRAM interactions, we provide evidence that pac-C7-cer could be used for proteome-wide identification of ceramide-binding proteins. Our study provides mechanistic insights into RAT by identifying TRAMs as potential ceramide-binding proteins and establishes pac-C7-Cer as a valuable tool for future study of ceramide-protein interactions.
Collapse
Affiliation(s)
- Yaqin Deng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin You
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jingcheng Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nikitha Vicas
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
50
|
Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J Lipid Res 2021; 62:100121. [PMID: 34560079 PMCID: PMC8527048 DOI: 10.1016/j.jlr.2021.100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.
Collapse
|